Depth-reduction for composites

Shiteng Chen*
Tsinghua University

Periklis A. Papakonstantinou ${ }^{\dagger}$
Rutgers University

May 27, 2016

Abstract

We obtain a new depth-reduction construction, which implies a super-exponential improvement in the depth lower bound separating NEXP from non-uniform ACC.

In particular, we show that every circuit with AND, OR, NOT, and MOD_{m} gates, $m \in$ \mathbb{Z}^{+}, of polynomial size and depth d can be reduced to a depth-2, SYM \circ AND, circuit of size $2^{(\log n)^{O(d)}}$. This is an exponential size improvement over the traditional Yao-Beigel-Tarui, which has size blowup $2^{(\log n)^{2 O(d)}}$. Therefore, depth-reduction for composite m matches the size of the Allender-Hertrampf construction for primes from 1989.

One immediate implication of depth reduction is an improvement of the depth from $o(\log \log n)$ to $o(\log n / \log \log n)$, in Williams' program for ACC circuit lower bounds against NEXP. This is just short of $O(\log n / \log \log n)$ and thus pushes William's program to the NC^{1} barrier, since NC^{1} is contained in ACC of depth $O(\log n / \log \log n)$. A second, but non-immediate, implication regards the strengthening of the ACC lower bound in the Chattopadhyay-Santhanam interactive compression setting.

Keywords composite modulus, depth-reduction, circuit lower bound, Williams' program, interactive compression

1 Introduction

The development of computational complexity is vastly a history of conjectures, and gaps between these conjectures and what is actually proved. One such story regards the power of MOD_{m} gates in small-depth boolean circuits that also have AND, OR, NOT gates. $\mathrm{A} \mathrm{MOD}_{m}$ gate outputs 1 if and only if the number of 1 s in its input is a multiple of m. What is known for prime $m=p$ stands in sharp contrast to what is known for composite $m \in \mathbb{Z}^{+}$.

In a sense we settle the question about depth-reduction of ACC circuits. ${ }^{\square}$ Depth-reduction is an algorithm compressing a low-depth ACC circuit (highly parallel algorithm) of depth d into

[^0]a depth-2 circuit (extremely parallel algorithm). Theorem 1 below states that for every ACC_{m} circuit, where m is composite, there is an equivalent depth-2 circuit of size $2^{(\log n)^{O(d)}}$. This size asymptotically matches the construction of Allender-Hertrampf AH94 for prime moduli and improves exponentially the $2^{(\log n)^{2^{O(d)}}}$ size of the previously best-known Yao-Beigel-Tarui construction [Yao90, BT94.

Theorem 1 (formally stated on p . 11). There is an efficient algorithm that given a circuit with AND, OR, NOT, MOD_{m} gates, of depth d, input length n, and size $s \geq n$, the algorithm outputs a depth-2 circuit SYM \circ AND of size $2^{(\log s)^{O(d)}}$, where SYM is a gate whose output depends only on the number of 1 s in its input.

Depth-reduction constructions are sensitive to the types of gates of the circuits. For instance, when we only consider circuits with only AND, OR, NOT gates then it is impossible to compress the depth even from depth $k+1$ to k, without suffering an exponential size blowup. This was proved in the worst case by Hastad and Yao Hås87, Yao85]. In a recent breakthrough by Rossman, Servedio, and Tan [RST15] it was shown that this irreducibility holds also on the average.

Depth-reduction is fundamental and also related to other fundamental questions in circuit complexity. We will explain the most relevant connections to depth-reduction, after we first briefly recall what is already known for prime moduli $m=p$.

The celebrated works of Razborov and Smolensky Raz86, Smo87 showed that the boolean function MOD_{q} cannot be computed by ACC_{p}^{0} circuits for primes $p \neq q$. This was technically achieved by viewing an ACC_{p} circuit as a polynomial over \mathbb{F}_{p}. This view appeared to be very fruitful and in particular in the depth-reduction of ACC_{p} circuits AH94. Thus, for prime modulus p (i) strong lower bounds and (ii) depth-reduction algorithms are known since the early 90 s.

Smolensky conjectured [Smo87] that the lower bound extends to MOD_{r} and ACC_{m}^{0} for every composite co-prime moduli m, r. This conjecture is still a holy grail for contemporary circuit complexity. Since then, there is a spate of important works, e.g. Bou05, CGPT06, Cha07, CW09, CL11, GRS05, GT98, HMP ${ }^{+}$87, ST06, that obtain lower bounds for restricted forms of depth-2 or depth-3 circuits. These works introduced a number of analytic techniques, at the same time shaping our understanding and goals of modern circuit complexity.

From depth-reduction to ACC circuit lower bounds Smolensky's conjecture relates to our depth-reduction as follows. Note that no non-trivial limitations for general ACC circuits were known up until Will1, which showed that non-uniform $\mathrm{ACC}^{0}:=\bigcup_{m} \mathrm{ACC}_{m}^{0}$ does not contain NEXP. Importantly, Williams Wil11, Wil14 introduced a program according to which an improved depth-reduction algorithm yields Wil11, Wil14 a lower bound for NEXP against circuits of higher depth - the smaller the size blowup in the depth-reduction the bigger the depth in the ACC lower bound.

Here are a few more details. In his seminal work, Williams first gives a slightly better-than-brute-force Circuit-SAT algorithm for ACC-circuits. Then, he shows that if NEXP $\subseteq \mathrm{ACC}^{0}$, the depth-reduction algorithm can be used to imply for every problem in $\operatorname{NTIME}\left(2^{n}\right)$ a nondeterministic algorithm that runs in time $o\left(\frac{2^{n}}{n}\right)$. This contradicts Cook's nondeterministic time-hierarchy Coo73, and thus NEXP $\nsubseteq \mathrm{ACC}^{0}$. More generally, the existence of a "slightly better-than-brute-force" algorithm for \mathfrak{C}-SAT implies NEXP $\nsubseteq \mathfrak{C}$; see Section 4.1 for some restrictions on \mathfrak{C}. A crucial step of the circuit-SAT algorithms in Wil11, Wil14] is that the depth-reduced circuit can be of any up to slightly sub-exponential size. Therefore, the triple-exponential size blowup in the depth BT94]
implies Wan11] an NEXP lower bound, i.e. NEXP $\nsubseteq \mathrm{ACC}\left(2^{\log ^{k} n}, o(\log \log n)\right)$ for every constant $k>0$. Theorem 1 improves super-exponentially ${ }^{2}$ the previously best-known $o(\log \log n)$ depth for ACC circuits to $o(\log n / \log \log n)$. More details are explained in Section 4.1.

A strengthening of the above circuit lower bound is given in the interactive compression setting of Chattopadhyay-Oliveira-Santhanam [CS12, OS15]. This setting is interesting in its own right. In Section 4.2 we present this result together with intuition, motivation, and comparison to previous work.

2 Notation and existing tools

We assume familiarity with the terminology in basic computational complexity, cf. [AB09. All circuit classes in this paper are non-uniform. We denote by ACC_{m}^{0} the class of boolean functions of the form $\left\{f_{n}:\{0,1\}^{n} \rightarrow\{0,1\}\right\}_{n \in \mathbb{Z}^{+}}$computable by families of circuits $\left\{C_{n}\right\}_{n \in \mathbb{Z}^{+}}$where each C_{n} is of polynomial size poly (n), constant depth, and uses gates $\left\{\right.$ AND, OR, NOT, $\left.\mathrm{MOD}_{m}\right\}$, where MOD_{m} is a boolean gate defined below. We measure size as the number of wires in the circuit, depth as the length of longest path from the output of the circuit to any input. Let also, $\mathrm{ACC}^{0}:=$ $\cup_{m \in \mathbb{Z}^{+}} \mathrm{ACC}_{m}^{0}$. We denote by $\mathrm{ACC}_{m}(s, d)$ the class of boolean functions characterized by families of $\left\{\operatorname{AND}, \mathrm{OR}, \mathrm{NOT}, \mathrm{MOD}_{m}\right\}$-circuits of size s and depth d. Let also $\mathrm{ACC}(s, d):=\cup_{m \in \mathbb{Z}^{+}} \mathrm{ACC}_{m}(s, d)$. In this notation, $\mathrm{ACC}^{0}=\mathrm{ACC}\left(n^{O(1)}, O(1)\right)$.

We write ACC^{0} circuit for a family of circuits characterizing a function in ACC^{0}, whereas ACC_{m} circuit designates a circuit family with $\left\{\mathrm{AND}, \mathrm{OR}, \mathrm{NOT}, \mathrm{MOD}_{m}\right\}$ gates.

Families of layered circuits are denoted in the usual way. That is, $\mathrm{SYM} \circ \mathrm{AND} \circ \mathrm{MOD}_{m}$ denotes a family of depth- 3 circuits (or one member of the family) where the output gate is a symmetric gate. A symmetric gate SYM is a boolean function whose output depends on the number of 1 s in the input; e.g. the "MOD gate" (see below), "majority gate", "threshold gate". The maximum fan-in of a gate at a layer is written in brackets as a subscript, e.g. $\mathrm{MOD}_{m} \circ \mathrm{AND}_{\left[\delta_{\text {AND }}\right]}$ the AND gates at the bottom (next to the input) layer have fan-in at most $\delta_{\text {AND }}$.

We write $\|x\|_{1}:=\sum_{i=1}^{n} x_{i}$, treating x_{i} 's as integers, for $x \in\{0,1\}^{n}$ and denote by MOD_{m} the boolean function (gate) that takes an N-bit input $x=\left(x_{1}, \ldots, x_{N}\right)$ and $\operatorname{MOD}_{m}(x)=1 \Longleftrightarrow$ $m \mid\|x\|_{1}$. For MOD_{m} and every other symmetric gate we will assume that take as input $\|x\|_{1}$, i.e. we write $\operatorname{MOD}_{m}\left(\|x\|_{1}\right)$.

The $\operatorname{MOD}_{m}\left(\|x\|_{1}\right)$, which is evaluated to $\{0,1\}$, should not be confused with the modulus over \mathbb{Z}, i.e. $\|x\|_{1}(\bmod m)$. We restrict to a prime field \mathbb{F}_{q} or ring \mathbb{Z}_{m} using " $\bmod q "$ or " $\bmod m$ ". This reduces notational clutter - distinct fields and rings, in a sense, coexist in the same circuit and our techniques simultaneously use and relate more than one.

All operations in this paper are over \mathbb{C}. For example, in evaluating a polynomial function $P:\{0,1\}^{n} \rightarrow \mathbb{Z}$ with integer coefficients the operations treat the inputs 0,1 as integers. Polynomial functions always take inputs $\{0,1\}^{n}$ and recall that MOD_{m} gates take inputs from \mathbb{Z}.

For $X \in \mathbb{Z}$ we write $e_{m}(X):=e^{X \frac{2 \pi i}{m}}$, where $e^{\frac{2 \pi i}{m}}$ is the m-th primitive root of 1 . Then, observe that $\operatorname{MOD}_{m}(X)=\frac{1}{m} \sum_{0 \leq k<m} e_{m}(k X)$.

Preprocessing and Mod-Amplifiers For depth-reduction and its applications we consider explicit circuit constructions, i.e. constructions computable in time polynomial (in fact, AC^{0}) in

[^1]the size of the output circuit. Explicitness will be used in the applications of depth-reduction, including the extension of Will1.

Our construction in Section 3 uses a preprocessing step from [BT94]. This is how we deal with big fan-in AND gates and initially replace MOD_{m} gates, where m is composite, by modular gates of prime modulus. Lemma 2 does this preprocessing efficiently.

Lemma 2 ([BT94, AG93, Wil14]). There is an explicit construction that for every number of input bits n and modulus $2 \leq m \leq \log O{ }^{(1)} n$, given an ACC_{m} circuit of depth d and size s, where there are $s_{\text {AND }}$ many AND gates each of fan-in at most $\delta_{\text {AND }}$, the construction outputs a SYM $\circ \mathrm{ACC}$ circuit with the following properties.
i. The depth of the circuit is $2 \Delta(m)$ d, where $\Delta(m)$ is the number of distinct prime divisors of m^{3}.
ii. The size of the circuit is $s \cdot 2^{O\left(m \log s_{\mathrm{AND}} \cdot m^{2} \log ^{2} \delta_{\mathrm{AND}}\right)}=2^{O\left((m \log s)^{3}\right)}$.
iii. The fan-in of every AND gate in the circuit is $O\left(m \log s_{\mathrm{AND}} \cdot m \log \delta_{\mathrm{AND}}\right)=O\left((m \log s)^{2}\right)$.
iv. Each MOD gate of the circuit is a MOD_{q} gate, where q is a prime divisor of m (in general, many types of MOD_{q} 's are inside the same circuit).
v. The circuit is layered, i.e. each layer contains gates of the same type.

More presisely when we furthermore consider an ACC_{m} circuit of size $2^{\log ^{k} n}$. Then, the size of the constructed circuit is at most $2^{\left(m \log ^{k} n\right)^{3}}$, the AND gate fan-in is at most $2^{\left(m \log ^{k} n\right)^{2}}$, and the depth is at most $2 \Delta(m) d$.

The above hold true if instead of an ACC_{m} circuit we are given an $\mathrm{SYM} \circ \mathrm{ACC}_{m}$ circuit.
Remark 3. The algorithm in the proof of Lemma 2 is doing 3 things: (i) reduces the fan-in of AND gates to at most $\log s_{\text {AND }} \cdot \log \delta_{\text {AND }}$; (ii) decomposes the MOD_{m} gates into circuits with MOD_{p} gates one for each p, a prime divisor of m; (iii) layers the circuit, i.e. each layer only contains the same type of gates.

To reduce AND gate fan-in we replace each AND gate of fan-in $\leq \delta_{\text {AND }}$ by a probabilistic $\mathrm{MOD}_{p} \circ$ AND circuit, where the AND gates fan-in is at most $O\left(\log s_{\text {AND }} \cdot \log \delta_{\text {AND }}\right)$, where all these probabilistic sub-circuits are sampling from a $2^{O\left(\log s_{\mathrm{AND}} \cdot \log ^{2} \delta_{\mathrm{AND}}\right)}$ size sample space [VV85]. Then, we [V85] derandomize through enumeration and majority vote, which can be implemented with $2^{O\left(\log s_{\mathrm{AND}} \cdot \log ^{2} \delta_{\mathrm{AND}}\right)}$ copies of sub-circuits. This step only replaces the AND gates. Therefore, the same algorithm can be used in circuits with different types of gates, changing only the AND s and leaving the rest intact. This property will be used in the interactive compression bounds in Subsection 4.2.

Note that the constant $2 \Delta(m)$ in the depth is a universal constant and the same holds for the constants in the exponents of size and AND fan-in.

After the preprocessing of Lemma 2 we get a circuit with different kinds of MOD gates. Therefore, a priori, it is not clear how to express the circuit as one polynomial - expressing the circuit as a polynomial is how depth-reduction is typically done. To collapse different MOD gates we use Mod-Amplifiers to increase moduli. These Mod-Amplifiers are simply a special family of high degree polynomials, originally introduced by Toda Tod89] for proving $\mathrm{PH} \subseteq \mathrm{P}$ \#P .

[^2]Lemma 4 (Mod-Amplifiers BT94], weaker forms in Tod89, Yao90]). For any integer k, there exists a degree $2 k$ polynomial MP_{k} with integer coefficients such that for any integer $m>1$, and any integer $X, \operatorname{MP}_{k}(X)=0 \bmod m^{k}$ if $X=0 \bmod m$; and $\operatorname{MP}_{k}(X)=1 \bmod m^{k}$ if $X=1$ $\bmod m$.

Thus, Mod-Amplifiers amplify the modulus without changing the $0 / 1$ value of the mod-function.

3 The depth-reduction

We now present the depth-reduction construction and prove Theorem 1. Theorem 1 is formally restated at the end of this section. The same proof presented here, is used to obtain a stronger form of Theorem 1, which we need in the interactive compression setting of Section 4.2 ,

The depth-reduction is presented in three parts: (i) the linearization lemma (Lemma 5), (ii) a single step of our iterative depth-reduction construction (Lemma 8), and (iii) the use of ModAmplifiers (Theorem 1).

3.1 Linearization: eliminating products

Lemma 5 is an important technical tool, which might be also of independent interest. It shows that the AND-layer can be eliminated in a $\mathrm{MOD}_{m} \circ \mathrm{AND} \circ \mathrm{MOD}_{r}$ configuration, for m, r co-prime, i.e. $\operatorname{gcd}(m, r)=1$. Lemma 5 relies on the power of composite arithmetic, since a $(\bmod m)$ is added even if it were not there originally ${ }_{4}^{4}$ When we later use Lemma 5 we will see that although this construction initially blows up the size, at the end there is a huge payback (to the initial size-worsening in each application of the construction). Thus, we get an exponentially smaller construction compared to [Yao90, BT94].

Lemma 5 (Linearization lemma). Given positive integers $m, r \in \mathbb{Z}^{+}, \operatorname{gcd}(m, r)=1$ and k indeterminates (variables) L_{1}, \ldots, L_{k}, there exist r^{k+1} integral linear combinations $L_{1}^{\prime}, \ldots, L_{r^{k+1}}^{\prime}$, i.e. $L_{i}^{\prime}:=\ell_{i}\left(L_{1}, \ldots, L_{k}\right)$ for linear form ℓ_{i}, and integers $c_{1}, \ldots, c_{r^{k+1}} \in\{0,1,2, \ldots, m-1\}$ such that for all valuations of the L_{i} in \mathbb{Z}^{+}we have the identity

$$
\prod_{1 \leq i \leq k} \operatorname{MOD}_{r}\left(L_{i}\right)=\sum_{1 \leq i \leq r^{k+1}} c_{i} \operatorname{MOD}_{r}\left(L_{i}^{\prime}\right) \bmod m
$$

The linear combinations L_{i}^{\prime} and coefficients c_{i} can be computed in time $r^{O(k)}$ (when each arithmetic operation with the L_{i} 's costs one time step).

When we apply Lemma 5 the MOD_{r} 's take inputs from the previous layer; say that these outputs of the gates of the previous layer bits are the binary vector $y \in\{0,1\}^{N}$. Since each L_{i} is the hamming weight of the input bits then both L_{i} and L_{i}^{\prime} are integral linear combinations of the y_{i} 's.

We stress out that integrality in the linear combinations and coefficients is necessary for using this construction in transforming circuits. If one merely cares to write the product of MOD as a sum then this is easy over complex \mathbb{C} coefficients (see Remark 6 inside the following proof).

Proof of Lemma 5. The construction of the L_{i} 's and its analysis is shown in four parts.

[^3]
Represent $\prod_{1 \leq i \leq k} \operatorname{MOD}_{r}\left(L_{i}\right)$ as an exponential sum

$$
\begin{aligned}
\prod_{1 \leq i \leq k} \operatorname{MOD}_{r}\left(L_{i}\right) & =\prod_{1 \leq i \leq k}\left(\frac{1}{r} \sum_{0 \leq j<r} e_{r}\left(j \cdot L_{i}\right)\right) \\
& =\frac{1}{r^{k}} \sum_{\left(j_{1}, \ldots, j_{k}\right) \in \mathbb{Z}_{r}^{k}} e_{r}\left(\sum_{1 \leq i \leq k}\left(j_{i} L_{i}\right)\right)
\end{aligned}
$$

Remark 6. We can write $\prod_{1 \leq i \leq k} \operatorname{MOD}_{r}\left(L_{i}\right)$ as a sum with complex coefficients by observing that $\prod_{1 \leq i \leq k} \operatorname{MOD}_{r}\left(L_{i}\right)=\sum_{1 \leq i \leq s} c_{i} \operatorname{MOD}_{r}\left(L_{i}^{\prime}(x)\right)$, $c_{i} \in \mathbb{C}$, since for every $Y \in \mathbb{Z}^{+}, e_{r}(Y)=$ $\sum_{0 \leq i<r} e_{r}(i) \mathrm{MOD}_{r}(Y-i)$. However, the statement of this lemma is about integral coefficients and linear combinations. To that end, we introduce a co-prime modulus m that enables us to compute ring inverses.

$$
r^{k} \prod_{1 \leq i \leq k} \operatorname{MOD}_{r}\left(L_{i}\right)=\sum_{\left(j_{1}, \ldots, j_{k}\right) \in \mathbb{Z}_{r}^{k}} e_{r}\left(\sum_{1 \leq i \leq k}\left(j_{i} L_{i}\right)\right)
$$

Since $\operatorname{gcd}(m, r)=1$ there exists an inverse $\left(r^{k}\right)^{-1}$ of r^{k} in the ring \mathbb{Z}_{m}.

$$
\begin{equation*}
\prod_{1 \leq i \leq k} \operatorname{MOD}_{r}\left(L_{i}\right)=\left(r^{k}\right)^{-1} \sum_{\left(j_{1}, \ldots, j_{k}\right) \in \mathbb{Z}_{r}^{k}} e_{r}\left(\sum_{1 \leq i \leq k}\left(j_{i} L_{i}\right)\right) \quad \bmod m \tag{1}
\end{equation*}
$$

Introduce a group action that partitions \mathbb{Z}_{r}^{k} into well-behaved orbits

For every $u \in \mathbb{Z}_{r}$ and $v=\left(v_{1}, v_{2}, \ldots, v_{k}\right) \in \mathbb{Z}_{r}^{k}$, define $u \cdot v=\left(u v_{1}, u v_{2}, \ldots, u v_{k}\right)$, where the operation $u v_{i}$ is in $\mathbb{Z}_{r}{ }^{5}$ We define the binary relation \equiv on \mathbb{Z}_{r}^{k} such that for any $x, y \in \mathbb{Z}_{r}^{k}, x \equiv y$ if and only if $y \in \mathbb{Z}_{r}^{*} \cdot x$, where \mathbb{Z}_{r}^{*} stands for the multiplicative group of integers modulo r. This is an equivalence relation on \mathbb{Z}_{r}^{k}, since \mathbb{Z}_{r}^{*} is a group under multiplication. Then, \equiv partitions \mathbb{Z}_{r}^{k} into many ${ }^{6}$ equivalence classes. These are also called the orbits of the group action. Let us denote each of the equivalence classes by $S_{l}=\mathbb{Z}_{r}^{*} \cdot\left(a_{l, 1}, \ldots, a_{l, k}\right)$. Regarding explicitness, in our construction each S_{l} can be computed by enumeration in time $r^{O(k)}$.

Then,

$$
\sum_{\left(j_{1}, \ldots, j_{k}\right) \in \mathbb{Z}_{r}^{k}} e_{r}\left(\sum_{1 \leq i \leq k}\left(j_{i} L_{i}\right)\right)=\sum_{l} \sum_{\left(j_{1}, \ldots, j_{k}\right) \in S_{l}} e_{r}\left(\sum_{1 \leq i \leq k}\left(j_{i} L_{i}\right)\right)
$$

Sum inside each orbit

The following is a very important property regarding how the exponential sums behave inside each equivalence class (i.e. inside each orbit of our group action).

Fix an arbitrary equivalence class $S_{l}=\mathbb{Z}_{r}^{*} \cdot\left(a_{l, 1}, a_{l, 2}, \ldots, a_{l, k}\right)$:

[^4]Let $\operatorname{gcd}\left(a_{l, 1}, a_{l, 2}, \ldots, a_{l, k}, r\right)=c$.
Let $a_{l, i}^{\prime}=a_{l, i} / c, r^{\prime}=r / c$ and thus $\operatorname{gcd}\left(a_{l, 1}^{\prime}, a_{l, 2}^{\prime}, \ldots, a_{l, k}^{\prime}, r^{\prime}\right)=1$. Hence,

$$
S_{l}=\mathbb{Z}_{r}^{*} \cdot\left(a_{l, 1}, a_{l, 2}, \ldots, a_{l, k}\right)=\mathbb{Z}_{r}^{*} \cdot c\left(a_{l, 1}^{\prime}, a_{l, 2}^{\prime}, \ldots, a_{l, k}^{\prime}\right)=\left(c \mathbb{Z}_{r}^{*}\right) \cdot\left(a_{l, 1}^{\prime}, a_{l, 2}^{\prime}, \ldots, a_{l, k}^{\prime}\right)
$$

where $c \mathbb{Z}_{r}^{*}=c\{t \mid \operatorname{gcd}(t, r)=1\}=\{t \mid \operatorname{gcd}(t, r)=c\}$. Since $\operatorname{gcd}\left(a_{l, 1}^{\prime}, a_{l, 2}^{\prime}, \ldots, a_{l, k}^{\prime}, r^{\prime}\right)=1$, for any $x, y \in c \mathbb{Z}_{r}^{*}, x \cdot\left(a_{l, 1}^{\prime}, a_{l, 2}^{\prime}, \ldots, a_{l, k}^{\prime}\right)=y \cdot\left(a_{l, 1}^{\prime}, a_{l, 2}^{\prime}, \ldots, a_{l, k}^{\prime}\right)$ if and only if $x=y$.

$$
\begin{aligned}
\sum_{\left(j_{1}, \ldots, j_{k}\right) \in S_{l}} e_{r}\left(\sum_{1 \leq i \leq k}\left(j_{i} L_{i}\right)\right) & =\sum_{\operatorname{gcd}(t, r)=c, 0 \leq t<r} e_{r}\left(\sum_{1 \leq i \leq k} t \cdot a_{l, i}^{\prime} \cdot L_{i}\right) \\
& =\sum_{\operatorname{gcd}\left(t^{\prime}, r^{\prime}\right)=1,0 \leq t^{\prime}<r^{\prime}} e_{r}\left(\sum_{1 \leq i \leq k} t^{\prime} c \cdot a_{l, i}^{\prime} \cdot L_{i}\right) \quad\left(t^{\prime}=t / c\right)
\end{aligned}
$$

This sum is over $\left\{\operatorname{gcd}\left(t^{\prime}, r^{\prime}\right)=1,0 \leq t^{\prime}<r^{\prime}\right\}$ and thus it can be computed by inclusion-exclusion. We can first sum all of the terms corresponding to $0 \leq t^{\prime}<r^{\prime}$ together. Then, subtract the sums of the terms corresponding to the t^{\prime} s divisible by a prime divisor p of r^{\prime}. Then, add the terms corresponding to t^{\prime} s divisible by two distinct prime divisor p_{i} and p_{j} of r^{\prime}, and so on. This inclusion-exclusion calculation is greatly simplified using the Mobius function.

Mobius function is defined $\mu: \mathbb{Z} \rightarrow\{-1,0,1\}$ as follows.
i. $\mu(x)=0$, if there exists prime q such that $q^{2} \mid x$.
ii. $\mu(x)=(-1)^{r^{k+1}}$, if there is no square-of-a-prime diving x. Thus, $x=\prod_{1 \leq i \leq r^{k+1}} q_{i}$, where q_{i} are the r^{k+1}-many distinct prime divisors of x.

One observes that $\sum_{d \mid n} \mu(d)=1$ if $n=1$ and $\sum_{d \mid n} \mu(d)=0$ otherwise.
Using these properties we bound the exponential sum inside the fixed S_{l}.

$$
\begin{aligned}
\sum_{\left(j_{1}, \ldots, j_{k}\right) \in S_{l}} e_{r}\left(\sum_{1 \leq i \leq k}\left(j_{i} L_{i}\right)\right) & =\sum_{\operatorname{gcd}(t, r)=c, 0 \leq t<r} e_{r}\left(\sum_{1 \leq i \leq k} t \cdot a_{l, i}^{\prime} \cdot L_{i}\right) \\
& =\sum_{\operatorname{gcd}\left(t^{\prime}, r^{\prime}\right)=1,} e_{r}\left(\sum_{0 \leq t^{\prime}<r^{\prime}} t^{\prime} c \cdot a_{l, i}^{\prime} \cdot L_{i}\right) \\
& =\sum_{\operatorname{gcd}\left(t^{\prime}, r^{\prime}\right)=1, i \leq k} e_{r^{\prime}}\left(\sum_{0 \leq t^{\prime}<r^{\prime}} t^{\prime} \cdot a_{l, i}^{\prime} \cdot L_{i}\right) \\
& =\sum_{0 \leq t^{\prime}<r^{\prime}} \sum_{d \mid \operatorname{gcd}\left(t^{\prime}, r^{\prime}\right)} \mu(d) e_{r^{\prime}}\left(\sum_{1 \leq i \leq k} t^{\prime} \cdot a_{l, i}^{\prime} \cdot L_{i}\right) \\
& \left(\sum_{d \mid \operatorname{gcd}\left(t^{\prime}, r^{\prime}\right)} \mu(d)=1 \text { if } \operatorname{gcd}\left(t^{\prime}, r^{\prime}\right)=1 \text { and } 0 \text { otherwise }\right) \\
= & \sum_{0 \leq t^{\prime}<r^{\prime}} \sum_{d\left|t^{\prime}, d\right| r^{\prime}} \mu(d) e_{r^{\prime}}\left(\sum_{1 \leq i \leq k} t^{\prime} \cdot a_{l, i}^{\prime} \cdot L_{i}\right) \\
& =\sum_{d \mid r^{\prime}} \mu(d) \sum_{d \mid t^{\prime}, 0 \leq t^{\prime}<r^{\prime}} e_{r^{\prime}}\left(\sum_{1 \leq i \leq k} t^{\prime} \cdot a_{l, i}^{\prime} \cdot L_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{d \mid r^{\prime}} \mu(d) \sum_{0 \leq t^{\prime \prime}<r^{\prime} / d} e_{r^{\prime}}\left(\sum_{1 \leq i \leq k} t^{\prime \prime} d \cdot a_{l, i}^{\prime} \cdot L_{i}\right) \quad\left(t^{\prime \prime}=t^{\prime} / d\right) \\
& =\sum_{d \mid r^{\prime}} \mu(d) \sum_{0 \leq t^{\prime \prime}<r^{\prime} / d} e_{r^{\prime} / d}\left(\sum_{1 \leq i \leq k} t^{\prime \prime} \cdot a_{l, i}^{\prime} \cdot L_{i}\right) \\
& =\sum_{d \mid r^{\prime}} \mu(d) \cdot \frac{r^{\prime}}{d} \operatorname{MOD}_{\frac{r^{\prime}}{d}}\left(\sum_{1 \leq i \leq k} a_{l, i}^{\prime} \cdot L_{i}\right) \\
& =\sum_{d \mid r^{\prime}} \mu(d) \cdot \frac{r^{\prime}}{d} \operatorname{MOD}_{r}\left(\sum_{1 \leq i \leq k} d \cdot a_{l, i} \cdot L_{i}\right) \\
& =\sum_{d \left\lvert\, \frac{r}{\operatorname{gcd}\left(a_{l, 1}, a_{l, 2}, \ldots, a_{l, k}, r\right)}\right.} \frac{\mu(d) r}{d \cdot \operatorname{gcd}\left(a_{l, 1}, a_{l, 2}, \ldots, a_{l, k}, r\right)} \operatorname{MOD}_{r}\left(\sum_{1 \leq i \leq k} d \cdot a_{l, i} \cdot L_{i}\right)
\end{aligned}
$$

By letting $\kappa_{S_{l}, r}:=\frac{r}{\operatorname{gcd}\left(a_{l, 1}, a_{l, 2}, \ldots, a_{l, k}, r\right)}$ we have

$$
\begin{equation*}
\sum_{\left(j_{1}, \ldots, j_{k}\right) \in S_{l}} e_{r}\left(\sum_{1 \leq i \leq k}\left(j_{i} L_{i}\right)\right)=\sum_{d \mid \kappa_{S_{l}, r}} \kappa_{S_{l}, r} \frac{\mu(d)}{d} \operatorname{MOD}_{r}\left(\sum_{1 \leq i \leq k} d \cdot a_{l, i} \cdot L_{i}\right) \tag{2}
\end{equation*}
$$

Put (1) and (2) together

$$
\begin{aligned}
& \prod_{1 \leq i \leq k} \operatorname{MOD}_{r}\left(L_{i}\right) \\
& =\left(r^{k}\right)^{-1} \sum_{\left(j_{1}, \ldots, j_{k}\right) \in \mathbb{Z}_{r}^{k}} e_{r}\left(\sum_{1 \leq i \leq k}\left(j_{i} L_{i}\right)\right) \bmod m \\
& \left.=\left(r^{k}\right)^{-1} \sum_{S_{l}=\mathbb{Z}_{\cdot}^{*} \cdot\left(a_{l, 1}, \ldots, a_{l, k}\right)}\left(\sum_{\left(j_{1}, \ldots, j_{k}\right) \in S_{l}} e_{r}\left(j_{i} L_{i}\right)\right)\right) \bmod m \\
& =\left(r^{k}\right)^{-1} \sum_{S_{l}=\mathbb{Z}_{\cdot}^{*} \cdot\left(a_{l, 1}, \ldots, a_{l, k}\right)}\left(\sum_{d \mid \kappa_{S_{l}, r}} \kappa_{S_{l}, r} \frac{\mu(d)}{d} \operatorname{MOD}_{r}\left(\sum_{1 \leq i \leq k} d \cdot a_{l, i} \cdot L_{i}\right)\right) \bmod m \\
& =\sum_{S_{l}=\mathbb{Z}_{r}^{*} \cdot\left(a_{l, 1}, \ldots, a_{l, k}\right)}(\sum_{d \mid \kappa_{S_{l}, r}} \underbrace{\left(\kappa_{S_{l}, r} \frac{\left(r^{k}\right)^{-1} \mu(d)}{d} \bmod m\right)}_{\text {integer }} \operatorname{MOD}_{r}\left(\sum_{1 \leq i \leq k} d \cdot a_{l, i} \cdot L_{i}\right)) \bmod m
\end{aligned}
$$

Remark 7 (Aside remark). Here are two aside (not used later in this paper) remarks.
(i) The AND gate with fan-in k in the LHS, $\mathrm{AND}_{[k]} \circ \mathrm{MOD}_{r}$ can be replaced by $\mathrm{ANY}_{[k]}$ boolean function of fan-in k. Recall that every function can be written as a polynomial with $2^{O(k)}$ terms and thus we can obtain the Generalized Linearization Lemma.
(ii) In depth-reduction we use Lemma 5 for $r=p$, for prime p. The Generalized Linearization Lemma (and for general m) is of independent interest. For instance, an immediate consequence is
that an exponential lower bound for $\mathrm{MOD}_{6} \circ \mathrm{MOD}_{35} \Longrightarrow$ exponential lower bound for $\mathrm{MOD}_{6} \circ$ $\mathrm{ANY}_{[o(n)]} \circ \mathrm{MOD}_{35} \cdot{ }^{-7}$

3.2 Inside a single iteration: using linearization \& mod-amplification

Now, we show how to use the construction of Lemma 5 and the preprocessing Lemma 4 , to perform a single step (described in Lemma 8) of an iterative construction (described in Lemma 11). Note that N denotes the number of input bits to a layer and n the circuit input length.

Lemma 8 is critically different from the previous depth-reduction technology. Beigel-Tarui replaces each MOD_{q} gate by a Mod-Amplifier. The Mod-Amplifiers are quite high degree polynomials. Thus, the AND gates, i.e. products of Mod-Amplifiers, blow up very fast the degree and size BT94, Tod89, Yao90. Instead, we first use Lemma 5 to remove the AND layer. Although, this causes an even further increase in size later on we have huge overall gains.

Lemma 8. For every $\mathrm{SYM}_{\left[\delta_{\mathrm{SYM}}\right]} \circ \mathrm{AND}_{\left[\delta_{\mathrm{AND}}\right]} \circ \mathrm{MOD}_{q}$ circuit on N input bits $X=\left(X_{1}, X_{2}, \ldots, X_{N}\right)$, where q is a prime number and $N>q$, there is an explicit construction of a $\mathrm{SYM}_{\left.\left[N^{2 q\left(\delta_{\mathrm{AND}}\right.}{ }^{2} \log ^{2} \delta_{\mathrm{SYM}}\right)\right]}{ }^{\circ}$ $\mathrm{AND}_{\left[2(q-1)\left(\delta_{\mathrm{AND}}+2 \log \delta_{\mathrm{SYM}}\right)\right]}$ circuit, which computes the same function as the given circuit.
Proof. Since the output of a symmetric gate is only a function of the hamming weight of the input, we will assume the given circuit is $f\left(\sum_{1 \leq i \leq \delta_{\text {SYM }}} \prod_{1 \leq j \leq \delta_{\text {AND }}} \operatorname{MOD}_{q}\left(l_{i, j}(X)\right)\right)$. Here, the function $f:\left\{0,1, \ldots, \delta_{\text {SYM }}\right\} \rightarrow\{0,1\}$ corresponds to the SYM gate of the top layer; $\prod_{1 \leq j \leq \delta_{\text {AND }}}$ corresponds to the next AND layer; $\operatorname{MOD}_{q}\left(l_{i, j}\right)$ corresponds to the third MOD_{q} layer, where $l_{i, j}$ are integral linear functions on X, i.e. from $\{0,1\}^{N}$ to \mathbb{Z} (equivalently, $l_{i, j}(X)$ is the inner product of X with an integral vector).

The "steps" below correspond to the steps of the algorithm realizing the construction.
Step 1 Remove the AND gates using Lemma 5.
To apply Lemma 5 we take the $\bmod m$ of the output of the AND $\circ \mathrm{MOD}_{q}$ circuit. Thus, we first modify the given symmetric function by adding a mod-layer and keeping the value unchanged.

Pick the smallest integer s^{\prime} such that $s^{\prime}>\delta_{\mathrm{SYM}}$ and $\left(s^{\prime}, q\right)=1$. Then,

$$
f\left(\sum_{1 \leq i \leq \delta_{\mathrm{SYM}}} \prod_{1 \leq j \leq \delta_{\mathrm{AND}}} \operatorname{MOD}_{q}\left(l_{i, j}(X)\right)\right)=f\left(\left(\sum_{1 \leq i \leq \delta_{\mathrm{SYM}}} \prod_{1 \leq j \leq \delta_{\mathrm{AND}}} \operatorname{MOD}_{q}\left(l_{i, j}(X)\right)\right) \bmod s^{\prime}\right)
$$

Then, by Lemma 5

$$
\sum_{1 \leq i \leq \delta_{\mathrm{SYM}}} \prod_{1 \leq j \leq \delta_{\mathrm{AND}}} \operatorname{MOD}_{q}\left(l_{i, j}(X)\right) \bmod s^{\prime}=\sum_{1 \leq i \leq \delta_{\mathrm{SYM}}} \sum_{1 \leq j \leq \frac{q^{\delta} \mathrm{AND}-1}{q-1}} c_{i, j} \mathrm{MOD}_{q}\left(l_{i, j}^{\prime}(X)\right) \bmod s^{\prime}
$$

where $c_{i, j}$ are integer coefficients between 0 and s^{\prime}, and l^{\prime} are linear combinations of l.

[^5]Then,

$$
f\left(\sum_{1 \leq i \leq \delta_{\mathrm{SYM}}} \prod_{1 \leq j \leq \delta_{\mathrm{AND}}} \operatorname{MOD}_{q}\left(l_{i, j}(X)\right)\right)=f\left(\sum_{1 \leq i \leq \delta_{\mathrm{SYM}}} \sum_{1 \leq j \leq \frac{q^{\delta} \mathrm{AND}-1}{q-1}} c_{i, j} \mathrm{MOD}_{q}\left(l_{i, j}^{\prime}(X)\right) \bmod s^{\prime}\right)
$$

Define a symmetric f^{\prime} as $f^{\prime}(Y)=f\left(Y \bmod s^{\prime}\right)$ and thus

$$
f\left(\sum_{1 \leq i \leq \delta_{\mathrm{SYM}}} \prod_{1 \leq j \leq \delta_{\mathrm{AND}}} \operatorname{MOD}_{q}\left(l_{i, j}(X)\right) \quad \bmod s^{\prime}\right)=f^{\prime}\left(\sum_{1 \leq i \leq \delta_{\mathrm{SYM}}} \sum_{1 \leq j \leq \frac{q^{\delta_{\mathrm{AND}}-1}}{q-1}} c_{i, j} \mathrm{MOD}_{q}\left(l_{i, j}^{\prime}(X)\right)\right)
$$

Step 2 Use Mod-Amplifiers to remove the MOD_{q} layer.
By Fermat's little theorem, $\mathrm{MOD}_{q}(l(X))=\left(1-l(X)^{q-1}\right) \bmod q$. Thus, we can replace each MOD_{q} gate by a low degree polynomial over \mathbb{F}_{q}. Then, we "link" these polynomials on \mathbb{F}_{q} with the symmetric gate on top by amplifying the moduli through Lemma 4. Choose integer $k=$ $\left\lceil\log \left(\delta_{\mathrm{SYM}} \cdot s^{\prime} \cdot \frac{q^{\delta_{\mathrm{AND}}-1}}{q-1}\right) / \log q\right\rceil \leq\left(\delta_{\mathrm{AND}}+2 \log \delta_{\mathrm{SYM}}\right)$. Then, $q^{k}>\sum_{1 \leq i \leq \delta_{\mathrm{SYM}}} \sum_{1 \leq j \leq \frac{q^{\delta} \mathrm{AND}-1}{q-1}} c_{i, j}$. Then,

$$
\begin{aligned}
& f^{\prime}\left(\sum_{1 \leq i \leq \delta_{\mathrm{SYM}}} \sum_{1 \leq j \leq \frac{q^{\delta_{\mathrm{AND}}-1}}{q-1}} c_{i, j} \mathrm{MOD}_{q}\left(l_{i, j}^{\prime}(X)\right)\right) \\
& =f^{\prime}\left(\sum_{1 \leq i \leq \delta_{\mathrm{SYM}}} \sum_{1 \leq j \leq \frac{q^{\delta} \mathrm{AND}-1}{q-1}} c_{i, j}\left(\left(1-\left(l_{i, j}^{\prime}(X)\right)^{q-1}\right) \quad \bmod q\right)\right) \quad \text { (by Fermat's little theorem) } \\
& =f^{\prime}\left(\sum_{1 \leq i \leq \delta_{\mathrm{SYM}}} \sum_{1 \leq j \leq \frac{q^{\delta} \mathrm{AND}-1}{q-1}} c_{i, j}\left(\operatorname{MP}_{k}\left(1-\left(l_{i, j}^{\prime}(X)\right)^{q-1}\right) \quad \bmod q^{k}\right)\right) \quad \quad \quad \text { (using Mod-Amplifiers) } \\
& =f^{\prime}\left(\left(\sum_{1 \leq i \leq \delta_{\mathrm{SYM}}} \sum_{1 \leq j \leq \frac{q^{\delta} \mathrm{AND}-1}{q-1}} c_{i, j}\left(\mathrm{MP}_{k}\left(1-\left(l_{i, j}^{\prime}(X)\right)^{q-1}\right) \bmod q^{k}\right)\right) \bmod q^{k}\right) \\
& \left(\text { since } q^{k}>\sum_{1 \leq i \leq \delta_{\mathrm{SYM}}} \sum_{1 \leq j \leq \frac{q^{\delta} \mathrm{AND}-1}{q-1}} c_{i, j}\right) \\
& =f^{\prime}\left(\left(\sum_{1 \leq i \leq \delta_{\mathrm{SYM}}} \sum_{1 \leq j \leq \frac{q^{\delta} \mathrm{AND}-1}{q-1}} c_{i, j} \mathrm{MP}_{k}\left(1-\left(l_{i, j}^{\prime}(X)\right)^{q-1}\right)\right) \bmod q^{k}\right)
\end{aligned}
$$

Let us denote by $P(X)=\sum_{1 \leq i \leq \delta_{\mathrm{SYM}}} \sum_{1 \leq j \leq \frac{q^{\delta} \mathrm{AND}-1}{q-1}} c_{i, j} \mathrm{MP}_{k}\left(1-\left(l_{i, j}^{\prime}(X)\right)^{q-1}\right)$. Then, the original circuit becomes $f^{\prime}\left(P(X) \bmod q^{k}\right), \operatorname{deg}(P) \leq \operatorname{deg}\left(\mathrm{MP}_{k}\right) \cdot(q-1) \leq 2 k(q-1) \leq 2(q-1)\left(\delta_{\mathrm{AND}}+\right.$ $\left.2 \log \delta_{\mathrm{SYM}}\right)$.

Step 3 Represent the formula as a SYM o AND circuit.
It is easy to see that P is a polynomial with integer coefficients. Since $\operatorname{deg}(P) \leq 2(q-1)\left(\delta_{\text {AND }}+\right.$ $\left.2 \log \delta_{\text {SYM }}\right)$, we will assume $P(X)=\sum_{A \subseteq\{1,2, \ldots, N\},|A| \leq 2(q-1)\left(\delta_{\text {AND }}+2 \log \delta_{\text {SYM }}\right)} b_{A} \prod_{i \in A} X_{i}$, where the coefficients b_{A} are all integers. Let the integers b_{A}^{\prime} be the $\bmod q^{k}$ remainders of b_{A}, and thus $0 \leq b_{A}^{\prime}<q^{k}$. Then,

$$
\begin{aligned}
f^{\prime}\left(P(x) \bmod q^{k}\right)= & f^{\prime}\left(\sum_{\substack{A \subseteq\{1,2, \ldots, N\} \\
|A| \leq 2(q-1)\left(\delta_{\mathrm{AND}}+2 \log \delta_{\mathrm{SYM}}\right)}} b_{A} \prod_{i \in A} X_{i} \bmod q^{k}\right) \\
= & f^{\prime}\left(\sum_{\substack{A \subseteq\{1,2, \ldots, N\} \\
|A| \leq 2(q-1)\left(\delta_{\mathrm{AND}}+2 \log \delta_{\mathrm{SYM}}\right)}} b_{A}^{\prime} \prod_{i \in A} X_{i} \bmod q^{k}\right) \\
= & f^{\prime}\left(\sum_{\substack{A \subseteq\{1,2, \ldots, N\}}} \sum_{|A| \leq 2(q-1)\left(\delta_{\mathrm{AND}}+2 \log \delta_{\mathrm{SYM}}\right)} \prod_{1 \leq j \leq b_{A}^{\prime}} X_{i \in A} \bmod q^{k}\right)
\end{aligned}
$$

Then, the original function can be represented as a circuit whose top layer is a symmetric gate $f^{\prime}\left(\left(\sum_{A \subseteq\{1,2, \ldots, N\},|A| \leq 2(q-1)\left(\delta_{\mathrm{AND}}+2 \log \delta_{\mathrm{SYM}}\right)} \sum_{1 \leq j \leq b_{A}^{\prime}} Y_{A, j}\right) \bmod q^{k}\right)$ and the next AND layer is $\prod_{i \in A} X_{i}$. The fan-in of the symmetric gate is at most $q^{k} \cdot N^{2(q-1)\left(\delta_{\text {AND }}+2 \log \delta_{\mathrm{SYM}}\right)} \leq N^{2 q\left(\delta_{\mathrm{AND}}+2 \log \delta_{\mathrm{SYM}}\right)}$, and the fan-in of an AND gate is at most $2(q-1)\left(\delta_{\text {AND }}+2 \log \delta_{\mathrm{SYM}}\right)$.

3.3 From single to multiple iterations

We conclude by applying Lemma 8 in each iterative step of our depth-reduction.
Theorem 1 (formally stated). There is an explicit construction such that for every input length n of an arbitrary ACC_{m} circuit of depth d and size s, this construction outputs a depth 2 circuit SYM \circ AND of size $2^{(m \log s)^{(10 \Delta(m) d)}}$ where the fan-in of each AND gate is $(m \log s)^{10 \Delta(m) d}$, where $\Delta(m)$ is the number of distinct prime divisors of m. More precisely, if the size of the circuit if $2^{\log ^{k} n}$, then the size of the output circuit is $2^{\left(m \log ^{k} n\right)^{10 \Delta(m) d}}$.

Proof. Given an ACC_{m} circuit, we first use Lemma 2 to construct a SYM \circ ACC circuit with depth $2 \Delta(m) \cdot d \operatorname{size} 2^{(m \log s)^{3}}$ AND gate fan-in $(m \log s)^{2}$, where $\Delta(m)$ is the number of distinct prime divisors of m. Recall that each layer have only one type of gates: AND or MOD_{q}, where q is a prime divisor of m. We do the depth-reduction inductively from top to bottom (input level) of the circuit and reduce the whole circuit into a $\mathrm{SYM}_{\left[2^{\left.(\log s)^{10 \Delta(m) \cdot d}\right]}\right.} \circ \mathrm{AND}_{\left[(\log s)^{10 \Delta(m) \cdot d]}\right.}$ circuit. Denote by $\delta_{\mathrm{SYM}, i}$ the fan-in of the symmetric gate we get from reducing the first i layers, $\delta_{\mathrm{AND}, i}$ is the biggest AND gate fan-in.

The top layer of the circuit is a SYM gate (in fact, a "majority" gate), therefore the given circuit is of the form SYM $\circ \mathrm{AND}$. Then, $\delta_{\mathrm{SYM}, 1} \leq 2^{(m \log s)^{1.5}}, \delta_{\mathrm{AND}, 1} \leq(m \log s)^{1.5}$

Suppose we have already reduced the first i layers into a SYM \circ AND circuit. Then, $\delta_{\mathrm{SYM}, i} \leq$ $2^{(m \log s)^{i \cdot 5}}, \delta_{\mathrm{AND}, i} \leq(m \log s)^{i \cdot 5}$.
For the layer $i+1$:

Case: AND layer. Each gate of the $i+1$ layer is the AND of some gates from the $i+2$ layer. Simply replace the each gate of the $i+1$ layer with the products of its inputs. We can get a SYM \circ AND circuit with $\delta_{\mathrm{SYM}, i+1}=\delta_{\mathrm{SYM}, i}=2^{(m \log s)^{i \cdot 5}} \leq 2^{(m \log s)^{(i+1) \cdot 5}}, \delta_{\mathrm{AND}, i+1} \leq(m \log s)^{2} \cdot \delta_{\mathrm{AND}, i} \leq$ $(m \log s)^{(i+1) \cdot 5}$ by induction hypothesis.
Case: MOD_{q} layer. We think of the outputs of all gates in layer $i+2$ as inputs to the first $i+1$ layers of the circuit. Then, the "input size" of layer $i+1$ is at most the size of the circuit i.e. $2^{O\left((m \log s)^{3}\right)}$. The first 3 layers of the circuit gotten by the compressing from induction hypothesis form a $\mathrm{SYM} \circ \mathrm{AND} \circ \mathrm{MOD}_{q}$ circuit. We use Lemma 8 to compress. Then, $\delta_{\mathrm{SYM}, i+1} \leq$ $\left(2^{(m \log s)^{3}}\right)^{2 q\left(\delta_{\mathrm{AND}, i}+2 \log \delta_{\mathrm{SYM}, i}\right)} \leq 2^{(m \log s)^{(i+1) \cdot 5}}$, and $\delta_{\mathrm{AND}, i+1} \leq 2(q-1)\left(\delta_{\mathrm{AND}, i}+2 \log \delta_{\mathrm{SYM}, i}\right) \leq$ $(m \log s)^{(i+1) \cdot 5}$ by induction hypothesis and Lemma 8 .

Thus, after reducing the depth $2 \Delta(m) \cdot d$ of the circuit, we get a SYM \circ AND circuit with norm at most $2^{(m \log s)^{10 \Delta(m) \cdot d}}$ and degree at most $(m \log s)^{10 \Delta(m) \cdot d}$.

Thus, we got a $2^{(m \log s)^{10 \Delta(m) d}}$ size and $(m \log s)^{10 \Delta(m) d}$ degree SYM \circ AND circuit to which is equivalent with the given ACC_{m} circuit. Especially for ACC_{6}, the size and degree would be $2^{\log ^{20 d} s}$ and $\log ^{20 d} s$.

4 Some implications

We list two main implications of the new depth-reduction construction. Section 4.1 shows a nearexponentially better depth lower bound in Williams' program. This is an immediate consequence of Theorem 1. Regarding non-immediate consequences, Section 4.2 contains an application of our depth-reduction construction (but not the statement of Theorem 11. This is the first super-constantdepth lower bounds in a hybrid model of communication complexity and circuit complexity. Here, we still use depth-reduction. The technical challenge is to reduce the depth of an exponentially big circuit.

A parenthetical remark Note that the realm of immediate consequences includes all previous results that scale in an obvious way. For instance, following [BT94 (p. 8, Section 6) assuming that MAJ $\in \operatorname{ACC}\left(2^{(\log n)^{O(1)}}, o(\log n / \log \log n)\right)$ we conclude that TC^{0} is computable by $\operatorname{ACC}\left(2^{(\log n)^{O(1)}}, o(\log n / \log \log n)\right)$. This is shown by simply replacing every MAJ gate in the given TC^{0} circuit by an $\operatorname{ACC}\left(2^{(\log n)^{O(1)}}, o(\log n / \log \log n)\right)$ circuit. Since $\operatorname{ACC}\left(2^{(\log n)^{O(1)}}, o(\log n / \log \log n)\right)$ can be compressed into a sub-exponential size SYM \circ AND circuit, and since the SYM gate can be computed by depth-2, TC circuit, we conclude that TC^{0} is computable by TC circuits of subexponential size and depth 3 .

4.1 From depth $o(\log \log n)$ to $o(\log n / \log \log n)$
 - a new barrier to Williams' program

As explained at the end of Section 1, our improved depth-reduction (Theorem 1) yields a superexponentially better depth lower bound over the previous best-known one.

Theorem 9. NEXP $\nsubseteq \mathrm{ACC}\left(2^{\log ^{k} n}, o\left(\frac{\log n}{\log \log n}\right)\right)$ for every constant k.
In particular, for a fixed m we obtain the following detailed bound.

Corollary 10. For a fixed modulus m, and a constant k, there exist a constant $c(m, k)$ such that NEXP $\nsubseteq \mathrm{ACC}_{m}\left(2^{\log ^{k} n}, \frac{c(m, k) \log n}{\log \log n}\right)$

Note, that the above lower bound pushes Williams' program to the NC^{1} barrier. By this we mean that any $\omega(1)$ improvement on the depth bound directly implies NEXP $\nsubseteq \mathrm{NC}^{1}$, since $\mathrm{NC}^{1} \subseteq \mathrm{AC}\left(n^{O(1)}, O\left(\frac{\log n}{\log \log n}\right)\right)$. In fact, the barrier we are facing now is much stronger since we allow MOD_{m} gates.

Finally, we remark that after the depth-reduction step the Circuit-SAT algorithm is for circuits of the form SYM o AND. The fact that the top gate is SYM is crucial in e.g. Wil14 and it is not known whether restricted SYM gates can yield faster algorithms (and thus better lower bounds) - see in Green et al. GKR ${ }^{+} 95$ for a variant of Beigel-Tarui with the SYM gate restricted in the so-called MidBit form.

Proof outline of Theorem 5. Our depth-reduction algorithm can compress every ACC circuit of depth $o(\log n / \log \log n)$ to a sub-exponential depth- 2 circuit.

Corollary 11 (from Theorem 11. Given an arbitrary $2^{(\log n)^{O(1)}}$-size and $o(\log n / \log \log n)$-depth ACC circuit, there is a explicit construction of an equivalent $2^{o(n)}$-size $\mathrm{SYM} \circ \mathrm{AND}$ circuit.

Now, we state two theorems from [Wil11] that enable us to conclude Theorem 9 ,
Theorem $12([$ Wil11 $])$. Let \mathfrak{C} be any boolean circuit class, for which $\mathrm{OR}_{\left[n^{\omega(1)]}\right.} \circ \mathfrak{C}$ can be computed by a equivalent $2^{o(n)}$ size $\mathrm{SYM} \circ \mathrm{AND}$ circuit. Then, $\mathfrak{C}-S A T$ can be solved in $\frac{2^{n}}{n^{\omega(1)}}$ time.

Thus, Corollary 11 and Theorem 12 imply a faster than exhaustive search circuit-SAT algorithm for $\mathrm{ACC}\left(2^{\log ^{k} n}, o\left(\frac{\log n}{\log \log n}\right)\right)$ for every integer k.

The following Theorem 13 suffices to conclude Theorem 9 ,
Theorem 13. Wil11] Let \mathfrak{C} be any boolean circuit class which closed under composition and contains AC^{0}. If $\mathfrak{C}-S A T$ has a $\frac{2^{n}}{n^{\omega(1)}}$ running time algorithm, then NEXP $\nsubseteq \mathfrak{C}$.

4.2 Interactive compression

One way to strengthen the ACC lower bound is to consider the following interactive setting, introduced by Chattopadhyay and Santhanam [CS12] for ACC_{p}, where p is prime. Here we show the first lower bound in this setting for composite modulus, i.e. for the general ACC.

The setting, coined as interactive compression [CS12], is a communication game between Alice and Bob. In this game, Alice holds an n-bit input x and she wants to decide whether $x \in L$ for some problem L. Her power is restricted to only access a circuit from a fixed class of circuits \mathfrak{C} that cannot compute L. To that end, she is communicating with a computationally unbounded Bob. We call this communication game \mathfrak{C}-compression game for L. For a fixed protocol the cost of the game is the number of bits communicated. For details and definitions see [CS12, OS15].

Our work, same as in CS12, OS15, is about unconditional lower bounds. Note that the work of Fortnow and Santhanam [FS08] and Dell and van Melkebeek DvM10] shows strong but conditional lower bounds in similar interactive compression settings.

Chattopadhyay and Santhanam [CS12], and the subsequent strengthening and simplification by Oliveira and Santhanam [OS15], proved communication lower bounds for explicit functions, such
as MOD_{q} [CS12, OS15] and the majority function MAJ OS15]. Both of these works are based on correlation bounds between ACC_{p} circuits and explicit functions, originally shown by Razborov and Smolensky Raz86, Smo87. However, no such correlation bounds are known for composite moduli, even for a depth-2, ACC circuits. Thus, on one hand we strengthen Alice's power by giving her access to ACC_{m} circuits for composite m, but also weaken the conclusion to deriving NEXP lower bounds (that reaches the limits of current knowledge).

We show an interactive compression NEXP-lower bound for an Alice that has the power of $\operatorname{ACC}\left(2^{(\log n)^{O(1)}}, o(\log n / \log \log n)\right)$. To that end, we introduce a technique very different than CS12, OS15, which uses our depth-reduction construction together with Wil14.

4.2.1 Formalization of interactive compression

Let us begin with the definition of an interactive compression game. For background, examples (e.g. the parity upper bound), and formal definitions cf. CS12].

Definition 14. A \mathfrak{C}-compression game for a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is a two-party communication game, where the first party, Alice, is given the entire input x and is restricted to make decisions computed by \mathfrak{C}-circuits, while the second party, Bob, is not given any input and is computationally unbounded. The two parties realize a \mathfrak{C}-bounded interactive communication protocol to decide the value of $f(x)$.
Syntactically, a \mathfrak{C}-bounded protocol consists of a sequence of finite circuits $\left\{C_{n}\right\}, C_{n} \in \mathfrak{C}$ that Alice is using to generate her messages. The computationally unbounded Bob is a function from sequences of messages to messages. Here is the description of the computation of k-round \mathfrak{C}-protocol: at the i-th round Alice sends a message $y_{i} \in\{0,1\}^{*}$ to Bob and if i is not the last round Bob replies with a message $z_{i} \in\{0,1\}^{*}$. The message y_{i} is generated by applying a number of consecutive (and fixed) \mathfrak{C}-circuits on $\left\langle x, z_{1}, z_{2}, \ldots, z_{i-1}\right\rangle$, and z_{i} is generated by applying a number of fixed boolean functions on $<y_{1}, y_{2}, \ldots, y_{i}>$. At the end of the k-th round Bob applies a boolean function from messages to messages used to decide the value of f.
The communication cost of the protocol is the maximum number of bits sent by Alice as a function of $n=|x|$.

The number of bits sent by Bob is not counted in the communication cost. However, this number is bounded by the size of \mathfrak{C}-circuit, since the number of bits that can be accessed by Alice is bounded by the circuit size.

4.2.2 Our interactive compression lower bound

We prove the following theorem, which is a strengthened version of the NEXP lower bound of Theorem 9 .

Theorem 15. The cost of a k-round quasi-poly size, $o\left(\frac{\log n}{\log \log n}\right)$ depth ACC-compression game for NEXP is at least $n^{\frac{1}{k}-\varepsilon}$ for every $\varepsilon>0$.

Proof outline of Theorem 15

First, we realize the entire interaction as a circuit, replacing the bits send back from Bob to Alice with a bounded fan-in arbitrary ANY gate.

After this we use our depth-reduction construction to compress the circuit. By a careful analysis of the construction in Theorem 11, we can show that the same construction compresses an almost exponentially large but "highly imbalanced" circuit. The details of this strengthened theorem are in the proof of Theorem 17 below.

This way we are able to compress this huge but of restricted form circuits and thus by Wil14 we have that the depth-reduction implies faster-than-exhaustive-search \#SAT algorithm for the circuit class described in the interactive compression procedure. This \#SAT algorithm implies NEXP lower bounds.

Proof of Theorem 15

Here is how to represent the interaction as a circuit. Suppose l is the cost of this game. Lets us denote the computation of the bits sent from Bob to Alice by boolean gates $g_{1}, g_{2}, \ldots, g_{s}$, where $s=2^{\log ^{O(1)} n}$ since Alice is restricted to make decisions computed by quasi-poly size ACCcircuits. Then, the fan-in of each g_{i} is at most l. Since we have multiple rounds, where the result of the communication in one determines the next one, the whole computation becomes a circuit ACC \circ ANY $\circ \mathrm{ACC} \circ$ ANY $\cdots \circ$ ACC. For a k-round protocol the number of the layers of ANY gates is k and the fan-in of each ANY gates is at most l. Note that, each of the ANY gates describes the actions of (unbounded) Bob in the communication protocol.

We further modify this circuit by replacing each ANY gate by an appropriate $\mathrm{MOD}_{2} \circ \mathrm{MOD}_{3}$ gadget. It is easy to see (and folklore) that $\mathrm{MOD}_{2} \circ \mathrm{MOD}_{3}$ can be used to encode the truth table of any boolean function; i.e. it is universal. For completeness we show this in Lemma 16 below. After this, we have a potentially very big ACC circuit. The issue is that the above circuit might be too large to compress (reduce its depth) using Theorem 1. After Lemma 16 we will explain how to deal with this issue.

Lemma 16. Every ANY gate (boolean function) of fan-in l can be represented by a $\mathrm{MOD}_{2} \circ \mathrm{MOD}_{3}$ circuit of size $O\left(3^{m}\right)$.

Proof. Suppose $f:\{0,1\}^{m} \rightarrow\{0,1\}$ is the function for the ANY gate.
We begin by representing f as a $\mathrm{MOD}_{2} \circ$ AND circuit. Since $\left\{\prod_{i, y_{i}=1} x_{i} \prod_{i, y_{i}=0}\left(1-x_{i}\right) \mid y \in\right.$ $\left.\{0,1\}^{l}\right\}$ is the standard basis (not to be confused with the Fourier basis) of all of the boolean functions defined on $\{0,1\}^{l}$, we have that $f(x)=\sum_{y \in\{0,1\}^{m}} f(y) \prod_{i, y_{i}=1} x_{i} \prod_{i, y_{i}=0}\left(1-x_{i}\right)$. Then,

$$
\begin{aligned}
f(x) & =\operatorname{MOD}_{2}(1+f(x)) \\
& =\operatorname{MOD}_{2}\left(1+\sum_{y \in\{0,1\}^{l}} f(y) \prod_{i, y_{i}=1} x_{i} \prod_{i, y_{i}=0}\left(1-x_{i}\right)\right) \\
& =\operatorname{MOD}_{2}\left(\sum_{y \in\{0,1\}^{l}} f(y) \prod_{i, y_{i}=1} x_{i} \prod_{i, y_{i}=0}\left(1+x_{i}\right)\right) \\
& =\operatorname{MOD}_{2}\left(\sum_{y \in\{0,1\}^{l}} f(y) \sum_{z \geq y, z \in\{0,1\}^{l}} \prod_{i, z_{i}=1} x_{i}\right) \\
& =\operatorname{MOD}_{2}\left(\sum_{z \in\{0,1\}^{l}}\left(\sum_{y \in\{0,1\}^{m}, y \leq z} f(y)\right) \prod_{i, z_{i}=1} x_{i}\right) \\
& =\operatorname{MOD}_{2}\left(\sum_{z \in\{0,1\}^{l}}\left(\sum_{y \in\{0,1\}^{m}, y \leq z} f(y) \bmod 2\right) \prod_{i, z_{i}=1} x_{i}\right)
\end{aligned}
$$

Now, we replace the inner layer Π with AND gates and get a $\mathrm{MOD}_{2} \circ$ AND circuit. We conclude by representing it as a $\mathrm{MOD}_{2} \circ \mathrm{MOD}_{3}$ circuit using Lemma 5 . Since $x_{i}=\mathrm{MOD}_{3}\left(1+2 x_{i}\right)$ we have the following.

$$
\begin{aligned}
f(x) & =\operatorname{MOD}_{2}\left(\sum_{z \in\{0,1\}^{l}}\left(\sum_{y \in\{0,1\}^{l}, y \leq z} f(y) \bmod 2\right) \operatorname{AND}_{i, z_{i}=1} x_{i}\right) \\
& =\operatorname{MOD}_{2}\left(\sum_{z \in\{0,1\}^{l}}\left(\sum_{y \in\{0,1\}^{l}, y \leq z} f(y) \bmod 2\right) \operatorname{AND}_{i, z_{i}=1}\left(1+2 x_{i}\right)\right)
\end{aligned}
$$

By Lemma 5 we remove the AND layer and complete the proof.
As mentioned above, we shall now show how to do depth-reduction on the resulted circuit of size $2^{O(l)}$. It is too big for invoking Theorem 1 but we also observe that the resulted circuit is quite restricted. In particular, it is highly imbalanced, i.e. the width of each layer (the number of gates at a layer) is still very small, except the layers generated by represent the ANY gates. We introduce the following strengthened analysis of our depth-reduction, tailored for these restricted circuits.

Theorem 17. Fix integer $m \in \mathbb{Z}^{+}$, a SYM $\circ \mathrm{ACC}_{m}$ circuit of depth d, AND gate fan-in $\leq s^{\prime}$, and width, i.e. number of gates of layer i, w_{i} with $w_{i}>m$. Furthermore, in this circuit each layer either consists of : AND gates or exclusively of MOD_{q} gates, where q is a prime divisor of m. Then, there exists an explicitly constructed equivalent circuit $\mathrm{SYM} \circ \mathrm{AND}$ circuit of size $\leq 2^{s^{\prime d}} \prod_{1 \leq i \leq d} \log w_{i}$, and AND gate fan-in at most $s^{\prime d} \prod_{1 \leq i \leq d} \log w_{i}$.

Remark 18. The only difference with Theorem 1 is in the calculation of the circuit size and AND gates fan-in in each iteration of the construction. In the proof of Theorem 1, we use the circuit size to bound the width, i.e. the number of gates of each layer. This is necessary for arbitrary ACC circuits. However, the circuits constructed using Lemma $\sqrt{16}$ to replace the ANY gates is special. The gates of this kind of circuits populate only several layers generated by ANY gates.

Proof. We proceed inductively from top to bottom. The whole circuit will be compressed into a $\left.\mathrm{SYM}_{\left[2^{2^{\prime d}} \Pi_{1 \leq i \leq d} \log w_{i}\right]} \circ \mathrm{AND}_{\left[s^{\prime} d\right.} \Pi_{1 \leq i \leq d} \log w_{i}\right]$ circuit. Denote by norm ${ }_{i}$ the fan-in of the symmetric gate we get from compressing the first i layers, $^{2} \operatorname{deg}_{i}$ is the biggest AND gate fan-in.

The top layer of the circuit is a SYM gate, which is already a SYM \circ AND circuit. norm ${ }_{1}=$ $w_{1} \leq 2^{s^{\prime} \cdot \log w_{1}}, \operatorname{deg}_{1}=1 \leq s^{\prime} \cdot \log w_{1}$

Suppose that we have already compressed the first i layers into a SYM \circ AND circuit. norm ${ }_{i} \leq$ $2^{s^{\prime i}} \Pi_{1 \leq j \leq i} \log w_{j}, \operatorname{deg}_{i} \leq s^{\prime i} \prod_{1 \leq j \leq i} \log w_{j}$.

For the layer $i+1$:
Case: AND layer. Then, each gate of the $i+1$ layer y_{t} is the AND of some z from the $i+2$ layer. Then, we replace y with the products of z. We can get a SYM \circ AND circuit with norm ${ }_{i+1}=$ $\operatorname{norm}_{i}=2^{s^{\prime i}} \Pi_{1 \leq j \leq i} \log w_{j} \leq 2^{s^{i+1}} \Pi_{1 \leq j \leq i+1} \log w_{j}, \operatorname{deg}_{i+1} \leq s^{\prime i} \cdot \operatorname{deg}_{i} \leq s^{\prime i+1} \prod_{1 \leq j \leq i+1} \log w_{j}$ by induction hypothesis.

Case: MOD_{q} layer. We can think that the outputs of all the gates of layer $i+2$ are the inputs of the first $i+1$ layers of the circuit. Then the "input size" of layer $i+1$ is w_{i+1}. We can use Lemma 8 to compress the SYM \circ AND circuit gotten from induction hypothesis and the
layer $i+1$ together. The $\operatorname{norm}_{i+1} \leq\left(w_{i+1}\right)^{2 q\left(\operatorname{deg}_{i}+2 \log \text { norm }_{i}\right)} \leq 2^{s^{\prime i+1}} \Pi_{1 \leq j \leq i+1} \log w_{j}$, and $\operatorname{deg}_{i+1} \leq$ $2(q-1)\left(\operatorname{deg}_{i}+2 \log\right.$ norm $\left._{i}\right) \leq s^{i+1} \prod_{1 \leq j \leq i+1} \log w_{j}$ by induction hypothesis and Lemma 8 .

At the end, after reducing the depth d, we get a SYM \circ AND circuit with norm at most $2^{s^{\prime d}} \prod_{1 \leq i \leq d} \log w_{i}$ and degree at most $s^{\prime d} \prod_{1 \leq i \leq d} \log w_{i}$.

Putting together Lemma 16 and Theorem 17 obtain a construction that compresses an ACC circuit with one layer of small fan-in ANY gate.

Theorem 19. Given a size s, depth d, ACC_{m} or $\mathrm{SYM} \circ \mathrm{ACC}_{m}$ circuit with k layer of ANY gates with fan-in at most l, there exists an explicit construction of an equivalent $\mathrm{SYM}_{\left[2^{l^{k} \log O(d)}{ }_{s]}\right.} \circ$ $\mathrm{AND}_{\left[\left[^{k} \log ^{O(d)}\right.\right.}{ }_{s]}$ circuit.
Proof. The proof of this theorem follows closely the proof of Theorem 1, thus we only outlining it here.

By using Lemma 2 and Remark 3 we reduce the AND gate fan-in. This way we obtain a $\mathrm{SYM} \circ \mathrm{ACC}_{m}$ circuit with k-many ANY-layers. The depth of this circuit is $O(d)$ and its size is quasi-polynomial. Each gate of this circuit is one of the following: (i) MOD_{q} gates, where q is a prime divisor of m, (ii) AND gate, where the fan-in of the gate is at most quasi-polynomial, (iii) ANY gate from the original circuit with fan-in at most l.

Then, using Lemma 16 we represent the ANY gates layer. Notice that the input size of each layer remains unchanged (still quasi-polynomial), but the ANY gate layer for which the fan-in is as big as $2^{O(l)}$.

Thus, we have obtained a circuit with the following properties:
i. The depth of the circuit is $O(d)$.
ii. The "width" i.e. the number of gates of the i th layers is $w_{i}=2^{\log ^{O(1)} s}$ except k special layers, where $w_{i}=2^{O(l)}$.
iii. The fan-in of every AND gate in the circuit is $\log ^{O(1)} s$.
iv. Each MOD gate of the circuit is a MOD_{q} gate, where q is a prime divisor of m or a MOD_{2} or MOD_{3} gates. (there may be more than one types of MOD_{q} 's inside the same circuit).
v. The circuit is layered, i.e. each layer contains gates of the same type.

We conclude by directly using Lemma 17 to do the depth-reduction. Since the "input size" of the i th layers is $w_{i}=2^{\log ^{O(1)} s}$ except k special layers, where $w_{i}=2^{O(l)}$, the size of the output circuit will be $2^{\log O(d)} s \prod_{1 \leq i \leq d} \log w_{i}=2^{l^{k} \log O(d)} s$ and AND gate fan-in at most $\log O(d) s \prod_{1 \leq i \leq d} \log w_{i}=$ $l^{k} \log ^{O(d)} s$

Using the above depth-reduction construction and by following the same argument of Wil14], we obtain a \#SAT algorithm for the circuit class corresponding to the ACC-compression game.

Corollary 20. Let $\mathrm{C}_{\text {inter }}$ be the circuit class $\mathrm{C}_{\text {inter }}=\mathrm{ACC} \circ \mathrm{ANY}_{[l]} \circ \mathrm{ACC} \circ \mathrm{ANY}_{[l]} \circ \cdots \circ \mathrm{ACC}$, with k-many layers of ANY gates, $l \leq n^{\frac{1}{k}-\varepsilon}$, the circuit size is $2^{(\log n)^{O(1)}}$ size, and the depth is $o\left(\frac{\log n}{\log \log n}\right)$. Then, $\# \mathrm{C}_{\mathrm{inter}}-S A T$ can be solved in $2^{n-\log ^{c} n}$ time for any constant c.

By [Wil14] we conclude that NEXP $\nsubseteq \mathrm{C}_{\text {inter }}$, which in turn implies Theorem 15 .

Acknowledgments

We are most thankful to Kristoffer Hansen and to Ryan Williams for the very useful discussions, suggestions, and corrections in some of the first expositions of this work. We are also thankful to Paul Beame, Richard Beigel, Oded Goldreich, Dick Lipton, Ken Regan, Avi Wigderson, and Xin Yang for remarks, corrections, and various technical and stylistic suggestions.

References

[AB09] Sanjeev Arora and Barak Barak. Computational complexity: a modern approach. Cambridge University Press, 2009.
[AG93] Eric Allender and Vivek Gore. On strong separations from AC. Advances in Computational Complexity Theory, 13:21, 1993.
[AH94] Eric Allender and Ulrich Hertrampf. Depth reduction for circuits of unbounded fan-in. Information and Computation, 112(2):217-238, 1994. (also FOCS'89).
[Bou05] Jean Bourgain. Estimation of certain exponential sums arising in complexity theory. Comptes Rendus Mathematique, 340(9):627-631, 2005.
[BT94] Richard Beigel and Jun Tarui. On ACC. Computational Complexity, 4(4):350-366, 1994. (also FOCS'91).
[CGPT06] Arkadev Chattopadhyay, Navin Goyal, Pavel Pudlak, and Denis Therien. Lower bounds for circuits with mod_m gates. pages 709-718, 2006.
[Cha07] Arkadev Chattopadhyay. Discrepancy and the power of bottom fan-in in depth-three circuits. In Foundations of Computer Science (FOCS), pages 449-458. IEEE, 2007.
[CL11] Arkadev Chattopadhyay and Shachar Lovett. Linear systems over finite abelian groups. In Conference on Computational Complexity (CCC), pages 300-308. IEEE, 2011.
[Coo73] Stephen A Cook. A hierarchy for nondeterministic time complexity. Journal of Computer and System Sciences, 7(4):343-353, 1973.
[CS12] Arkadev Chattopadhyay and Rahul Santhanam. Lower bounds on interactive compressibility by constant-depth circuits. In Foundations of Computer Science (FOCS), pages 619-628. IEEE, 2012.
[CW09] Arkadev Chattopadhyay and Avi Wigderson. Linear systems over composite moduli. In Foundations of Computer Science (FOCS), pages 43-52. IEEE, 2009.
[DvM10] Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. In Symposium on Theory of Computing (STOC), pages 251-260. ACM, 2010.
[FS08] Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct pcps for np. In Symposium on Theory of Computing (STOC), pages 133-142. ACM, 2008.
[GKR $\left.{ }^{+} 95\right]$ Frederic Green, Johannes Kobler, Kenneth W Regan, Thomas Schwentick, and Jacobo Torán. The power of the middle bit of a\# p function. Journal of Computer and System Sciences, 50(3):456-467, 1995.
[GRS05] Frederic Green, Amitabha Roy, and Howard Straubing. Bounds on an exponential sum arising in boolean circuit complexity. Comptes Rendus Mathematique, 341(5):279-282, 2005.
[GT98] Vince Grolmusz and Gábor Tardos. Lower bounds for (mod p-mod m) circuits. In Foundations of Computer Science (FOCS), pages 279-288. IEEE, 1998.
[Hås87] Johan Håstad. Computational limitations of small-depth circuits. PhD thesis, MIT, 1987.
[HMP $\left.{ }^{+} 87\right]$ András Hajnal, Wolfgang Maass, Pavel Pudlák, Mario Szegedy, and György Turán. Threshold circuits of bounded depth. In Foundations of Computer Science (FOCS), pages 99-110. IEEE, 1987.
[Lan02] Serge Lang. Algebra (revised third edition). Graduate Texts in Mathematics, 1(211), 2002.
[OS15] Igor Carboni Oliveira and Rahul Santhanam. Majority is incompressible by $a c^{0}[p]$ circuits. In Conference on Computational Complexity (CCC), pages 124-157, 2015.
[Raz86] Alexander Razborov. Lower bounds on the size of bounded depth networks over a complete basis with logical addition, mathematische zametki 41 pp. 598-607. English Translation inMathematical Notes of the Academy of Sciences of the USSR, 41:333-338, 1986.
[RST15] Benjamin Rossman, Rocco A Servedio, and Li-Yang Tan. An average-case depth hierarchy theorem for boolean circuits. In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages 1030-1048. IEEE, 2015.
[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit complexity. In Symposium on Theory of Computing (STOC), pages 77-82. ACM, 1987.
[ST06] Howard Straubing and Denis Thérien. A note on MODp-MODm circuits. Theory of Computing Systems, 39(5):699-706, 2006.
[Tod89] Seinosuke Toda. On the computational power of pp and? p. In Foundations of Computer Science (FOCS), pages 514-519. IEEE, 1989.
[VV85] Leslie G Valiant and Vijay V Vazirani. NP is as easy as detecting unique solutions. In Symposium on Theory of Computing (STOC), pages 458-463. ACM, 1985.
[Wan11] Fengming Wang. NEXP does not have non-uniform quasipolynomial-size acc circuits of o (loglogn) depth. In Theory and Applications of Models of Computation, pages 164-170. Springer, 2011.
[Wil11] Ryan Williams. Non-uniform ACC Circuit Lower Bounds. In Conference on Computational Complexity (CCC), pages 115-125, 2011.
[Wil14] Ryan Williams. New algorithms and lower bounds for circuits with linear threshold gates. In Symposium on Theory of Computing (STOC), pages 194-202. ACM, 2014.
[Yao85] Andrew Chi-Chih Yao. Separating the polynomial-time hierarchy by oracles. In Foundations of Computer Science (FOCS), pages 1-10. IEEE, 1985.
[Yao90] Andrew Chi-Chih Yao. On ACC and threshold circuits. In Foundations of Computer Science (FOCS), pages 619-627. IEEE, 1990.

[^0]: *IIIS, Tsinghua University, shitengchen@gmail.com
 ${ }^{\dagger}$ MSIS, Business School, Rutgers University, periklis.research@gmail.com. Part of this work done when both authors were at Tsinghua University.
 ${ }^{1}$ In the literature ACC^{0} denotes the class of boolean functions computable by polynomial size $\left\{\mathrm{AND}, \mathrm{OR}, \mathrm{NOT}, \mathrm{MOD}_{m}\right\}$ families of circuits of constant depth and $m \in \mathbb{Z}^{+}$. We will be referring to ACC ${ }^{0}$ both as the class of boolean functions and the circuits characterizing it. Since, we consider circuits of different depth d and size s we will commonly refer to such circuits as ACC circuits (or ACC_{m} for a fixed modulus) of depth d and size s.

[^1]: ${ }^{2}$ From $o(\log \log n)$ to $o(\log n / \log \log n)$ the increase is super-exponential, whereas from $O(\log \log n)$ to $o(\log n / \log \log n)$ sub-exponential as correctly pointed out by Oded Goldreich.

[^2]: ${ }^{3}$ We write $\Delta(m)$ instead of the typical $\omega(m)$ notation.

[^3]: ${ }^{4}$ In particular, even if we use our method instead of Allender-Hertrampf AH94 for ACC prime circuits we still have to introduce a second type of MOD gates (two types of MODs is the same as one composite).

[^4]: ${ }^{5}$ Intuition: The partitioning of interest are the orbits of this group action, which are just "lines". The benefit in restricting the summation inside each such "line" is that when MOD is written using an exponential sum, then itself becomes a sum of primitive roots over a scaled "line".
 ${ }^{6}$ These are less than r^{k}. The exact number can be computed by Burnside's Lemma; cf. Lan02.

[^5]: ${ }^{7}$ The generalization of Lemma 5 was suggested to us by Ryan Williams (personal communication). Ryan Williams (personal communication) indicated that for prime r and in particular for ACC_{6} linearization can be made to work with Fourier analytic techniques, whereas Kristoffer Hansen (personal communication) indicated that the same might be possible for every composite ACC_{m}. Regarding composite r, Richard Beigel (personal communication) came up recently with a beautiful, simplified inductive proof of our linearization - it achieves almost the same result as in our statement (but for a slightly worse constant than in our statement).

