
Low-Sensitivity Functions from Unambiguous Certificates

Shalev Ben-David
MIT

shalev@mit.edu

Abstract

We provide new query complexity separations against sensitivity for total Boolean functions:
a power 3 separation between deterministic (and even randomized or quantum) query complex-
ity and sensitivity, and a power 2.1 separation between certificate complexity and sensitivity.
We get these separations by using a new connection between sensitivity and a seemingly unre-
lated measure called one-sided unambiguous certificate complexity (UCmin). Finally, we show
that UCmin is lower-bounded by fractional block sensitivity, which means we cannot use these
techniques to get a super-quadratic separation between bs(f) and s(f).

1 Introduction

Sensitivity is one of the simplest complexity measures of a Boolean function. For f : {0, 1}n → {0, 1}
and x ∈ {0, 1}n, the sensitivity of x is the number of bits of x that, when flipped, change the value of
f(x). The sensitivity of f , denoted s(f), is the maximum sensitivity of any input x to f . Sensitivity
lower bounds other important measures in query complexity, such as deterministic query complexity
D(f), randomized query complexity R(f), certificate complexity C(f), and block sensitivity bs(f)
(see Section 2 for definitions).

√
s(f) is a lower bound on quantum query complexity Q(f).

Despite its simplicity, sensitivity has remained mysterious. The other measures are polynomially
related to each other: we have bs(f) ≤ C(f) ≤ D(f) ≤ bs(f)3 and Q(f) ≤ R(f) ≤ D(f) ≤ Q(f)6.
In contrast, no polynomial relationship connecting sensitivity to these measures is known, despite
much interest (this problem was posed by [Nis91]. For a survey, see [HKP11]. For recent progress,
see [AS11, Bop12, AP14, ABG+14, APV15, AV15, GKS15, Sze15, GNS+16, GSTW16, Tal16]).

Until recently, the best known separation between sensitivity and any of these other measures
was quadratic. Tal [Tal16] showed a power 2.1 separation between D(f) and s(f). In this work,
we improve this to a power 3 separation, and also show functions for which Q(f) = Ω̃(s(f)3) and
C(f) = Ω̃(s(f)2.1).

We do this by exploiting a new connection between sensitivity and a measure called one-sided
unambiguous certificate complexity, which we denote by UCmin(f). This measure, and particularly
its two-sided version UC(f) (which is sometimes called subcube complexity), has received significant
attention in previous work (e.g. [BOH90, FKW02, Sav02, Bel06, KRS15, GPW15, Göö15, GJPW15,
CKLS16, AKK16]), in part because it corresponds to partition number in communication complex-
ity. Intuitively, UCmin(f) is similar to (one-sided) certificate complexity, except that the certificates
are required to be unambiguous: each input must be consistent with only one certificate. For a
formal definition, see Section 2.5.

We prove the following theorem.

Theorem 1. For any α ∈ R+, if there is a family of functions with D(f) = Ω̃(UCmin(f)
1+α), then

there is a family of functions with D(f) = Ω̃(s(f)2+α). The same is true if we replace D(f) by
bs(f),C(f),R(f),Q(f), and many other measures.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 84 (2016)



Theorem 1 can be generalized from sensitivity s(f) to bounded-size block sensitivity bs(k)(f)
(block sensitivity where each block is restricted to have size at most k). However, there is a constant
factor loss that depends on k.

We observe that cheat sheet functions (as defined in [ABK15]) have low UCmin; in particular,
one of the functions in [ABK15] already has a quadratic separation between Q(f) and UCmin(f),
giving a cubic separation between Q(f) and s(f). To separate C(f) from s(f), we use Göös’s
function [Göö15], which gives a 1.1 separation between C(f) and UCmin(f). This gives us the
following corollary.

Corollary 2. There is a family of functions with Q(f) = Ω̃(s(f)3), and one with C(f) = Ω(s(f)2.128).

We note that UCmin(f) upper bounds deg(f), so this technique cannot be used to get super-
quadratic separations between deg(f) and s(f). A natural question is whether we can use Theorem 1
to get a super-quadratic separation between bs(f) and s(f). To do so, it would suffice to separate
bs(f) from UCmin(f). It would even suffice to separate randomized certificate complexity RC(f)
(a measure larger than bs(f)) from UCmin(f), because of the following theorem.

Theorem 3 (Follows from [Tal13] and independently [GSS16]). A power 2+α separation between
RC(f) and s(f) implies a power 2 + α− o(1) separation between bs(f) and s(f).

Unfortunately, we show that separating RC(f) from UCmin(f) is impossible. We conclude that
Theorem 1 cannot be used to super-quadratically separate bs(f) from s(f).

Theorem 4. Let f : {0, 1}n → {0, 1} be a Boolean function. Then RC(f) ≤ 2UCmin(f).

In fact, we prove a strengthened version of Theorem 4 regarding non-negative approximate

degree d̃eg
+

min(f), a measure upper bounded by UCmin(f). We show d̃eg
+

min(f) = Ω(RC(f)),

strengthening a result of [GJPW15] that showed d̃eg
+

min(ANDn) = Ω(n). The RC(f) lower bound

even holds for the (one-sided) average approximate non-negative degree ãvdeg
+

min(f) introduced by
[GJ15], which we define in Section 2.6. We also show that the factor of 2 in Theorem 4 is neccessary.

In Section 2, we briefly define the many complexity measures mentioned here, and discuss the
known relationships between them. In Section 3, we prove Theorem 1 and Corollary 2. In Section 4,
we discuss a failed attempt to get a new separation between bs(f) and s(f), and in the process we
prove Theorem 3 and Theorem 4.

2 Preliminaries

2.1 Query Complexity

Let f : {0, 1}n → {0, 1} be a Boolean function. Let A be a deterministic algorithm that computes
f(x) on input x ∈ {0, 1}n by making queries to the bits of x. The worst-case number of queries
A makes (over choices of x) is the query complexity of A. The minimum query complexity of any
deterministic algorithm computing f is the deterministic query complexity of f , denoted by D(f).

We define the bounded-error randomized (respectively quantum) query complexity of f , denoted
by R(f) (respectively Q(f)), in an analogous way. We say an algorithm A computes f with bounded
error if Pr[A(x) = f(x)] ≥ 2/3 for all x ∈ {0, 1}n, where the probability is over the internal
randomness of A. Then R(f) (respectively Q(f)) is the minimum number of queries required by
any randomized (respectively quantum) algorithm that computes f with bounded error. It is clear
that Q(f) ≤ R(f) ≤ D(f). For more details on these measures, see the survey by Buhrman and de
Wolf [BdW02].

2



2.2 Partial Assignments and Certificates

A partial assignment is a string p ∈ {0, 1, ∗}n representing partial knowledge of a string x ∈ {0, 1}n.
Two partial assignments are consistent if they agree on all entries where neither has a ∗. We will
identify p with the set {(i, pi) : pi 6= ∗}. This allows us to write p ⊆ x to denote that the string
x is consistent with the partial assignment p. We observe that if p and q are consistent partial
assignments, then p ∪ q is also a partial assignment. The size of a partial assignment p is |p|, the
number of non-∗ entries in p. The support of p is the set {i ∈ [n] : pi 6= ∗}.

Fix a Boolean function f : {0, 1}n → {0, 1}. We say a partial assignment p is a certificate (with
respect to f) if f(x) is the same for all strings x ⊇ p. If f(x) = 0 for such strings, we say p is
a 0-certificate; otherwise, we say p is a 1-certificate. We say p is a certificate for the string x if p
is consistent with x. We use Cx(f) to denote the size of the smallest certificate for x. We then
define the certificate complexity of f as C(f) := maxx∈{0,1}n Cx(f). We also define the one-sided
measures C0(f) := maxx∈f−1(0) Cx(f) and C1(f) := maxx∈f−1(1)Cx(f).

2.3 Sensitivity and Block Sensitivity

Let f : {0, 1}n → {0, 1} be a Boolean function, and let x ∈ {0, 1}n be a string. A block is a subset
of [n]. If B is a block, we denote by xB the string we get from x by flipping the bits in B; that is,
xBi = xi if i /∈ B, and xB = 1− xi if i ∈ B. For a bit i, we also use xi to denote x{i}.

We say that a block B is sensitive for x (with respect to f) if f(xB) 6= f(x). We say a bit i is
sensitive for x if the block {i} is sensitive for x. The maximum number of disjoint blocks that are
all sensitive for x is called the block sensitivity of x (with respect to f), denoted by bsx(f). The
number of sensitive bits for x is called the sensitivity of x, denoted by sx(f). Clearly, bsx(f) ≥ sx(f),
since sx(f) is has the same definition as bsx(f) except the size of the blocks is restricted to 1.

We now define the measures s(f), s0(f), and s1(f) analogously to C(f), C0(f), and C1(f). That
is, s(f) is the maximum of sx(f) over all x, s0(f) is the maximum where x ranges over 0-inputs to
f , and s1(f) is the maximum over 1-inputs. We define bs(f), bs0(f), and bs1(f) similarly.

2.4 Fractional Block Sensitivity

Let f : {0, 1}n → {0, 1} be a Boolean function, and let x ∈ {0, 1}n be a string. Note that the
support of any certificate p of x must have non-empty intersection with every sensitive block B
of x; this is because otherwise, xB would be consistent with p, which is a contradiction since
f(xB) 6= f(x).

Note further that any subset S of [n] that intersects with all sensitive blocks of x gives rise to
a certificate xS for x. This is because if xS was not a certificate, there would be an input y ⊇ xS
with f(y) 6= f(x). If we write y = xB , where B is the set of bits where x and y disagree, then B
would be a sensitive block that is disjoint from S, which contradicts our assumption on S.

This means the certificate complexity Cx(f) of x is the hitting number for the set system of
sensitive blocks of x (that is, the size of the minimum set that intersects all the sensitive blocks).
Furthermore, the block sensitivity bsx(f) of x is the packing number for the same set system (i.e.
the maximum number of disjoint sets in the system). It is clear that the hitting number is always
larger than the packing number, because if there are k disjoint sets we need at least k domain
elements in order to have non-empty intersection with all the sets.

Moreover, we can define the fractional certificate complexity of x as the fractional hitting number
of the set system; that is, the minimum amount of non-negative weight we can distribute among
the domain elements [n] so that every set in the system gets weight at least 1 (where the weight of
a set is the sum of the weights of its elements). We can also define the fractional block sensitivity of

3



x as the fractional packing number of the set system; that is, the maximum amount of non-negative
weight we can distribute among the sets (blocks) so that every domain element gets weight at most
1 (where the weight of a domain element is the sum of the weights of the sets containing that
element).

It is not hard to see that the fractional hitting and packing numbers are the solutions to
dual linear programs, which means they are equal. We denote them by RCx(f) for “randomized
certificate complexity”, following the original notation as introduced by Aaronson [Aar08] (we
warn that our definition differs by a constant factor from Aaronson’s original definition). We define
RC(f), RC0(f), and RC1(f) in the usual way. For more properties of RC(f), see [Aar08] and
[KT13].

2.5 Unambiguous Certificate Complexity

Fix f : {0, 1}n → {0, 1}. We call a set of partial assignments U an unambiguous collection of
0-certificates for f if

1. Each partial assignment in U is a 0-certificate (with respect to f)

2. For each x ∈ f−1(0), there is some p ∈ U with p ⊆ x

3. No two partial assignments in U are consistent.

We then define UC0(f) to be the minimum value of maxp∈U |p| over all choices of such collections
U . We define UC1(f) analogously, and set UC(f) := max{UC0(f),UC1(f)}. We also define the
one-sided version, UCmin(f) := min{UC0(f),UC1(f)}.

2.6 Degree Measures

A polynomial q in the variables x1, x2, . . . , xn is said to represent the function f : {0, 1}n → {0, 1}
if q(x) = f(x) for all x ∈ {0, 1}n. q is said to ǫ-approximate f if q(x) ∈ [0, ǫ] for all x ∈ f−1(0) and
q(x) ∈ [1 − ǫ, 1] for all x ∈ f−1(1). The degree of f , denoted by deg(f), is the minimum degree

of a polynomial representing f . The ǫ-approximate degree, denoted by d̃eg
ǫ
(f), is the minimum

degree of a polynomial ǫ-approximating f . We will omit ǫ when ǫ = 1/3. [BBC+01] showed that

D(f) ≥ deg(f), R(f) ≥ d̃eg(f), and Q(f) ≥ d̃eg(f)/2.
We also define non-negative variants of degree. For each partial assignment p we identify a

polynomial p(x) := (Πi: pi=1xi) (Πi: pi=0(1− xi)). We note that p(x) = 1 if p ⊆ x and p(x) = 0
otherwise, and also that the degree of p(x) is |p|. We say a polynomial is non-negative if it is of
the form

∑
p wpp(x), where wp ∈ R+ are non-negative weights. For such a sum, define its degree

as maxp:wp>0 |p|. Define its average degree as the maximum over x ∈ {0, 1}n of
∑

p: p⊆xwp|p|. We
note that if a non-negative polynomial q satisfies |q(x)| ∈ [0, 1] for all x ∈ {0, 1}n, then the average
degree of q is at most its degree. Moreover, if all the monomials in q have the same size and q(x) = 1
for some x ∈ {0, 1}n, the degree and average degree of q are equal.

We define the non-negative degree of f as the minimum degree of a non-negative polynomial
representing f . We note that this is a one-sided measure, since it may change when f is negated;
we therefore denote it by deg+1 (f), and use deg+0 (f) for the degree of a non-negative polynomial
representing the negation of f . We let deg+(f) be the maximum of the two, and let deg+min(f)
be the minimum. We also define avdeg+1 (f) as the minimum average degree of a non-negative
polynomial representing f , with the other corresponding measures defined analogously. Finally,

we define the approximate variants of these, denoted by (for example) d̃eg
+,ǫ

1 (f), in a similar way,
except the polynomials need only ǫ-approximate f .

4



2.7 Known Relationships

2.7.1 Two-Sided Measures

We describe some of the known relationships between these measures. To start with, we have

s(f) ≤ bs(f) ≤ RC(f) ≤ C(f) ≤ UC(f) ≤ D(f),

where the last inequality holds because for each deterministic algorithm A, the partial assignments
defined by the input bits A examines when run on some x ∈ {0, 1}n form an unambiguous collection
of certificates. We also have

d̃eg(f) ≤ 2Q(f), d̃eg
+
(f) ≤ R(f), deg+(f) ≤ D(f),

with d̃eg(f) ≤ d̃eg
+
(f) ≤ deg+(f) and Q(f) ≤ R(f) ≤ D(f).

[BBC+01] showed D(f) ≤ bs(f)C(f), and [Nis91] showed C(f) ≤ bs(f)2. From this we conclude

that D(f) ≤ C(f)2 and D(f) ≤ bs(f)3. [KT13] showed
√

RC(f) = O(d̃eg(f)); thus

D(f) ≤ bs(f)3 ≤ RC(f)3 = O(d̃eg(f)6) = O(Q(f)6),

so the above measures are polynomially related (with the exception of sensitivity). Other known
relationships are RC(f) = O(R(f)) (due to [Aar08]), D(f) ≤ bs(f) deg(f) = O(deg(f)3) (due to
[Mid04]), and deg+(f) ≤ UC(f) (since we can get a polynomial representing f by summing up the
polynomials corresponding to unambiguous 1-certificates of f).

2.7.2 One-Sided Measures

One-sided measures such as C1(f) are not polynomially related to the rest of the measures above,
as can be seen from C1(ORn) = 1. This makes them less interesting to us. On the other hand,

the one sided measures deg+min(f), d̃eg
+

min(f), and UCmin(f) are polynomially related to the rest.

An easy way to observe this is to note that d̃eg
+

min(f) ≥ d̃eg(f), which follows from the fact that

d̃eg(f) ≤ d̃eg
+

1 (f) and that d̃eg(f) is invariant under negating f . Similarly, deg(f) ≤ deg+min(f).
We also have

d̃eg
+

min(f) ≤ deg+min (f) ≤ UCmin(f),

where the last inequality holds since we can form a non-negative polynomial representing f by
summing up the polynomials corresponding to a set of unambiguous 1-certificates.

An additional useful inequality is D(f) ≤ UCmin(f)
2. The analogous statement in communica-

tion complexity was shown by [Yan91]. The query complexity version of the proof can be found in
[Göö15].

3 Sensitivity and Unambiguous Certificates

We start by defining a transformation that takes a function f and modifies it so that s0(f) decreases
to 1. This transformation might cause s1(f) to increase, but we will argue that it will remain upper
bounded by 3UC1(f). We will also argue that other measures, such as D(f), do not decrease.
This transformation is motivated by the construction of [Tal16] that was used to give a power 2.1
separation between D(f) and s(f).

5



Definition 5 (Desensitizing Transformation). Let f : {0, 1}n → {0, 1}. Let U be an unambiguous
collection of 1-certificates for f , each of size at most UC1(f). For each x ∈ f−1(1), let px ∈ U
be the unique certificate in U consistent with x. The desensitized version of f is the function f ′ :
{0, 1}3n → {0, 1} defined by f ′(xyz) = 1 if and only if f(x) = f(y) = f(z) = 1 and px = py = pz.

The following lemma illustrates key properties of f ′.

Lemma 6 (Desensitization). Let f ′ be the desensitized version of f : {0, 1}n → {0, 1}. Then
s0(f

′) = 1 and UC1(f
′) ≤ 3UC1(f). Also, for any complexity measure

M ∈ {D,R,Q,C,C0,C1,bs,bs0,bs1,RC,RC0,RC1,UC,UC0,UC1,UCmin,deg,deg
+, d̃eg, d̃eg

+},

we have M(f ′) ≥M(f).

Proof. We start by upper bounding s0(f
′). Consider any 0-input xyz to f ′ which has at least one

sensitive bit. Pick a sensitive bit i of this input; without loss of generality, this bit is inside the x part
of the input. Since flipping i changes xyz to a 1-input for f ′, we must have f(xi) = f(y) = f(z) = 1
and pxi = py = pz. In particular, it must hold that f(y) = f(z) = 1 and py = pz. Let p := py, so
p = pz and p = pxi . Since f(xyz) = 0, it must be the case that x is not consistent with p. Since p
is consistent with xi, it must be the case that p and x disagree exactly on the bit i.

Now, it’s clear that xyz cannot have any sensitive bits inside the y part of the input, because
then x would not be consistent with pz. Similarly, xyz cannot have sensitive bits in the z part of
the input. Any sensitive bits inside the x part of the input must make x consistent with p; but x
disagrees with p on bit i, so this must be the only sensitive bit. It follows that the sensitivity of
xyz is at most 1, as desired. We conclude that s0(f

′) = 1.
Next, we upper bound UC1. Define U ′ := {ppp : p ∈ U} ⊆ {0, 1, ∗}3n. We show that this is

an unambiguous collection of 1-certificates for f ′. First, note that for p ∈ U , if ppp ⊆ xyz, then
f(x) = f(y) = f(z) = 1 and px = py = pz = p, so f ′(xyz) = 1. Thus U ′ is a set of 1-certificates.
Next, if xyz is a 1-input for f ′, then f(x) = f(y) = f(z) = 1 and px = py = pz, which means
pxpxpx ⊆ xyz. Since px ∈ U , we have pxpxpx ∈ U ′. Finally, if ppp, qqq ∈ U ′ with ppp 6= qqq, then
p 6= q and p, q ∈ U , which means p and q are inconsistent. This means ppp and qqq are inconsistent.
This concludes the proof that U ′ is an unambiguous collection of 1-certificates for f ′. We have
maxppp∈U ′ |ppp| = 3maxp∈U |p| = 3UC1(f), so UC1(f

′) ≤ 3UC1(f).
Finally, we show that almost all complexity measures do not decrease in the transition from

f to f ′. To see this, note that we can restrict f ′ to the promise that all inputs come from the
set {xyz ∈ {0, 1}3n : x = y = z}. Under this promise, the function f ′ is simply the function f
with each input bit occurring 3 times. But tripling input bits in this way does not affect the usual
complexity measures (among the measures defined in Section 2, sensitivity is the only exception),
and restricting to a promise can only cause them to decrease. This means that f ′ has higher
complexity than f under almost any measure.

We now prove Theorem 1, which we restate here for convenience.

Theorem 1. For any α ∈ R+, if there is a family of functions with D(f) = Ω̃(UCmin(f)
1+α), then

there is a family of functions with D(f) = Ω̃(s(f)2+α). The same is true if we replace D(f) by
bs(f),C(f),R(f),Q(f), and many other measures.

Proof. Fix f : {0, 1}n → {0, 1} from the family for which D(f) = Ω̃(UCmin(f)
1+α). By negating

f if necessary, assume UC1(f) = UCmin(f). Apply the desensitizing transformation to get f ′. By
Lemma 6, we have s0(f

′) ≤ 1 and s1(f
′) ≤ UC1(f

′) ≤ 3UCmin(f), and also D(f ′) ≥ D(f). We now

6



consider the function f̂ := OR3UCmin(f) ◦ f ′. It is not hard to see that s0(f̂) ≤ 3UCmin(f) and

s1(f̂) = s1(f
′) ≤ 3UCmin(f), so s(f̂) ≤ 3UCmin(f).

We now analyze D(f̂). We have D(f ′) ≥ D(f); since deterministic query complexity satisfies a
perfect composition theorem, we have

D(f̂) = D(OR3UCmin(f))D(f ′) ≥ 3UCmin(f)D(f) = Ω̃(UCmin(f)
2+α) = Ω̃(s(f̂)2+α).

This concludes the proof for deterministic query complexity.
For other measures, we need the following properties: first, that the measure is invariant under

negating the function (so that we can assume UCmin(f) = UC1(f) without loss of generality);
second, that the measure satisfies a composition theorem, at least in the case that the outer function
is OR; and finally, that the measure is large for the OR function. We note that the measures C, bs,
RC, R, and Q all satisfy a composition theorem of the formM(OR◦g) ≥ Ω(M(OR)M(g)); for the
first three measures, this can be found in [GSS16], for R it can be found in [GJPW15], and for Q it
follows from a general composition theorem [Rei11, LMR+11]. Moreover, bs(ORn) = C(ORn) =
RC(ORn) = n and R(ORn) = Ω(n). This completes the proof for these measures; for Q, we will
have to work harder, since Q(ORn) = Θ(

√
n).

For quantum query complexity, the trick will be to use the function “Block k-sum” defined in
[ABK15]. It has the property that all inputs have certificates that use very few 0 bits. Actually,
we’ll swap the 0s and 1s so that all inputs have certificates that use very few 1 bits. When
k = log n (where n the size of the input), we denote this function by BSumn. [ABK15] showed
that Q(BSumn) = Ω̃(n), and every input has a certificate with O(log3 n) ones.

Consider the function f̂ := BSumUCmin(f) ◦ f ′. We have Q(f̂) = Q(BSumUCmin(f))Q(f ′) =

Ω̃(UCmin(f)Q(f)). We now analyze the sensitivity of f̂ . Fix an input z to f̂ = BSumUCmin(f) ◦
f ′. This input consists of UCmin(f) inputs to f ′, which, when evaluated, form an input y to
BSumUCmin(f). Note that some of the inputs to f ′ correspond to sensitive bits of y (with re-
spect to BSumUCmin(f)); the sensitive bits of z are then simply the sensitive bits of those in-

puts. Now, consider the certificate of y that uses only O(log3 UCmin(f)) bits that are 1. Since
it is a certificate, it must contain all the sensitive bits of y; thus at most O(log3 UCmin(f))
of the 1 bits of y are sensitive. It follows that the number of sensitive bits of z is at most
UCmin(f) s0(f

′) +O(log3 UCmin(f)) s1(f
′) = Õ(UCmin(f)). This concludes the proof.

It is not hard to see that the same approach can yield separations against bounded-size block
sensitivity (where the blocks are restricted to have size at most k). To do this, we need the
desensitizing construction to repeat the inputs 2k+1 times instead of 3 times. Instead of increasing
to 3UCmin(f), the bounded-size block sensitivity would increase to (2k + 1)UCmin(f), and the
deterministic query complexity would increase to (2k + 1)D(f). When k is constant, we get the
same asymptotic separations as for sensitivity.

We now construct separations against UCmin. This proves Corollary 2.

Corollary 2. There is a family of functions with Q(f) = Ω̃(s(f)3), and one with C(f) = Ω(s(f)2.128).

Proof. We need to construct a family of functions with C(f) = Ω(UCmin(f)
1.128), and another

family with Q(f) = Ω̃(UCmin(f)
2); Theorem 1 will then finish the argument. The former was

constructed in [Göö15]. For the latter, our function will be a cheat sheet function BKKCS from
[ABK15] that quadratically separates quantum query complexity from exact degree. This function
has quantum query complexity quadratically larger than UCmin, as shown in [AKK16].

7



4 Attempting a Super-Quadratic Separation vs. Block Sensitivity

In this section, we describe why attempting to use Theorem 1 to get a super-quadratic separation
between bs(f) and s(f) fails. In the process, we show some new lower bounds for UCmin(f) and
even for the one-sided non-negative degree measures.

One approach for the desired super-quadratic separation is to find a family of functions for
which bs(f) ≫ UCmin(f). In fact, we show that it suffices to provide a family of functions for
which RC(f) ≫ UCmin(f), a strictly easier task. We prove this in Section 4.1. In Section 4.2, we
show that even separating RC(f) from UCmin(f) is impossible: we have RC(f) ≤ 2UCmin(f). This
means our techniques do not give anything new for this problem. This is perhaps surprising, since
RC(f) is similar to C(f), yet [Göö15] showed a separation between C(f) and UCmin(f).

4.1 A Separation Against RC(f) is Sufficient

We now explain why a separation between s(f) and RC(f) implies an equal separation between s(f)
and bs(f), proving Theorem 3. The key insight is that bs(f) becomes RC(f) when the function
is composed enough times; this was observed by [Tal13] and by [GSS16]. This means that if we
start with a function separating s(f) and RC(f) and compose it enough times, we should get a
function with the same separation between s(f) and RC(f), but with the additional property that
bs(f) ≈ RC(f).

To prove this, we need to get a handle on how s(f), bs(f), and RC(f) behave under composition.
We cite [Tal13] for this, but similar results appear in [GSS16]. Tal showed the following results,
which give us the composition properties we need. In the statements below, we use fk to denote
the composition of f with itself k times.

Definition 7. f : {0, 1}n → {0, 1} is in (RC, 0)-good form if RC0n(f) = RC(f) and f(0n) = 0.

Lemma 8 ([Tal13]). For any function f : {0, 1}n → {0, 1}, there is a function f̃ : {0, 1}n → {0, 1}
which is in (RC, 0)-good form and satisfies RC(f̃) = RC(f),bs(f̃) = bs(f), s(f̃) = s(f).

Theorem 9 ([WZ88]). For any f : {0, 1}n → {0, 1} and any k ∈ N, we have s(fk) ≤ s(f)k.

Theorem 10 ([Tal13]). For any f : {0, 1}n → {0, 1} and any k ∈ N, we have bs(fk) ≥ RC(fk)
25n22n

.

Theorem 11 ([Tal13]). For any f : {0, 1}n → {0, 1} in (RC, 0)-good form, RC(fk) = RC(f)k.

Using these ingredients, we now prove Theorem 3, which we restate here for convenience.

Theorem 3 (Follows from [Tal13] and independently [GSS16]). A power 2+α separation between
RC(f) and s(f) implies a power 2 + α− o(1) separation between bs(f) and s(f).

Proof. The result follows from a simple recursive composition. The only catch is that recursive
composition can amplify even constant factors, so we must be careful not to destroy the separation
by composing too much. To be very explicit, we will assume that we’re starting with a family of
functions satisfying RC(f) ≥ s(f)2+α−φ(s(f)), where φ is a function that approaches 0. For example,
we can represent the constant factor loss RC(f) ≥ s(f)2+α/10 by setting φ(s(f)) = (log10 s(f))

−1.
Fix a family {fℓ}∞ℓ=1 of Boolean functions fℓ : {0, 1}nℓ → {0, 1} with limℓ→∞ s(fℓ) = ∞ and

RC(fℓ) ≥ s(fℓ)
2+α−φ(s(f)), with limn→∞ φ(n) = 0. By using Lemma 8 if necessary, we can assume

fℓ is in (RC, 0)-good form for all ℓ.

We now define gℓ := f
ψ(ℓ)
ℓ , where ψ(ℓ) := 25n2ℓ2

nℓ . Now, s(gℓ) ≤ s(fℓ)
ψ(ℓ) by Theorem 9,

and bs(gℓ) ≥ RC(fℓ)
ψ(ℓ)

25n2
ℓ2
nℓ

by Theorem 10 and Theorem 11. Thus bs(gℓ) ≥ RC(fℓ)
ψ(ℓ)

ψ(ℓ) , so ψ(ℓ) ≤

8



log bs(gℓ)+logψ(ℓ)
log RC(fℓ)

≤ log bs(gℓ)+ logψ(ℓ). This means ψ(ℓ)− logψ(ℓ) ≤ log bs(gℓ), which gives ψ(ℓ) ≤
2 log bs(gℓ). This means bs(gℓ) ≥ RC(fℓ)

ψ(ℓ)

2 log bs(gℓ)
, so

2 bs(gℓ) log bs(gℓ) ≥ RC(fℓ)
ψ(ℓ) ≥ s(fℓ)

(2+α−φ(s(fℓ)))ψ(ℓ) ≥ s(gℓ)
2+α−φ(s(fℓ)).

Since s(fℓ) goes to infinity as ℓ goes to infinity, it also goes to infinity as s(gℓ) goes to infinity.
Thus φ(s(fℓ)) = o(1) in terms of the parameter s(gℓ). We conclude that bs(gℓ) ≥ s(gℓ)

2+α−o(1), as
desired.

4.2 But RC(f) Lower Bounds UCmin(f)

We would get a super-quadratic separation between bs(f) and s(f) if we had a super-linear sepa-
ration between RC(f) and UCmin(f). Unfortunately, this is impossible, as we now show. Actually,

we’ll prove the stronger statement RC(f) ≤ 2 ãvdeg
+,ǫ

min(f)/(1 − 4ǫ). We note that this implies
Theorem 4, because when ǫ = 0, we have

RC(f) ≤ 2 avdeg+min(f) ≤ 2 deg+min(f) ≤ 2UCmin(f).

The proof of the relationship RC(f) ≤ 2 ãvdeg
+,ǫ

min(f)/(1−4ǫ) is somewhat technical. One interesting
thing to note about it is that it holds for partial functions as well, so long as the definition of

ãvdeg
+,ǫ

min(f) requires the approximating polynomial to evaluate to at most 1 on the entire Boolean
hypercube.

Before providing the proof, we’ll provide a warm up proof that bs(f) ≤ 2UCmin(f).

Lemma 12. For all non-constant f : {0, 1}n → {0, 1}, we have bs(f) ≤ 2UCmin(f)− 1.

Proof. Without loss of generality, we have UCmin(f) = UC1(f). We also have bs1(f) ≤ C1(f) ≤
UC1(f), so it remains to show that bs0(f) ≤ 2UC1(f) − 1. Also without loss of generality, we
assume that the block sensitivity of 0n is bs(f) and that f(0n) = 0.

Let B1, B2, . . . , Bbs(f) be disjoint sensitive blocks of 0n. Let U be an unambiguous collection of

1-certificates for f , each of size at most UC1(f). For each i ∈ [bs(f)], we have f(~0Bi) = 1, so there
is some 1-certificate pi ∈ U such that pi is consistent with ~0Bi . Since pi is a 1-certificate, it is not
consistent with ~0, so it has a 1 bit (which must have index in Bi). Now, if i 6= j, the certificate pi
has a 1 inside Bi and only 0 or ∗ symbols outside Bi, and the certificate Bj has a 1 inside Bj and
only 0 or ∗ symbols outside Bj; thus pi and pj are different. Since U is an unambiguous collection,
pi and pj must conflict on some bit (with one of them assigning 0 and the other assigning 1), or
else there would be an input consistent with both.

We construct a directed graph on vertex set [bs(f)] as follows. For each i, j ∈ [bs(f)] with i 6= j,
we draw an arc from i to j if pi has a 0 bit in a location where pj has a 1 bit. It follows that for each
pair i, j ∈ [bs(f)] with i 6= j, we either have an arc from i to j or else we have an arc from j to i (or
both). The number of arcs in this graph is at least bs(f)(bs(f) − 1)/2, so the average out degree
is at least (bs(f)− 1)/2. Hence there is some vertex i with out degree at least (bs(f)− 1)/2. But
this means pi conflicts with (bs(f)− 1)/2 other certificates pj1 , pj2 , . . . , pj(bs(f)−1)/2

with pi having a
bit 0 and pjk having a 1-bit; however, two different certificates pjx and pjy cannot both agree on a
1 bit, since the 1 bits of pjx must come from block Bjx and the blocks are disjoint. This means pi
has at least (bs(f)− 1)/2 zero bits. It must also have at least one 1 bit. Thus |pi| ≥ bs(f)/2+ 1/2,
so bs(f) ≤ 2UCmin(f)− 1.

9



We note that the relationship in Lemma 12 is tight. To see this, consider the function f :
{0, 1}3 → {0, 1} defined by f(x) = 1 if and only if x1 = x2 = x3. The sensitivity of this function is
3, but UC0(f) = 2, because an unambiguous set of 0-certificates is {01∗, ∗01, 1∗0}.

We can even construct an infinite set of functions for which the factor of 2 in Lemma 12 is tight,
using ideas from [Göö15]. To see this, let f : ({0} ∪ [k])n → {0, 1} be the colored projective plane
function defined in [Göö15], where n = k2 − k + 1 and k − 1 is a prime power. This function f is
defined as follows. Let H be the projective plane on k2 − k + 1 points (so it has k2 − k + 1 lines,
with k points per line and k lines per point). For each point in H, pick an ordering of the k lines
passing through it, and for each line in H, pick an ordering of the k points it contains; moreover,
we require that if point P is the i-th point on line L, then line L is the i-th line containing point
P . Such commuting orderings are known to exist. Now, in an input x to f , each point in H gets
a number in {0} ∪ [k], and f(x) = 1 if and only if there is a line L whose points numbered exactly
by their ordering in L.

Next, let g : {0, 1}k → {0} ∪ [k] be a weight gadget defined by g(0k) = 0, and otherwise g(x) is
the position of the first 1 bit in x. Consider the composed function f ◦ g. It is not hard to see that
UC1(f ◦ g) = 1 + 2 + . . . + k = k(k + 1)/2, since we can unambiguously certify 1-inputs to f by
showing the appropriate line (which has k points), and we can unambiguously certify that a point
has number i by showing the first i bits of the gadget g. We also have bs~0(f ◦g) ≥ k2−k+1, because

starting from the ~0 input, we can satisfy a line by flipping the points on it to the appropriate number
(by flipping a single bit in the gadget g for that point). Moreover, since no two lines give the same
number to a point, no two of these blocks will overlap. Hence the block sensitivity is at least the
number of lines, which is k2 − k + 1. As k → ∞, this is a factor of 2 larger than UCmin(f ◦ g).

We now prove the more general theorem using the same rough idea as we used for Lemma 12.

Theorem 13. Let f : {0, 1}n → {0, 1} be a non-constant function, and let ãvdeg
+,ǫ

min(f) denote the
minimum average degree of a non-negative polynomial that approximates either f or its negation

with error at most ǫ (see Section 2.6 for definitions). If ǫ < 1/4, we have RC(f) ≤ 2 ãvdeg
+,ǫ

min(f)−1
1−4ǫ .

Proof. Let q be the non-negative approximating polynomial with average degree ãvdeg
+,ǫ

min(f).
Without loss of generality, we assume q approximates f rather than its negation. We can write
q ≡ ∑

p∈{0,1,∗} wpp, so for any x ∈ {0, 1}n, we have

q(x) =
∑

p∈{0,1,∗}

wpp(x) =
∑

p: p⊆x

wp,

where recall that wp are non-negative weights given to partial assignments. This means for all
x ∈ {0, 1}n, we know that

∣∣∣∣∣∣
f(x)−

∑

p: p⊆x

wp

∣∣∣∣∣∣
≤ ǫ,

∑

p: p⊆x

wp ≤ 1, and
∑

p: p⊆x

wp|p| ≤ ãvdeg
+,ǫ

min(f).

Now, consider the input y ∈ {0, 1}n for which RCy(f) = RC(f). There are two cases: either y is
a 0-input, or else y is a 1-input. If y is a 1-input, we use the fractional certificate complexity inter-
pretation of RCy(f): the value RCy(f) is the minimum amount of weight that can be distributed
to the bits of y such that every sensitive block of y contains bits of total weight at least 1. We
assign to bit i ∈ [n] the weight

1

1− 2ǫ

∑

p: p⊆y,pi 6=∗

wp.

10



Then each sensitive block B ⊆ [n] for y satisfies f(yB) = 0, so the sum of wp over all p ⊆ y that
have support disjoint from B must be at most ǫ. Since the sum of wp over all p ⊆ y is at least
1− ǫ, there must be weight at least 1− 2ǫ assigned to partial assignments consistent with p whose
support overlaps B. It follows that the total weight given to the bits in B is at least 1, which means
this weighting is feasible. This means the total weight upper bounds RCy(f), so

RC(f) = RCy(f) ≤
1

1− 2ǫ

∑

i∈[n]

∑

p: p⊆y, pi 6=∗

wp =
1

1− 2ǫ

∑

p: p⊆y

wp|p| ≤
ãvdeg

+,ǫ

min(f)

1− 2ǫ
.

It remains to deal with the case where y is a 0-input. In this case, we use the fractional block
sensitivity interpretation of RCy(f): the value of RCy(f) is the maximum amount of weight that
can be distributed to the sensitive blocks of y such that every bit of y lies inside blocks of total
weight at most 1. Without loss of generality, we can assume only minimal sensitive blocks are
assigned weight (minimal sensitive blocks are sensitive blocks such that all their proper subsets are
not minimal).

Let B := {B ⊆ [n] : f(yB) 6= f(y)} be the set of sensitive blocks of y, and let M := {B ∈
B : ∀B′ ∈ B, B′ ⊆ B ⇒ B′ = B} be the set of minimal sensitive blocks of y. Let {aB}B∈M with
aB ∈ R+ be the optimal weighting of the minimal sensitive blocks. This means

∑
B∈B aB = RCy(f)

and
∑

B∋i aB ≤ 1 for all i ∈ [n].
We have

∑
p⊆y wp ≤ ǫ and

∑
p⊆yB wp ≥ 1 − ǫ for all B ∈ B, which means that each B ∈ B

overlaps partial assignments p of y of total weight at least 1 − 2ǫ. For any B1, B2 ∈ M with
B1 6= B2, we can write

2− 2ǫ ≤
∑

p⊆yB1

wp +
∑

p⊆yB2

wp =
∑

p⊆yB1 : p*yB1∪B2

wp +
∑

p⊆yB2 : p*yB1∪B2

wp +
∑

p∈G

wp +
∑

p∈H

wp,

where G := {p : p ⊆ yB1 , p ⊆ yB1∪B2} and H := {p : p ⊆ yB2 , p ⊆ yB1∪B2}. The last two sums
are equal to

∑
p∈G∪H wp +

∑
p∈G∩H wp. We have

∑
p∈G∪H wp ≤ ∑

p⊆yB1∪B2 wp ≤ 1. Also, any

p ∈ G ∩ H satisfies p ⊆ yB1∩B2 . Since B1 6= B2 and they are both minimal sensitive blocks, we
have f(yB1∩B2) = 0, so

∑
G∩H wp ≤

∑
p⊆yB1∩B2 wp ≤ ǫ. It follows that

∑

p⊆yB1 : p*yB1∪B2

wp +
∑

p⊆yB2 : p*yB1∪B2

wp ≥ 1− 3ǫ.

Note that the above sums are over disjoint sets, since if p ⊆ yB1 and p * yB1∪B2 , then p must
disagree with yB2 on some bit inside B2. If we split out the parts of the sums for which p ⊆ y, we
get ∑

p⊆y

wp +
∑

p⊆yB1 : p*y, p*yB1∪B2

wp +
∑

p⊆yB2 : p*y, p*yB1∪B2

wp ≥ 1− 3ǫ.

Since f(y) = 0, the first sum is at most ǫ, so

∑

p⊆yB1 : p*y, p*yB1∪B2

wp +
∑

p⊆yB2 : p*y, p*yB1∪B2

wp ≥ 1− 4ǫ.

11



We now write the following.

RC(f)2 − RC(f) =
∑

B1∈M

aB1

∑

B2∈M

aB2 −
∑

B1∈M

aB1

≤
∑

B1∈M

aB1

∑

B2∈M

aB2 −
∑

B1∈M

a2B1

=
∑

B1∈M

aB1

∑

B2 6=B1

aB2

≤ 1

1− 4ǫ

∑

B1∈M

aB1

∑

B2 6=B1

aB2


 ∑

p⊆yB1 : p*y, p*yB1∪B2

wp +
∑

p⊆yB2 : p*y, p*yB1∪B2

wp




=
2

1− 4ǫ

∑

B1∈M

aB1

∑

B2 6=B1

aB2

∑

p⊆yB1 : p*y, p*yB1∪B2

wp,

where the second line follows because aB1 ≤ 1 for all B1 ∈ M.
Note that

∑
B1∈M

aB1 = RC(f), so if we divide both sides by RC(f), the last line becomes a
weighted average. It follows that there exists some minimal block B1 such that

RC(f)− 1 ≤ 2

1− 4ǫ

∑

B2 6=B1

aB2

∑

p⊆yB1 : p*y, p*yB1∪B2

wp

=
2

1− 4ǫ

∑

p⊆yB1 : p*y

wp
∑

B2 6=B1:p*yB1∪B2

aB2 .

Examine the inner summation above. Note that yB1∪B2 = (yB1)B2\B1 . Since p ⊆ yB1 , the condition
p * yB1∪B2 is equivalent to the support of p having non-empty intersection with B2 \ B1. Using
supp(p) to denote the support of p, we have

RC(f)− 1 ≤ 2

1− 4ǫ

∑

p⊆yB1 : p*y

wp
∑

i∈supp(p)\B1

∑

B2∈M: i∈B2

aB2

≤ 2

1− 4ǫ

∑

p⊆yB1 : p*y

wp
∑

i∈supp(p)\B1

1

=
2

1− 4ǫ

∑

p⊆yB1 : p*y

wp| supp(p) \B1|

≤ 2

1− 4ǫ

∑

p⊆yB1 : p*y

wp(|p| − 1)

≤ 2

1− 4ǫ
ãvdeg

+,ǫ

min(f)−
2

1− 4ǫ

∑

p⊆yB1 :p*y

wp

≤ 2

1− 4ǫ
ãvdeg

+,ǫ

min(f)−
2

1− 4ǫ


 ∑

p⊆yB1

wp −
∑

p⊆y

wp




≤ 2

1− 4ǫ
ãvdeg

+,ǫ

min(f)−
2

1− 4ǫ
(1− ǫ− ǫ)

≤ 2

1− 4ǫ
ãvdeg

+,ǫ

min(f)−
2− 4ǫ

1− 4ǫ
,

12



where the second line follows because the sum of aB over all blocks B ∈ M containing a given
element i ∈ [n] is at most 1, and the fourth line follows because the conditions p ⊆ yB1 and p * y
imply that the support of p is not disjoint from B1. Finally, we get

RC(f) ≤ 2

1− 4ǫ
ãvdeg

+,ǫ

min(f)−
1

1− 4ǫ
=

2 ãvdeg
+,ǫ

min(f)− 1

1− 4ǫ
,

as desired.

Acknowledgements

I thank Robin Kothari for many helpful discussions and for comments on a preliminary draft.
Work partially supported by NSF.

References

[Aar08] Scott Aaronson. Quantum certificate complexity. Journal of Computer and System
Sciences, 74(3):313–322, 2008. Computational Complexity 2003. arXiv:1506.04719,
doi:10.1016/j.jcss.2007.06.020. [pp. 4, 5]

[ABG+14] Andris Ambainis, Mohammad Bavarian, Yihan Gao, Jieming Mao, Xiaoming Sun,
and Song Zuo. Tighter relations between sensitivity and other complexity mea-
sures. In Automata, Languages, and Programming: 41st International Colloquium,
ICALP 2014, Proceedings, Part I, pages 101–113. Springer, 2014. arXiv:1411.3419,
doi:10.1007/978-3-662-43948-7_9. [p. 1]

[ABK15] Scott Aaronson, Shalev Ben-David, and Robin Kothari. Separations in query com-
plexity using cheat sheets. To appear in Proceedings of STOC 2016. arXiv preprint
arXiv:1511.01937, 2015. [pp. 2, 7]

[AKK16] Andris Ambainis, Martins Kokainis, and Robin Kothari. Nearly optimal separa-
tions between communication (or query) complexity and partitions. In 31st Con-
ference on Computational Complexity (CCC 2016), volume 50 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 4:1–4:14, 2016. arXiv:1512.01210,
doi:10.4230/LIPIcs.CCC.2016.4. [pp. 1, 7]

[AP14] Andris Ambainis and Krǐsjānis Prūsis. A tight lower bound on certificate com-
plexity in terms of block sensitivity and sensitivity. In Mathematical Foundations
of Computer Science (MFCS 2014), pages 33–44. Springer, 2014. arXiv:1402.5078,
doi:10.1007/978-3-662-44465-8_4. [p. 1]

[APV15] Andris Ambainis, Krǐsjānis Prūsis, and Jevgēnijs Vihrovs. Sensitivity versus certificate
complexity of boolean functions. arXiv preprint arXiv:1503.07691, 2015. [p. 1]

[AS11] Andris Ambainis and Xiaoming Sun. New separation between s(f) and bs(f). arXiv
preprint arXiv:1108.3494, 2011. [p. 1]

[AV15] Andris Ambainis and Jevgēnijs Vihrovs. Size of sets with small sensitivity:
A generalization of simon’s lemma. In Theory and Applications of Models of
Computation (TAMC 2015), pages 122–133. Springer, 2015. arXiv:1406.0073,
doi:10.1007/978-3-319-17142-5_12. [p. 1]

13

http://arxiv.org/abs/1506.04719
http://dx.doi.org/10.1016/j.jcss.2007.06.020
http://arxiv.org/abs/1411.3419
http://dx.doi.org/10.1007/978-3-662-43948-7_9
http://arxiv.org/abs/arXiv:1511.01937
http://arxiv.org/abs/1512.01210
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.4
http://arxiv.org/abs/1402.5078
http://dx.doi.org/10.1007/978-3-662-44465-8_4
http://arxiv.org/abs/arXiv:1503.07691
http://arxiv.org/abs/arXiv:1108.3494
http://arxiv.org/abs/1406.0073
http://dx.doi.org/10.1007/978-3-319-17142-5_12


[BBC+01] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald De Wolf.
Quantum lower bounds by polynomials. Journal of the ACM (JACM), 48(4):778–797,
2001. arXiv:quant-ph/9802049, doi:10.1145/502090.502097. [pp. 4, 5]

[BdW02] Harry Buhrman and Ronald de Wolf. Complexity measures and decision
tree complexity: a survey. Theoretical Computer Science, 288(1):21–43, 2002.
doi:10.1016/S0304-3975(01)00144-X. [p. 2]

[Bel06] Aleksandrs Belovs. Non-intersecting complexity. In SOFSEM 2006: Theory and Prac-
tice of Computer Science, pages 158–165. Springer, 2006. doi:10.1007/11611257_13. [p.
1]

[BOH90] Yigal Brandman, Alon Orlitsky, and John Hennessy. A spectral lower bound technique
for the size of decision trees and two-level and/or circuits. IEEE Transactions on
Computers, 39(2):282–287, 1990. doi:10.1109/12.45216. [p. 1]

[Bop12] Meena Boppana. Lattice variant of the sensitivity conjecture. arXiv preprint
arXiv:1207.1824, 2012. [p. 1]

[CKLS16] Sourav Chakraborty, Raghav Kulkarni, Satyanarayana V Lokam, and Nitin
Saurabh. Upper bounds on fourier entropy. Theoretical Computer Sci-
ence, pages 771–782, 2016. Computing and Combinatorics 2015, TR13-052.
doi:http://dx.doi.org/10.1016/j.tcs.2016.05.006. [p. 1]

[FKW02] Ehud Friedgut, Jeff Kahn, and Avi Wigderson. Computing graph properties
by randomized subcube partitions. In Randomization and approximation tech-
niques in computer science (RANDOM 2002), pages 105–113. Springer, 2002.
doi:10.1007/3-540-45726-7_9. [p. 1]

[GJ15] Mika Göös and TS Jayram. A composition theorem for conical juntas. Electronic
Colloquium on Computational Complexity (ECCC) TR15-167, 2015. [p. 2]

[GJPW15] Mika Göös, T.S. Jayram, Toniann Pitassi, and Thomas Watson. Randomized commu-
nication vs. partition number. Electronic Colloquium on Computational Complexity
(ECCC) TR15-169, 2015. [pp. 1, 2, 7]

[GKS15] Justin Gilmer, Michal Kouckỳ, and Michael E Saks. A new approach to the sensitiv-
ity conjecture. In Conference on Innovations in Theoretical Computer Science (ITCS
2015), pages 247–254. ACM, 2015. doi:10.1145/2688073.2688096. [p. 1]

[GNS+16] Parikshit Gopalan, Noam Nisan, Rocco A Servedio, Kunal Talwar, and Avi Wigderson.
Smooth boolean functions are easy: Efficient algorithms for low-sensitivity functions. In
Conference on Innovations in Theoretical Computer Science (ITCS 2016), pages 59–70.
ACM, 2016. arXiv:1508.02420, doi:10.1145/2840728.2840738. [p. 1]

[Göö15] Mika Göös. Lower bounds for clique vs. independent set. In Foundations
of Computer Science (FOCS 2015), pages 1066–1076. IEEE, 2015. TR15-012.
doi:10.1109/FOCS.2015.69. [pp. 1, 2, 5, 7, 8, 10]

[GPW15] Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs.
partition number. In Foundations of Computer Science (FOCS 2015), pages 1077–1088.
IEEE, 2015. TR15-050. doi:10.1109/FOCS.2015.70. [p. 1]

14

http://arxiv.org/abs/quant-ph/9802049
http://dx.doi.org/10.1145/502090.502097
http://dx.doi.org/10.1016/S0304-3975(01)00144-X
http://dx.doi.org/10.1007/11611257_13
http://dx.doi.org/10.1109/12.45216
http://arxiv.org/abs/ arXiv:1207.1824
http://eccc.hpi-web.de/report/2013/052/
http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2016.05.006
http://dx.doi.org/10.1007/3-540-45726-7_9
http://eccc.hpi-web.de/report/2015/167/
http://eccc.hpi-web.de/report/2015/169/
http://dx.doi.org/10.1145/2688073.2688096
http://arxiv.org/abs/1508.02420
http://dx.doi.org/10.1145/2840728.2840738
http://eccc.hpi-web.de/report/2015/012/
http://dx.doi.org/10.1109/FOCS.2015.69
http://eccc.hpi-web.de/report/2015/050/
http://dx.doi.org/10.1109/FOCS.2015.70


[GSS16] Justin Gilmer, Michael Saks, and Sudarshan Srinivasan. Composition limits and sepa-
rating examples for some boolean function complexity measures. Combinatorica, pages
1–47, 2016. CCC 2013. arXiv:1306.0630, doi:10.1007/s00493-014-3189-x. [pp. 2, 7, 8]

[GSTW16] Parikshit Gopalan, Rocco Servedio, Avishay Tal, and Avi Wigderson. Degree and
sensitivity: tails of two distributions. arXiv preprint arXiv:1604.07432, 2016. [p. 1]

[HKP11] Pooya Hatami, Raghav Kulkarni, and Denis Pankratov. Variations on the sensitivity
conjecture. Theory of Computing, Graduate Surveys, 4:1–27, 2011. arXiv:1011.0354,
doi:10.4086/toc.gs.2011.004. [p. 1]

[KRS15] Robin Kothari, David Racicot-Desloges, and Miklos Santha. Separating decision
tree complexity from subcube partition complexity. In Approximation, Random-
ization, and Combinatorial Optimization (RANDOM 2015), volume 40, pages 915–
930. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015. arXiv:1504.01339,
doi:10.4230/LIPIcs.APPROX-RANDOM.2015.915. [p. 1]

[KT13] Raghav Kulkarni and Avishay Tal. On fractional block sensitivity. Electronic Collo-
quium on Computational Complexity (ECCC) TR13-168, 2013. [pp. 4, 5]

[LMR+11] Troy Lee, Rajat Mittal, Ben W. Reichardt, Robert Špalek, and Mario Szegedy. Quan-
tum query complexity of state conversion. In Foundations of Computer Science (FOCS
2011), pages 344–353, 2011. arXiv:1011.3020, doi:10.1109/FOCS.2011.75. [p. 7]

[Mid04] Gatis Midrijanis. Exact quantum query complexity for total boolean functions. arXiv
preprint arXiv:quant-ph/0403168, 2004. [p. 5]

[Nis91] Noam Nisan. Crew prams and decision trees. SIAM Journal on Computing, 20(6):999–
1007, 1991. doi:10.1137/0220062. [pp. 1, 5]

[Rei11] Ben W Reichardt. Reflections for quantum query algorithms. In Proceedings of the
twenty-second annual ACM-SIAM symposium on Discrete Algorithms (SODA 2011),
pages 560–569. SIAM, 2011. arXiv:1005.1601, doi:10.1137/1.9781611973082.44. [p. 7]

[Sav02] Petr Savicky. On determinism versus unambiquous nondeterminism for decision trees.
Electronic Colloquium on Computational Complexity (ECCC) TR02-009, 2002. [p. 1]

[Sze15] Mario Szegedy. An O(n0.4732) upper bound on the complexity of the gks communication
game. arXiv preprint arXiv:1506.06456, 2015. [p. 1]

[Tal13] Avishay Tal. Properties and applications of boolean function composition. In Innova-
tions in Theoretical Computer Science (ITCS 2013), pages 441–454, 2013. TR12-163.
doi:10.1145/2422436.2422485. [pp. 2, 8]

[Tal16] Avishay Tal. On the sensitivity conjecture. Electronic Colloquium on Computational
Complexity (ECCC) TR16-062, 2016. [pp. 1, 5]

[WZ88] Ingo Wegener and Laszlo Zádori. A note on the relations between critical and sensitive
complexity, 1988. [p. 8]

[Yan91] Mihalis Yannakakis. Expressing combinatorial optimization problems by linear pro-
grams. Journal of Computer and System Sciences, 43(3):441–466, 1991. STOC 1988.
doi:10.1016/0022-0000(91)90024-Y. [p. 5]

15

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 

http://arxiv.org/abs/1306.0630
http://dx.doi.org/10.1007/s00493-014-3189-x
http://arxiv.org/abs/arXiv:1604.07432
http://arxiv.org/abs/1011.0354
http://dx.doi.org/10.4086/toc.gs.2011.004
http://arxiv.org/abs/1504.01339
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.915
http://eccc.hpi-web.de/report/2013/168/
http://arxiv.org/abs/1011.3020
http://dx.doi.org/10.1109/FOCS.2011.75
http://arxiv.org/abs/arXiv:quant-ph/0403168
http://dx.doi.org/10.1137/0220062
http://arxiv.org/abs/1005.1601
http://dx.doi.org/10.1137/1.9781611973082.44
http://eccc.hpi-web.de/report/2002/009/
http://arxiv.org/abs/arXiv:1506.06456
http://eccc.hpi-web.de/report/2012/163/
http://dx.doi.org/10.1145/2422436.2422485
http://eccc.hpi-web.de/report/2016/062/
http://dx.doi.org/10.1016/0022-0000(91)90024-Y

