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Abstract

We explicitly construct extractors for two independent n-bit sources of (log n)1+o(1) min-
entropy. Previous constructions required either polylog(n) min-entropy [CZ15, Mek15] or five
sources [Coh16].

Our result extends the breakthrough result of Chattopadhyay and Zuckerman [CZ15] and
uses the non-malleable extractor of Cohen [Coh16]. The main new ingredient in our construc-
tion is a somewhere-random condenser with a small entropy gap, used as a sampler. We con-
struct such somewhere-random condensers using the error reduction mechanism of Raz et al.
[RRV99] together with the high-error, constant degree dispersers of Zuckerman [Zuc06].
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1 Introduction

A graph G is K-Ramsey if it contains no clique or independent set of size K. In one of the first ap-
plications of the probabilistic method, Erdös showed [Erd47] that there are 2 logN -Ramsey graphs
over N vertices. Erdös raised the challenge of giving an explicit description of such a graph. A
related challenge is that of constructing a K-bipartite Ramsey graph, i.e., a bipartite graph with no
bipartite clique or bipartite independent set of size K. Any explicit bipartite Ramsey graph can be
translated into an explicit (non-bipartite) Ramsey graph with about the same parameters. Erdös’
probabilistic argument also shows that there are 2 logN -bipartite Ramsey graphs (where N is the
number of vertices on each side) and the problem is constructing such graphs explicitly.

From a computer science point of view, bipartite Ramsey graphs are equivalent to two-source
dispersers outputting one bit. More formally, a function Disp : [N ]× [N ]→ {0, 1} is a (zero-error)
two-sourceK-disperser if for every two setsA,B ⊆ [N ] of cardinality at leastK, Disp(A,B) = {0, 1}.
Such a disperser gives rise to a bipartite K-Ramsey graph with N vertices on each side.

A stronger notion is that of two-source extractors. A function Ext : [N ] × [N ] → {0, 1} is a
two-source k-extractor1 if for every two independent distributions A,B over [N ] with min-entropy
at least k, the bit Ext(A,B) has a small bias. One can see that every two-source k-extractor with
any nontrivial bias readily implies a two-source 2k-disperser, and thus also a bipartite 2k-Ramsey
graph.

Early research [Abb72, Nag75, Fra77, Chu81] culminated in the construction of 2k-Ramsey
graphs over 2n vertices, for k ≈ 2

√
logn [FW81] (see also [Nao92, Alo98, Gro01, Bar06] and [Gop06]).

Explictly constructing good two-source extractors was evidently more challenging. The inner
product function gives a simple (and powerful) solution when k > n/2 [CG88]. Bourgain [Bou05,
Rao07] gave a two-source extractor construction for k = 1

2 − α for some small constant α > 0. Raz
[Raz05] constructed a two-source extractor that has an unbalanced entropy requirement; the first
source should have more than n/2 min-entropy, while the second source’s min-entropy can be as
low as c · log n (for some constant c).

In a different line of research [BKS+10, BRSW12], the challenge-response mechanism was used
for the construction of K-Ramsey graphs for smaller K, culminating in explicitly constructing
2k-Ramsey graphs for k = polylog(n) [Coh15].

Due to the difficulty of constructing good two-source extractors, another research line focused
on extracting from multiple sources having low min-entropy, trying to minimize the number of
sources needed. This includes [BIW06, Rao09, Li11, Li13a, Li13b], with the later papers using
alternating extraction. Eventually, Chattopadhyay and Zuckerman [CZ15] used non-malleable
extractors to give a two-source extractor for k = polylog(n). We note that the main tool in con-
structing non-malleable extractors is alternating extraction.

Several improvements on the [CZ15] construction followed, including [Mek15, Li15]. Cohen
and Schulman [CS15] observed that all the above constructions assume poly-logarithmic min-
entropy, and managed to get the first multi-source construction for k = (log n)1+o(1). Chattopad-
hyay and Li [CL16] reduced the number of sources in such a construction to a constant and Cohen
[Coh16] put it on five. The main result in this paper is such a construction with only two sources:

1Throughout the paper we use uppercase letters, as K, to denote the set’s cardinality, and lowercase letters, as k, to
denote the corresponding min-entropy (K = 2k). Under this convention, if an extractor operates on n-bit sources, it
corresponds to a graph over N = 2n vertices.

1



Theorem 1.1. For every large enough n, there exists an explicit, constant-error, two-source extractor
2Ext : {0, 1}n × {0, 1}n → {0, 1} for min-entropy (log n)1+o(1).

This immediately implies an explicit construction of 2(logn)1+o(1)-bipartite Ramsey graphs with
2n vertices on each side.

1.1 An overview of the construction

Let us first recall the Chattopadhyay and Zuckerman [CZ15] construction. We are given x1, x2 ∈
[N ] sampled from two independent distributionsX1, X2 with min-entropy k1, k2, respectively. We
take a t-non-malleable (k2, ε2) extractor nmEXT : [N ]× [D]→ {0, 1} and write a D×1 table NM ,
where the rows are indexed by seeds y ∈ [D], and in row y we write NM [y] = nmEXT (x2, y).
By the properties of non-malleable extractors, we can divide the rows to good and bad such that
there are few bad rows and the good rows are close to being t-wise independent.

At this stage we would have liked to output f(NM [1], . . . , NM [D]) for some resilient func-
tion f that is willing to accept few bad players, and good players that are only close to being
t-wise independent. Of course, since no one-source extractor exists – there is no such a function f .
Nevertheless, Chattopadhyay and Zuckerman explore why this approach fails.

First, let us check the number of bad players, or equivalently, the number of bad rows in the
table. The number of rows is the number of possible seeds D, and the number of bad rows is
bounded by ε2D. Since we use a non-malleable extractor (or even if we just take an extractor)
we must have D ≥ (1

ε )2 (or in the more familiar form: d = logD ≥ 2 log(1
ε )) and therefore the

number of bad rows is necessarily higher than D
1
2 . However, if we take ε2 to be a small enough

polynomial in n, and if the non-malleable extractor has seed length dependence O(log n
ε2

), then
the number of bad players is D1−α for some constant α > 0, and there are resilient functions that
are willing to accept many bad players, as long as the good players are truly uniform.

Let us say f is (q, t) resilient if it is resilient even when there are q bad players and the good
players are only t-wise independent. Chattopadhyay and Zuckerman construct such a function
for q = R1−α bad players out of the R players and t = polylog(n); Viola [Vio14] showed that the
majority function can handle q = R

1
2
−α and t = O(1).

Yet, there are no one-source extractors, since in the table NM the good players are only (t, γ)
wise independent in the sense that every t good rows are γ-close to uniform. One may conclude
([AGM03], see Lemma 2.14) that NM is Dtγ-close to a distribution that is truly t-wise indepen-
dent, but the cost Dtγ is too large, in particular prohibiting any one source extractor.

Chattopadhyay and Zuckerman use the other source to bypass the problem. They use X1 to
sample rows from the table NM , i.e., they take a (k1, ε1) strong extractor Ext : [N ] × [R] → [D]
and output

2EXT (x1, x2) = f(NM [Ext(x1, 1)], . . . , NM [Ext(x1, R)])

= f(nmEXT (x2, Ext(x1, 1)), . . . , nmEXT (x2, Ext(x1, R))).

In other words, x1 samples R rows from the table NM , and we apply the resilient function
on the sample. Because extractors are good samplers, if k1 is large enough, almost all x1 sample
well, and the fraction of the bad players in the sampled rows will be about

√
ε2 + ε1 and each t

good players are t
√
ε2-close to uniform (the

√
ε2 appears because of averaging). We take ε2 � ε1,

so we can just think of
√
ε2 + ε1 as ε1 fraction of bad rows. If we take a small enough ε1 and an
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extractor with seed lengthO(log( nε1 )) we again get that, with high probability, the sample contains
at mostR1−α bad players out of theR players. Also, the good players are still close to being t-wise
independent. The same argument works as before, and we get that the interesting factor in the
bias of the resulting output bit is Rtγ = tRt

√
ε2. If we use only one source, R is a function of ε2,

thus making ε2 smaller does not help. Now, however, with two sources, R is a function of ε1 alone
and ε2 may be chosen after R is determined, so taking ε2 small enough, this error term becomes
small and the construction magically works!

The [CZ15] construction achieves k1 = k2 = polylog(n). This is because, as noted earlier, there
are at least R

1
2 bad players out of the R players. All the currently known (q, t) resilient functions

that handle q ≥ R
1
2 require t which is poly-logarithmic in R.

Cohen and Schulman [CS15] note that all previous explicit multi-source extractors (or dis-
persers) work with min-entropy at least log2 n. They were able to construct a multi-source extrac-
tor requiring only (log n)1+o(1) min-entropy using a new primitive called independence-preserving
merger. In a subsequent paper, Cohen [Coh16] shows a five-source extractor for min-entropy
(log n)1+o(1).2 This construction uses Majority as the resilient function and, informally speaking,
uses the other four sources to guarantee that the number of bad rows is at most R0.4. The main
advantage gained by using the majority function is that it is (q, t) resilient for some constant t.

The starting point of this paper is the observation that condensers with a small entropy gap
(that we soon define) are good samplers and their dependence on ε can get as small as 1 · log(1

ε ).
Let us first discuss the entropy gap notion.

Definition 1.2. A function Cond : {0, 1}n × {0, 1}d → {0, 1}m is a (n, k) →ε (m, k′) condenser if for
every (n, k)-source X , Cond(X,Ud) is ε-close to a distribution with min-entropy k′. The entropy loss of
the condenser is k + d− k′ and the entropy gap is m− k′.

Dodis et al. [DPW14] observe that for entropy gap 1, non-explicit constructions achieve en-
tropy loss which is only log log(1

ε ) + O(1) (compare with entropy loss 2 log(1
ε ) when there is no

entropy gap). They show that condensers with small entropy gap are still good samplers when
the test set is small (see Lemma 4.4). Dodis et al. use this property for key derivation without
entropy waste. They show that in non-explicit constructions the seed length dependence on the
error is 1 · log(1

ε ) (rather than the 2 log(1
ε ) in extractors).

As condensers with a small entropy gap are good samplers, and their seed length dependence
on ε is log(1

ε ), it is not difficult to see that if one replaces the extractor in [CZ15] with such a
condenser, and uses Majority, the construction works with (log n)1+o(1) min-entropy.3

Unfortunately, we are not aware of an explicit construction achieving a small entropy gap and
seed length less than 2 log(1

ε ). We remark that the GUV condenser [GUV09] has dependence log(1
ε )

on the error but a very large entropy gap.
We bypass this problem by constructing a somewhere-random condenser with a constant number

of blocks, very small entropy gap, and dependence (1 + α) log(1
ε ) on the error, for some constant

α < 1. The idea is to start with an extractor that has the wrong dependence on the error, and
amplify its error to a very small ε, in an efficient way that gives dependence smaller than 2 log(1

ε ).
We use the error reduction scheme suggested by Raz et al. [RRV99] that works by sampling (with
a sampler) a constant number of seeds and outputting all the corresponding outputs of E. They

2In fact, four sources suffice for the construction, because the fourth source is redundant as the advice correlation
breaker works also with a weak dense seed.

3The min-entropy becomes logarithmic when using non-malleable extractors with the “correct” seed length.
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show the obtained structure is a somewhere-random source with a small entropy gap and very
low error. The sampler used in [RRV99] is obtained by taking a random walk (of constant length)
on an expander. The analysis shows that such a reduction has dependence at least 2 log(1

ε ) on the
error. Instead, we observe that what is needed in the reduction is a disperser with a very large error
(i.e., the image of any large enough set is not contained in any small set), and for the parameters we
need, Zuckerman [Zuc06] already constructed such dispersers having a constant degree!4 Using
his dispersers in the error reduction scheme, we get the desired somewhere random condensers.

Having that, we go back to the [CZ15] construction, and replace the extractor EXT with a
somewhere-random condenser. As we use a somewhere-random condenser rather than a con-
denser, when x1 samples the rows of NM , we get an R × A table (rather than an R × 1 table as
before) where A is the number of blocks and is a constant. The property of this table is that the
number of bad rows is at most R0.4, and the good rows are, informally speaking, t-wise some-
where random. Here we apply another trick from [Coh16]: We take the parity of each row and
apply the resilient function on it. The result is an almost balanced bit and we are done.

2 Definitions and preliminaries

Throughout the paper we have the convention that lowercase variables are the logarithm (in base-
2) of their corresponding uppercase variables, e.g., n = logN , d = logD, a = logA, r = logR,
r′ = logR′, etc. The density of a set B ⊆ [D] is ρ(B) = |B|

D .

2.1 Random variables, min-entropy

The statistical distance between two distributions X and Y on the same domain D is defined as
|X − Y | = maxA⊆D(Pr[X ∈ A] − Pr[Y ∈ A]). If |X − Y | ≤ ε we say that X is ε-close to Y and
denote it by X ≈ε Y . We will denote by Un a random variable distributed uniformly over {0, 1}n
and which is independent of all other variables. We also say that a random variable is flat if it is
uniform over its support.

For a function f : D1 → D2 and a random variable X distributed over D1, f(X) is the random
variable, distributed over D2, which is obtained by choosing x according to X and computing
f(x). For a set A ⊆ D1, we simply denote f(A) = {f(x) | x ∈ A}. It is well-known that for every
f : D1 → D2 and two random variablesX and Y , distributed overD1, it holds that |f(X)−f(Y )| ≤
|X − Y |.

The min-entropy of a random variable X is defined by

H∞(X) = min
x∈Supp(X)

log
1

Pr[X = x]
.

For ε ≥ 0, the smooth min-entropy Hε
∞(X) is the supremum of H∞(X ′) over all distributions X ′

such that |X −X ′| ≤ ε.
We will call a random variableX distributed over {0, 1}n with min-entropy at least k an (n, k)-

source. Every distribution X with H∞(X) ≥ k can be expressed as a convex combination of flat
distributions, each with min-entropy at least k. We have the following easy claim:

Claim 2.1. If H1/2
∞ (X) ≥ k then the support of X is at least 2k−1.

4Usually, the degree has to be logarithmic, but for the special parameters we need, which are also the parameters
needed for [Zuc06], the degree may be constant.
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2.2 Somewhere-random sources

Definition 2.2 (somewhere-random source). A source X = X1 ◦ . . . ◦XA is a (k, (α, β)) somewhere-
random (s.r.) source if there is a random variable I ∈ {0, . . . , A} such that for every i ∈ [A], Hα

∞(Xi|I =
i) ≥ k and Pr[I = 0] ≤ β. If α = β = 0 we say X is a k s.r. source.

Claim 2.3. Let X be a (k, α, β) s.r. source. Then, X is (α+ β)-close to a k s.r. source.

Definition 2.4. We say X is an (n, k, ζ) s.r. source if X is ζ-close to a k s.r. source over {0, 1}n.

Intuitively, it is often convenient to think of a k s.r. source X = X1 ◦ . . . ◦ XA as if one of the
blocksXi is having k min-entropy, and the other blocks are arbitrarily correlated with it. Formally,
X is a k s.r. source if it is a convex combination of such sources.

2.3 Dispersers, extractors and s.r. condensers

Definition 2.5 (disperser). A function Γ : [N ] × [D] → [M ] is a (k, ε) disperser if for every A ⊆ [N ]

with |A| ≥ 2k,
∣∣∣⋃i∈[D] Γ(A, i)

∣∣∣ ≥ (1− ε)M .

Definition 2.6 (extractor). A function Ext : [N ] × [D] → [M ] is a (k, ε) strong extractor if for every
(n, k)-source X , and for Y that is uniform over [D], Y ◦ Ext(X,Y ) ≈ε Y × U .

Theorem 2.7 (The GUV extractor, [GUV09]). There exists a universal constant cGUV > 0 such that the
following holds. For all positive integers n, k and ε > 0 there exists an efficiently-computable (k, ε) strong
seeded extractor Ext : [N ]× [D]→ [M ] having seed length d = cGUV log n

ε and m = k
2 output bits.

Definition 2.8 (two-source extractor). A function 2Ext : [N1]×[N2]→ [M ] is an ((n1, k1), (n2, k2), ε)
two-source extractor if for every two independent sources X1 and X2 where X1 is an (n1, k1)-source and
X2 is an (n2, k2)-source, it holds that 2Ext(X1, X2) ≈ε Um.

Definition 2.9 (s.r. condenser, condenser). A function SRC : [N ]× [D]× [A]→ [M ] is a (k → k′, ζ)
s.r. condenser if for every (n, k)-sourceX it holds that SRC(X,U) = SRC(X,U, 1)◦ . . .◦SRC(X,U,A)
is ζ-close to a k′ s.r. source. D is the degree of the s.r. condenser, and A is its number of blocks. If D = 1
(i.e., d = 0) we say SRC is seedless. A condenser is a s.r. condenser with just one block.

2.4 Extremely large error s.r condensers and dispersers

A s.r. condenser implies a disperser with a large error (see, e.g., [Zuc06]). Concretely,

Lemma 2.10. Suppose SRC : [N ] × [D] × [A] → [M ] is a (k → k′, ζ = 1
2) s.r. condenser. Define

Γ : [N ]×[D ·A]→ [M ] by Γ(x; (y, a)) = SRC(x, y, a). Then, Γ is a (k, 1−α) disperser for α = 2k
′−1−m.

Proof: Let B ⊆ [N ] be an arbitrary set such that |B| ≥ 2k. Then, SRC(B,Ud) = SRC(B,Ud, 1) ◦
. . . ◦ SRC(B,Ud, A) is (k′, ζ = 1

2) s.r., with some indicator random variable I . Pick any index i 6= 0
in the support of I . Then, conditioned on I = i, we have that C(B,Ud, i) is 1/2-close to a k′ source.
Thus, by Claim 2.1, conditioned on I = i, C(B,Ud, i) covers at least 2k

′−1 vertices from [M ]. But
then, even without the conditioning, C(B,Ud, i) covers at least 2k

′−1 vertices from [M ]. Therefore,
|Γ(B, [D ·A])| ≥ 2k

′−1 = αM , as required.

Zuckerman [Zuc06], using additive number theory and extending earlier results, showed:
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Theorem 2.11 ([Zuc06], Theorem 8.3). There exist two constants 0 < c1 < c2 < 1, a constant γ > 0
and a (c1n→ c2m,N

−γ) s.r. seedless condenser with just two blocks

SRC : [N ]× [1]× [A = 2]→ [M = N2/3].

With that Zuckerman constructs dispersers with very large error, but constant degree. Specifi-
cally,

Theorem 2.12 ([Zuc06], Theorem 1.9). For all constant c1, c2 > 0 and ζ = ζ(n) > 0 there exists an
efficient family of (k = c1n, 1− ζ) dispersers

Γ : [N ]× [D]→ [M = K1−c2 ]

with degree D = O( n
log 1

ζ

).

2.5 Limited independence and non-oblivious bit-fixing sources

Definition 2.13. A distribution X over Σn is called (t, γ)-wise independent if the restriction of X to every
t coordinates is γ-close to UΣt .

Alon et al. proved:

Lemma 2.14 ([AGM03]). Let X be a distribution over {0, 1}n that is (t, γ)-wise independent. Then, X is
(ntγ)-close to a t-wise independent distribution.

Definition 2.15. A source X over {0, 1}n is called a (q, t, γ) non-oblivious bit-fixing source if there exists
a subset Q ⊆ [n] of size at most q such that the joint distribution of the bits in [n] \ Q is (t, γ)-wise
independent. The bits in Q are allowed to arbitrarily depend on the bits in [n] \Q.

Definition 2.16. Let f : {0, 1}n → {0, 1}, D a distribution over {0, 1}n and Q ⊆ [n]. Let IQ,D(f) denote
the probability that f is undetermined when the variables outsideQ are sampled fromD. We define Iq,t,γ(f)
to be the maximum of IQ,D(f) over all Q ⊆ [n] of size q and all D that is a (t, γ) independent distribution.

We say that f is (t, γ)-independent (q, ε)-resilient if Iq,t,γ(f) ≤ ε.

Resilient functions are exactly deterministic extractors against non-oblivious bit-fixing sources
outputting one bit. Chattopadhyay and Zuckerman [CZ15] derandomized the Ajtai-Linial func-
tion [AL93] and constructed a (monotone) resilient function that handles q = n1−α for any constant
α. Their construction was later improved in [Mek15]. Following [CS15, Coh16] we work hard to be
able to use the majority function as the resilient function. The work of Viola [Vio14] shows that for
every α > 0, the majority function on n bits is (t, 0)-independent (n1/2−α, O( log t

t + n−α))-resilient.
Combining this with Lemma 2.14, we conclude:

Lemma 2.17. There exists a constant cMAJ such that for every α > 0 and a (q = n
1
2
−α, t, γ) non-oblivious

bit-fixing source X on n bits,∣∣∣∣Pr[Maj(X1, . . . , Xn) = 1]− 1

2

∣∣∣∣ ≤ cMAJ ·
(

log t

t
+ n−α + γnt

)
.
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2.6 Non-malleable extractors

Definition 2.18. A function nmExt : [N ]× [D]→ [M ] is a (k, ε) t-non-malleable extractor, if for every
(n, k)-source X , Y that is uniform over [D] and every deterministic functions f1, . . . , ft : [D]→ [D] with
no fixed-point it holds that:

(nmExt(X,Y ), nmExt(X, f1(Y )), . . . , nmExt(X, ft(Y ), Y ) ≈ε
(Um, nmExt(X, f1(Y )), . . . , nmExt(X, ft(Y ), Y ).

Cohen [Coh16] proved:

Theorem 2.19 ([Coh16], Theorem 12.1). There exist constants c1, c2 ≥ 1 such that the following holds.

Given n and ε > 0, set d = c1 log n + log(1/ε) · c
√

log log(1/ε)
1 . For every n and ε > 0 there exists an

efficiently-computable (k = c2d, ε) 1–non-malleable extractor nmExt : [N ]× [D]→ [K1/4].

The construction of Cohen’s non-malleable extractor heavily relies on his construction of a
correlation-breaker with advice – an object we shall not introduce here. Using a t-correlation breaker
with advice gives rise to a non-malleable extractor with t adversarial functions. Taking t to be a
constant and outputting only one bit, we obtain the corollary we shall require:

Corollary 2.20. For any constant t there exist constants c1, c2 ≥ 1 such that the following holds. For
any integer n and for any ε > 0, there exists an efficiently-computable (k = c2d, ε) t-non-malleable

extractor nmExt : [N ] × [D] → {0, 1} with seed length d = c1 log n + log(1/ε) · c
√

log log(1/ε)
1 =

O(log n) + (log(1/ε))1+o(1).

We will need the following lemma concerning the existence of a set of good seeds of a non-
malleable extractor, given in [CZ15].

Lemma 2.21 ([CZ15], Lemma 3.5). Let nmExt : [N ] × [D] → {0, 1} be a (k, ε) t–non-malleable
extractor. Let X be any (n, k)-source. There exists a subset R ⊆ [D], |R| ≥ (1 −

√
ε)D such that for any

distinct r1, . . . , rt ∈ R,

(nmExt(X, r1), . . . , nmExt(X, rt)) ≈5t
√
ε Ut.

Specifically, R = [D] \BAD where BAD is the set defined by

BAD = {r ∈ [D] | ∃ distinct r1, . . . , rt ∈ [D], ∀i ∈ [t] ri 6= r, |(nmExt(X, r),
nmExt(X, r1), . . . , nmExt(X, rt))− (U1, nmExt(X, r1), . . . , nmExt(X, rt))| >

√
ε}.

We will also use the following lemma, which is a simple generalization of a one given in
[CZ15].

Lemma 2.22. Let X1, . . . , Xt, Y1, . . . , Yk be Boolean random variables. Further suppose that for any i ∈
[t], (

Xi, {Xj}j 6=i , Y1, . . . , Yk

)
≈ε
(
U1, {Xj}j 6=i , Y1, . . . , Yk

)
.

Then, (X1, . . . , Xt, Y1, . . . , Yk) ≈5tε (Ut, Y1, . . . , Yk).
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3 From large-error dispersers to low-error s.r. condensers

In this section we construct a (very) low-error s.r. condenser with seed length that is almost opti-
mal in the small error. Specifically, the dependence of the seed length on the error is (1+α) · log(1

ε )
for arbitrarily small α > 0. Furthermore, the entropy gap of the s.r. condenser is small (O(log(1

ε ))).

Theorem 3.1. For every constant 0 < α < 1, there exists a constant A such that for every m = m(n) ≤ n
and 0 < ε = ε(n) ≤ ( 1

n)4cGUV there exists an explicit SRC : [N ] × [R′] × [A] → [M ] that is a
(k = 2m+ log(1

ε )→ m− 2 log(1
ε )−O(a), ε) s.r. condenser with r′ = (1 + α) log(1

ε ).

Notice that the s.r. condenser achieves the small error ε using only a constant number of blocks,
a small entropy gap (i.e., the min-entropy in the s.r. source is close to the block length) and a seed
length close to log(1

ε ).
We first give an intuitive sketch of the proof. We start with an extractor Ext : [N ]× [R]→ [M ]

that has a relatively small seed length (say, 0.5 log(1
ε )) and “too high” error ε0 = ε1/c for some

constant c. Such extractors exist, e.g., by [GUV09]. We use the [RRV99] framework to reduce the
error to ε. [RRV99] argue that when we fix some high-entropy input distribution X there are two
possible reasons for an error:

• Bad inputs x ∈ Supp(X) for which many seeds y ∈ [R] fall to high-weight elements (where
high-weight is defined with respect to ε), and,

• Inputs x ∈ Supp(X) that fall to high-weight elements with about the right frequency that is
expected for error ε0.

It is easy to deal with the first case: Just start with a distribution with log(1
ε ) additional min-

entropy, and then the bad elements are “drawn” among all the elements inX . One way of dealing
with the second case is using O(1) independent seeds and arguing that one of them is good ex-
cept for error ε. Indeed, [RRV99] prove the resulting distribution is a s.r. source, and then use a
merger to merge it. Further, [RRV99] show that independent samples are not necessary, and any
good sampler with a constant size sample set would do. [RRV99] use a short random walk on
expanders. They then merge the resulting s.r. source, and get an extractor.

We are interested in getting a s.r. condenser (because we want to avoid the extra seed length
required by the merger) and so we skip the merging step. Yet, the [RRV99] reduction with the
expander random walk is too expansive for us, because it necessarily requires seed length that is
at least 2 log(1

ε ). The key observation is that our construction requires dispersers with error very
close to 1 (or put differently: the tests are extremely small) and using the low-degree, large-error
dispersers constructed by Zuckerman [Zuc06] gives a much better dependence on the error. We
now proceed with a rigorous proof.

Proof: For the proof we use the following ingredients:

• We use the GUV extractor with ε0 = ε
1

4cGUV and notice that ε0 ≤ 1
n . Specifically,

Ext : [N ]× [R]→ [M ]

is an explicit (2m, ε0) strong extractor with r = cGUV log n
ε0
≤ 2cGUV log 1

ε0
= 1

2 log(1
ε ). See

Theorem 2.7.
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• Set r′ = (1 + α) log(1
ε ) and take

Γ : [R′]× [A]→ [R = (R′)
1
4 ]

to be the
(

α
1+αr

′, δ = 1− 2ε0

)
disperser guaranteed by Theorem 2.12, when plugging-in c1 =

α
1+α , ζ = 2ε0 and c2 = 1

2 . Notice that K
1
2 = (R′)

1
2

α
1+α ≥ (R′)

1
4 . The degree is then A =

O

(
r′

log 1
2ε0

)
= O

(
(1+α) log( 1

ε
)

1
4cGUV

log( 1
ε

)

)
= O(1).

We define SRC : [N ]× [R′]× [A]→ [M ] by:

SRC(x, y′, z) = Ext(x,Γ(y′, z)).

To prove correctness, assume X is an (n, k = 2m + log 1
ε )-source. W.l.o.g., X is flat (because

otherwise it is a convex combination of such sources). Let ∆ = 4A
ε . We define the set of ∆-heavy

elements w ∈ [M ] by:

H =

{
w ∈ [M ] | Pr[Ext(X,Ur) = w] ≥ ∆

M

}
.

We claim:

Claim 3.2. |H| < 2ε0
∆ M .

Proof: Notice that |H| · ∆
M ≤ Pr[Ext(X,Ur) ∈ H] ≤ |H|

M + ε0, where the upper bound follows
because Ext(X,Ur) is ε0-close to uniform. Thus |H|M (∆− 1) ≤ ε0 and |H| ≤ ε0

∆−1M < 2ε0
∆ M .

Next we define the set of bad inputs x ∈ Supp(X) by:

BadX =

{
x ∈ [N ] | Pr

y∼Ur
[Ext(x, y) ∈ H] ≥

(
1 +

2

∆

)
ε0

}
.

Claim 3.3. |BadX| < 22m.

Proof: Suppose |BadX| ≥ 22m. Let B be uniformly distributed over BadX . Then Ext(B,Ur) is
ε0-close to uniform, and therefore(

1 +
2

∆

)
ε0 ≤ Pr

x∼B,y∼Ur
[Ext(x, y) ∈ H] ≤ |H|

M
+ ε0.

But then 2ε0
∆ ≤

|H|
M – a contradiction to the previous claim.

Let I be the following random variable: For x ∈ [N ] and y′ ∈ [R′], I(x, y′) is an arbitrary z ∈ [A]
such that Ext(x,Γ(y′, z)) /∈ H if such a z exists, and 0 otherwise. Let I ′ be the same as I except
that all z with Pr[I = z] ≤ 4

∆ will be declared zero in I ′.

Claim 3.4.

• Pr[I = 0] ≤ 2ε.
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• Pr[I ′ = 0] ≤ 3ε.

• For every z ∈ [A], H∞(Ext(X,Γ(Ur′ , I
′))|I ′ = z) ≥ m− 2 log ∆ + 2.

Proof: For the first item, Pr[I = 0] ≤ Pr[X ∈ BadX] + Pr[I = 0|X /∈ BadX].

• Clearly, Pr[X ∈ BadX] ≤ |BadX| · 2−(2m+log( 1
ε

)) ≤ ε.

• Fix an element x /∈ BadX and call y ∈ [R] bad for x if Ext(x, y) ∈ H. As x /∈ BadX , the
number of seeds y that are bad for x is at most (1+ 2

∆)ε0R ≤ 2ε0R. Notice that (I = 0|X = x)
if some y′ ∈ [R′] was chosen such that Γ(y′, 1), . . . ,Γ(y′, A) are all bad for x. Since Γ is a
( α

1+αr
′, 1 − 2ε0) disperser (i.e., Γ is a disperser for very large error), the number of such y′-s

is at most (R′)
α

1+α . Hence, Pr[I = 0|X /∈ BadX] ≤ (R′)
α

1+α

R′ = (R′)−(1− α
1+α

) = (ε1+α)
1

1+α = ε,
as desired.

For the second item, Pr[I ′ = 0] ≤ Pr[I = 0] + 4A
∆ = 3ε.

For the third item, let w be in the support of Ext(X,Γ(Ur′ , z)). Then,

Pr[Ext(X,Γ(Ur′ , z)) = w|I ′ = z] ≤ ∆

M
· 1

Pr[I ′ = z]
.

Thus, and for every z ∈ [A] in the support of I ′,

H∞(Ext(X,Γ(Ur′ , I
′)) | I ′ = z) ≥ m− 2 log ∆ + 2,

concluding our proof.

4 Form s.r. condensers to s.r. samplers

Extractors are good samplers, in the sense that if E is a (k, ε) extractor, then for every test S, we
have that Pr(E(X,U) ∈ S) deviates from the density of S by at most ε. However, extractors are
quite limited in the parameters they can achieve and in particular require seed length that is at
least 2 log(1

ε ) [RTS00]. Dodis, Pietrzak and Wichs [DPW14] observed that if we are only interested
in fooling sparse tests, it suffices to use condensers with a small entropy gap. Moreover, Dodis
et al. note that such condensers can bypass the severe limitations that confine extractors. In this
section, we show that the Dodis et al. result carries over to s.r. condensers and we obtain explicit s.r.
samplers with the parameters we need, and in particular seed length that is smaller than 2 log(1

ε ).

Definition 4.1 (sampler). Fix S : [N ]× [R′]→ [D].

• We say x ∈ [N ] is (c, ε) bad for B ⊆ [D] if Pry′∈[R′][S(x, y′) ∈ B] > cρ(B) + ε.

• We say S is a (K; c, ε) sampler if for every B ⊆ [D],

| {x ∈ [N ] | x is (c, ε) bad for B} | < K.

Definition 4.2 (s.r. sampler). Fix S : [N ]× [R′]× [A]→ [D].
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• We say x ∈ [N ] is (c, ε) bad for B ⊆ [D] if Pry∈[R′][∀z∈AS(x, y′, z) ∈ B] > cρ(B) + ε.

• We say S is a (K; c, ε) s.r. sampler if for every B ⊆ [D],

| {x ∈ [N ] | x is (c, ε) bad for B} | < K.

Definition 4.3. We say S : [N ]× [R′]× [A]→ [D] is simple if for every x ∈ [N ], and every y′1, y
′
2 ∈ [R′],

z1, z2 ∈ [A], if (y′1, z1) 6= (y′2, z2) then S(x, y′1, z1) 6= S(x, y′2, z2).

The following lemma is based on [DPW14].

Lemma 4.4. If Z is a (d, d− g)-source then for every set S ⊆ [D],

Pr[Z ∈ S] ≤ 2g · ρ(S)

Proof: If Z is flat, then the probability that Z is in S is bounded by the density of S inside the
support of Z, i.e., it is at most |S|

Supp(Z)| = |S|
2d−g

= 2g · ρ(S). Since every (d, d− g)-source is a convex
combination of such flat sources, the lemma follows.

Lemma 4.5. If X = X1 ◦ . . . ◦XA is a (d, d− g, ζ)-s.r. source then for every set B ⊆ [D],

Pr
x∼X

[ ∀z∈[A] Xz ∈ B] ≤ 2g · ρ(B) + ζ

Proof: X is ζ-close to a (d, d− g) s.r. source X ′. Let I be an indicator of X ′.

Pr [ ∀z∈[A] X
′
z ∈ B] ≤

A∑
i=1

Pr[I = i] · Pr
x∼X′

[ ∀z∈[A] X
′
z ∈ B | I = i]

≤
A∑
i=1

Pr[I = i] · Pr [ X ′z ∈ B | I = z]

≤
A∑
i=1

Pr[I = i] · 2g · ρ(B) ≤ 2g · ρ(B),

where the third inequality follows from Lemma 4.4.

Theorem 4.6. If C : [N ]× [R′]× [A]→ [D] is a (k → d− g, ε) s.r. condenser then C is a (2k; 2g, ε) s.r.
sampler.

Proof: Let B ⊆ [D], and let BAD denote the set of elements in [N ] that are (2g, ε) bad for B. If
|BAD| ≥ K, then C(BAD,U) is a (d, d− g, ε) s.r. source. By Lemma 4.5,

Pr
x∈BAD,y′∈[R′]

[ ∀z∈[A] C(x, y′)z ∈ B] ≤ 2g · ρ(B) + ε.

Therefore, there must exist at least one x ∈ BAD such that Pry′∈[R′][∀z∈[A] C(x, y′)z ∈ B] ≤ 2g ·
ρ(B) + ε, in contradiction to the definition of BAD. Thus, |BAD| < K, as required.

We now instantiate Theorem 4.6 with the s.r. condenser from Theorem 3.1 to obtain:
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Theorem 4.7. For every constant 0 < α < 1 and d = d(n) ≤ n there exist constants A, cmult, cε and an
explicit

S : [N ]× [R′]× [A]→ [D]

that is a (K = D2; c ≤ 1
εcmult , ε = ( 1

n)cε) simple s.r. sampler with r′ = (1 + α) log(1
ε ).

Proof: We are given α. Set A to be the constant A = A(α) given in Theorem 3.1. Set cε = 4cGUV ,
ε = ( 1

n)cε and let r′ = (1 + α) log(1
ε ). Given d, set m = d−A− r′. Let

SRC : [N ]× [R′]× [A]→ [M ]

denote the (2m + log(1
ε ) → m − 2 log(1

ε ) − O(logA), ε) s.r. condenser from Theorem 3.1. Define a
new condenser

S : [N ]× [R′]× [A]→ [R′]× [A]× [M ]

by
S(x, y′, z) = (y′, z, SRC(x, y′, z)).

It is immediate that S is simple. Notice that M ·R′ ·A = D. By Theorem 4.6, S is a (22m+log( 1
ε

); c =

2m+r′+a−(m−2 log( 1
ε

)−O(a)), ε) s.r sampler, and:

• 22m+log( 1
ε

) = M2

ε ≤ (MR′)2 ≤ D2 = K.

• c = 2m+r′+a−(m−2 log( 1
ε

)−O(a)) ≤ 2r
′+2 log( 1

ε
)+O(a) = 2(3+α) log( 1

ε
)+O(a) ≤ ε−cmult for some con-

stant cmult (for example, one may take cmult = 4).

5 From s.r. samplers to two-source extractors: Extending the CZ ap-
proach

In this section we prove:

Theorem 5.1 (Theorem 1.1 restated). For every constant ε > 0 there exists a constant c such that
for every large enough integer n, there exists an explicit ((n, k1), (n, k2), ε) two-source extractor 2Ext :

{0, 1}n × {0, 1}n → {0, 1} for any k1, k2 ≥ c · log(1/n) · c
√

log logn.

The proof closely follows the intuition given in the introduction, but makes it rigorous and as
a result many parameters enter the discussion. We encourage the reader to read Section 1.1 before
reading this section.

Proof: We are given n and a constant ε.

• Set t large enough so that cMAJ
log t
t ≤

ε
6 , where cMAJ is the constant from Lemma 2.17. A

calculation shows that t = d36c2MAJ
ε2
e suffices, so t = O(1).

• Fix ζ = ( 1
n)cε , c = (1

ζ )cmult , R′ = ( 1
2ζ )5/3, where cε, cmult are the constants from Theorem 4.7.
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• Set ε2 small enough so that 5t
√
ε2(R′)t ≤ ε

6 and c
√
ε2 ≤ 1

2(R′)−0.6. Doing the calculation one
may take ε2 = ε2

302t2c2(R′)2t and so ε−1
2 = ( 1

cR′ )
O(1) = nO(1).

• Set d = c1 log n+ log(1/ε2) · c
√

log log(1/ε2)
1 where c1 is the constant from Theorem 2.19.

• Define a function
S : [N ]× [R′]× [A]→ [D],

which is a (K = Dcloss ; c, ζ) s.r. simple sampler guaranteed by Theorem 4.7 where N , R′, D,
c and ζ were defined before, closs is the constant 2 from Theorem 4.7, and A = O(1) is the
constant number of blocks guaranteed by the theorem.

• Define a function
nmExt : [N ]× [D]→ {0, 1} ,

which is a (t′ = tA, k2 = c2d, ε2) non-malleable extractor, where c2 is the constant from
Theorem 2.21. Notice that d was chosen to be sufficiently large for nmExt.

After fixing the above, given x1, x2 ∈ [N ], the construction is as follows:

1. For every y′ ∈ [R′] and z ∈ [A], compute NM(x1, x2; y′, z) = nmExt(x2, S(x1, y
′, z)).

2. For every y′ ∈ [R′], compute ⊕NM(x1, x2; y′) =
⊕A

z=1NM(x1, x2; y′, z).

3. Output 2Ext(x1, x2) = Maj(⊕NM(x1, x2; 1), . . . ,⊕NM(x1, x2;R′)).

We now prove correctness. Let X1 be an (n, k1)-source for k1 = k + log 2
ε and X2 be an (n, k2)-

source independent from X1. Let BAD ⊆ [D] be the set of density at most
√
ε2 guaranteed to us

by Lemma 2.21. Note that BAD depends only on X2. We say x1 ∈ [N ] is bad if x is (c, ζ) bad for
BAD (see Definition 4.2) and good otherwise.

Claim 5.2. Prx1∼X1 [x1 is bad] ≤ ε
2 .

Proof: The number of bad elements is at most K, and H∞(X1) ≥ k + log 2
ε so we can conclude

that Prx1∼X1 [x1 is bad] ≤ K
2k1

= ε
2 .

Now, fix any good x1 ∈ Supp(X1). Since x1 is good,

Pr
y′∈[R′]

[∀z∈A S(x, y′, z) ∈ BAD] ≤ c · ρ(BAD) + ζ.

Call y′ ∈ [R′] a bad row if ∀z∈A S(x, y′, z) ∈ BAD.

Lemma 5.3. For every good x1 ∈ Supp(X1),

⊕NM(x1, X2) = (⊕NM(x1, X2, 1), . . . ,⊕NM(x1, X2, R
′))

is a (q, t, γ) non-oblivious bit-fixing source for q = (R′)0.4 and γ = 5t
√
ε2.
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Proof: First, the number of bad rows is at most (cρ(BAD) + ζ)R′ ≤ q = (R′)0.4. Next, fix t distinct
good rows y′1, . . . , y

′
t. Let z1, . . . , zt ∈ [A] be s.t. S(x1, y

′
i, zi) 6∈ BAD. Then, for every i ∈ [t],(

NM(x1, X2; y′i, zi),
{
NM(x1, X2; y′i, z)

}
z 6=zi

,
{
NM(x1, X2; y′j , z)

}
j 6=i,z∈[A]

)
≈√ε2(

U1,
{
NM(x1, X2; y′i, z)

}
z 6=zi

,
{
NM(x1, X2; y′j , z)

}
j 6=i,z∈[A]

)
,

where we have used Lemma 2.21 and the fact that S is simple. By Lemma 2.22,(
NM(x1, X2; y′1, z1), . . . , NM(x1, X2; y′t, zt),

{
NM(x1, X2; y′i, z)

}
(y′i,z)/∈{(y′1,z1),...,(y′t,zt)}

)
≈5t
√
ε2(

Ut,
{
NM(x1, X2; y′i, z)

}
(y′i,z)/∈{(y′1,z1),...,(y′t,zt)}

)
.

This gives (⊕NM(x1, X2, y
′
1), . . . ,⊕NM(x1, X2, y

′
t)) ≈5t

√
ε2 Ut, as desired.

Therefore, by Lemma 2.17, for any good x1,∣∣∣∣Pr[Maj(⊕NM(x1, X2, 1), . . . ,⊕NM(x1, X2, R
′)) = 1]− 1

2

∣∣∣∣ ≤ cMAJ

(
log t

t
+ (R′)−0.1 + 5t

√
ε2(R′)t

)
≤ 3 · ε

6
=

ε

2
,

where the probability is over X2. Overall, we have:

|2Ext(X1, X2)− U1| ≤
ε

2
+
ε

2
≤ ε,

as desired. The requested entropies are k1, k2 = O(d). The explicitness follows from the fact that
R′ = poly(n) and the explicitness of the other ingredients.

We conclude with two remarks:

1. Any improvement in the seed length of explicit non-malleable extractors would reflect in
the construction, and, in particular, seed length O(log n + log(1

ε )) would give two-source
extractors for logarithmic min-entropy.

2. It is plausible that the techniques of Li [Li15] can be applied here as well to extract more bits.
However, since we require

√
ε2(R′)t < 1 and R′ = poly(n), and since ε2 = 2−O(k2) it follows

that t logR = O(k2). Since the good rows are only guaranteed to be t-wise independent, we
can extract at most t = O( k2

logn) bits from the table. This means that if we ever get to employ
the scheme for k2 = O(log n) (e.g., if the seed length for explicit non-malleable extractor
improves) then the number of output bits we can extract is only a constant.
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