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Abstract

Derandomization of Chernoff bound with union bound is already proven in many papers.
We here give another explicit version of it that obtains a construction of size that is arbitrary
close to the probabilistic nonconstructive size.

We apply this to give a new simple polynomial time constructions of almost k-wise indepen-
dent sets. We also give almost tight lower bounds for the size of k-wise independent sets.

1 Introduction

Derandomization of Chernoff bound with union bound is already proven in many papers. See for
example [22, 6, 9]. We here give another explicit version of it that obtains a construction of a size
that is arbitrary close to the size of the probabilistic nonconstructive size.

We then show that, for some construction problems, one can combine this method with the
method of conditional probabilities to get a derandomization that runs in time polylogarithmic in
the sample size.

In this paper we give the following application of this result:
For p ∈ <, the distance in the Lp-norm between two probability distribution D and Q over a

sample space S is

‖D −Q‖p =

(∑
s∈S
|D(s)−Q(s)|p

) 1
p

and for p =∞ is ‖D −Q‖p = maxs∈S |D(s)−Q(s)|.
Let S = {0, 1}n. A uniform distribution U over S is a distribution where U(s) = 1/2n for all

s ∈ S. For I = (i1, . . . , ik) where 1 ≤ i1 < · · · < ik ≤ n the distribution DI restricted to I over
{0, 1}k is DI(σ1, . . . , σk) = Prs∼D[si1 = σ1 ∧ · · · ∧ sik = σk]. A distribution Q over {0, 1}n is called
ε-almost k-wise independent in the Lp-norm if for any I = (i1, . . . , ik) we have ‖QI − UI‖p ≤ ε.

The goal is to construct S′ ⊂ {0, 1}n of small size such that the uniform distribution on S′ is
ε-almost k-wise independent in the Lp-norm. We will just say that S′ is ε-almost k-wise independent
set in the Lp-norm. The following table summarizes the results from the literature and our results.
The table shows the sizes without the small terms log log n, log(1/ε) and k. See the exact sizes in
the table in Section 3.3 and the theorems in Subsection 3.4 and Section 4.
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Construction Time Reference Size for L∞ Size for L1

Poly. time [7] log2 n
ε2

2k log2 n
ε2

Poly. time AGC+Hadamard logn
ε3

23k/2 logn
ε3

Poly. time [13] log5/4 n
ε2.5

25k/4 log5/4 n
ε2.5

Poly. time Ours logn
2kε3

2k+logn
ε3

nO(k) time Ours logn
2kε2

2k+logn
ε2

Lower Bound Ours logn
2kε2

logn
ε2

With the techniques used in this paper, all the results in this table can be easily generalized to
any product distribution and any alphabet.

Our construction is very simple. We first give a derandomization of Chernoff bound with union
bound. For this we use the pessimistic method with a pessimistic estimator (potential function) that
gives constructions of size that are arbitrary close to the size of the probabilistic nonconstructive
size. Those constructions are polynomial in the space size that is exponential in the dimension
of the problem. We then use the conditional probability method that reduces the complexity to
polylogarithmic time in the sample size. Those are used to construct a dense perfect hash family
and an ε-almost k-wise independent set of small dimension. We then combine both constructions to
get the final construction. We also give lower bounds that are almost tight to the non-constructive
constructions. Our constructions have sizes that are within a factor of 1/ε from the lower bounds.

Our construction can be easily generalized to any product distribution and any alphabet (not
necessarily alphabet of size power of prime) and can be used for other dense and balance construc-
tions. See some other techniques for deterministic and randomized dense, balance and non-dense
constructions in [5, 6, 10, 11, 12, 15, 16, 20, 21] and references within.

This paper is organized as follows. In Section 2 we give the main two theorems of the de-
randomization and show how to use the method of conditional probabilities to reduce its time
complexity to polylogarithmic in the size of the sample space. In Section 3 we give an exponential
time constructions of small size for a code that achieves the Gilbert-Varshamov bound, ε-balance
error-correcting code and ε-bias sample space. In Section 3.3 we give all the constructions in the
above table. Then in Section 5 we give the lower bounds.

2 The Derandomization

In this section we give the derandomization of Chernoff bound with union bound
The q-ary entropy function is

Hq(p) = p logq
q − 1

p
+ (1− p) logq

1

1− p
.

The Kullback-Leibler divergence between Bernoulli distributed random variables with parameter λ
and η is

D(λ||η) = λ ln
λ

η
+ (1− λ) ln

(
1− λ
1− η

)
.

For two integers n and m we denote [n] = {1, 2, . . . , n} and (n,m] = {n+ 1, n+ 2, . . . ,m}. For
a finite multiset of objects S we denote by US the uniform distribution over S.

We prove
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Theorem 1. Let S be a finite sample space with a probability distribution D. Let X1, . . . , XN

be random variables over S that take values from {0, 1}. Let N ′ ≤ N and {λi}i∈[N ] be such that
0 < λi < pi ≤ Es∼D[Xi] and 1 > λj > pj ≥ Es∼D[Xj ] for all i ∈ [N ′] and j ∈ (N ′, N ]. Let m be
such that

P0 :=
N∑
i=1

e−D(λi||pi)·m ≤ 1.

There is a multiset S′ = {s1, s2, . . . , sm} ⊆ S such that for all i ∈ [N ′] and j ∈ (N ′, N ]

E
s∼US′

[Xi(s)] ≥ λi, E
s∼US′

[Xj(s)] ≤ λj .

In particular, the result follows for

m ≥ max
i∈[N ]

lnN

D(λi||pi)
= max

i∈[N ]

logqi N

1−Hqi(λi)

where qi = 1/(1− pi).

Proof. We give an algorithm that constructs S′. Let

αi =
λi

(qi − 1)(1− λi)
=

(1− pi)λi
pi(1− λi)

and γi =
1

αipi + (1− pi)
=

1− λi
1− pi

.

Suppose that the algorithm has already chosen s1, . . . , s`. Consider the potential function

Pj :=

N∑
i=1

e−D(λi||pi)mγji α
Zj,i

i

where Zj,i = Xi(s1) + · · · + Xi(sj) for j = 0, 1, . . . , `. Here, Z0,i = 0. We now show how the
algorithm chooses s`+1. Consider the random variable

P ′`+1(s) =

N∑
i=1

e−D(λi||pi)mγ`+1
i α

Z`,i+Xi(s)
i .

Since αi < 1 for i ∈ [N ′] and αj > 1 for j ∈ (N ′, N ], we have

E
s∼D

[P ′`+1(s)] =
N∑
i=1

e−D(λi||pi)mγ`+1
i α

Z`,i

i E
s∼D

[
α
Xi(s)
i

]
≤

N∑
i=1

e−D(λi||pi)mγ`iα
Z`,i

i

= P`.

Now the algorithm chooses s`+1 ∈ S that satisfies P ′`+1(s`+1) ≤ P`. Let P`+1 = P ′`+1(s`+1).
Then P0 ≤ 1 and P`+1 ≤ P`. Therefore

Pm =
N∑
i=1

e−D(λi||pi)mγmi α
Zm,i

i ≤ 1.
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In particular, for all i ∈ [N ]

e−D(λi||pi)mγmi α
Zm,i

i ≤ 1.

Therefore, for all i ∈ [N ],

α
Zm,i

i ≤ (γ−1
i · e

D(λi||pi))m = αλimi .

Thus, for all i ∈ [N ] we have

α
Zm,i

i ≤ αλimi .

Since αi < 1 for all i ∈ [N ′] and αj > 1 for all j ∈ (N ′, N ] we have Zm,i ≥ λim for all i ∈ [N ′]
and Zm,j ≤ λjm for all j ∈ (N ′, N ]. Since Es∼US′ [Xk(s)] = Zm,k/m for all k ∈ [N ], the result
follows.

We now give the bit-time complexity of the algorithm described in the proof of Theorem 1

Theorem 2. Let all notation and assumptions be as in Theorem 1. Suppose that for every s ∈ S
all the values X1(s), . . . , XN (s) can be computed in bit-time1 Õ(N). Let µi = D(λi||pi), µ =
min(1,mini µi). Let τ = maxi max(αi, γi) where

αi =
(1− pi)λi
pi(1− λi)

and γi =
1− λi
1− pi

.

There is an algorithm that runs in bit-time

T = Õ(|S| ·Nm · (m log τ + log(1/µ))

and outputs a multiset S′ = {s1, . . . , sm, sm+1} ⊆ S such that for all i ∈ [N ′] and j ∈ (N ′, N ]

E
s∼US′

[Xi(s)] ≥ λi, E
s∼US′

[Xj(s)] ≤ λj

where US′ is the uniform distribution on S′.

Proof. Consider the algorithm in the proof of Theorem 1. Notice that here the size of S′ is m+ 1
and not m as in Theorem 1. So the potential function used in the algorithm is

Pj :=
N∑
i=1

e−µi(m+1)γji α
Zj,i

i

but with the same assumption
N∑
i=1

e−µim ≤ 1

as in Theorem 1. Therefore

P0 =

N∑
i=1

e−µi(m+1) ≤ e−µ
N∑
i=1

e−µim ≤ 1− µ

2
.

1Here Õ(N) is O(N · poly(log T )) where T is the time complexity of the construction.
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First, notice that αk ≤ τ and γk ≤ τ for all k ∈ [N ]. Let B be a positive integer that will be
determined later. If we use ∆ := B+1+dlog(τ+1)e bits for the representation of e−µim, αk and γk,

i.e., the absolute error is less than 2−B, then the absolute error in computing rk := e−µimγ`kα
Z`,k

k

is at most O(`τ2`2−B) and in computing P` =
∑

k rk is at most O(N`τ2`2−B) = O(Nmτ2m2−B).
This error is at most µ/(4m) when B ≥ 2m log τ + logN + 2 logm + log(1/µ) + 2. Notice that,
since the absolute error is less than µ/(4m), we have P`+1 ≤ P` + µ/(4m). Since P0 ≤ 1− µ/2, we
get

Pm+1 ≤ 1− µ

2
+
m+1∑
i=1

µ

4m
< 1

which, as shown in the proof of Theorem 1, gives the required bound.
Now arithmetic computations with ∆ = B+ 1 + dlog(τ + 1)e bit numbers take bit-time Õ(∆) =

Õ(m log τ + log(1/µ)). Since the number of arithmetic operations in the algorithm is O(|S| ·Nm),
the result follows.

In particular we have

Corollary 3. Let all the notation be as in Theorem 1 and 0 < εi < 1 for all i ∈ [N ]. Let
α = mini min(1/(1− pi), 1/(1− λi)). For

m ≥ 3 lnN

mini piε2i

the algorithm runs in bit-time T = Õ(|S| · Nm2 logα) and outputs S′ = {s1, . . . , sm+1} ⊆ S such
that for all i ∈ [N ′] and j ∈ (N ′, N ]

E
s∼US′

[Xi(s)] ≥ λi := (1− εi)pi, E
s∼US′

[Xj(s)] ≤ λj := (1 + εj)pj .

Proof. Follows from the fact that if λi = (1 + εi)pi then D(λi||pi) ≥ piε
2
i /2.5887 ≥ piε

2
i /3 and if

λi = (1− εi)pi then D(λi||pi) ≥ piε2i /2 ≥ piε2i /3.
Since αi ≤ 1/pi(1 − λi) and γi ≤ 1/(1 − pi) we have m log τ = Õ(m logα). Since 1/µ ≤

min 3/(piε
2
i ) ≤ m2 we get T = Õ(|S| ·Nm · (m log τ + log(1/µ)) = Õ(|S| ·Nm2 logα).

2.1 Combining with the Method of Conditional Probabilities

In the above constructions, the time complexity is linear in |S| which may be exponentially large.
In the following we get around this problem when S is of the form S1×· · ·×Sn and the expectation
of some “intermediate” random variables can be efficiently computed.

We prove

Theorem 4. Let all notation and assumptions be as in Theorem 1 and Corollary 3. Suppose
S = S1 × S2 × · · · × Sn. If any expectation of the form

E [Xi(x1, . . . , xn) | x1 = ξ1, . . . , xj = ξj ]

can be computed in bit-time T then the constructions in Theorem 1 and 2 can be performed in
bit-time

Õ(T (|S1|+ · · ·+ |Sn|) ·Nm(m log τ + log(1/µ)))
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and in Corollary 3 in bit-time

Õ(T (|S1|+ · · ·+ |Sn|) ·Nm2 logα)

Proof. The first result follows from the fact that since

E[P ′`+1(s)] = Ey1∼S1 [E[P ′`+1(s) | x1 = y1]] ≤ 1,

there is ξ1 ∈ S1 such that E[P ′`+1(s)] | x1 = ξ1] ≤ 1. So we find such ξ1. Then recursively find
ξ2, . . . , ξn.

For this case we need the absolute error to be less than µ/(4mn) (rather than µ/(4m) as in
Theorem 2). This adds a factor of log n to the time complexity that is swallowed by the Õ.

3 Constructions of Almost k-Wise Independent Sets

3.1 ε-Balance Error-Correcting Code

A linear code over the field Fq is a linear subspace C ⊂ Fmq . Elements in the code are called

codewords. A linear code C is called a [m, k, d]q linear code if C ⊂ Fmq is a linear code, |C| = qk and
for every two distinct codewords v and u in the code we have dist(v, u) := |{i | vi 6= ui}| ≥ d. The
latter is equivalent to: For every nonzero codeword w in C, we have wt(w) := |{i | wi 6= 0}| ≥ d.

A linear code C is called a [m, k, (1− 1/q)m]q ε-balance error-correcting linear code if C ⊂ Fmq
is a linear code, |C| = qk and for every nonzero codeword w ∈ C and ξ ∈ Fq we have

(1− ε)m
q
≤ |{wi | wi = ξ}| ≤ (1 + ε)

m

q
.

We show

Lemma 1. Let q be a prime power, m and k positive integers and 0 ≤ ε ≤ 1/2. For

m ≥ O
(
kq log q

ε2

)
there is an [m, k, (1 − 1/q)m]q ε-balance error-correcting linear code that can be constructed in
bit-time complexity Õ(qk+3/ε4).

Proof. We use Corollary 3. Consider S = Fkq with the uniform distribution. Define for every v ∈ Fkq
of the form v = (v1, . . . , vj , 1, 0, . . . , 0), j = 0, 1, . . . , k−1, every ξ ∈ Fq and every t ∈ {1, 2} a random
variable Xv,ξ,t : Fkq → {0, 1} where Xv,ξ,t(w) = [v1w1 + · · · + vkwk = ξ]. That is, Xv,ξ,t(w) = 1 if

v1w1 +· · ·+vkwk = ξ and zero otherwise. The number of random variables is N = 2q(qk−1)/(q−1)
and E[Xv,ξ,t] = 1/q for all v, ξ and t. The random variables satisfy the condition in Theorem 4
with Si = Fq for i = 1, . . . , k. Therefore an S′ = {s1, . . . , sm} ⊆ S of size

m ≥ 3q lnN

ε2
= O

(
kq log q

ε2

)
that satisfies Es∼US′ [Xv,ξ,1(s)] ≥ (1− ε)/q and Es∼US′ [Xv,ξ,2(s)] ≤ (1 + ε)/q for all v and ξ, can be
constructed in bit-time complexity

Õ

(
(kq)

(
2q
qk − 1

q − 1

)
k2q2 log2 q

ε4

)
= Õ

(
qk+3

ε4

)
.

Now, C = {(us1, . . . , usm)|u ∈ Fkq} is the code.

6



3.2 ε-Bias Sample Space

Let D be a probability distribution over Fn2 . The bias of D with respect to a set of indices I ⊆ [n]
is defined as

biasI(D) =

∣∣∣∣∣Pr
x∼D

(∑
i∈I

xi = 0

)
− Pr
x∼D

(∑
i∈I

xi = 1

)∣∣∣∣∣ .
We say that D is ε-bias sample space if biasI(D) ≤ ε for all non-empty subset I ⊆ [n]. If D is the
uniform distribution over a multiset S ⊆ Fn2 then we call S an ε-bias set. The goal is to construct
a small ε-bias set in polynomial time in n/ε. The following constructions are known from the
literature

Reference Size |S| = O(·)
Alon et. al. [7] n2

ε2 log2(n/ε)

AGC+Hadamard code2 n
ε3 log(1/ε)

Ben-Aroya and Ta-Shma [13] n5/4

ε2.5 log5/4(1/ε)

The best lower bound for the size of ε-bias set is [7, 1]

Ω

(
n

ε2 log(1/ε)

)
.

Let C be an ε-balance error-correcting linear code [m,n,m/2]2 over F2 with a m× n generator
matrix A. It is easy to see that the set of rows of A is ε-bias set of size m. Therefore, by Lemma 1,
for q = 2, we have

Lemma 2. An ε-bias set S ⊆ Fn2 of size

O
( n
ε2

)
can be constructed in time O(2n/ε4).

Remark: Using the powering construction in [7] with bij = (bin(vjx
i), bin(y)) where {y} is an

ε-bias set S′ ⊆ Fm2 (rather than all the elements of Fm2 ) gives a polynomial time construction of an
ε-bias set S ⊆ Fn2 of size O(n/ε3).

3.3 k-wise Approximating Distributions in Time O(nk)

The distance in the Lp-norm between two probability distribution D and Q over the sample space
S is

‖D −Q‖p =

(∑
s∈S
|D(s)−Q(s)|p

) 1
p

for p ∈ < and ‖D −Q‖p = maxs∈S |D(s)−Q(s)| for p =∞.
Let S = Σn. A uniform distribution U over S is a distribution where U(s) = 1/|Σ|n for all

s ∈ S. A product distribution D over S is a distribution where D(s1, . . . , sn) = p1,s1 · · · pn,sn where
0 ≤ pi,si ≤ 1 for all i ∈ [n] and si ∈ Σ.

2See the construction in [13]
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For I = (i1, . . . , ik) where 1 ≤ i1 < · · · < ik ≤ n the distribution DI restricted to I over Σk is
DI(σ1, . . . , σk) = Prs∼D[si1 = σ1 ∧ · · · ∧ sik = σk]. Two distributions D and Q over Σn are called
k-wise ε-close in the Lp-norm, if for any I = (i1, . . . , ik), ‖DI − QI‖p ≤ ε. If D is the uniform
distribution then Q is called ε-almost k-wise independent in the Lp-norm.

When ε = 0 then S is called k-wise independent set. It is known that the size of any k-wise
independent set is nΘ(k), [3, 14]. See also [8].

The goal is: given a distribution D. Construct S′ ⊂ S of small size such that the uniform
distribution on S′ is k-wise ε-close to D in the Lp-norm. We will just say that S′ is k-wise ε-
close to D in the Lp-norm and if D is the uniform distribution we say that S is ε-almost k-wise
independent in the Lp-norm.

For Σ = {0, 1}, Naor and Naor proved

Lemma 3. [18]. Let k < n be an odd integer, t is a power of 2 and

n ≤ 2b2(m−1)/(k−1)c − 1.

Given an ε-bias set S ⊆ {0, 1}m of size t, one can, in polynomial time, construct a set R ⊆ {0, 1}n
of size t that is ε-almost k-wise independent in the L∞-norm and 2k/2ε-almost k-wise independent
in the L1-norm.

For Σ = {0, 1}, the following are the best known polynomial time constructions of sets that are
ε-almost k-wise independent in the L∞-norm and L1-norm. The constructions use the ε-bias sets
in Section 3.2 with Lemma 3. See also the sizes without the small terms k, log(1/ε) and log log n
in the first three rows of the table in the introduction.

Reference Size for L∞ Size for L1

[7] k2 log2 n
ε2(log2 k+(log logn)2+log2(1/ε)))

k22k log2 n
ε2(k2+(log logn)2+log2(1/ε))

AGC+Hadamard k logn
ε3 log(1/ε)

k23k/2 logn
ε3(k+log(1/ε))

[13] k5/4 log5/4 n

ε2.5 log5/4(1/ε)

k5/425k/4 log5/4 n

ε2.5(k5/4+log5/4(1/ε))

By Lemma 2 and Lemma 3 we have

Lemma 4. An ε-almost k-wise independent set in the L∞-norm of size

O

(
k log n

ε2

)
can be constructed in time O(n(k−1)/2/ε4).

An ε-almost k-wise independent in the L1-norm of size

O

(
k2k log n

ε2

)
can be constructed in time O(22kn(k−1)/2/ε4).

We now prove
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Theorem 5. An ε-almost k-wise independent set in the L∞-norm of size

O

(
k log n

2kε2

)
can be constructed in time Õ(nk/ε4).

Proof. Consider S = {0, 1}n with the uniform distribution. Define for every 1 ≤ i1 < i2 < · · · <
ik ≤ n and (ξ1, . . . , ξk) ∈ {0, 1}k the random variable Xi1,...,ik,ξ1,...,ξk(s) that is equal to 1 if and
only if sij = ξj for all j = 1, . . . , k. Now the result follows from Corollary 3 and Theorem 4.

This gives an ε-almost k-wise independent set in the L1-norm of size O(k2k log n/ε2). We now
give a better bound. We first prove

Lemma 5. Let 0 ≤ r < k. An ε-almost k-wise independent set in the L1-norm of size

m = O

(
2k + k2r log n

ε2

)
can be constructed in time Õ(22k−r

nk/ε4).

Proof. Consider S = {0, 1}n with the uniform distribution. For every a ∈ {0, 1}r and B ⊆ {0, 1}k−r
we define the random variable Zi1,...,ik,a,B(s) = 1 if and only if (si1 , . . . , sik) ∈ {a} ×B. Let S′ ⊂ S
and suppose for every I = (i1, . . . , ik), a ∈ {0, 1}r and B ⊆ {0, 1}k−r we have

|Es∼US′ [ZI,a,B]−Es∼US
[ZI,a,B]| =

∣∣∣∣Es∼US′ [ZI,a,B]− |B|
2k

∣∣∣∣ ≤ ε

2r+1
.

Then (here E is Es∼US′ )∑
a∈{0,1}r,b∈{0,1}k−r

∣∣∣∣E[ZI,a,{b}]−
1

2k

∣∣∣∣ =
∑

a∈{0,1}r

∑
b∈{0,1}k−r

∣∣∣∣E[ZI,a,{b}]−
1

2k

∣∣∣∣
=

∑
a∈{0,1}r

max
B⊆{0,1}k−r

(
E[ZI,a,B]− |B|

2k

)
+

(
|B̄|
2k
−E[ZI,a,B̄]

)
≤

∑
a∈{0,1}r

ε

2r
= ε,

and therefore, S′ is an ε-almost k-wise independent in the L1 norm.
Now to construct such a set S′ we use Corollary 3 and Theorem 4. We have N = 22k−r+12r

(
n
k

)
and define for each ZI,a,B, εI,a,B = ε2k−r−1/|B| and pI,a,B = |B|/2k. By Theorem 1,

m ≥
ln 22k−r+12r

(
n
k

)
min pI,a,Bε2I,a,B

= O

(
2k + k2r log n

ε2

)
.

We now prove
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Theorem 6. Let d > 0 be any real number. An ε-almost k-wise independent set in the L1-norm
of size

m = O

(
2k + (k/d)2k + k log n

ε2

)
can be constructed in time Õ(nk+d/ε4).

In particular, an ε-almost k-wise independent set in the L1-norm of size

m = O

(
2k + k log n

ε2

)
can be constructed in time Õ(n2k/ε4).

Proof. Follows from Lemma 6 with r = max(dk − log log n− log de, 0).

The above results can be extended to any product distribution over any alphabet.

3.4 Efficient Construction for Any k

In this subsection, we give a construction that is efficient for any k. We will give the results for the
uniform distribution. Similar results can be obtained for the product distribution.

We first define the dense perfect hash family. We say that H ⊆ [q]n is a (1− ε)-dense (n, q, k)-
perfect hash family if for every 1 ≤ i1 < i2 < · · · < ik ≤ n there are at least (1 − ε)|H| elements
h ∈ H such that hi1 , . . . , hik are distinct.

We will use the following lemma. The proof is in [11] for a power of prime q. See also [17]. Here
we give the proof for any q.

Lemma 6. If n > q > 4k2/ε then there is a (1− ε)-dense (n, q, k)-PHF of size

O

(
k2 log n

ε log(εq/k2)

)
that can be constructed in polynomial time.

Proof. We use Theorem 1. The sample space is S = [q]n with the uniform distribution. The
random variables are Xi,j(s) = I[si = sj ] for all 1 ≤ i < j ≤ n. That is, Xi,j(s) = 1 if si = sj
and Xi,j(s) = 0 otherwise. We have p = E[Xi,j ] = 1/q. The number of such random variables is
N =

(
n
2

)
. Let h = dk2/εe and λ = 1/h > p. Then

D(λ||p) =
1

h
ln

(
1/h

1/q

)
+

(
1− 1

h

)
ln

1− 1/h

1− 1/q

≥ 1

h
ln q − 1

h
lnh+

(
1− 1

h

)
ln

(
1− 1

h

)
≥ ln q − lnh− 1

h
.

By Theorem 1, in polynomial time, we can find a multiset S′ = {s1, . . . , sm} ⊂ S where

m =
lnN

D(λ||p)
= O

(
k2 log n

ε log(εq/k2)

)
10



such that for all 1 ≤ i ≤ j ≤ n we have Prs∈US′ [si = sj ] ≤ 1/h. Then for any 1 ≤ i1 < i2 < · · · <
ik ≤ n we have

Prs∈US′ [(∃1 ≤ j1 < j2 ≤ k) sij1 = sij2 ] ≤
(
k
2

)
h
≤ ε.

We are now ready to give our main three results.
We first show

Theorem 7. An ε-almost k-wise independent set in the L∞-norm of size

O

(
k3 log n

2kε3

)
can be constructed in polynomial time.

Proof. In this proof, ci, i = 1, 2, 3, · · · , are some constants. Obviously, ε < 1/2k. For n ≤ (k/ε)3k,
the size of the ε-almost k-wise independent set in [7] (see the table) is at most

c1k
2 log2 n

ε2 log2(1/ε)
≤ c2k

3 log n

ε2 log(1/ε)
≤ c2k

3 log n

2kε3
.

Now let n ≥ (k/ε)3k. Let q = d(k/ε)3e and H ⊆ [q]n be a (1− ε/4)-dense (n, q, k)-PHF of size

|H| = c3k
2 log n

ε log(εq/k2)
≤ c4k

2 log n

ε log(1/ε)
.

Such an H exists by Lemma 6 and can be constructed in polynomial time. By Theorem 5, an
(ε/4)-almost k-wise independent set R ⊆ {0, 1}q in the L∞-norm of size

|R| = c5k log q

2kε2
≤ c6k log(1/ε)

2kε2

can be constructed in time Õ(qk/ε4) = poly(n, 1/ε). Define

S = {(vu1 , . . . , vun) | u ∈ H, v ∈ R}.

The size of S is

|R| · |H| = c7k
3 log n

2kε3
.

Now for a random uniform s ∈ S, any 1 ≤ i1 < · · · < ik ≤ n and ξ ∈ {0, 1}k,

Prs∈S [(si1 , . . . , sik) = ξ] = Prv∈R,u∈H [(vui1 , . . . , vuik ) = ξ]

≤ Prv∈R,u∈H [(vui1 , . . . , vuik ) = ξ | ui1 , . . . , uik are distinct] +

Prv∈R,u∈H [ui1 , . . . , uik are not distinct]

≤
(

1

2k
+
ε

4

)
+
ε

4
≤ 1

2k
+ ε

11



and

Prs∈S [(si1 , . . . , sik) = ξ] = Prv∈R,u∈H [(vui1 , . . . , vuik ) = ξ]

≥ Prv∈R,u∈H [(vui1 , . . . , vuik ) = ξ | ui1 , . . . , uik are distinct] ·
Prv∈R,u∈H [ui1 , . . . , uik are distinct]

≥
(

1

2k
− ε

4

)(
1− ε

4

)
≥ 1

2k
− ε.

Therefore, S is ε-almost k-wise independent set in L∞-norm.

For the L1-norm we prove

Theorem 8. An ε-almost k-wise independent set in the L1-norm of size

Õ

(
2k + log n

ε3

)
can be constructed in polynomial time.

This theorem follows from the following two results

Lemma 7. For n > 22k , an ε-almost k-wise independent set in the L1-norm of size

O

(
k3 log1/2(1/ε) log n

ε3

)
= Õ

(
log n

ε3

)
can be constructed in polynomial time.

Proof. Let n ≥ 22k . If ε < 1/22k/k then the AGC+Hadamard construction is of size (see the table)

c1k23k/2 log n

ε3(k + log(1/ε))
≤ c2k

2.5 log1/2(1/ε) log n

ε3
.

Now let ε ≥ 1/22k/k. Let q = d22k/kk2/εe and H ⊆ [q]n be a (1 − ε/4)-dense (n, q, k)-PHF of
size

c3k
2 log n

ε log(εq/k2)
≤ c4k

3 log n

ε2k
.

Such an H exists by Lemma 6 and can be constructed in polynomial time. By Theorem 6, an
(ε/4)-almost k-wise independent set R ⊆ {0, 1}q in the L1-norm of size

c5(2k + k log q)

ε2
≤ c62k

ε2

can be constructed in time Õ(q2k/ε4) = poly(n, 1/ε). Define

S = {(vu1 , . . . , vun) | u ∈ H, v ∈ R}.

The size of S is

|R| · |H| = c7k
3 log n

ε3
.

12



Now for a random uniform s ∈ S, any 1 ≤ i1 < · · · < ik ≤ n and any boolean function f : {0, 1}k →
{0, 1},

Prs∈S [f(si1 , . . . , sik) = 1] = Prv∈R,u∈H [f(vui1 , . . . , vuik ) = 1]

≤ Prv∈R,u∈H [f(vui1 , . . . , vuik ) = 1 | ui1 , . . . , uik are distinct] +

Prv∈R,u∈H [ui1 , . . . , uik are not distinct]

≤
(
Pr[f = 1] +

ε

4

)
+
ε

4
≤ Pr[f = 1] + ε.

Therefore S is ε-almost k-wise independent set in L∞-norm.

Lemma 8. For n ≤ 22k , an ε-almost k-wise independent set in the L1-norm of size

Õ

(
2k

ε3

)
can be constructed in polynomial time.

Proof. If n < (4k2/ε)2k then we use the bound in [7] (see the table) and get an ε-almost k-wise
independent set in the L1-norm of size

O

(
k2 min(k2, log2(1/ε)) · 2k

ε2

)
= Õ

(
2k

ε2

)
.

Otherwise, we take q = dn1/ke ≥ (4k2/ε)2 and use Theorem 6 to construct an (ε/4)-almost k-wise
set in the L1-norm, R ⊆ {0, 1}q, of size (notice that log n ≤ 2k)

O

(
2k

ε2

)
in time Õ(q2k/ε4) = poly(n, 1/ε). Composing this with the (ε/4)-dense (n, q, k)-PFH in Lemma 6
of size

O

(
k2 log n

ε log(εq/k2)

)
= O

(
k3

ε

)
gives the result.

4 Lower Bounds

In this section we give the following two lower bounds

Theorem 9. Let 1/poly(n) ≤ ε < 1/2k+1 and k < n/2. Any ε-almost k-wise independent set in
the L∞-norm is of size

Ω

(
log n

2kε2 log(1/2k+1ε)

)
= Ω̃

(
log n

2kε2

)
.

Theorem 10. Let ε > 1/nk/5. Any ε-almost k-wise independent set in the L1-norm is of size

Ω

(
k log n

ε2 log(1/ε)

)
= Ω̃

(
log n

ε2

)
.

13



The following is proved in [2, 1]. We give the proof for completeness.

Lemma 9. Let S ⊂ {0, 1}n and r < n be an even number. If for every distinct i1, . . . , ir ∈ [n],
α ∈ {0, 1}r\{0r} and a random uniform s ∈ S we have 1/2 + ε ≥ Pr[α1si1 + · · ·+ αrsir ] ≥ 1/2− ε
then

|S| ≥ Ω

(
min

(
r log(n/r)

ε2 log(1/ε)
, 2r/2

(
n

r/2

)))
.

In particular, for ε > 1
/(

2r/4
(
n
r/2

)1/2)
|S| ≥ Ω

(
r log(n/r)

ε2 log(1/ε)

)
.

Proof. Let S = {s(1), . . . , s(m)} and I = {(i1, . . . , ir/2) | 1 ≤ i1 < i2 < · · · < ir/2 ≤ 1}. Consider

C = {(β1s
(1)
i1

+ · · ·+ βr/2s
(1)
ir/2

, . . . , β1s
(m)
i1

+ · · ·+ βr/2s
(m)
ir/2

) | i ∈ I, β ∈ {0, 1}r/2\{0r/2}}.

Then for two distinct u, v ∈ C we have (for some i1, . . . , ir and (α1, . . . , αr) ∈ {0, 1}r\{0r})

dist(u, v) = wt(u+ v) = m ·Prs∈US
[α1si1 + · · ·+ αrsir ] ∈

[(
1

2
− ε
)
m,

(
1

2
+ ε

)
m

]
.

Therefore C is an ε-balance error-correcting code size (2r/2 − 1)
(
n
r/2

)
. By MRRW bound,[19], for

binary code with the results in Section 7 and (3) in [7] and the bound in [1], the result follows.

We now prove Theorem 9

Proof. Let S be a ε-almost k-wise set in the L∞ norm. Let r ≥ 2 be an even constant such that

ε > 1
/(

2r/4
(
n−k+r
r/2

)1/2)
. For ξ ∈ {0, 1}k−r consider the sets Sξ = {s ∈ S | (s1, . . . , sk−r) = ξ}.

Obviously, {Sξ}ξ∈{0,1}k−r is a partition of S.
Let I = {k − r + 1, k − r + 2, . . . , n}. For distinct i1, . . . , ir ∈ I, α ∈ {0, 1}r\{0r}, ξ =

ξ1, . . . , ξk−r ∈ {0, 1}k−r, and a random uniform x ∈ S we have

Pr[α1xi1 + · · ·+ αrxir = 1| x ∈ Sξ] =
Pr[α1xi1 + · · ·+ αrxir = 1, (x1, . . . , xk−r) = ξ]

Pr[(x1, . . . , xk−r) = ξ]

=
Pr[α1xi1 + · · ·+ αrxir = 1, (x1, . . . , xk−r) = ξ]∑
u∈{0,1}r Pr[(xi1 , . . . , xir) = u, (x1, . . . , xk−r) = ξ]

≥
2r−1

(
1
2k
− ε
)

2r
(

1
2k

+ ε
) ≥ 1

2
− 2k+1ε.

In the same way

Pr[α1xi1 + · · ·+ αrxir = 1| x ∈ Sξ] ≤
1

2
+ 2k+1ε.

Therefore, by Lemma 9, for ε > 1
/(

2r/4
(
n−k+r
r/2

)1/2)
,

|S| =
∑

ξ∈{0,1}k−r

|Sξ| = 2k−r · Ω
(

r log(|I|/r)
(2k+1ε)2 log(1/(2k+1ε))

)
= Ω

(
log n

2kε2 log(1/2k+1ε)

)
.
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We now prove Theorem 10

Proof. For every distinct i1, . . . , ik ∈ [n] and α ∈ {0, 1}k\{0k} and any random uniform x ∈ S∣∣∣∣Pr[α1xi1 + · · ·+ αkxik = 1]− 1

2

∣∣∣∣ ≤ ∑
α1ξ1+···+αkξk=1

∣∣∣∣Pr[xi1 = ξ1, . . . , xik = ξk]−
1

2k

∣∣∣∣
≤

∑
ξ∈{0,1}k

∣∣∣∣Pr[xi1 = ξ1, . . . , xik = ξk]−
1

2k

∣∣∣∣ ≤ ε.
Therefore, by Lemma 9, for ε > 1/nk/5, we have

|S| = Ω

(
k log n

ε2 log(1/ε)

)
.
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