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Abstract

We obtain a new depth-reduction construction, which implies a super-exponential improve-
ment in the depth lower bound separating NEXP from non-uniform ACC.

In particular, we show that every circuit with AND,OR,NOT, and MODm gates, m ∈
Z+, of polynomial size and depth d can be reduced to a depth-2, SYM ◦ AND, circuit of size

2(logn)
O(d)

. This is an exponential size improvement over the traditional Yao-Beigel-Tarui, which

has size blowup 2(logn)
2O(d)

. Therefore, depth-reduction for composite m matches the size of
the Allender-Hertrampf construction for primes from 1989.

One immediate implication of depth reduction is an improvement of the depth from o(log log n)
to o(log n/ log log n), in Williams’ program for ACC circuit lower bounds against NEXP. This
is just short of O(log n/ log log n) and thus pushes William’s program to the NC1 barrier, since
NC1 is contained in ACC of depth O(log n/ log log n). A second, but non-immediate, implication
regards the strengthening of the ACC lower bound in the Chattopadhyay-Santhanam interactive
compression setting.

Keywords composite modulus, depth-reduction, circuit lower bound, Williams’ program, inter-
active compression

1 Introduction

The development of computational complexity is vastly a history of conjectures, and gaps between
these conjectures and what is actually proved. One such story regards the power of MODm gates
in small-depth boolean circuits that also have AND,OR,NOT gates. A MODm gate outputs 1 if
and only if the number of 1s in its input is a multiple of m. What is known for prime m = p stands
in sharp contrast to what is known for composite m ∈ Z+.

In a sense we settle the question about depth-reduction of ACC circuits.1 Depth-reduction
is an algorithm compressing a low-depth ACC circuit (highly parallel algorithm) of depth d into

∗IIIS, Tsinghua University, shitengchen@gmail.com
†MSIS, Business School, Rutgers University, periklis.research@gmail.com. Part of this work done when both

authors were at Tsinghua University.
1In the literature ACC0 denotes the class of boolean functions computable by polynomial size

{AND,OR,NOT,MODm} families of circuits of constant depth and m ∈ Z+. We will be referring to ACC0 both as
the class of boolean functions and the circuits characterizing it. Since, we consider circuits of different depth d and
size s we will commonly refer to such circuits as ACC circuits (or ACCm for a fixed modulus) of depth d and size s.
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a depth-2 circuit (extremely parallel algorithm). Theorem 1 below states that for every ACCm

circuit, where m is composite, there is an equivalent depth-2 circuit of size 2(logn)O(d)
. This size

asymptotically matches the construction of Allender-Hertrampf [AH94] for prime moduli and im-

proves exponentially the 2(logn)2O(d)

size of the previously best-known Yao-Beigel-Tarui construction
[Yao90, BT94].

Theorem 1 (formally stated on p. 11). There is an efficient algorithm that given a circuit with
AND, OR, NOT, MODm gates, of depth d, input length n, and size s ≥ n, the algorithm outputs
a depth-2 circuit SYM ◦ AND of size 2(log s)O(d)

, where SYM is a gate whose output depends only
on the number of 1s in its input.

Depth-reduction constructions are sensitive to the types of gates of the circuits. For instance,
when we only consider circuits with only AND,OR,NOT gates then it is impossible to compress the
depth even from depth k+1 to k, without suffering an exponential size blowup. This was proved in
the worst case by Hastad and Yao [H̊as87, Yao85]. In a recent breakthrough by Rossman, Servedio,
and Tan [RST15] it was shown that this irreducibility holds also on the average.

Depth-reduction is fundamental and also related to other fundamental questions in circuit com-
plexity. We will explain the most relevant connections to depth-reduction, after we first briefly
recall what is already known for prime moduli m = p.

The celebrated works of Razborov and Smolensky [Raz86, Smo87] showed that the boolean
function MODq cannot be computed by ACC0

p circuits for primes p 6= q. This was technically
achieved by viewing an ACCp circuit as a polynomial over Fp. This view appeared to be very
fruitful and in particular in the depth-reduction of ACCp circuits [AH94]. Thus, for prime modulus
p (i) strong lower bounds and (ii) depth-reduction algorithms are known since the early 90s.

Smolensky conjectured [Smo87] that the lower bound extends to MODr and ACC0
m for every

composite co-prime moduli m, r. This conjecture is still a holy grail for contemporary circuit
complexity. Since then, there is a spate of important works, e.g. [Bou05, CGPT06, Cha07, CW09,
CL11, GRS05, GT98, HMP+87, ST06], that obtain lower bounds for restricted forms of depth-2
or depth-3 circuits. These works introduced a number of analytic techniques, at the same time
shaping our understanding and goals of modern circuit complexity.

From depth-reduction to ACC circuit lower bounds Smolensky’s conjecture relates to our
depth-reduction as follows. Note that no non-trivial limitations for general ACC circuits were
known up until [Wil11], which showed that non-uniform ACC0 :=

⋃
m ACC0

m does not contain
NEXP. Importantly, Williams [Wil11, Wil14] introduced a program according to which an improved
depth-reduction algorithm yields [Wil11, Wil14] a lower bound for NEXP against circuits of higher
depth – the smaller the size blowup in the depth-reduction the bigger the depth in the ACC lower
bound.

Here are a few more details. In his seminal work, Williams first gives a slightly better-than-
brute-force Circuit-SAT algorithm for ACC-circuits. Then, he shows that if NEXP ⊆ ACC0, the
depth-reduction algorithm can be used to imply for every problem in NTIME(2n) a nondeterministic
algorithm that runs in time o(2n

n ). This contradicts Cook’s nondeterministic time-hierarchy [Coo73],
and thus NEXP 6⊆ ACC0. More generally, the existence of a “slightly better-than-brute-force”
algorithm for C-SAT implies NEXP 6⊆ C; see Section 4.1 for some restrictions on C. A crucial step
of the circuit-SAT algorithms in [Wil11, Wil14] is that the depth-reduced circuit can be of any up
to slightly sub-exponential size. Therefore, the triple-exponential size blowup in the depth [BT94]
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implies [Wan11] an NEXP lower bound, i.e. NEXP 6⊆ ACC(2logk n, o(log log n)) for every constant
k > 0. Theorem 1 improves super-exponentially2 the previously best-known o(log log n) depth for
ACC circuits to o(log n/ log logn). More details are explained in Section 4.1.

A strengthening of the above circuit lower bound is given in the interactive compression setting
of Chattopadhyay-Oliveira-Santhanam [CS12, OS15]. This setting is interesting in its own right. In
Section 4.2 we present this result together with intuition, motivation, and comparison to previous
work.

2 Notation and existing tools

We assume familiarity with the terminology in basic computational complexity, cf. [AB09]. All
circuit classes in this paper are non-uniform. We denote by ACC0

m the class of boolean functions
of the form {fn : {0, 1}n → {0, 1}}n∈Z+ computable by families of circuits {Cn}n∈Z+ where each
Cn is of polynomial size poly(n), constant depth, and uses gates {AND,OR,NOT,MODm}, where
MODm is a boolean gate defined below. We measure size as the number of wires in the circuit,
depth as the length of longest path from the output of the circuit to any input. Let also, ACC0 :=
∪m∈Z+ACC0

m. We denote by ACCm(s, d) the class of boolean functions characterized by families of
{AND,OR,NOT,MODm}-circuits of size s and depth d. Let also ACC(s, d) := ∪m∈Z+ACCm(s, d).
In this notation, ACC0 = ACC

(
nO(1), O(1)

)
.

We write ACC0 circuit for a family of circuits characterizing a function in ACC0, whereas
ACCm circuit designates a circuit family with {AND,OR,NOT,MODm} gates.

Families of layered circuits are denoted in the usual way. That is, SYM◦AND◦MODm denotes
a family of depth-3 circuits (or one member of the family) where the output gate is a symmetric
gate. A symmetric gate SYM is a boolean function whose output depends on the number of 1s
in the input; e.g. the “MOD gate” (see below), “majority gate”, “threshold gate”. The maximum
fan-in of a gate at a layer is written in brackets as a subscript, e.g. MODm ◦ AND[δAND] the AND
gates at the bottom (next to the input) layer have fan-in at most δAND.

We write ||x||1 :=
∑n

i=1 xi, treating xi’s as integers, for x ∈ {0, 1}n and denote by MODm

the boolean function (gate) that takes an N -bit input x = (x1, . . . , xN ) and MODm(x) = 1 ⇐⇒
m
∣∣||x||1. For MODm and every other symmetric gate we will assume that take as input ||x||1,

i.e. we write MODm(||x||1).
The MODm(||x||1), which is evaluated to {0, 1}, should not be confused with the modulus over

Z, i.e. ||x||1( mod m). We restrict to a prime field Fq or ring Zm using “ mod q” or “ mod m”.
This reduces notational clutter – distinct fields and rings, in a sense, coexist in the same circuit
and our techniques simultaneously use and relate more than one.

All operations in this paper are over C. For example, in evaluating a polynomial function
P : {0, 1}n → Z with integer coefficients the operations treat the inputs 0, 1 as integers. Polynomial
functions always take inputs {0, 1}n and recall that MODm gates take inputs from Z.

For X ∈ Z we write em(X) := eX
2πi
m , where e

2πi
m is the m-th primitive root of 1. Then, observe

that MODm(X) = 1
m

∑
0≤k<m em(kX).

Preprocessing and Mod-Amplifiers For depth-reduction and its applications we consider
explicit circuit constructions, i.e. constructions computable in time polynomial (in fact, AC0) in

2From o(log log n) to o(logn/ log logn) the increase is super-exponential, whereas from O(log log n) to
o(logn/ log logn) sub-exponential as correctly pointed out by Oded Goldreich.
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the size of the output circuit. Explicitness will be used in the applications of depth-reduction,
including the extension of [Wil11].

Our construction in Section 3 uses a preprocessing step from [BT94]. This is how we deal with
big fan-in AND gates and initially replace MODm gates, where m is composite, by modular gates
of prime modulus. Lemma 2 does this preprocessing efficiently.

Lemma 2 ([BT94, AG93, Wil14]). There is an explicit construction that for every number of input
bits n and modulus 2 ≤ m ≤ logO(1) n, given an ACCm circuit of depth d and size s, where there
are sAND many AND gates each of fan-in at most δAND, the construction outputs a SYM ◦ ACC
circuit with the following properties.

i. The depth of the circuit is 2∆(m)d, where ∆(m) is the number of distinct prime divisors of
m3.

ii. The size of the circuit is s · 2O(m log sAND·m2 log2 δAND) = 2O((m log s)3).

iii. The fan-in of every AND gate in the circuit is O(m log sAND ·m log δAND) = O
(
(m log s)2

)
.

iv. Each MOD gate of the circuit is a MODq gate, where q is a prime divisor of m (in general,
many types of MODq’s are inside the same circuit).

v. The circuit is layered, i.e. each layer contains gates of the same type.

More presisely when we furthermore consider an ACCm circuit of size 2logk n . Then, the size of
the constructed circuit is at most 2(m logk n)3

, the AND gate fan-in is at most 2(m logk n)2
, and the

depth is at most 2∆(m)d.
The above hold true if instead of an ACCm circuit we are given an SYM ◦ACCm circuit.

Remark 3. The algorithm in the proof of Lemma 2 is doing 3 things: (i) reduces the fan-in of
AND gates to at most log sAND ·log δAND; (ii) decomposes the MODm gates into circuits with MODp

gates one for each p, a prime divisor of m; (iii) layers the circuit, i.e. each layer only contains the
same type of gates.

To reduce AND gate fan-in we replace each AND gate of fan-in ≤ δAND by a probabilistic
MODp ◦ AND circuit, where the AND gates fan-in is at most O(log sAND · log δAND), where all

these probabilistic sub-circuits are sampling from a 2O(log sAND·log2 δAND) size sample space [VV85].
Then, we [VV85] derandomize through enumeration and majority vote, which can be implemented

with 2O(log sAND·log2 δAND) copies of sub-circuits. This step only replaces the AND gates. Therefore,
the same algorithm can be used in circuits with different types of gates, changing only the ANDs
and leaving the rest intact. This property will be used in the interactive compression bounds in
Subsection 4.2.

Note that the constant 2∆(m) in the depth is a universal constant and the same holds for the
constants in the exponents of size and AND fan-in.

After the preprocessing of Lemma 2 we get a circuit with different kinds of MOD gates. There-
fore, a priori, it is not clear how to express the circuit as one polynomial – expressing the circuit
as a polynomial is how depth-reduction is typically done. To collapse different MOD gates we
use Mod-Amplifiers to increase moduli. These Mod-Amplifiers are simply a special family of high
degree polynomials, originally introduced by Toda [Tod89] for proving PH ⊆ P#P.

3We write ∆(m) instead of the typical ω(m) notation.
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Lemma 4 (Mod-Amplifiers [BT94], weaker forms in [Tod89, Yao90]). For any integer k, there
exists a degree 2k polynomial MPk with integer coefficients such that for any integer m > 1, and
any integer X, MPk(X) = 0 mod mk if X = 0 mod m; and MPk(X) = 1 mod mk if X = 1
mod m.

Thus, Mod-Amplifiers amplify the modulus without changing the 0/1 value of the mod-function.

3 The depth-reduction

We now present the depth-reduction construction and prove Theorem 1. Theorem 1 is formally
restated at the end of this section. The same proof presented here, is used to obtain a stronger
form of Theorem 1, which we need in the interactive compression setting of Section 4.2.

The depth-reduction is presented in three parts: (i) the linearization lemma (Lemma 5), (ii)
a single step of our iterative depth-reduction construction (Lemma 8), and (iii) the use of Mod-
Amplifiers (Theorem 1).

3.1 Linearization: eliminating products

Lemma 5 is an important technical tool, which might be also of independent interest. It shows
that the AND-layer can be eliminated in a MODm ◦AND ◦MODr configuration, for m, r co-prime,
i.e. gcd(m, r) = 1. Lemma 5 relies on the power of composite arithmetic, since a ( mod m) is
added even if it were not there originally.4 When we later use Lemma 5 we will see that although
this construction initially blows up the size, at the end there is a huge payback (to the initial
size-worsening in each application of the construction). Thus, we get an exponentially smaller
construction compared to [Yao90, BT94].

Lemma 5 (Linearization lemma). Given positive integers m, r ∈ Z+, gcd(m, r) = 1 and k in-
determinates (variables) L1, . . . , Lk, there exist rk+1 integral linear combinations L′1, . . . , L

′
rk+1,

i.e. L′i := `i(L1, . . . , Lk) for linear form `i, and integers c1, . . . , crk+1 ∈ {0, 1, 2, . . . ,m−1} such that
for all valuations of the Li in Z+ we have the identity∏

1≤i≤k
MODr(Li) =

∑
1≤i≤rk+1

ciMODr(L
′
i) mod m

The linear combinations L′i and coefficients ci can be computed in time rO(k) (when each arithmetic
operation with the Li’s costs one time step).

When we apply Lemma 5 the MODr’s take inputs from the previous layer; say that these
outputs of the gates of the previous layer bits are the binary vector y ∈ {0, 1}N . Since each Li is
the hamming weight of the input bits then both Li and L′i are integral linear combinations of the
yi’s.

We stress out that integrality in the linear combinations and coefficients is necessary for using
this construction in transforming circuits. If one merely cares to write the product of MOD as a
sum then this is easy over complex C coefficients (see Remark 6 inside the following proof).

Proof of Lemma 5. The construction of the Li’s and its analysis is shown in four parts.

4In particular, even if we use our method instead of Allender-Hertrampf [AH94] for ACCprime circuits we still have
to introduce a second type of MOD gates (two types of MODs is the same as one composite).
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Represent
∏

1≤i≤k MODr(Li) as an exponential sum

∏
1≤i≤k

MODr(Li) =
∏

1≤i≤k

(
1

r

∑
0≤j<r

er(j · Li)

)

=
1

rk

∑
(j1,...,jk)∈Zkr

er

( ∑
1≤i≤k

(jiLi)

)

Remark 6. We can write
∏

1≤i≤k MODr(Li) as a sum with complex coefficients by observing
that

∏
1≤i≤k MODr(Li) =

∑
1≤i≤s ciMODr(L

′
i(x)), ci ∈ C, since for every Y ∈ Z+, er(Y ) =∑

0≤i<r er(i)MODr(Y − i). However, the statement of this lemma is about integral coefficients and
linear combinations. To that end, we introduce a co-prime modulus m that enables us to compute
ring inverses.

rk
∏

1≤i≤k
MODr(Li) =

∑
(j1,...,jk)∈Zkr

er

( ∑
1≤i≤k

(jiLi)

)
Since gcd(m, r) = 1 there exists an inverse (rk)−1 of rk in the ring Zm.

∏
1≤i≤k

MODr(Li) = (rk)−1
∑

(j1,...,jk)∈Zkr

er(
∑

1≤i≤k
(jiLi)) mod m (1)

Introduce a group action that partitions Zkr into well-behaved orbits

For every u ∈ Zr and v = (v1, v2, . . . , vk) ∈ Zkr , define u·v = (uv1, uv2, . . . , uvk), where the operation
uvi is in Zr.5 We define the binary relation ≡ on Zkr such that for any x, y ∈ Zkr , x ≡ y if and
only if y ∈ Z∗r · x, where Z∗r stands for the multiplicative group of integers modulo r. This is an
equivalence relation on Zkr , since Z∗r is a group under multiplication. Then, ≡ partitions Zkr into
many6 equivalence classes. These are also called the orbits of the group action. Let us denote each
of the equivalence classes by Sl = Z∗r · (al,1, . . . , al,k). Regarding explicitness, in our construction
each Sl can be computed by enumeration in time rO(k).

Then, ∑
(j1,...,jk)∈Zkr

er(
∑

1≤i≤k
(jiLi)) =

∑
l

∑
(j1,...,jk)∈Sl

er(
∑

1≤i≤k
(jiLi))

Sum inside each orbit

The following is a very important property regarding how the exponential sums behave inside each
equivalence class (i.e. inside each orbit of our group action).

Fix an arbitrary equivalence class Sl = Z∗r · (al,1, al,2, . . . , al,k):
5Intuition: The partitioning of interest are the orbits of this group action, which are just “lines”. The benefit in

restricting the summation inside each such “line” is that when MOD is written using an exponential sum, then itself
becomes a sum of primitive roots over a scaled “line”.

6These are less than rk. The exact number can be computed by Burnside’s Lemma; cf. [Lan02].
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Let gcd(al,1, al,2, . . . , al,k, r) = c.

Let a′l,i = al,i/c, r
′ = r/c and thus gcd(a′l,1, a

′
l,2, . . . , a

′
l,k, r

′) = 1. Hence,

Sl = Z∗r · (al,1, al,2, . . . , al,k) = Z∗r · c(a′l,1, a′l,2, . . . , a′l,k) = (cZ∗r) · (a′l,1, a′l,2, . . . , a′l,k)

where cZ∗r = c{t
∣∣ gcd(t, r) = 1} = {t

∣∣ gcd(t, r) = c}. Since gcd(a′l,1, a
′
l,2, . . . , a

′
l,k, r

′) = 1, for any
x, y ∈ cZ∗r , x · (a′l,1, a′l,2, . . . , a′l,k) = y · (a′l,1, a′l,2, . . . , a′l,k) if and only if x = y.

∑
(j1,...,jk)∈Sl

er(
∑

1≤i≤k
(jiLi)) =

∑
gcd(t,r)=c, 0≤t<r

er(
∑

1≤i≤k
t · a′l,i · Li)

=
∑

gcd(t′,r′)=1, 0≤t′<r′
er(

∑
1≤i≤k

t′c · a′l,i · Li) (t′ = t/c)

This sum is over {gcd(t′, r′) = 1, 0 ≤ t′ < r′} and thus it can be computed by inclusion-exclusion.
We can first sum all of the terms corresponding to 0 ≤ t′ < r′ together. Then, subtract the
sums of the terms corresponding to the t′s divisible by a prime divisor p of r′. Then, add the
terms corresponding to t′s divisible by two distinct prime divisor pi and pj of r′, and so on. This
inclusion-exclusion calculation is greatly simplified using the Mobius function.

Mobius function is defined µ : Z→ {−1, 0, 1} as follows.

i. µ(x) = 0, if there exists prime q such that q2|x.

ii. µ(x) = (−1)r
k+1

, if there is no square-of-a-prime diving x. Thus, x =
∏

1≤i≤rk+1 qi, where qi
are the rk+1-many distinct prime divisors of x.

One observes that
∑

d|n µ(d) = 1 if n = 1 and
∑

d|n µ(d) = 0 otherwise.

Using these properties we bound the exponential sum inside the fixed Sl.∑
(j1,...,jk)∈Sl

er(
∑

1≤i≤k
(jiLi)) =

∑
gcd(t,r)=c, 0≤t<r

er(
∑

1≤i≤k
t · a′l,i · Li)

=
∑

gcd(t′,r′)=1, 0≤t′<r′
er(

∑
1≤i≤k

t′c · a′l,i · Li) (t′ = t/c)

=
∑

gcd(t′,r′)=1, 0≤t′<r′
er′(

∑
1≤i≤k

t′ · a′l,i · Li)

=
∑

0≤t′<r′

∑
d| gcd(t′,r′)

µ(d)er′(
∑

1≤i≤k
t′ · a′l,i · Li)

(
∑

d| gcd(t′,r′)

µ(d) = 1 if gcd(t′, r′) = 1 and 0 otherwise)

=
∑

0≤t′<r′

∑
d|t′,d|r′

µ(d)er′(
∑

1≤i≤k
t′ · a′l,i · Li)

=
∑
d|r′

µ(d)
∑

d|t′,0≤t′<r′
er′(

∑
1≤i≤k

t′ · a′l,i · Li)
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=
∑
d|r′

µ(d)
∑

0≤t′′<r′/d

er′(
∑

1≤i≤k
t′′d · a′l,i · Li) (t′′ = t′/d)

=
∑
d|r′

µ(d)
∑

0≤t′′<r′/d

er′/d(
∑

1≤i≤k
t′′ · a′l,i · Li)

=
∑
d|r′

µ(d) · r
′

d
MOD r′

d

(
∑

1≤i≤k
a′l,i · Li)

=
∑
d|r′

µ(d) · r
′

d
MODr(

∑
1≤i≤k

d · al,i · Li)

=
∑

d| r
gcd(al,1,al,2,...,al,k,r)

µ(d)r

d · gcd(al,1, al,2, . . . , al,k, r)
MODr(

∑
1≤i≤k

d · al,i · Li)

By letting κSl,r := r
gcd(al,1,al,2,...,al,k,r)

we have

∑
(j1,...,jk)∈Sl

er(
∑

1≤i≤k
(jiLi)) =

∑
d|κSl,r

κSl,r
µ(d)

d
MODr(

∑
1≤i≤k

d · al,i · Li) (2)

Put (1) and (2) together∏
1≤i≤k

MODr(Li)

= (rk)−1
∑

(j1,...,jk)∈Zkr

er(
∑

1≤i≤k
(jiLi)) mod m

= (rk)−1
∑

Sl=Z∗r ·(al,1,...,al,k)

 ∑
(j1,...,jk)∈Sl

er(jiLi))

 mod m

= (rk)−1
∑

Sl=Z∗r ·(al,1,...,al,k)

 ∑
d|κSl,r

κSl,r
µ(d)

d
MODr(

∑
1≤i≤k

d · al,i · Li)

 mod m

=
∑

Sl=Z∗r ·(al,1,...,al,k)

 ∑
d|κSl,r

(
κSl,r

(rk)−1µ(d)

d
mod m

)
︸ ︷︷ ︸

integer

MODr(
∑

1≤i≤k
d · al,i · Li)

 mod m

Remark 7 (Aside remark). Here are two aside (not used later in this paper) remarks.
(i) The AND gate with fan-in k in the LHS, AND[k] ◦MODr can be replaced by ANY[k] boolean

function of fan-in k. Recall that every function can be written as a polynomial with 2O(k) terms
and thus we can obtain the Generalized Linearization Lemma.
(ii) In depth-reduction we use Lemma 5 for r = p, for prime p. The Generalized Linearization
Lemma (and for general m) is of independent interest. For instance, an immediate consequence is
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that an exponential lower bound for MOD6 ◦MOD35 =⇒ exponential lower bound for MOD6 ◦
ANY[o(n)] ◦MOD35.7

3.2 Inside a single iteration: using linearization & mod-amplification

Now, we show how to use the construction of Lemma 5 and the preprocessing Lemma 4, to perform
a single step (described in Lemma 8) of an iterative construction (described in Lemma 1). Note
that N denotes the number of input bits to a layer and n the circuit input length.

Lemma 8 is critically different from the previous depth-reduction technology. Beigel-Tarui
replaces each MODq gate by a Mod-Amplifier. The Mod-Amplifiers are quite high degree polyno-
mials. Thus, the AND gates, i.e. products of Mod-Amplifiers, blow up very fast the degree and
size [BT94, Tod89, Yao90]. Instead, we first use Lemma 5 to remove the AND layer. Although,
this causes an even further increase in size later on we have huge overall gains.

Lemma 8. For every SYM[δSYM]◦AND[δAND]◦MODq circuit on N input bits X = (X1, X2, . . . , XN ),
where q is a prime number and N > q, there is an explicit construction of a SYM[N2q(δAND+2 log δSYM)]◦
AND[2(q−1)(δAND+2 log δSYM)] circuit, which computes the same function as the given circuit.

Proof. Since the output of a symmetric gate is only a function of the hamming weight of the input,

we will assume the given circuit is f

(∑
1≤i≤δSYM

∏
1≤j≤δAND

MODq(li,j(X))

)
. Here, the function

f : {0, 1, . . . , δSYM} → {0, 1} corresponds to the SYM gate of the top layer;
∏

1≤j≤δAND
corresponds

to the next AND layer; MODq(li,j) corresponds to the third MODq layer, where li,j are integral
linear functions on X, i.e. from {0, 1}N to Z (equivalently, li,j(X) is the inner product of X with
an integral vector).

The “steps” below correspond to the steps of the algorithm realizing the construction.

Step 1 Remove the AND gates using Lemma 5.

To apply Lemma 5 we take the mod m of the output of the AND ◦MODq circuit. Thus, we
first modify the given symmetric function by adding a mod-layer and keeping the value unchanged.

Pick the smallest integer s′ such that s′ > δSYM and (s′, q) = 1. Then,

f

( ∑
1≤i≤δSYM

∏
1≤j≤δAND

MODq(li,j(X))

)
= f

(( ∑
1≤i≤δSYM

∏
1≤j≤δAND

MODq(li,j(X))

)
mod s′

)

Then, by Lemma 5∑
1≤i≤δSYM

∏
1≤j≤δAND

MODq(li,j(X)) mod s′ =
∑

1≤i≤δSYM

∑
1≤j≤ q

δAND−1
q−1

ci,jMODq(l
′
i,j(X)) mod s′

where ci,j are integer coefficients between 0 and s′, and l′ are linear combinations of l.

7The generalization of Lemma 5 was suggested to us by Ryan Williams (personal communication). Ryan Williams
(personal communication) indicated that for prime r and in particular for ACC6 linearization can be made to work
with Fourier analytic techniques, whereas Kristoffer Hansen (personal communication) indicated that the same might
be possible for every composite ACCm. Regarding composite r, Richard Beigel (personal communication) came up
recently with a beautiful, simplified inductive proof of our linearization – it achieves almost the same result as in our
statement (but for a slightly worse constant than in our statement).
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Then,

f

( ∑
1≤i≤δSYM

∏
1≤j≤δAND

MODq(li,j(X))

)
= f

( ∑
1≤i≤δSYM

∑
1≤j≤ q

δAND−1
q−1

ci,jMODq(l
′
i,j(X)) mod s′

)

Define a symmetric f ′ as f ′(Y ) = f(Y mod s′) and thus

f

( ∑
1≤i≤δSYM

∏
1≤j≤δAND

MODq(li,j(X)) mod s′

)
= f ′

( ∑
1≤i≤δSYM

∑
1≤j≤ q

δAND−1
q−1

ci,jMODq(l
′
i,j(X))

)

Step 2 Use Mod-Amplifiers to remove the MODq layer.

By Fermat’s little theorem, MODq(l(X)) = (1 − l(X)q−1) mod q. Thus, we can replace each
MODq gate by a low degree polynomial over Fq. Then, we “link” these polynomials on Fq with
the symmetric gate on top by amplifying the moduli through Lemma 4. Choose integer k =⌈

log

(
δSYM ·s′ · q

δAND−1
q−1

)/
log q

⌉
≤ (δAND +2 log δSYM). Then, qk >

∑
1≤i≤δSYM

∑
1≤j≤ q

δAND−1
q−1

ci,j .

Then,

f ′

( ∑
1≤i≤δSYM

∑
1≤j≤ q

δAND−1
q−1

ci,jMODq(l
′
i,j(X))

)

=f ′

( ∑
1≤i≤δSYM

∑
1≤j≤ q

δAND−1
q−1

ci,j((1− (l′i,j(X))q−1) mod q)

)
(by Fermat’s little theorem)

=f ′

( ∑
1≤i≤δSYM

∑
1≤j≤ q

δAND−1
q−1

ci,j(MPk(1− (l′i,j(X))q−1) mod qk)

)
(using Mod-Amplifiers)

=f ′

(
(
∑

1≤i≤δSYM

∑
1≤j≤ q

δAND−1
q−1

ci,j(MPk(1− (l′i,j(X))q−1) mod qk)) mod qk

)

(since qk >
∑

1≤i≤δSYM

∑
1≤j≤ q

δAND−1
q−1

ci,j)

=f ′

(( ∑
1≤i≤δSYM

∑
1≤j≤ q

δAND−1
q−1

ci,jMPk(1− (l′i,j(X))q−1)

)
mod qk

)

Let us denote by P (X) =
∑

1≤i≤δSYM

∑
1≤j≤ q

δAND−1
q−1

ci,jMPk(1− (l′i,j(X))q−1). Then, the origi-

nal circuit becomes f ′(P (X) mod qk), deg(P ) ≤ deg(MPk) · (q− 1) ≤ 2k(q− 1) ≤ 2(q− 1)(δAND +
2 log δSYM).
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Step 3 Represent the formula as a SYM ◦AND circuit.

It is easy to see that P is a polynomial with integer coefficients. Since deg(P ) ≤ 2(q−1)(δAND +
2 log δSYM), we will assume P (X) =

∑
A⊆{1,2,...,N},|A|≤2(q−1)(δAND+2 log δSYM) bA

∏
i∈AXi, where the

coefficients bA are all integers. Let the integers b′A be the mod qk remainders of bA, and thus
0 ≤ b′A < qk. Then,

f ′(P (x) mod qk) =f ′

( ∑
A⊆{1,2,...,N}

|A|≤2(q−1)(δAND+2 log δSYM)

bA
∏
i∈A

Xi mod qk

)

=f ′

( ∑
A⊆{1,2,...,N}

|A|≤2(q−1)(δAND+2 log δSYM)

b′A
∏
i∈A

Xi mod qk

)

=f ′

( ∑
A⊆{1,2,...,N}

|A|≤2(q−1)(δAND+2 log δSYM)

∑
1≤j≤b′A

∏
i∈A

Xi mod qk

)

Then, the original function can be represented as a circuit whose top layer is a symmetric gate
f ′((

∑
A⊆{1,2,...,N},|A|≤2(q−1)(δAND+2 log δSYM)

∑
1≤j≤b′A

YA,j) mod qk) and the next AND layer is
∏
i∈AXi.

The fan-in of the symmetric gate is at most qk ·N2(q−1)(δAND+2 log δSYM) ≤ N2q(δAND+2 log δSYM), and
the fan-in of an AND gate is at most 2(q − 1)(δAND + 2 log δSYM).

3.3 From single to multiple iterations

We conclude by applying Lemma 8 in each iterative step of our depth-reduction.

Theorem 1 (formally stated). There is an explicit construction such that for every input length
n of an arbitrary ACCm circuit of depth d and size s, this construction outputs a depth 2 circuit
SYM ◦ AND of size 2(m log s)(10∆(m)d)

where the fan-in of each AND gate is (m log s)10∆(m)d, where
∆(m) is the number of distinct prime divisors of m. More precisely, if the size of the circuit if

2logk n, then the size of the output circuit is 2(m logk n)10∆(m)d
.

Proof. Given an ACCm circuit, we first use Lemma 2 to construct a SYM◦ACC circuit with depth
2∆(m) · d size 2(m log s)3

AND gate fan-in (m log s)2, where ∆(m) is the number of distinct prime
divisors of m. Recall that each layer have only one type of gates: AND or MODq, where q is a
prime divisor of m. We do the depth-reduction inductively from top to bottom (input level) of the
circuit and reduce the whole circuit into a SYM

[2(log s)10∆(m)·d
]
◦ AND[(log s)10∆(m)·d] circuit. Denote

by δSYM,i the fan-in of the symmetric gate we get from reducing the first i layers, δAND,i is the
biggest AND gate fan-in.

The top layer of the circuit is a SYM gate (in fact, a “majority” gate), therefore the given
circuit is of the form SYM ◦AND. Then, δSYM,1 ≤ 2(m log s)1·5

, δAND,1 ≤ (m log s)1·5

Suppose we have already reduced the first i layers into a SYM ◦ AND circuit. Then, δSYM,i ≤
2(m log s)i·5 , δAND,i ≤ (m log s)i·5.

For the layer i+ 1:

11



Case: AND layer. Each gate of the i+1 layer is the AND of some gates from the i+2 layer. Simply
replace the each gate of the i+ 1 layer with the products of its inputs. We can get a SYM ◦AND
circuit with δSYM,i+1 = δSYM,i = 2(m log s)i·5 ≤ 2(m log s)(i+1)·5

, δAND,i+1 ≤ (m log s)2 · δAND,i ≤
(m log s)(i+1)·5 by induction hypothesis.

Case: MODq layer. We think of the outputs of all gates in layer i + 2 as inputs to the first
i + 1 layers of the circuit. Then, the “input size” of layer i + 1 is at most the size of the circuit
i.e. 2O((m log s)3). The first 3 layers of the circuit gotten by the compressing from induction hy-
pothesis form a SYM ◦ AND ◦MODq circuit. We use Lemma 8 to compress. Then, δSYM,i+1 ≤
(2(m log s)3

)2q(δAND,i+2 log δSYM,i) ≤ 2(m log s)(i+1)·5
, and δAND,i+1 ≤ 2(q − 1)(δAND,i + 2 log δSYM,i) ≤

(m log s)(i+1)·5 by induction hypothesis and Lemma 8.
Thus, after reducing the depth 2∆(m) · d of the circuit, we get a SYM ◦AND circuit with norm

at most 2(m log s)10∆(m)·d
and degree at most (m log s)10∆(m)·d.

Thus, we got a 2(m log s)10∆(m)d
size and (m log s)10∆(m)d degree SYM ◦ AND circuit to which is

equivalent with the given ACCm circuit. Especially for ACC6, the size and degree would be 2log20d s

and log20d s.

4 Some implications

We list two main implications of the new depth-reduction construction. Section 4.1 shows a near-
exponentially better depth lower bound in Williams’ program. This is an immediate consequence
of Theorem 1. Regarding non-immediate consequences, Section 4.2 contains an application of our
depth-reduction construction (but not the statement of Theorem 1). This is the first super-constant-
depth lower bounds in a hybrid model of communication complexity and circuit complexity. Here,
we still use depth-reduction. The technical challenge is to reduce the depth of an exponentially big
circuit.

A parenthetical remark Note that the realm of immediate consequences includes all previ-
ous results that scale in an obvious way. For instance, following [BT94] (p. 8, Section 6) as-

suming that MAJ ∈ ACC(2(logn)O(1)
, o(log n/ log logn)) we conclude that TC0 is computable by

ACC(2(logn)O(1)
, o(log n/ log log n)). This is shown by simply replacing every MAJ gate in the given

TC0 circuit by an ACC(2(logn)O(1)
, o(log n/ log logn)) circuit. Since ACC(2(logn)O(1)

, o(log n/ log logn))
can be compressed into a sub-exponential size SYM ◦ AND circuit, and since the SYM gate can
be computed by depth-2, TC circuit, we conclude that TC0 is computable by TC circuits of sub-
exponential size and depth 3.

4.1 From depth o(log log n) to o(log n/ log log n)
– a new barrier to Williams’ program

As explained at the end of Section 1, our improved depth-reduction (Theorem 1) yields a super-
exponentially better depth lower bound over the previous best-known one.

Theorem 9. NEXP 6⊆ ACC(2logk n, o( logn
log logn)) for every constant k.

In particular, for a fixed m we obtain the following detailed bound.
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Corollary 10. For a fixed modulus m, and a constant k, there exist a constant c(m, k) such that

NEXP 6⊆ ACCm(2logk n, c(m,k) logn
log logn )

Note, that the above lower bound pushes Williams’ program to the NC1 barrier. By this
we mean that any ω(1) improvement on the depth bound directly implies NEXP 6⊆ NC1, since
NC1 ⊆ AC(nO(1), O( logn

log logn)). In fact, the barrier we are facing now is much stronger since we
allow MODm gates.

Finally, we remark that after the depth-reduction step the Circuit-SAT algorithm is for circuits
of the form SYM ◦AND. The fact that the top gate is SYM is crucial in e.g. [Wil14] and it is not
known whether restricted SYM gates can yield faster algorithms (and thus better lower bounds)
– see in Green et al. [GKR+95] for a variant of Beigel-Tarui with the SYM gate restricted in the
so-called MidBit form.

Proof outline of Theorem 9. Our depth-reduction algorithm can compress every ACC circuit of
depth o(log n/ log logn) to a sub-exponential depth-2 circuit.

Corollary 11 (from Theorem 1). Given an arbitrary 2(logn)O(1)
-size and o(log n/ log log n)-depth

ACC circuit, there is a explicit construction of an equivalent 2o(n)-size SYM ◦AND circuit.

Now, we state two theorems from [Wil11] that enable us to conclude Theorem 9.

Theorem 12 ([Wil11]). Let C be any boolean circuit class, for which OR[nω(1)] ◦C can be computed

by a equivalent 2o(n) size SYM ◦AND circuit. Then, C-SAT can be solved in 2n

nω(1) time.

Thus, Corollary 11 and Theorem 12 imply a faster than exhaustive search circuit-SAT algorithm
for ACC(2logk n, o( logn

log logn)) for every integer k.
The following Theorem 13 suffices to conclude Theorem 9.

Theorem 13. [Wil11] Let C be any boolean circuit class which closed under composition and
contains AC0. If C-SAT has a 2n

nω(1) running time algorithm, then NEXP 6⊆ C.

4.2 Interactive compression

One way to strengthen the ACC lower bound is to consider the following interactive setting, intro-
duced by Chattopadhyay and Santhanam [CS12] for ACCp, where p is prime. Here we show the
first lower bound in this setting for composite modulus, i.e. for the general ACC.

The setting, coined as interactive compression [CS12], is a communication game between Alice
and Bob. In this game, Alice holds an n-bit input x and she wants to decide whether x ∈ L for
some problem L. Her power is restricted to only access a circuit from a fixed class of circuits C that
cannot compute L. To that end, she is communicating with a computationally unbounded Bob.
We call this communication game C-compression game for L. For a fixed protocol the cost of the
game is the number of bits communicated. For details and definitions see [CS12, OS15].

Our work, same as in [CS12, OS15], is about unconditional lower bounds. Note that the work of
Fortnow and Santhanam [FS08] and Dell and van Melkebeek [DvM10] shows strong but conditional
lower bounds in similar interactive compression settings.

Chattopadhyay and Santhanam [CS12], and the subsequent strengthening and simplification by
Oliveira and Santhanam [OS15], proved communication lower bounds for explicit functions, such
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as MODq [CS12, OS15] and the majority function MAJ [OS15]. Both of these works are based on
correlation bounds between ACCp circuits and explicit functions, originally shown by Razborov and
Smolensky [Raz86, Smo87]. However, no such correlation bounds are known for composite moduli,
even for a depth-2, ACC circuits. Thus, on one hand we strengthen Alice’s power by giving her
access to ACCm circuits for composite m, but also weaken the conclusion to deriving NEXP lower
bounds (that reaches the limits of current knowledge).

We show an interactive compression NEXP-lower bound for an Alice that has the power of
ACC(2(logn)O(1)

, o(log n/ log log n)). To that end, we introduce a technique very different than [CS12,
OS15], which uses our depth-reduction construction together with [Wil14].

4.2.1 Formalization of interactive compression

Let us begin with the definition of an interactive compression game. For background, examples
(e.g. the parity upper bound), and formal definitions cf. [CS12].

Definition 14. A C-compression game for a function f : {0, 1}n → {0, 1} is a two-party commu-
nication game, where the first party, Alice, is given the entire input x and is restricted to make
decisions computed by C-circuits, while the second party, Bob, is not given any input and is com-
putationally unbounded. The two parties realize a C-bounded interactive communication protocol to
decide the value of f(x).
Syntactically, a C-bounded protocol consists of a sequence of finite circuits {Cn}, Cn ∈ C that Alice
is using to generate her messages. The computationally unbounded Bob is a function from sequences
of messages to messages. Here is the description of the computation of k-round C-protocol: at the
i-th round Alice sends a message yi ∈ {0, 1}∗ to Bob and if i is not the last round Bob replies with
a message zi ∈ {0, 1}∗. The message yi is generated by applying a number of consecutive (and
fixed) C-circuits on < x, z1, z2, . . . , zi−1 >, and zi is generated by applying a number of fixed boolean
functions on < y1, y2, . . . , yi >. At the end of the k-th round Bob applies a boolean function from
messages to messages used to decide the value of f .
The communication cost of the protocol is the maximum number of bits sent by Alice as a function
of n = |x|.

The number of bits sent by Bob is not counted in the communication cost. However, this
number is bounded by the size of C-circuit, since the number of bits that can be accessed by Alice
is bounded by the circuit size.

4.2.2 Our interactive compression lower bound

We prove the following theorem, which is a strengthened version of the NEXP lower bound of
Theorem 9.

Theorem 15. The cost of a k-round quasi-poly size, o( logn
log logn) depth ACC-compression game for

NEXP is at least n
1
k
−ε for every ε > 0.

Proof outline of Theorem 15
First, we realize the entire interaction as a circuit, replacing the bits send back from Bob to Alice
with a bounded fan-in arbitrary ANY gate.
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After this we use our depth-reduction construction to compress the circuit. By a careful analysis
of the construction in Theorem 1, we can show that the same construction compresses an almost
exponentially large but “highly imbalanced” circuit. The details of this strengthened theorem are
in the proof of Theorem 17 below.

This way we are able to compress this huge but of restricted form circuits and thus by [Wil14]
we have that the depth-reduction implies faster-than-exhaustive-search #SAT algorithm for the
circuit class described in the interactive compression procedure. This #SAT algorithm implies
NEXP lower bounds.

Proof of Theorem 15
Here is how to represent the interaction as a circuit. Suppose l is the cost of this game. Lets
us denote the computation of the bits sent from Bob to Alice by boolean gates g1, g2, . . . , gs,

where s = 2logO(1) n since Alice is restricted to make decisions computed by quasi-poly size ACC-
circuits. Then, the fan-in of each gi is at most l. Since we have multiple rounds, where the result
of the communication in one determines the next one, the whole computation becomes a circuit
ACC◦ANY ◦ACC◦ANY · · · ◦ACC. For a k-round protocol the number of the layers of ANY gates
is k and the fan-in of each ANY gates is at most l. Note that, each of the ANY gates describes the
actions of (unbounded) Bob in the communication protocol.

We further modify this circuit by replacing each ANY gate by an appropriate MOD2 ◦MOD3

gadget. It is easy to see (and folklore) that MOD2 ◦MOD3 can be used to encode the truth table
of any boolean function; i.e. it is universal. For completeness we show this in Lemma 16 below.
After this, we have a potentially very big ACC circuit. The issue is that the above circuit might
be too large to compress (reduce its depth) using Theorem 1. After Lemma 16 we will explain how
to deal with this issue.

Lemma 16. Every ANY gate (boolean function) of fan-in l can be represented by a MOD2◦MOD3

circuit of size O(3m).

Proof. Suppose f : {0, 1}m → {0, 1} is the function for the ANY gate.
We begin by representing f as a MOD2 ◦ AND circuit. Since {

∏
i,yi=1 xi

∏
i,yi=0(1 − xi)

∣∣ y ∈
{0, 1}l} is the standard basis (not to be confused with the Fourier basis) of all of the boolean
functions defined on {0, 1}l, we have that f(x) =

∑
y∈{0,1}m f(y)

∏
i,yi=1 xi

∏
i,yi=0(1− xi). Then,

f(x) = MOD2(1 + f(x))

= MOD2(1 +
∑

y∈{0,1}l
f(y)

∏
i,yi=1

xi
∏
i,yi=0

(1− xi))

= MOD2(
∑

y∈{0,1}l
f(y)

∏
i,yi=1

xi
∏
i,yi=0

(1 + xi))

= MOD2(
∑

y∈{0,1}l
f(y)

∑
z≥y,z∈{0,1}l

∏
i,zi=1

xi)

= MOD2(
∑

z∈{0,1}l
(

∑
y∈{0,1}m,y≤z

f(y))
∏
i,zi=1

xi)

= MOD2(
∑

z∈{0,1}l
(

∑
y∈{0,1}m,y≤z

f(y) mod 2)
∏
i,zi=1

xi)
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Now, we replace the inner layer
∏

with AND gates and get a MOD2 ◦AND circuit.
We conclude by representing it as a MOD2 ◦MOD3 circuit using Lemma 5.
Since xi = MOD3(1 + 2xi) we have the following.

f(x) = MOD2(
∑

z∈{0,1}l
(

∑
y∈{0,1}l,y≤z

f(y) mod 2)ANDi,zi=1xi)

= MOD2(
∑

z∈{0,1}l
(

∑
y∈{0,1}l,y≤z

f(y) mod 2)ANDi,zi=1(1 + 2xi))

By Lemma 5 we remove the AND layer and complete the proof.

As mentioned above, we shall now show how to do depth-reduction on the resulted circuit of
size 2O(l). It is too big for invoking Theorem 1 but we also observe that the resulted circuit is quite
restricted. In particular, it is highly imbalanced, i.e. the width of each layer (the number of gates at
a layer) is still very small, except the layers generated by represent the ANY gates. We introduce
the following strengthened analysis of our depth-reduction, tailored for these restricted circuits.

Theorem 17. Fix integer m ∈ Z+, a SYM ◦ ACCm circuit of depth d, AND gate fan-in ≤ s′,
and width, i.e. number of gates of layer i, wi with wi > m. Furthermore, in this circuit each
layer either consists of : AND gates or exclusively of MODq gates, where q is a prime divisor
of m. Then, there exists an explicitly constructed equivalent circuit SYM ◦ AND circuit of size

≤ 2s
′d∏

1≤i≤d logwi, and AND gate fan-in at most s′d
∏

1≤i≤d logwi.

Remark 18. The only difference with Theorem 1 is in the calculation of the circuit size and AND
gates fan-in in each iteration of the construction. In the proof of Theorem 1, we use the circuit
size to bound the width, i.e. the number of gates of each layer. This is necessary for arbitrary ACC
circuits. However, the circuits constructed using Lemma 16 to replace the ANY gates is special.
The gates of this kind of circuits populate only several layers generated by ANY gates.

Proof. We proceed inductively from top to bottom. The whole circuit will be compressed into a
SYM

[2
s′d

∏
1≤i≤d logwi ]

◦ AND[s′d
∏

1≤i≤d logwi] circuit. Denote by normi the fan-in of the symmetric

gate we get from compressing the first i layers, degi is the biggest AND gate fan-in.
The top layer of the circuit is a SYM gate, which is already a SYM ◦ AND circuit. norm1 =

w1 ≤ 2s
′·logw1 , deg1 = 1 ≤ s′ · logw1

Suppose that we have already compressed the first i layers into a SYM ◦AND circuit. normi ≤
2s
′i∏

1≤j≤i logwj , degi ≤ s′i
∏

1≤j≤i logwj .
For the layer i+ 1:

Case: AND layer. Then, each gate of the i+ 1 layer yt is the AND of some z from the i+ 2 layer.
Then, we replace y with the products of z. We can get a SYM ◦ AND circuit with normi+1 =

normi = 2s
′i∏

1≤j≤i logwj ≤ 2s
′i+1

∏
1≤j≤i+1 logwj , degi+1 ≤ s′i · degi ≤ s′i+1

∏
1≤j≤i+1 logwj by induc-

tion hypothesis.

Case: MODq layer. We can think that the outputs of all the gates of layer i + 2 are the in-
puts of the first i + 1 layers of the circuit. Then the “input size” of layer i + 1 is wi+1. We
can use Lemma 8 to compress the SYM ◦ AND circuit gotten from induction hypothesis and the
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layer i + 1 together. The normi+1 ≤ (wi+1)2q(degi +2 log normi) ≤ 2s
′i+1

∏
1≤j≤i+1 logwj , and degi+1 ≤

2(q − 1)(degi +2 log normi) ≤ s′i+1
∏

1≤j≤i+1 logwj by induction hypothesis and Lemma 8.
At the end, after reducing the depth d, we get a SYM ◦ AND circuit with norm at most

2s
′d∏

1≤i≤d logwi and degree at most s′d
∏

1≤i≤d logwi.

Putting together Lemma 16 and Theorem 17 obtain a construction that compresses an ACC
circuit with one layer of small fan-in ANY gate.

Theorem 19. Given a size s, depth d, ACCm or SYM ◦ ACCm circuit with k layer of ANY
gates with fan-in at most l, there exists an explicit construction of an equivalent SYM

[2lk logO(d) s]
◦

AND[lk logO(d) s] circuit.

Proof. The proof of this theorem follows closely the proof of Theorem 1, thus we only outlining it
here.

By using Lemma 2 and Remark 3 we reduce the AND gate fan-in. This way we obtain a
SYM ◦ ACCm circuit with k-many ANY-layers. The depth of this circuit is O(d) and its size is
quasi-polynomial. Each gate of this circuit is one of the following: (i) MODq gates, where q is a
prime divisor of m, (ii) AND gate, where the fan-in of the gate is at most quasi-polynomial, (iii)
ANY gate from the original circuit with fan-in at most l.

Then, using Lemma 16 we represent the ANY gates layer. Notice that the input size of each
layer remains unchanged (still quasi-polynomial), but the ANY gate layer for which the fan-in is
as big as 2O(l).

Thus, we have obtained a circuit with the following properties:

i. The depth of the circuit is O(d).

ii. The “width” i.e. the number of gates of the ith layers is wi = 2logO(1) s except k special layers,
where wi = 2O(l).

iii. The fan-in of every AND gate in the circuit is logO(1) s.

iv. Each MOD gate of the circuit is a MODq gate, where q is a prime divisor of m or a MOD2 or
MOD3 gates. (there may be more than one types of MODq’s inside the same circuit).

v. The circuit is layered, i.e. each layer contains gates of the same type.

We conclude by directly using Lemma 17 to do the depth-reduction. Since the “input size” of the

ith layers is wi = 2logO(1) s except k special layers, where wi = 2O(l), the size of the output circuit

will be 2logO(d) s
∏

1≤i≤d logwi = 2l
k logO(d) s and AND gate fan-in at most logO(d) s

∏
1≤i≤d logwi =

lk logO(d) s

Using the above depth-reduction construction and by following the same argument of [Wil14],
we obtain a #SAT algorithm for the circuit class corresponding to the ACC-compression game.

Corollary 20. Let Cinter be the circuit class Cinter = ACC ◦ ANY[l] ◦ ACC ◦ ANY[l] ◦ · · · ◦ ACC,

with k-many layers of ANY gates, l ≤ n
1
k
−ε, the circuit size is 2(logn)O(1)

size, and the depth is
o( logn

log logn). Then, #Cinter-SAT can be solved in 2n−logc n time for any constant c.

By [Wil14] we conclude that NEXP 6⊆ Cinter, which in turn implies Theorem 15.
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[GT98] Vince Grolmusz and Gábor Tardos. Lower bounds for (mod p-mod m) circuits. In
Foundations of Computer Science (FOCS), pages 279–288. IEEE, 1998.

[H̊as87] Johan H̊astad. Computational limitations of small-depth circuits. PhD thesis, MIT,
1987.

[HMP+87] András Hajnal, Wolfgang Maass, Pavel Pudlák, Mario Szegedy, and György Turán.
Threshold circuits of bounded depth. In Foundations of Computer Science (FOCS),
pages 99–110. IEEE, 1987.

[Lan02] Serge Lang. Algebra (revised third edition). Graduate Texts in Mathematics, 1(211),
2002.

[OS15] Igor Carboni Oliveira and Rahul Santhanam. Majority is incompressible by ac0[p]
circuits. In Conference on Computational Complexity (CCC), pages 124–157, 2015.

[Raz86] Alexander Razborov. Lower bounds on the size of bounded depth networks over a
complete basis with logical addition, mathematische zametki 41 pp. 598–607. English
Translation inMathematical Notes of the Academy of Sciences of the USSR, 41:333–338,
1986.

[RST15] Benjamin Rossman, Rocco A Servedio, and Li-Yang Tan. An average-case depth hier-
archy theorem for boolean circuits. In Foundations of Computer Science (FOCS), 2015
IEEE 56th Annual Symposium on, pages 1030–1048. IEEE, 2015.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In Symposium on Theory of Computing (STOC), pages 77–82. ACM, 1987.
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