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Abstract

We study the composition question for bounded-error randomized query complexity: Is
R(f ◦ g) = Ω(R(f)R(g)) for all Boolean functions f and g? We show that inserting a simple
Boolean function h, whose query complexity is only Θ(logR(g)), in between f and g allows us
to prove R(f ◦ h ◦ g) = Ω(R(f)R(h)R(g)).

We prove this using a new lower bound measure for randomized query complexity we call
randomized sabotage complexity, RS(f). Randomized sabotage complexity has several desirable
properties, such as a perfect composition theorem, RS(f ◦ g) ≥ RS(f) RS(g), and a composition
theorem with randomized query complexity, R(f ◦ g) = Ω(R(f) RS(g)). It is also a quadratically
tight lower bound for total functions and can be quadratically superior to the partition bound,
the best known general lower bound for randomized query complexity.

Using this technique we also show implications for lifting theorems in communication com-
plexity. We show that a general lifting theorem for zero-error randomized protocols implies a
general lifting theorem for bounded-error protocols.
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1 Introduction

1.1 Composition theorems

A basic structural question that can be asked in any model of computation is whether there can be
resource savings when computing the same function on several independent inputs. We say a direct
sum theorem holds in a model of computation if solving a problem on n independent inputs requires
roughly n times the resources needed to solve one instance of the problem. Direct sum theorems
hold for deterministic and randomized query complexity [JKS10], fail for circuit size [Pan12], and
remain open for communication complexity [KRW95, BBCR13, FKNN95].

More generally, instead of merely outputting the n answers, we could compute another function
of these n answers. If f is an n-bit Boolean function and g is an m-bit Boolean function, we
define the composed function f ◦ g to be an nm-bit Boolean function such that f ◦ g(x1, . . . , xn) =
f(g(x1), . . . , g(xn)), where each xi is an m-bit string. The composition question now asks if there
can be significant savings in computing f ◦ g compared to simply running the best algorithm for f
and using the best algorithm for g to evaluate the input bits needed to compute f . If we let f be
the identity function on n bits that just outputs all its inputs, we recover the direct sum problem.

Composition theorems are harder to prove and are known for only a handful of models, such as
deterministic [Tal13, Mon14] and quantum query complexity [LMR+11, Kim12]. More precisely, let
D(f), R(f), and Q(f) denote the deterministic, randomized, and quantum query complexities of f .
Then for all (possibly partial) Boolean1 functions f and g, we have

D(f ◦ g) = D(f)D(g) and Q(f ◦ g) = Θ(Q(f)Q(g)). (1)

In contrast, in the randomized setting we only have the upper bound R(f◦g) = O(R(f)R(g) logR(f)).
Proving a composition theorem for randomized query complexity remains a major open problem.

Open Problem 1. Does it hold that R(f ◦ g) = Ω(R(f)R(g)) for all Boolean functions f and g?

In this paper we prove something close to a composition theorem for randomized query complexity.
While we cannot rule out the possibility of synergistic savings in computing f ◦ g, we show that
a composition theorem does hold if we insert a small gadget in between f and g to obfuscate the
output of g. Our gadget is “small” in the sense that its randomized (and even deterministic) query
complexity is Θ(logR(g)). Specifically we choose the index function, which on an input of size
k + 2k interprets the first k bits as an address into the next 2k bits and outputs the bit stored at
that address. The index function’s query complexity is k + 1 and we choose k = Θ(logR(g)).

Theorem 1. Let f and g be (partial) Boolean functions and let Ind be the index function with
R(Ind) = Θ(logR(g)). Then R(f ◦ Ind ◦ g) = Ω(R(f)R(Ind)R(g)) = Ω(R(f)R(g) logR(g)).

Theorem 1 can be used instead of a true composition theorem in many applications. For example,
recently a composition theorem for randomized query complexity was needed in the special case
when f is the And function [AKK16, GJPW15] or when g is the AND function [ABK15]. Our
composition theorem would suffice for both applications.

We prove Theorem 1 by introducing a new lower bound technique for randomized query
complexity. This is not surprising since the composition theorems for deterministic and quantum
query complexities are also proved using powerful lower bound techniques for these models, namely
the adversary argument and the negative-weights adversary bound [HLŠ07] respectively.

1Composition theorems usually fail for trivial reasons for non-Boolean functions. Hence we restrict our attention
to Boolean functions, which have domain {0, 1}n (or a subset of {0, 1}n) and range {0, 1}.
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1.2 Sabotage complexity

To describe the new lower bound technique, consider the problem of computing a Boolean function
f on an input x ∈ {0, 1}n in the query model. In this model we have access to an oracle, which
when queried with an index i ∈ [n] responds with xi ∈ {0, 1}.

Imagine that a hypothetical saboteur damages the oracle and makes some of the input bits
unreadable. For these input bits the oracle simply responds with a ∗. We can now view the oracle
as storing a string p ∈ {0, 1, ∗}n as opposed to a string x ∈ {0, 1}n. Although it is not possible to
determine the true input x from the oracle string p, it may still be possible to compute f(x) if all
input strings consistent with p evaluate to the same f value. On the other hand, it is not possible to
compute f(x) if p is consistent with a 0-input and a 1-input to f . We call such a string p ∈ {0, 1, ∗}n
a sabotaged input. For example, let f be the Or function that computes the logical Or of its bits.
Then p = 00∗0 is a sabotaged input since it is consistent with the 0-input 0000 and the 1-input
0010. However, p = 01∗0 is not a sabotaged input since it is only consistent with 1-inputs to f .

Now consider a new problem in which the input is promised to be sabotaged (with respect to
a function f) and our job is to find the location of a ∗. Intuitively, any algorithm that solves the
original problem f when run on a sabotaged input must discover at least one ∗, since otherwise it
would answer the same on 0- and 1-inputs consistent with the sabotaged input. Thus the problem of
finding a ∗ in a sabotaged input is no harder than the problem of computing f , and hence naturally
yields a lower bound on the complexity of computing f . As we show later, this intuition can be
formalized in several models of computation.

As it stands the problem of finding a ∗ in a sabotaged input has multiple valid outputs, as the
location of any star in the input is a valid output. For convenience we define a decision version of
the problem as follows: Imagine there are two saboteurs and one of them has sabotaged our input.
The first saboteur, Asterix, replaces input bits with an asterisk (∗) and the second, Obelix, uses an
obelisk (†). Promised that the input has been sabotaged exclusively by one of Asterix or Obelix,
our job is to identify the saboteur. This is now a decision problem since there are only two valid
outputs. We call this decision problem fsab, the sabotage problem associated with f .

We now define lower bound measures for various models using fsab. For example, we can define
the deterministic sabotage complexity of f as DS(f) := D(fsab) and in fact, it turns out that for all
f , DS(f) equals D(f) (Theorem 16).

We could define the randomized sabotage complexity of f as R(fsab), but instead we define it as
RS(f) := R0(fsab), where R0 denotes zero-error randomized query complexity, since R(fsab) and
R0(fsab) are equal up to constant factors (Theorem 3). RS(f) has the following desirable properties.

1. (Lower bound for R) For all f , R(f) = Ω(RS(f)) (Theorem 4)

2. (Perfect composition) For all f and g, RS(f ◦ g) ≥ RS(f) RS(g) (Theorem 9)

3. (Composition with R) For all f and g, R(f ◦ g) = Ω(R(f) RS(g)) (Theorem 10)

4. (Superior to prt(f)) There exists a total f with RS(f) ≥ prt(f)2−o(1) (Theorem 13)

5. (Superior to Q(f)) There exists a total f with RS(f) = Ω̃(Q(f)2.5) (Theorem 13)

6. (Quadratically tight) For all total f , R(f) = O(RS(f)2 log RS(f)) (Theorem 14)

Here prt(f) denotes the partition bound [JK10, JLV14], which subsumes most other lower bound
techniques such as approximate polynomial degree, randomized certificate complexity, block sen-
sitivity, etc. The only general lower bound technique not subsumed by prt(f) is quantum query
complexity, Q(f), which can also be considerably smaller than RS(f) for some functions. In fact,
we are unaware of any total function f for which RS(f) = o(R(f)), leaving open the intriguing
possibility that this lower bound technique captures randomized query complexity for total functions.
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1.3 Lifting theorems

Using randomized sabotage complexity we are also able to show a relationship between lifting
theorems in communication complexity. A lifting theorem relates the query complexity of a function
f with the communication complexity of a related function created from f . Recently, Göös, Pitassi,
and Watson [GPW15] showed that there is a communication problem GInd, also known as the
two-party index gadget, with communication complexity Θ(log n) such that for any function f
on n bits, Dcc(f ◦GInd) = Ω(D(f) log n), where Dcc(F ) denotes the deterministic communication
complexity of a communication problem F .

Analogous lifting theorems are known for some complexity measures, but no such theorem
is known for either zero-error randomized or bounded-error randomized query complexity. Our
second result shows that a lifting theorem for zero-error randomized query complexity implies one
for bounded-error randomized query. We use Rcc

0 (F ) and Rcc(F ) to denote the zero-error and
bounded-error communication complexities of F respectively.

Theorem 2. Let G : X × Y → {0, 1} be a communication problem with min{|X |, |Y|} = O(log n).
If it holds that for all n-bit partial functions f ,

Rcc
0 (f ◦G) = Ω(R0(f)/ polylog n), (2)

then for all n-bit partial functions f ,

Rcc(f ◦GInd) = Ω(R(f)/ polylog n), (3)

where GInd : {0, 1}b × {0, 1}2b → {0, 1} is the index gadget (Definition 16) with b = Θ(log n).

Proving a lifting theorem for bounded-error randomized query complexity remains an important
open problem in communication complexity. Such a theorem would allow the recent separations in
communication complexity shown by Anshu et al. [ABB+16] to be proved simply by establishing
their query complexity analogues, which was done in [ABK15] and [AKK16]. Our result shows that
it is sufficient to prove a lifting theorem for zero-error randomized protocols instead.

1.4 Open problems

The main open problem is to determine whether R(f) = Θ̃(RS(f)) for all total functions f . This is
known to be false for partial functions, however. Any partial function where all inputs in Dom(f)
are far apart in Hamming distance necessarily has low sabotage complexity. For example, any
sabotaged input to the collision problem (decide whether a function is 1-to-1 or 2-to-1) has at least
half the bits sabotaged making RS(f) = O(1), but R(f) = Ω(

√
n).

It would also be interesting to extend the sabotage idea to other models of computation and see
if it yields useful lower bound measures. For example, we can define quantum sabotage complexity
as QS(f) := Q(fsab), but we were unable to show that it lower bounds Q(f).

1.5 Paper organization

In Section 2, we present some preliminaries and useful properties of randomized algorithms (whose
proofs appear in Appendix A for completeness). We then formally define sabotage complexity
in Section 3 and prove some basic properties of sabotage complexity. In Section 4 we establish
the composition properties of randomized sabotage complexity described above (Theorem 9 and
Theorem 10). Using these results, we establish the main result (Theorem 1) in Section 5. We then
prove the connection between lifting theorems (Theorem 2) in Section 6. In Section 7 we compare
randomized sabotage complexity with other lower bound measures. We end with a discussion of
deterministic sabotage complexity in Section 8.
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2 Preliminaries

In this section we define some basic notions in query complexity that will be used throughout the
paper. Note that all the functions in this paper have Boolean input and output, except sabotaged
functions whose input alphabet is {0, 1, ∗, †}. For any positive integer n, we define [n] := {1, 2, . . . , n}.

In the model of query complexity, we wish to compute an n-bit Boolean function f on an input
x given query access to the bits of x. The function f may be total, i.e., f : {0, 1}n → {0, 1}, or
partial, which means it is defined only on a subset of {0, 1}n, which we denote by Dom(f). The
goal is to output f(x) using as few queries to the bits of x as possible. The number of queries used
by the best possible deterministic algorithm (over worst-case choice of x) is denoted D(f).

A randomized algorithm is a probability distribution over deterministic algorithms. The worst-
case cost of a randomized algorithm is the worst-case (over all the deterministic algorithms in
its support) number of queries made by the algorithm on any input x. The expected cost of the
algorithm is the expected number of queries made by the algorithm (over the probability distribution)
on an input x maximized over all inputs x. A randomized algorithm has error at most ε if it outputs
f(x) on every x with probability at least 1− ε.

We use Rε(f) to denote the worst-case cost of the best randomized algorithm that computes f
with error ε. Similarly, we use Rε(f) to denote the expected cost of the best randomized algorithm
that computes f with error ε. When ε is unspecified it is taken to be ε = 1/3. Thus R(f) denotes
the bounded-error randomized query complexity of f . Finally, we also define zero-error expected
randomized query complexity, R0(f), which we also denote by R0(f) to be consistent with the
literature. For precise definitions of these measures as well as the definition of quantum query
complexity Q(f), see the survey by Buhrman and de Wolf [BdW02].

2.1 Properties of randomized algorithms

We will assume familiarity with the following basic properties of randomized algorithms. For
completeness, we prove these properties in Appendix A.

First, we have Markov’s inequality, which allows us to convert an algorithm with a guarantee on
the expected number of queries into an algorithm with a guarantee on the maximum number of
queries with a constant factor loss in the query bound and a constant factor increase in the error.
This can be used, for example, to convert zero-error randomized algorithms into bounded-error
randomized algorithms.

Lemma 1 (Markov’s Inequality). Let A be a randomized algorithm that makes T queries in
expectation (over its internal randomness). Then for any δ ∈ (0, 1), the algorithm A terminates
within bT/δc queries with probability at least 1− δ.

The next property allows us to amplify the success probability of an ε-error randomized algorithm.

Lemma 2 (Amplification). If f is a function with Boolean output and A is a randomized algorithm
for f with error ε < 1/2, repeating A several times and taking the majority vote of the outcomes

decreases the error. To reach error ε′ > 0, it suffices to repeat the algorithm 2 ln(1/ε′)
(1−2ε)2 times.

Recall that we defined Rε(f) to be the minimum expected number of queries made by a
randomized algorithm that computes f with error probability at most ε. Clearly, we have Rε(f) ≤
Rε(f), since the expected number of queries made by an algorithm is at most the maximum number
of queries made by the algorithm. Using Lemma 1, we can now relate them in other other direction.

Lemma 3. Let f be a partial function, δ > 0, and ε ∈ [0, 1/2). Then we have Rε+δ(f) ≤
1−2ε
2δ Rε(f) ≤ 1

2δRε(f).
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The next lemma shows how to relate these measures with the same error ε on both sides of the
inequality. This also shows that Rε(f) is only a constant factor away from Rε(f) for constant ε.

Lemma 4. If f is a partial function, then for all ε ∈ (0, 12), we have Rε(f) ≤ 14 ln(1/ε)
(1−2ε)2Rε(f). When

ε = 1
3 , we can improve this to R(f) ≤ 10R(f).

Although these measures are closely related for constant error, Rε(f) is more convenient than
Rε(f) for discussing composition and direct sum theorems.

We can also convert randomized algorithms that find certificates with bounded error into
zero-error randomized algorithms.

Lemma 5. Let A be a randomized algorithm that uses T queries in expectation and finds a certificate
with probability 1− ε. Then repeating A when it fails to find a certificate turns it into an algorithm
that always finds a certificate (i.e., a zero-error algorithm) that uses at most T/(1− ε) queries in
expectation.

Finally, the following lemma is useful for proving lower bounds on randomized algorithms.

Lemma 6. Let f be a partial function. Let A be a randomized algorithm that solves f using at
most T expected queries and with error at most ε. For x, y ∈ Dom(f) if f(x) 6= f(y) then when A
is run on x, it must query an entry on which x differs from y with probability at least 1− 2ε.

3 Sabotage complexity

We now formally define sabotage complexity. Given a (partial or total) n-bit Boolean function f ,
let Pf ⊆ {0, 1, ∗}n be the set of all partial assignments of f that are consistent with both a 0-input
and a 1-input. That is, for each p ∈ Pf , there exist x, y ∈ Dom(f) such that f(x) 6= f(y) and
xi = yi = pi whenever pi 6= ∗. Let P †f ⊆ {0, 1, †}

n be the same as Pf , except using the symbol †
instead of ∗. Observe that Pf and P †f are disjoint. Let Qf = Pf ∪ P †f ⊆ {0, 1, ∗, †}

n. We then define
fsab as follows.

Definition 7. Let f be an n-bit partial function. We define fsab : Qf → {0, 1} as fsab(q) = 0 if
q ∈ Pf and fsab(q) = 1 if q ∈ P †f .

See Section 1.2 for more discussion and motivation for this definition. Now that we have defined
fsab, we can define deterministic and randomized sabotage complexity.

Definition 8. Let f be a partial function. Then DS(f) := D(fsab) and RS(f) := R0(fsab).

We will primarily focus on RS(f) in this work and only discuss DS(f) in Section 8. To justify
defining RS(f) as R0(fsab) instead of R(fsab) (or R(fsab)), we now show these definitions are
equivalent up to constant factors.

Theorem 3. Let f be a partial function. Then R0(fsab) ≥ Rε(fsab) ≥ (1− 2ε)R0(fsab).

Proof. The first inequality follows trivially. For the second, let x ∈ Qf be any valid input to fsab. Let
x′ be the input x with asterisks replaced with obelisks and vice versa. Then since fsab(x) 6= fsab(x′),
by Lemma 6 any ε-error randomized algorithm that solves fsab must find a position on which x
and x′ differ with probability at least 1− 2ε. The positions at which they differ are either asterisks
or obelisks. Since x was an arbitrary input, the algorithm must always find an asterisk or obelisk
with probability at least 1 − 2ε. Since finding an asterisk or obelisk is a certificate for fsab, by
Lemma 5, we get a zero-error algorithm for fsab that uses Rε(fsab)/(1− 2ε) expected queries. Thus
R0(fsab) ≤ Rε(fsab)/(1− 2ε), as desired.
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Finally, we prove that RS(f) is indeed a lower bound on R(f), i.e., R(f) = Ω(RS(f)).

Theorem 4. Let f be a partial function. Then Rε(f) ≥ Rε(f) ≥ (1− 2ε) RS(f).

Proof. Let A be a randomized algorithm for f that uses Rε(f) randomized queries and outputs the
correct answer on every input in Dom(f) with probability at least 1− ε. Now fix a sabotaged input
x, and let p be the probability that A finds a ∗ or † when run on x. Let q be the probability that
A outputs 0 if it doesn’t find a ∗ or † when run on x. Let x0 and x1 be inputs consistent with x
such that f(x0) = 0 and f(x1) = 1. Then A outputs 0 on x1 with probability at least q(1 − p),
and A outputs 1 on x0 with probability at least (1− q)(1− p). These are both errors, so we have
q(1− p) ≤ ε and (1− q)(1− p) ≤ ε. Summing them gives 1− p ≤ 2ε, or p ≥ 1− 2ε.

This means A finds a ∗ entry within Rε(f) expected queries with probability at least 1− 2ε. By
Lemma 5, we get 1

1−2εRε(f) ≥ RS(f), or Rε(f) ≥ (1− 2ε) RS(f).

We also define a variant of RS where the number of asterisks (or obelisks) is limited to one.
Specifically, let U ⊆ {0, 1, ∗, †}n be the set of all partial assignments with exactly one ∗ or †.
Formally, U := {x ∈ {0, 1, ∗, †}n : |{i ∈ [n] : xi /∈ {0, 1}}| = 1}.

Definition 9. Let f be an n-bit partial function. We define fusab as the restriction of fsab to U ,
the set of strings with only one asterisk or obelisk. That is, fusab has domain Qf ∩U , but is equal to
fsab on its domain. We then define RS1(f) := R0(fusab). If Qf ∩U is empty, we define RS1(f) := 0.

The measure RS1 will play a key role in our lifting result in Section 6. Since fusab is a restriction
of fsab to a promise, it is clear that its zero-error randomized query complexity cannot increase, and
so RS1(f) ≤ RS(f). Interestingly, when f is total, RS1(f) equals RS(f). In other words, when f is
total, we may assume without loss of generality that its sabotaged version has only one asterisk or
obelisk.

Theorem 5. If f is a total function, then RS1(f) = RS(f).

Proof. We already argued that RS(f) ≥ RS1(f). To show RS1(f) ≥ RS(f), we argue that any
zero-error algorithm A for fusab also solves fsab. The main observation we need is that any input to
fsab can be completed to an input to fusab by replacing some asterisks or obelisks with 0s and 1s.
To see this, let x be an input to fsab. Without loss of generality, x ∈ Pf . Then there are two strings
y, z ∈ Dom(f) that are consistent with x, satisfying f(y) = 0 and f(z) = 1.

The strings y and z disagree on some set of bits B, and x has a ∗ or † on all of B. Consider
starting with y and flipping the bits of B one by one, until we reach the string z. At the beginning,
we have f(y) = 0, and at the end, we reach f(z) = 1. This means that at some point in the middle,
we must have flipped a bit that flipped the string from a 0-input to a 1-input. Let w0 and w1 be
the inputs where this happens. They differ in only one bit. If we replace that bit with ∗ or †, we
get a partial assignment w consistent with both, so w ∈ Pf . Moreover, w is consistent with x. This
means we have completed an arbitrary input to fsab to an input to fusab, as claimed.

Now, the algorithm A must find an asterisk or obelisk in any input to fusab. But since each input
to fsab can be viewed as an input to fusab with added asterisks and obelisks, the algorithm A also
finds an asterisk or obelisk in any input to fsab. Thus RS(f) = R0(fsab) ≤ R0(fusab) = RS1(f).

4 Direct sum and composition theorems

In this section, we establish the main composition theorems for randomized sabotage complexity.
To do so, we first need to establish direct sum theorems for the problem fsab. In fact, our direct
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sum theorems hold more generally for zero-error randomized query complexity of partial functions
(and even relations). To prove this, we will require Yao’s minimax theorem [Yao77].

Theorem 6 (Minimax). Let f be an n-bit partial function. There is a distribution µ over inputs in
Dom(f) such that all zero-error algorithms for f use at least R0(f) expected queries on µ.

We call any distribution µ that satisfies the assertion in Yao’s theorem a hard distribution for f .

4.1 Direct sum theorems

We start by defining the m-fold direct sum of a function f , which is simply the function that accepts
m inputs to f and outputs f evaluated on all of them.

Definition 10. Let f : Dom(f) → Z, where Dom(f) ⊆ X n, be a partial function with input and
output alphabets X and Z. The m-fold direct sum of f is the partial function f⊕m : Dom(f)m → Zm
such that for any (x1, x2, . . . , xm) ∈ Dom(f)m, we have

f⊕m(x1, x2, . . . , xm) = (f(x1), f(x2), . . . , f(xm)). (4)

We can now prove a direct sum theorem for zero-error randomized and more generally ε-
error expected randomized query complexity, although we only require the result about zero-error
algorithms. We prove these results for partial functions, but they also hold for arbitrary relations.

Theorem 7 (Direct sum). For any n-bit partial function f and any positive integer m, we have
R0(f⊕m) = mR0(f). Moreover, if µ is a hard distribution for f given by Theorem 6, then µ⊗m is a
hard distribution for f⊕m. Similarly, for randomized algorithms we get Rε(f

⊕m) ≥ mRε(f).

Proof. The upper bound follows from running the R0(f) algorithm on each of the m inputs to f .
By linearity of expectation, this algorithm solves all m inputs after mR0(f) expected queries.

We now prove the lower bound. Let A be a zero-error randomized algorithm for f⊕m that uses
T expected queries when run on inputs from µ⊗m. We convert A into an algorithm B for f that
uses T/m expected queries when run on inputs from µ.

Given an input x ∼ µ, the algorithm B generates m − 1 additional “fake” inputs from µ. B
then shuffles these together with x, and runs A on the result. The input to A is then distributed
according to µ⊗m, so A uses T queries (in expectation) to solve all m inputs. B then reads the
solution to the true input x.

Note that most of the queries A makes are to fake inputs, so they don’t count as real queries.
The only real queries B has to make happen when A queries x. But since x is shuffled with the
other (indistinguishable) inputs, the expected number of queries A makes to x is the same as the
expected number of queries A makes to each fake input; this must equal T/m. Thus B makes T/m
queries to x (in expectation) before solving it.

Since B is a zero-error randomized algorithm for f that uses T/m expected queries on inputs
from µ, we must have T/m ≥ R0(f) by Theorem 6. Thus T ≥ mR0(f), as desired.

The same lower bound proof carries through for ε-error expected query complexity, Rε(f), as
long as we use a version of Yao’s theorem for this model. For completeness, we prove this version of
Yao’s theorem in Appendix B.

Theorem 7 is essentially [JKS10, Theorem 2], with an arguably cleaner formulation since we deal
with expected query complexity instead of worst-case query complexity. From Theorem 7, we can
also prove a direct sum theorem for worst-case randomized query complexity since for ε ∈ (0, 1/2),

Rε(f
⊕m) ≥ Rε(f⊕m) ≥ mRε(f) ≥ 2δmRε+δ(f), (5)
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for any δ > 0, where the last inequality used Lemma 3.
For our applications, however, we will need a strengthened version of this theorem, which we

call a threshold direct sum theorem.

Theorem 8 (Threshold direct sum). Given an input to f⊕m sampled from µ⊗m, we consider solving
only some of the m inputs to f . We say an input x to f is solved if a z-certificate was queried that
proves f(x) = z. Then any randomized algorithm that takes an expected T queries and solves an
expected k of the m inputs when run on inputs from µ⊗m must satisfy T ≥ kR0(f).

Proof. We prove this by a reduction to Theorem 7. Let A be a randomized algorithm that, when
run on an input from µ⊗m, solves an expected k of the m instances, and halts after an expected T
queries. We note that these expectations average over both the distribution µ⊗m and the internal
randomness of A.

We now define a randomized algorithm B that solves the m-fold direct sum f⊕m with zero error.
B works as follows: given an input to f⊕m, B first runs A on that input. Then B checks which of
the m instances of f were solved by A (by seeing if a certificate proving the value of f was found
for a given instance of f). B then runs the optimal zero-error algorithm for f , which makes R0(f)
expected queries, on the instances of f that were not solved by A.

Let us examine the expected number of queries used by B on an input from µ⊗m. Recall that a
randomized algorithm is a probability distribution over deterministic algorithms; we can therefore
think of A as a distribution. For a deterministic algorithm D ∼ A and an input x to f⊕m, we use
D(x) to denote the number of queries used by D on x, and S(D,x) ⊆ [m] to denote the set of
inputs to f the algorithm D solves when run on x. Then by assumption

T = E
x∼µ⊗m

E
D∼A

D(x) and k = E
x∼µ⊗m

E
D∼A

|S(D,x)|. (6)

Next, let R be the randomized algorithm that uses R0(f) expected queries and solves f on any
input. For an input x to f⊕m, we write x = x1x2 . . . xm with xi ∈ Dom(f). Then the expected
number of queries used by B on input from µ⊗m can be written as

E
x∼µ⊗m

E
D∼A

D(x) + E
D1∼R

E
D2∼R

· · · E
Dm∼R

∑
i∈[m]\S(D,x)

Di(xi)

 (7)

= E
x∼µ⊗m

E
D∼A

D(x) +
∑

i∈[m]\S(D,x)
E

Di∼R
Di(xi)

 (8)

≤ E
x∼µ⊗m

E
D∼A

D(x) +
∑

i∈[m]\S(D,x)

R0(f)

 (9)

= E
x∼µ⊗m

E
D∼A

(D(x) + (m− |S(D,x)|)R0(f)) (10)

= T + (m− k)R0(f). (11)

Since B solves the direct sum problem on µ⊗m, the expected number of queries it uses is at least
mR0(f) by Theorem 7. Hence T + (m− k)R0(f) ≥ mR0(f), so T ≥ kR0(f).

4.2 Composition theorems

Using the direct sum and threshold direct sum theorems we have established, we can now prove
composition theorems for randomized sabotage complexity. We start with the behavior of RS itself
under composition.
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Theorem 9. Let f and g be partial functions. Then RS(f ◦ g) ≥ RS(f) RS(g).

Proof. Let A be any zero-error algorithm for (f ◦ g)sab, and let T be the expected query complexity
of A (maximized over all inputs). We turn A into a zero-error algorithm B for fsab.

B takes a sabotaged input x for f . It then runs A on a sabotaged input to f ◦ g constructed as
follows. Each 0 bit of x is replaced with a 0-input to g, each 1 bit of x is replaced with a 1-input to
g, and each ∗ or † of x is replaced with a sabotaged input to g. The sabotaged inputs are generated
from µ, the hard distribution for gsab obtained from Theorem 6. The 0-inputs are generated by first
generating a sabotaged input, and then selecting a 0-input consistent with that sabotaged input.
The 1-inputs are generated analogously.

This is implemented in the following way. On input x, the algorithm B generates n sabotaged
inputs from µ (the hard distribution for gsab), where n is the length of the string x. Call these
inputs y1, y2, . . . , yn. B then runs the algorithm A on this collection of n strings, pretending that it
is an input to f ◦ g, with the following caveat: whenever A tries to query a ∗ or † in an input yi,
B instead queries xi. If xi is 0, B selects an input from f−1(0) consistent with yi, and replaces yi
with this input. It then returns to A an answer consistent with the new yi. If xi is 1, B selects a
consistent input from f−1(1) instead. If xi is a ∗ or †, B returns a ∗ or † respectively.

Now B only makes queries to x when it finds a ∗ or † in an input to gsab. But this solves that
instance of gsab, which was drawn from the hard distribution for gsab. Thus the query complexity of
B is upper bounded by the number of instances of gsab that can be solved by a T -query algorithm
with access to n instances of gsab. We know from Theorem 8 that if A makes T expected queries,
the expected number of ∗ or † entries it finds among y1, y2, . . . , yn is at most T/RS(g). Hence the
expected number of queries B makes to x is at most T/RS(g). Thus we have RS(f) ≤ T/RS(g),
which gives T ≥ RS(f) RS(g).

Using this we can lower bound the randomized query complexity of composed functions. In the
following, fn denotes the function f composed with itself n times, i.e., f1 = f and f i+1 = f ◦ f i.

Corollary 11. Let f be a partial function. Then R(fn) ≥ RS(f)n/3.

This follows straightforwardly from observing that R(fn) = R1/3(fn) ≥ (1− 2/3) RS(fn) (using
Theorem 4) and RS(fn) ≥ RS(f)n (using Theorem 9).

We can also prove a composition theorem for zero-error and bounded-error randomized query
complexity in terms of randomized sabotage complexity. In particular this yields a composition
theorem for R(f ◦ g) when R(g) = Θ(RS(g)).

Theorem 10. Let f and g be partial functions. Then Rε(f ◦ g) ≥ Rε(f) RS(g).

Proof. The proof follows a similar argument to the proof of Theorem 9. Let A be a randomized
algorithm for f ◦ g that uses T expected queries and makes error ε. We turn A into an algorithm B
for f by having B generate inputs from µ, the hard distribution for gsab, and feeding them to A, as
before. The only difference is that this time, the input x to B is not a sabotaged input. This means
it has no ∗ or † entries, so all the sabotaged inputs that B generates turn into 0- or 1-inputs if A
tries to query a ∗ or † in them.

Since A uses T queries, by Theorem 8, it finds at most T/RS(g) asterisks or obelisks (in
expectation). Therefore, B makes at most T/RS(g) expected queries to x. Since B is correct
whenever A is correct, its error probability is at most ε. Thus Rε(f) ≤ T/RS(g), and thus
T ≥ Rε(f) RS(g).

Setting ε to 0 yields the following corollary.
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Corollary 12. Let f and g be partial functions. Then R0(f ◦ g) ≥ R0(f) RS(g).

For the more commonly used R(f ◦ g), we obtain the following composition result.

Corollary 13. Let f and g be partial functions. Then R(f ◦ g) ≥ R(f) RS(g)/10.

This follows from Lemma 4, which gives R1/3(f) ≥ R(f)/10, and Theorem 10, since R(f ◦ g) ≥
R1/3(f ◦ g) ≥ R1/3(f) RS(g) ≥ R(f) RS(g)/10.

Finally, we can also show an upper bound composition result for randomized sabotage complexity.

Theorem 11. Let f and g be partial functions. Then RS(f ◦ g) ≤ RS(f)R0(g). We also have
RS(f ◦ g) = O(RS(f)R(g) log RS(f)).

Proof. We describe a simple algorithm for finding a ∗ or † in an input to f ◦ g. Start by running
the optimal algorithm for the sabotage problem of f . This algorithm uses RS(f) expected queries.
Then whenever this algorithm tries to query a bit, run the optimal zero-error algorithm for g in the
corresponding input to g.

Now, since the input to f ◦ g that we are given is a sabotaged input, it must be consistent with
both a 0-input and a 1-input of f ◦ g. It follows that some of the g inputs are sabotaged, and
moreover, if we represent a sabotaged g-input by ∗ or †, a 0-input to g by 0, and a 1-input to g by
1, we get a sabotaged input to f . In other words, from the inputs to g we can derive a sabotaged
input for f .

This means that the outer algorithm runs uses an expected RS(f) calls to the inner algorithm,
and ends up calling the inner algorithm on a sabotaged input to g. Meanwhile, each call to the
inner algorithm uses an expected R0(g) queries, and will necessarily find a ∗ or † if the input it is
run on is sabotaged. Therefore, the described algorithm will always find a ∗ or †, and its expected
running time is RS(f)R0(g) by linearity of expectation and by the independence of the internal
randomness of the two algorithms.

Instead of using a zero-error randomized algorithm for g, we can use a bounded-error randomized
algorithm for g as long as its error probability is small. Since we make O(RS(f)) calls to the inner
algorithm, if we boost the bounded-error algorithm’s success probability to make the error much
smaller than 1/RS(f) (costing an additional log RS(f) factor), we will get a bounded-error algorithm
for (f ◦ g)sab. Since R((f ◦ g)sab) is the same as RS(f ◦ g) up to a constant factor (Theorem 3),

RS(f ◦ g) = O(RS(f)R(g) log RS(f)), (12)

as desired.

5 Composition with the index function

We now prove our main result (Theorem 1) restated more precisely as follows.

Theorem 1 (precise version). Let f and g be (partial) functions, and let m = Ω(R(g)1.1). Then
R(f ◦ Indm ◦ g) = Ω(R(f)R(g) logm) = Ω(R(f)R(Indm)R(g)).

Before proving this, we formally define the index function.

Definition 14 (Index function). The index function on m bits, denoted Indm : {0, 1}m → {0, 1},
is defined as follows. Let c be the largest integer such that c+ 2c ≤ m. For any input x ∈ {0, 1}m,
let y be the first c bits of x and let z = z0z1 · · · z2c−1 be the next 2c bits of x. If we interpret y as
the binary representation of an integer between 0 and 2c − 1, then the output of Indm(x) equals zy.
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To prove Theorem 1, we also require the strong direct product theorem for randomized query
complexity that was established by Drucker [Dru12].

Theorem 12 (Strong direct product). Let f be a partial Boolean function, and let k be a positive
integer. Then any randomized algorithm for f⊕k that uses at most γ3kR(f)/11 queries has success
probability at most (1/2 + γ)k, for any γ ∈ (0, 1/4).

The first step to proving R(f ◦ Ind ◦ g) = Ω(R(f)R(Ind)R(g)) is to establish that R(Ind ◦ g) is
essentially the same as RS(Ind ◦ g) if the index gadget is large enough.

Lemma 15. Let f be a partial Boolean function and let m = Ω(R(f)1.1). Then

RS(Indm ◦ f) = Ω(R(f) logm) = Ω(R(Indm)R(f)). (13)

Moreover, if f⊕cind is the defined as the index function on c+ 2c bits composed with f in only the first
c bits, we have RS(f⊕cind) ≥ RS1(f

⊕c
ind) = Ω(cR(f)) when c ≥ 1.1 logR(f).

Before proving Lemma 15, let us complete the proof of Theorem 1 assuming Lemma 15.

Proof of Theorem 1. By Corollary 13, we have R(f ◦Indm ◦g) ≥ R(f) RS(Indm ◦g)/10. Combining
this with Lemma 15 gives R(f ◦ Indm ◦ g) = Ω(R(f)R(g) logm), as desired.

We can now complete the argument by proving Lemma 15.

Proof of Lemma 15. To understand what the inputs to (Indm ◦ f)sab look like, let us first analyze
the function Indm. We can split an input to Indm into a small index section and a large array
section. To sabotage an input to Indm, it suffices to sabotage the array element that the index
points to (using only a single ∗ or †). It follows that to sabotage an input to Indm ◦ f , it suffices to
sabotage the input to f at the array element that the index points to. In other words, we consider
sabotaged inputs where the only stars in the input are in one array cell whose index is the output
of the first c copies of f , where c is the largest integer such that c+ 2c ≤ m.

We now convert any RS(Indm ◦ f) algorithm into a randomized algorithm for f⊕c. First, using
Lemma 1, we get a 2 RS(Indm ◦ f) query randomized algorithm that finds a ∗ or † with probability
1/2 if the input is sabotaged. Next, consider running this algorithm on a non-sabotaged input.
It makes 2 RS(Indm ◦ f) queries. With probability 1/2, one of these queries will be in the array
cell whose index is the true answer to f⊕c evaluated on the first cn bits. We can then consider
a new algorithm A that runs the above algorithm for 2 RS(Indm ◦ f) queries, then picks one of
the 2 RS(Indm ◦ f) queries at random, and if that query is in an array cell, it outputs the index
of that cell. Then A uses 2 RS(Indm ◦ f) queries and evaluates f⊕c with probability at least
RS(Indm ◦ f)−1/4.

Next, Theorem 12 implies that for any γ ∈ (0, 1/4), either A’s success probability is smaller
than (1/2 + γ)c, or else A uses at least γ3cR(f)/11 queries. This means either

RS(Indm ◦ f)−1/4 ≤ (1/2 + γ)c or 2 RS(Indm ◦ f) ≥ γ3cR(f)/11. (14)

Now if we choose γ = 0.01, it is clear that the second inequality in (14) yields RS(Indm ◦ f) =
Ω(cR(f)) = Ω(R(f) logm) for any value of c.

To obtain our lower bound, we show that the first inequality in (14) also yields the same. For
this, we can choose any c ≥ 1.1 logR(f). Now observe that the first inequality is equivalent to
RS(Indm ◦ f) = Ω(( 2

1+2γ )c) = Ω(R(f)1.1 log2(2/1.02)) = Ω(R(f)1.05), which is Ω(R(f) logR(f)).

The lower bound on RS1(f
⊕c
ind) follows similarly once we makes two observations. First, this

argument works equally well for f⊕cind instead of Indm ◦ f . Second, sabotaging the array cell indexed
by the outputs to the c copies of f in f⊕cind introduces only one asterisk or obelisk, so the argument
above lower bounds RS1(f

⊕c
ind) and not only RS(f⊕cind).
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6 Relating lifting theorems

In this section we establish Theorem 2, which proves that a lifting theorem for zero-error randomized
communication complexity implies one for bounded-error randomized communication complexity.

To begin, we introduce the two-party index gadget (also used in [GPW15]).

Definition 16 (Two-party index gadget). For any integer b > 0, and finite set Y, we define the

index function GInd : {0, 1}b × Y2b → Y as follows. Let (x, y) ∈ {0, 1}b × Y2b be an input to GInd.
Then if we interpret x as the binary representation of an integer between 0 and 2b − 1, the function
GInd(x, y) evaluates to yx, the xth bit of y. We also let Gb be the index function with Y = {0, 1}
and let G′b be the index function with Y = {0, 1, ∗, †}.

The index gadget is particularly useful in communication complexity because it is “complete”
for functions with a given value of min{|X |, |Y|}. More precisely, any problem F : X × Y → {0, 1}
can be reduced to Gb for b = dlog min{|X |, |Y|}e. To see this, say |X | ≤ |Y| and let |X | = 2b.
We now map every input (x, y) ∈ X × Y to an input (x′, y′) for Gb. Since X has size 2b, we can

view x as a string in {0, 1}b and set x′ = x. The string y′ = y′0y
′
1 · · · y′2b−1 ∈ {0, 1}

2b is defined as
y′x = F (x, y). Hence we can assume without loss of generality that a supposed lifting theorem for
zero-error protocols is proved using the two-party index gadget of some size.

Our first step is to lower bound the bounded-error randomized communication complexity of a
function in terms of the zero-error randomized communication complexity of a related function.

Lemma 17. Let f be an n-bit (partial) Boolean function and let Gb : {0, 1}b × {0, 1}2b → {0, 1} be
the index gadget with b = O(log n). Then

Rcc(f ◦Gb) = Ω

(
Rcc

0 (fusab ◦G′b)
log n log log n

)
, (15)

where G′b is the index gadget mapping {0, 1}b × {0, 1, ∗, †}2b to {0, 1, ∗, †}.

Proof. We will use a randomized protocol A for f ◦ Gb to construct a zero-error protocol B for
fusab ◦G′b. Note the given input to fusab ◦G′b must have a unique copy of G′b that evaluates to ∗ or
†, with all other copies evaluating to 0 or 1. The goal of B is to find this copy and determine if it
evaluates to ∗ or †. This will evaluate fusab ◦G′b with zero error.

Note that if we replace all ∗ and † symbols in Bob’s input with 0 or 1, we would get a valid
input to to f ◦Gb, which we can evaluate using A. Moreover, there is a single special ∗ or † in Bob’s
input that governs the value of this input to f ◦Gb. Without loss of generality, we assume that if
the special symbol is replaced by 0, the function f ◦Gb evaluates to 0, and if it is replaced by 1, it
evaluates to 1.

We can now binary search to find this special symbol. There are at most n2b asterisks and
obelisks in Bob’s input. We can set the left half to 0 and the right half to 1, and evaluate the
resulting input using A. If the answer is 0, the special symbol is on the left half; otherwise, it is
on the right half. We can proceed to binary search in this way, until we have zoomed in on one
gadget that must contain the special symbol. This requires narrowing down the search space from
n possible gadgets to 1, which requires log n rounds. Each round requires a call to A, times a
O(log logn) factor for error reduction. We can therefore find the right gadget with bounded error,
using O(Rcc(f ◦Gb) log n log log n) bits of communication.

Once we have found the right gadget, we can certify its validity by having Alice send the right
index to Bob, using b bits of communication. Since we found a certificate with constant probability,
we can use Lemma 5 to turn this into a zero-error algorithm. Thus

Rcc
0 (fusab ◦G′b) = O(b+Rcc(f ◦Gb) log n log log n). (16)
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Since b = O(log n), we obtain the desired result Rcc
0 (fusab ◦G′b) = O(Rcc(f ◦Gb) log n log log n).

Equipped with this lemma we can prove the connection between lifting theorems (Theorem 2),
stated more precisely as follows.

Theorem 2 (precise version). Suppose that for all partial Boolean functions f on n bits, we have

Rcc
0 (f ◦Gb) = Ω(R0(f)/ polylog n) (17)

with b = O(log n). Then for all partial functions Boolean functions, we also have

Rcc(f ◦G2b) = Ω(R(f)/polylog n). (18)

The polylog n loss in the Rcc result is only log n log log2 n worse than the loss in the Rcc
0 hypothesis.

Proof. First we show that for any function f and positive integer c,

Rcc(f ◦G2b) = Ω

(
Rcc(f⊕cind ◦G2b)

c log c

)
. (19)

To see this, note that we can solve f⊕cind ◦G2b by solving the c copies of f ◦G2b and then examining
the appropriate cell of the array. This uses cRcc(f ◦ G2b) bits of communication, times O(log c)
since we must amplify the randomized protocol to an error of O(1/c).

Next, using (19) and Lemma 17 on Rcc(f⊕cind ◦G2b), we get

Rcc(f ◦G2b) = Ω

(
Rcc(f⊕cind ◦G2b)

c log c

)
= Ω

(
Rcc

0 ((f⊕cind)usab ◦G′2b)
c log c log n log logn

)
. (20)

From here we want to use the assumed lifting theorem for R0. However, there is a technicality: the
gadget G′2b is not the standard index gadget, and the function (f⊕cind)usab does not have Boolean
alphabet. To remedy this, we use two bits to represent each of the symbols {0, 1, ∗, †}. Using this
representation, we define a new function (f⊕cind)binusab on twice as many bits.

We now compare (f⊕cind)binusab ◦Gb to (f⊕cind)usab ◦G′2b. Note that the former uses two pointers of
size b to index two bits, while the latter uses one pointer of size 2b to index one symbol in {0, 1, ∗, †}
(which is equivalent to two bits). It’s not hard to see that the former function is equivalent to the
latter function restricted to a promise. This means the communication complexity of the former is
smaller, and hence

Rcc
0 ((f⊕cind)usab ◦G′2b) = Ω(Rcc

0 ((f⊕cind)binusab ◦Gb)). (21)

We are now ready to use the assumed lifting theorem for R0. To be more precise, let’s suppose a
lifting result that states Rcc

0 (f ◦Gb) = Ω(R0(f)/`(n)) for some function `(n). Thus

Rcc
0 ((f⊕cind)binusab ◦Gb) = Ω(R0((f

⊕c
ind)binusab)/`(n)). (22)

We note that
R0((f

⊕c
ind)binusab) = Ω(R0((f

⊕c
ind)usab)) = Ω(RS1(f

⊕c
ind)). (23)

Setting c = 1.1 logR(f), we have RS1(f
⊕c
ind) = Ω(cR(f)) by Lemma 15. Combining this with (21),

(22), and (23), we get
Rcc

0 ((f⊕cind)usab ◦G′2b) = Ω(cR(f)/`(n)). (24)

Combining this with (20) yields

Rcc(f ◦G2b) = Ω

(
cR(f)

`(n)c log c log n log logn

)
= Ω

(
R(f)

`(n) log n log log2 n

)
. (25)

This gives the desired lifting theorem for bounded-error randomized communication with polylog n
loss that is at most log n log log2 n worse than the loss in the assumed Rcc

0 lifting theorem.
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7 Comparison with other lower bound methods

R

RS prt
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Figure 1: Lower bounds
on R(f).

In this section we compare RS(f) with other lower bound techniques for
bounded-error randomized query complexity. Figure 1 shows the two
most powerful lower bound techniques for R(f), the partition bound
(prt(f)) and quantum query complexity (Q(f)), which subsume all other
general lower bound techniques. The partition bound and quantum
query complexity are incomparable, since there are functions for which
the partition bound is larger, e.g., the Or function, and functions for
which quantum query complexity is larger [AKK16]. Another common

lower bound measure, approximate polynomial degree (d̃eg) is smaller
than both.

Randomized sabotage complexity (RS) can be much larger than the partition bound and quantum
query complexity as we now show. We also show that randomized sabotage complexity is always as
large as randomized certificate complexity (RC), which itself is larger than block sensitivity, another
common lower bound technique. Lastly, we also show that R0(f) = O(RS(f)2 log RS(f)), showing
that RS is a quadratically tight lower bound, even for zero-error randomized query complexity.

7.1 Partition bound and quantum query complexity

We start by showing the superiority of randomized sabotage complexity against the two best lower
bounds for R(f). Informally, what we show is that any separation between R(f) and a lower bound

measure like Q(f), prt(f), or d̃eg(f) readily gives a similar separation between RS(f) and the same
measure.

Theorem 13. There exist total functions f and g such that RS(f) ≥ prt(f)2−o(1) and RS(g) =

Ω̃(Q(g)2.5). There also exists a total function h with RS(h) ≥ d̃eg(h)4−o(1).

Proof. These separations were shown with R(f) in place of RS(f) in [ABK15] and [AKK16]. To
get a lower bound on RS, we can simply compose Ind with these functions and apply Lemma 15.
This increases RS to be the same as R (up to logarithmic factors), but it does not increase prt, d̃eg,
or Q more than logarithmically, so the desired separations follow.

As it turns out, we didn’t even need to compose Ind with these functions. It suffices to observe
that they all use the cheat sheet construction, and that an argument similar to the proof of Lemma 15
implies that RS(fCS) = Ω̃(R(f)) for all f (where fCS denotes the cheat sheet version of f , as defined
in [ABK15]). In particular, cheat sheets can never be used to separate RS from R (by more than
logarithmic factors).

7.2 Zero-error randomized query complexity

Theorem 14. Let f : {0, 1}n → {0, 1} be a total function. Then R0(f) = O(RS(f)2 log RS(f)) or
alternately, RS(f) = Ω(

√
R0(f)/ logR0(f)).

Proof. Let A be the RS(f) algorithm. The idea will be to run A on an input to x for long enough
that we can ensure it queries a bit in every sensitive block of x; this will mean A found a certificate
for x. That will allow us to turn the algorithm into a zero-error algorithm for f .

Let x be any input, and let b be a sensitive block of x. If we replace the bits of x specified by b
with stars, then we can find a ∗ with probability 1/2 by running A for 2 RS(f) queries by Lemma 1.
This means that if we run A on x for 2 RS(f) queries, it has at least 1/2 probability of querying a
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bit in any given sensitive block of x. If we repeat this k times, we get a 2kRS(f) query algorithm
that queries a bit in any given sensitive block of x with probability at least 1− 2−k.

Now, by [KT13], the number of sensitive blocks in x is at most RC(f)bs(f) for a total function
f . Our probability of querying a bit in all of these sensitive blocks is at least 1− 2−k RC(f)bs(f)

by the union bound. When k ≥ 1 + bs(f) log2 RC(f), this is at least 1/2. Since a bit from
every sensitive block is a certificate, by Lemma 5, we can turn this into a zero-error randomized
algorithm with expected query complexity at most 4(1 + bs(f) log2 RC(f)) RS(f), which gives
R0(f) = O(RS(f) bs(f) log RC(f)). Since bs(f) ≤ RC(f) = O(RS(f)) by Theorem 15, we have
R0(f) = O(RS(f)2 log RS(f)), or RS(f) = Ω(

√
R0(f)/ logR0(f)).

7.3 Randomized certificate complexity

Finally, we also show that randomized sabotage complexity upper bounds randomized certificate
complexity. To show this, we first define randomized certificate complexity.

Given a string x, a block is a set of bits of x (that is, a subset of {1, 2, . . . , n}). If B is a block
and x is a string, we denote by xB the string given by flipping the bits specified by B in the string
x. If x and xB are both in the domain of a (possibly partial) function f : {0, 1}n → {0, 1} and
f(x) 6= f(xB), we say that B is a sensitive block for x with respect to f .

For a string x in the domain f , the maximum number of disjoint sensitive blocks of x is called
the block sensitivity of x, denoted by bsx(f). The maximum of bsx(f) over all x in the domain of f
is the block sensitivity of f , denoted by bs(f).

A fractionally disjoint set of sensitive blocks of x is an assignment of non-negative weights to the
sensitive blocks of x such that for all i ∈ {1, 2, . . . , n}, the sum of the weights of blocks containing
i is at most 1. The maximum total weight of any fractionally disjoint set of sensitive blocks is
called the fractional block sensitivity of x. This is also sometimes called the randomized certificate
complexity of x, and is denoted by RCx(f). The maximum of this over all x in the domain of f is
RC(f) the randomized certificate complexity of f .

Aaronson [Aar08] observed that bsx(f) ≤ RCx(f) ≤ Cx(f). We therefore have

bs(f) ≤ RC(f) ≤ C(f) ≤ R0(f) ≤ D(f). (26)

The measure RC(f) is also a lower bound for R(f); indeed, from arguments in [Aar08] it follows
that Rε(f) ≥ RC(f)/(1− 2ε), so R(f) ≥ RC(f)/3.

Theorem 15. Let f : {0, 1}n → {0, 1} be a partial function. Then RS(f) ≥ RC(f)/4.

Proof. Let x be the input that maximizes RCx(f). Let b1, b2, . . . bm be the (not necessarily disjoint)
sensitive blocks of x. For each i = 1, 2, . . . ,m, let yi be the sabotaged input formed by replacing
block bi in x with ∗ entries. Finding a ∗ in an input chosen from Y = {y1, y2, . . . , ym} is a special
case of the sabotage problem for f , so it can be done in RS(f) expected queries.

We now use reasoning from [Aar08] to turn this into a non-adaptive algorithm. By Lemma 1,
after b2 RS(f)c queries, we find a ∗ with probability at least 1/2. For each t between 1 and
T = b2 RS(f)c, let pt be the probability that the adaptive algorithm finds a ∗ on the t query,
conditioned on the previous queries not finding a ∗. Then we have

p1 + p2 + · · ·+ pT ≥
1

2
. (27)

If we pick t ∈ {1, 2, . . . , T} uniformly and simulate query t of the adaptive algorithm, we must
find a ∗ with probability at least 1/(2T ) ≥ 1/(4 RS(f)). This is a non-adaptive algorithm for
finding a ∗, so it is also a non-adaptive algorithm for finding a difference from x. It follows that
1/RC(f) ≥ 1/(4 RS(f)), or RS(f) ≥ RC(f)/4.
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8 Deterministic sabotage complexity

Finally we look at the deterministic analogue of randomized sabotage complexity. It turns out that
deterministic sabotage complexity (as defined in Definition 8) is exactly the same as deterministic
query complexity for all (partial) functions. Since we already know perfect composition and direct
sum results for deterministic query complexity, it is unclear if deterministic sabotage complexity
has any applications.

Theorem 16. Let f : {0, 1}n → {0, 1} be a partial function. Then DS(f) = D(f).

Proof. For any function DS(f) ≤ D(f) since a deterministic algorithm that correctly computes f
must find a ∗ or † when run on a sabotaged input, otherwise its output is independent of how the
sabotaged bits are filled in.

To show the other direction, let D(f) = k. This means for every k − 1 query algorithm, there
are two inputs x and y with f(x) 6= f(y), such that they have the same answers to the queries made
by the algorithm. If this is not the case then this algorithm computes f(x), contradicting the fact
that D(f) = k. Thus if there is a deterministic algorithm for fsab that makes k − 1 queries, there
exist two inputs x and y with f(x) 6= f(y) that have the same answers to the queries made by the
algorithm. If we fill in the rest of the inputs bits with either asterisks or obelisks, it is clear that
this is a sabotaged input (since it can be completed to either x or y), but the purported algorithm
for fsab cannot distinguish them. Hence D(fsab) ≥ k, which means DS(f) ≥ D(f).
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A Properties of randomized algorithms

We now provide proofs of the properties described in Section 2, which we restate for convenience.

Lemma 1 (Markov’s Inequality). Let A be a randomized algorithm that makes T queries in
expectation (over its internal randomness). Then for any δ ∈ (0, 1), the algorithm A terminates
within bT/δc queries with probability at least 1− δ.

Proof. If A does not terminate within bT/δc queries, it must use at least bT/δc+ 1 queries. Let’s
say this happens with probability p. Then the expected number of queries used by A is at least
p(bT/δc+ 1) (using the fact that the number of queries used is always non-negative). We then get
T ≥ p(bT/δc+ 1) > pT/δ, or p < δ. Thus A terminates within T/δ queries with probability greater
than 1− δ.

Lemma 2 (Amplification). If f is a function with Boolean output and A is a randomized algorithm
for f with error ε < 1/2, repeating A several times and taking the majority vote of the outcomes

decreases the error. To reach error ε′ > 0, it suffices to repeat the algorithm 2 ln(1/ε′)
(1−2ε)2 times.

Proof. Let’s repeat A an odd number of times, say 2k+1. The error probability of A′, the algorithm
that takes the majority vote of these runs, is

k∑
i=0

(
2k + 1

i

)
ε2k+1−i(1− ε)i ≤ ε2k+1−k(1− ε)k

k∑
i=0

(
2k + 1

i

)
, (28)
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which is at most

εk+1(1− ε)k(22k+1/2) = εk+1(1− ε)k4k = ε(4ε(1− ε))k = ε(1− (1− 2ε)2)k. (29)

It suffices to choose k large enough so that ε(1− (1− 2ε)2)k ≤ ε′, or ln ε+ k ln(1− (1− 2ε)2) ≤ ln ε′.
Using the inequality ln(1−x) ≤ −x, it suffices to choose k so that k(1− 2ε)2 ≥ ln(1/ε′)− ln(1/ε), or

k ≥ ln(1/ε′)− ln(1/ε)

(1− 2ε)2
. (30)

In particular, we can choose

k =

⌈
ln(1/ε′)− ln(1/ε)

(1− 2ε)2

⌉
≤ ln(1/ε′)

(1− 2ε)2
+ 1− ln(1/ε)

(1− 2ε)2
. (31)

It is not hard to check that 3(1− 2ε)2 ≤ 2 ln(1/ε) for all ε ∈ (0, 1/2), so we can choose k to be at

most ln(1/ε′)
(1−2ε)2 − 1/2. This means 2k + 1 is at most 2 ln(1/ε′)

(1−2ε)2 , as desired.

Lemma 3. Let f be a partial function, δ > 0, and ε ∈ [0, 1/2). Then we have Rε+δ(f) ≤
1−2ε
2δ Rε(f) ≤ 1

2δRε(f).

Proof. Let A be the Rε(f) algorithm. Let B be the algorithm that runs A for bRε(f)/αc queries,
and if A doesn’t terminate, outputs 0 with probability 1/2 and 1 with probability 1/2. Then by
Lemma 1, the error probability of B is at most α/2 + (1− α)ε. If we let α = 2δ/(1− 2ε), then the
error probability of B is at most

δ

1− 2ε
+

(1− 2ε− 2δ)ε

1− 2ε
= ε+ δ, (32)

as desired. The number of queries made by B is at most bRε(f)/αc ≤ 1−2ε
2δ Rε(f) ≤ 1

2δRε(f).

Lemma 4. If f is a partial function, then for all ε ∈ (0, 12), we have Rε(f) ≤ 14 ln(1/ε)
(1−2ε)2Rε(f). When

ε = 1
3 , we can improve this to R(f) ≤ 10R(f).

Proof. Repeating an algorithm with error 1/3 three times decreases its error to 7/27, so in particular
R7/27(f) ≤ 3R(f). Then using Lemma 3 with ε+ δ = 1/3 and ε = 7/27, we get

R(f) ≤ 1− 14/27

2(1/3− 7/27)
R7/27(f) =

13

4
R7/27(f) ≤ 39

4
R(f) ≤ 10R(f). (33)

To deal with arbitrary ε, we need to use Lemma 2. It gives us Rε′(f) ≤ 2 ln(1/ε′)
(1−2ε)2 Rε(f). When

combined with Lemma 3, this gives

Rε′(f) ≤ 1− 2ε′

ε− ε′
ln(1/ε′)

(1− 2ε)2
Rε′(f). (34)

Setting ε = (1 + 4ε′)/6 (which is greater than ε′ if ε′ < 1/2) gives

Rε′(f) ≤ 27 ln(1/ε′)

2(1− 2ε′)2
Rε′(f) ≤ 14

ln(1/ε′)

(1− 2ε′)2
Rε′(f), (35)

which gives the desired result (after exchanging ε and ε′).
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Lemma 5. Let A be a randomized algorithm that uses T queries in expectation and finds a certificate
with probability 1− ε. Then repeating A when it fails to find a certificate turns it into an algorithm
that always finds a certificate (i.e., a zero-error algorithm) that uses at most T/(1− ε) queries in
expectation.

Proof. Let A′ be the algorithm that runs A, checks if it found a certificate, and repeats if it didn’t.
Let N1 be the random variable for the number of queries used by A′. We know that the maximum
number of queries A′ ever uses is the input size; it follows that E(N1) converges and is at most the
input size.

Let M1 be the random variable for the number of queries used by A in the first iteration. Let S1
be the Bernoulli random variable for the event that A fails to find a certificate. Then E(M1) = T
and E(S1) = ε. Let N2 be the random variable for the number of queries used by A′ starting from
the second iteration (conditional on the first iteration failing). Then

N1 = M1 + S1N2, (36)

so by linearity of expectation and independence,

E(N1) = E(M1) + E(S1)E(N2) = T + εE(N2) ≤ T + εE(N1). (37)

This implies
E(N1) ≤ T/(1− ε), (38)

as desired.

Lemma 6. Let f be a partial function. Let A be a randomized algorithm that solves f using at
most T expected queries and with error at most ε. For x, y ∈ Dom(f) if f(x) 6= f(y) then when A
is run on x, it must query an entry on which x differs from y with probability at least 1− 2ε.

Proof. Let p be the probability that A queries an entry on which x differs from y when it is run
on x. Let q be the probability that A outputs an invalid output for x given that it doesn’t query
a difference from y. Let r be the probability that A outputs an invalid output for y given that it
doesn’t query such a difference. Since one of these events always happens, we have q + r ≥ 1. Note
that A errs with probability at least (1− p)q when run on x and at least (1− p)r when run on y.
This means that (1− p)q ≤ ε and (1− p)r ≤ ε. Summing these gives 1− p ≤ (1− p)(q + r) ≤ 2ε, so
p ≥ 1− 2ε, as desired.

B Minimax theorem for bounded-error algorithms

We prove the following version of Yao’s minimax theorem for Rε(f).

Theorem 17. Let f be a partial function and ε ≥ 0. Then there exists a distribution µ over Dom(f)
such that any randomized algorithm A that computes f with error at most ε on all x ∈ Dom(f)
satisfies Ex∼µA(x) ≥ Rε(f), where A(x) is the expected number of queries made by A on x.

We note that Theorem 17 talks only about algorithms that successfully compute f (with error
ε) on all inputs, not just those sampled from µ. An alternative minimax theorem where the error is
with respect to the distribution µ can be found in [Ver98], although it loses constant factors.
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Proof. We think of a randomized algorithm as a probability vector over deterministic algorithms;
thus randomized algorithms lie in RN , where N is the number of deterministic decision trees. In
fact, the set S of randomized algorithms forms a simplex, which is a closed and bounded set.

Let errf,x(A) := Pr[A(x) 6= f(x)] be the probability of error of the randomized A when run
on x. Then it is not hard to see that errf,x(A) is a continuous function of A. Define errf (A) :=
maxx errf,x(A). Then errf (A) is also the maximum of a finite number of continuous functions, so it
is continuous.

Next consider the set of algorithms Sε := {A ∈ S : errf (A) ≤ ε}. Since errf (A) is a continuous
function and S is closed and bounded, it follows that Sε is closed and bounded, and hence compact.
It is also easy to check that Sε is convex. Let P be the set of probability distributions over Dom(f).
Then P is also compact and convex. Finally, consider the function α(A,µ) := Ex∼µED∼AD(x) that
accepts a randomized algorithm and a distribution as input, and returns the expected number
of queries the algorithm makes on that distribution. It is not hard to see that α is a continuous
function in both variables. In fact, α is linear in both variables by the linearity of expectation.

Since Sε and P are compact and convex subsets of the finite-dimensional spaces RN and RDom(f)

respectively, and the objective function α(·, ·) is linear, we can apply Sion’s minimax theorem (see
[Sio58] or [Wat16, Theorem 1.12]) to get

max
µ∈P

min
A∈Sε

α(A,µ) = min
A∈Sε

max
µ∈P

α(A,µ). (39)

The right hand side is simply the worst-case expected query complexity of any algorithm computing
f with error at most ε, which is Rε(f) by definition. The left hand side gives us a distribution µ
such that for any algorithm A that makes error at most ε on all x ∈ Dom(f), the expected number
of queries A makes on µ is at least Rε(f).

References

[Aar08] Scott Aaronson. Quantum certificate complexity. Journal of Computer and System
Sciences, 74(3):313 – 322, 2008. Computational Complexity 2003. doi:10.1016/j.jcss.

2007.06.020. [p. 16]

[ABB+16] Anurag Anshu, Aleksandrs Belovs, Shalev Ben-David, Mika Göös, Rahul Jain, Robin
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