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Abstract

Let G = (V,E) be a connected undirected graph with k vertices. Suppose that

on each vertex of the graph there is a player having an n-bit string. Each player

is allowed to communicate with its neighbors according to an agreed communication

protocol, and the players must decide, deterministically, if their inputs are all equal.

What is the minimum possible total number of bits transmitted in a protocol solving

this problem ? We determine this minimum up to a lower order additive term in many

cases (but not for all graphs). In particular, we show that it is kn/2 + o(n) for any

Hamiltonian k-vertex graph, and that for any 2-edge connected graph with m edges

containing no two adjacent vertices of degree exceeding 2 it is mn/2+o(n). The proofs

combine graph theoretic ideas with tools from additive number theory.

1 The problem

Let G = (V,E) be a connected undirected graph with k vertices. Suppose that on each

vertex of the graph there is a player having an n-bit string. Each player is allowed to

communicate with its neighbors according to an agreed communication protocol, and the

players must decide, deterministically, whether or not their inputs are all equal. In a

trivial protocol the players fix a rooted spanning tree of the graph, and each of them,

besides the one at the root, transmits his bits to his parent, and each one (including the

root) checks that his input is equal to those he received from each of his children. This

shows that a total communication of roughly (k−1)n bits suffices. Somewhat surprisingly,
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it turns out that for complete graphs G with at least 3 vertices one can do better. It is

shown in [5] that for G = Kk at least kn/2 bits of communication are needed, and the

authors also obtain a nontrivial upper bound (which is not tight). Brody [4] has used

the graphs constructed in [2] to show that for G = K3, 3n/2 + o(n) bits suffice, showing

that the lower bound is tight in this case up to a low order additive error term. In [2] we

mentioned (without giving a detailed proof) that we can use a hypergraph extension of

the construction in [2] to show that for G = Kk the minimum possible number of bits in a

communication protocol for the above problem on G is (1 + o(1))kn/2. Brody and H̊astad

have independently found a similar protocol, using the k-cliques of the graphs in [2].

Here we consider the case of general graphs G, obtaining upper and lower bounds

which are nearly tight in many (but not all) cases. Our upper bounds are based on an

extension of the graphs of Rusza and Szemerédi [6], similar to the extension given in [1].

We also observe that linear communication protocols cannot improve the trivial upper

bound. Finally, we suggest two competing conjectures about the possible answer for every

graph.

Let f(n,G) denote the minimum number of bits transmitted in a communication pro-

tocol solving the problem on G. It is clear that the function f(n,G) is sub-additive, and

hence by Fekete’s Lemma the limit of the ratio f(n,G)/n as n tends to infinity exists.

Denote this limit by f(G). The parameter f(G) is the main object of study in the present

short paper.

2 Results

Recall that a block of a graph is a maximal two-connected subgraph, where every bridge

is also a block. It is well known that any graph is the edge-disjoint union of its blocks,

and the vertices belonging to more than one block are the cut vertices of the graph. Our

first observation is the following.

Proposition 2.1 For any connected graph G with blocks G1, G2, . . . , Gs,

f(G) =
s∑

i=1

f(Gi).

For a connected graph G let c2(G) denote the minimum number of edges in a 2-edge

connected spanning subgraph of G, where the subgraph is allowed to contain the same

edge of G twice. Thus, for any tree G with k vertices c2(G) = 2(k − 1) and for any graph

G with k vertices c2(G) = k if and only if G is Hamiltonian. Our main upper bound for

f(G) is the following.
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Theorem 2.2 For any connected graph G, f(G) ≤ 0.5c2(G)

Definition 2.1 For a connected graph G let S denote the set of all cuts in G. For any

edge e of G let Se denote the set of all cuts containing e. A fractional packing of cuts in

G is a function g : S 7→ [0, 1] so that for every edge e of G,
∑

e∈Se g(S, S) ≤ 1. Let fc(G)

denote the maximum possible value of
∑

(S,S)∈S g(S, S), where the maximum is taken over

all fractional packings of cuts g.

Theorem 2.3 For any connected graph G, f(G) ≥ fc(G).

Note that this implies that f(G) ≥ k/2 for any k-vertex graph, as the function assigning

to all cuts determined by a single vertex the value 1/2 is always a fractional packing of

cuts. Note also that clearly if G′ is a spanning subgraph of G then f(G′) ≥ f(G) and

hence the above k/2 lower bound also follows from the fact that f(Kk) = k/2.

By the last theorem f(G) ≥ α(G) for every G. The two theorems above suffice to

determine f(G) in many cases.

Corollary 2.4

1. For any Hamiltonian graph G with k vertices f(G) = k/2.

2. For any complete bipartite graph G = Ks,t with t ≥ s ≥ 1, f(G) = t.

3. For any 2-edge connected graph G in which no two vertices of degree bigger than 2

are adjacent, f(G) is exactly half the number of edges of G.

A communication protocol is called linear if any bit it transmits is a linear combination

of the input bits (and the bits received already). For simplicity we consider only linear

combinations over Z2, but the (simple) result that follows can be easily extended to all

finite fields.

Proposition 2.5 For any connected graph G on k vertices, any linear protocol for solving

the equality problem requires communication of at least (k − 1)n bits.

3 Proofs

3.1 Preliminaries

We start with the simple proofs of Propositions 2.1 and 2.5
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Proof of Proposition 2.1: We apply induction on the number of blocks s. For s = 1

there is nothing to prove. Assuming the result holds for s− 1 we prove it for s, s ≥ 2. Let

G,G1, . . . , Gs be as in the proposition, and assume, without loss of generality, that Gs is

an end-block. Let v be the unique cut-vertex in Gs and let G′ be the graph obtained from

G by removing all vertices of Gs besides v. Thus G′ has s− 1 blocks G1, G2, . . . , Gs−1.

To show that f(G) ≤
∑s

i=1 f(Gi) observe that one can first apply the best protocol

for solving the problem in Gs. If all vertices of Gs have the same bit string as v, we can

now apply the best protocol for G′ to complete the required task, thus establishing the

upper bound.

To prove the lower bound consider the best protocol for solving the problem for G. By

considering its behavior only on inputs of length n in which all vertices of Gs have equal

inputs we conclude that the number of bits transmitted by this protocol along edges of G′

is at least f(n,G′). Similarly, by considering the scenarios in which all vertices of G′ have

the same strings we conclude that the number of bits transmitted along edges of Gs is at

least f(n,Gs). This establishes the lower bound, completing the proof. 2

Proof of Proposition 2.5: Consider a linear protocol for the problem, and suppose it

transmits m bits. Each bit is a linear combination of the nk bits representing the inputs of

the k vertices. For each such combination, define a linear equation equating it to zero. The

set of all these m equations is a homogeneous system of m linear equations in kn variables.

If m < (k − 1)n then the dimension of the solution space is bigger than n. However, the

dimension of the space of all inputs in which all strings are equal is n, hence there is a

solution, call it s, in which not all input strings are equal. Note that if each input string

is the 0 vector, then all bits transmitted are 0, and the protocol must accept. Therefore,

it must also accept the input s, as with this input all bits transmitted are also zero. But

this means that the protocol errs on the input s, showing that a total communication of

less than (k − 1)n is impossible in the linear case, as needed. 2

3.2 The upper bound

In this section we prove Theorem 2.2. We need several lemmas, the first one is a known

extension of the construction of Behrend in [3] of dense sets of integers with no 3-term

arithmetic progressions.

A linear equation with integer coefficients

∑
aixi = 0 (1)
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in the unknowns xi is homogeneous if
∑
ai = 0. If X ⊆ M = {1, 2, . . . ,m}, we say

that X has no non-trivial solution to (1), if whenever xi ∈ X and
∑
aixi = 0, it follows

that all xi are equal. Thus, for example, X has no nontrivial solution to the equation

x1 − 2x2 + x3 = 0 iff it contains no three-term arithmetic progression.

Lemma 3.1 (see, e.g., [1], Lemma 3.1) For every fixed integer k ≥ 2 and every posi-

tive integer m, there exists a subset X ⊂M = {1, 2, . . . ,m} of size at least

|X| ≥ m

e10
√

logm log k

with no non-trivial solution to the equation

x1 + x2 + . . .+ xk = kxk+1. (2)

Note that if there is no nontrivial solution for the above equation there is also no non-trivial

solution for each of the equations x1 + x2 + . . .+ xr = rxr+1 for r ≤ k, since a non-trivial

solution of that together with xr+1 = xr+2 = . . . = xk = xk+1 yields a non-trivial solution

of (2).

We also need a basic result on 2 connected graphs, first proved by Whitney [7]. An

ear of an undirected graph G is a path P where the two endpoints of the path may

coincide, but where otherwise no repetition of edges or vertices is allowed. A proper ear

decomposition of G is a partition of its set of edges into a sequence of ears, such that the

first ear is a cycle, the two endpoints of any other ear are distinct and belong to earlier ears

in the sequence and the internal vertices of each ear (if any) do not belong to any earlier

ear. The following result was first proved by Whitney (it is also an easy consequence of

Menger’s Theorem.)

Lemma 3.2 (Whitney [7]) A graph G is 2 connected if and only if it has a proper ear

decomposition.

Let H be a graph with k vertices {v1, v2, . . . , vk}. Let F be a k-partite graph with

classes of vertices V1, V2, . . . , Vk. A copy of H in F is called a special copy if for each

1 ≤ i ≤ k the vertex playing the role of vi belongs to Vi. Call F a faithful host for H if the

set of its edges is the edge-disjoint union of special copies of H, and F contains no other

special copy of H besides the |E(F )|/|E(H)| copies defining its set of edges. The following

lemma is a crucial ingredient in the proof of Theorem 2.2. The special case when H is a

cycle is proved in [1].
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Lemma 3.3 Let H be a 2-connected graph with k vertices, and let m be a positive integer.

Then there is a faithful host F for H with classes of vertices V1, . . . , Vk, each of size km,

containing at least
m2

e10
√

logm log k

special copies of H.

Proof: By Lemma 3.2 there is a proper ear decomposition of H. Fix such a decompo-

sition, and denote the ears in it by P1, P2, . . . , Ps, in order, where P1 is a cycle and each

Pj for j > 1 is a path whose endpoints lie on vertices of earlier ears. Define a numbering

of the vertices of H as follows. The vertices of the cycle P1 are numbered v1, v2, . . . , vt,

according to their order on the cycle. Assuming we have already numbered all vertices in

the first p ears by v1, v2, v3 . . . , v`, consider the next ear Pp+1. If it contains no internal

vertices there is no new vertex in it that should be numbered. Otherwise, suppose the

endpoints of this ear are vi and vj , where i < j, and suppose it has q internal vertices.

Then this ear is a path of length q+ 1 from vi to vj and its vertices are numbered so that

the vertices of the path are vj , v`+1, v`+2, . . . , v`+q, vi in this order.

Let X ⊂ {1, 2, . . . ,m} be as in Lemma 3.1. The host graph F is defined as follows. Its

vertex classes are the classes V1, V2, . . . , Vk, where each Vi is of size km (the first classes

can be smaller, but this is not essential for our purpose here, hence we prefer the more

symmetric description as above). With slight abuse of notation denote the vertices of

each set Vi by {1, 2, . . . , km} but recall that these sets are pairwise disjoint. The graph

F contains m|X| special copies of H defined as follows. For each integer y, 1 ≤ y ≤ m

and each x ∈ X, there is a special copy of H in F , which we denote by Hx,y, in which

y + (i − 1)x ∈ Vi is the vertex playing the role of vi (for all 1 ≤ i ≤ k). It is easy to

see that all these special copies are pairwise edge disjoint. In fact, these copies satisfy

a stronger property: no two of them share two vertices, since the values of y + (i − 1)x

for two distinct indices i determine uniquely x and y. It remains to prove that the only

special copies of H in F are the copies Hx,y used in its definition. Let H ′ be such a

special copy. Then it contains an edge between V1 and V2 which connects y ∈ V1 to

y + x ∈ V2, where 1 ≤ y ≤ m and x ∈ X. Let u1, u2, . . . , uk be the vertices of H ′,

where ui ∈ Vi for all i. Our objective is to prove that ui = y + (i − 1)x for all i. To

do so we show, by induction on p, that this holds for each of the vertices ui where vi

belongs to the union of the vertices in the first p ears in the ear decomposition of H.

The first ear, P1, is a cycle on the vertices v1, v2, . . . , vt. By the definition of F there are

x1 = x, x2, . . . , xt ∈ X so that ui+1 − ui = xi for all 1 ≤ i ≤ t− 1 and ut − u1 = (t− 1)xt.
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Therefore x1 + x2 + . . .+ xt−1 = (t− 1)xt. Since t ≤ k, the property of the set X implies

that xi = x1 = x for all 1 ≤ i ≤ t, establishing the required beginning of the induction.

Assuming the induction claim holds for the vertices in the first p ears, consider the next

ear Pp+1. If it contains no internal vertices there is nothing to prove, hence assume it

contains q internal vertices. Let the ear Pp+1 be vj , v`+1, v`+2, . . . , v`+q, vi, where i < j.

By the induction hypothesis ui = y+ (i− 1)x and uj = y+ (j − 1)x. By the construction

of F there are x1, x2, . . . , xq+1 ∈ X so that u`+1−uj = (`+ 1− j)x1, u`+i+1−u`+i = xi+1

for 1 ≤ i ≤ q − 1, and u`+q − ui = (`+ q − i)xq+1. Since

(uj − ui) + (u`+1 − uj) + (u`+2 − u`+1) + . . .+ (u`+q − u`+q−1) = u`+q − ui

we conclude that

(j − i)x+ (`+ 1− j)x1 + x2 + . . .+ xq = (`+ q − i)xq+1.

As `+ q − i ≤ k the property of X implies that x = x1 = x2 = . . . = xq+1 completing the

proof of the induction and implying the assertion of the lemma. 2

Proof of Theorem 2.2: Let G′ be a two edge-connected spanning subgraph of G with

c2(G) edges. It may contain two copies of some edges, but by the minimality in the

definition of G′ this is the case only for bridges of (the underlying subgraph of) G′. We

have to show that f(G′) is at most half the number of its edges. By Proposition 2.1 it

suffices to prove it for all blocks of G′, where for blocks consisting of a single edge (taken

twice) this is trivial, as obviously f(K2) = 1. Every nontrivial block of G′ is 2 connected,

and it thus suffices to show that for any 2-connected graph H = (V,E), f(H) ≤ 0.5|E|.
Let k denote the number of vertices of H. For a given (large) integer n, let m be the

smallest integer so that
m2

e10
√

logm log k
≥ 2n.

Thus

log2m = 0.5n+O(
√
n log k)

and

dlog2(km)e = 0.5n+O(
√
n log k) +O(log k) = (0.5 + o(1))n.

Fix a numbering v1, v2, . . . , vk of the vertices of H according to the proof of Lemma 3.3,

and let F be a faithful host for H, with classes of vertices V1, V2, . . . , Vk, containing at

least 2n special copies of H. Fix 2n special copies. The input strings are now represented

by special copies of H in F . Orient the edges of H so that the indegree of every vertex
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is positive. This is possible, since H is 2-connected. Indeed, using an ear decomposition

of H we can orient the initial cycle cyclically and then orient each ear as a directed path.

The player Pi residing at the vertex vi of H transmits the identity of the vertex ui in the

special copy of H representing his input to all players Pj so that there is an edge of H

oriented from vi to vj . Note that this amounts to a total transmission of

dlog2(km)e|E(H)| = (0.5 + o(1))|E|n

bits. In addition, each player observes if the identities of the vertices he received from his

inneighbors are indeed consistent with the ones in his copy, and reports about this to his

outneighbors (this amounts to another single bit per edge). If there is some inconsistency,

this information reaches some player who reports that the inputs are not all equal. If

everything is consistent, the players report that all inputs are equal.

It is clear that if all inputs are equal then the players report so. To complete the proof

we show that if they report that the inputs are all equal, this is indeed the case. For

every i let ui be the identity of the vertex in Vi reported by i to his outneighbors. Let the

special copies of the players be H1, H2, . . . ,Hk, where Hi is the copy of the player Pi. If

(vj , vi) is an edge of H oriented from vj to vi, and vi who gets the identity of the vertex

uj ∈ Vj from the player Pj , finds it consistent with his copy, then the edge ujui belongs

to the special copy Hi of Pi. Therefore, if no player reports an inconsistency, then the

subgraph of F on the vertices u1, u2, . . . , uk is a special copy of H in F . However, since F

is a faithful host for H this copy must be one of the original special copies of H in F , and

as it contains an edge of each Hi (as the indegree of each vertex is positive) this special

copy must be equal to Hi for all i, showing that indeed all these copies are equal. This

completes the proof. 2

3.3 The lower bound

Proof of Theorem 2.3: Consider a deterministic communication protocol that solves

the equality problem for inputs with n bits on G = (V,E). For each edge e ∈ E, let b(e)

denote the number of bits transmitted during the protocol along e. We claim that for

every cut (S, S) in G
∑

e∈(S,S) b(e) ≥ n. Indeed, otherwise there are two distinct strings

of length n, x and y, so that the communication along the edges of the cut is identical

when all inputs are x and when all inputs are y. But in that case it is easy to see that the

protocol behaves identically when all inputs are x, when all inputs are y, and also when

all vertices of S have input x and all those in y have input y (and vice versa). Thus the

protocol cannot behave correctly, proving the claim.
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By the claim it follows that a lower bound for f(n,G) is the solution of the following

linear program:

Minimize
∑
e

b(e) subject to the constraints (3)

b(e) ≥ 0 for all e ∈ E and∑
e∈(S,S)

b(e) ≥ n for every cut (S, S) ∈ S,

where S is the set of all cuts of G.

The dual of this program is:

Maximize n ·
∑

(S,S)∈S g(S, S) subject to the constraints

g(S, S) ≥ 0 for all (S, S) ∈ S and
∑

(S,S),e∈(S,S) g(S, S) ≤ 1 for every edge e ∈ E.

This last maximum is exactly n · fc(G), completing the proof. 2

Proof of Corollary 2.4:

1. By Theorem 2.3 and the paragraph following its statement f(G) ≥ k/2 for any k-

vertex graph G. By Theorem 2.2, for the cycle Ck on k vertices f(Ck) ≤ k/2. The

desired result follows since if G′ is a spanning subgraph of G then clearly f(G) ≤
f(G′).

2. For any tree T on k vertices f(T ) = k − 1 (for example, by Proposition 2.1). This

implies the result for s = 1. For larger s the lower bound follows from Theorem 2.3

by the fact that for any graph G with independence number α = α(G), fc(G) ≥ α

as the α cuts (v, V (G) − {v}) for v in a maximum independent set are pairwise

edge disjoint. The upper bound follows from Theorem 2.2 by considering a spanning

subgraph of Ks,t consisting of a cycle of length 2s together with two of the edges

incident with any vertex of Ks,t uncovered by the cycle.

3. The upper bound follows from Theorem 2.2. To prove the lower bound note that G

is the edge disjoint union of induced paths, each of length at least 2. For each such

path v1, v2, . . . , vs in which all internal vertices are of degree 2 in G, consider the

cuts (vi, V − {vi}) for all 1 < i < s, and the cut

({v2, v3 . . . , vs−1}, V − {v2, v3 . . . , vs−1})

(if s = 3 we take the same cut twice). This is a collection of |E(G)| cuts covering

each edge exactly twice, hence fc(G) ≥ |E(G)|/2, as shown by giving each of these

cuts weight 1/2. This completes the proof. 2
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4 Open problems

• Is f(G) = 0.5c2(G) for any connected graph G ?

• If not, is f(G) = fc(G) for any connected graph G ?

• Is it true that for a graph G on k vertices f(G) = k/2 if and only if G is Hamiltonian?

(Note that if this is the case, then the computational problem of computing f(G)

for a given input graph G is NP-hard.)

• It is not difficult to show that for any d-regular graph G on k vertices which is also

d-edge connected, fc(G) = k/2. Indeed, as mentioned in the paragraph following

the statement of Theorem 2.3, fc(G) ≥ k/2 for any k vertex graph. To prove the

upper bound note that for any d-regular d edge-connected graph G = (V,E), the

function b(e) = n/d for every edge e ∈ E is a solution of the linear program (3).

Thus, for any such G the lower bound for f(G) provided by Theorem 2.3 is k/2

whereas if it is not Hamiltonian the upper bound provided by Theorem 2.2 is strictly

larger.

A specific interesting example is the Petersen graph P which is 3-regular, 3-connected

and non-Hamiltonian. Indeed c2(P ) = 11 and fc(G) = 5, implying that

5 ≤ f(P ) ≤ 5.5

What is f(P ) ?
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