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Abstract

In this paper we show that polynomial identity testing for noncommutative circuits of
size s, computing a polynomial in F〈z1, z2, · · · , zn〉, can be done by a randomized algorithm
with running time polynomial in s and n. This answers a question that has been open for
over ten years.

The earlier result by Bogdanov and Wee [BW05], using the classical Amitsur-Levitski
theorem, gives a randomized polynomial-time algorithm only for circuits of polynomially
bounded syntactic degree. In our result, we place no restriction on the degree of the circuit.

Our algorithm is based on automata-theoretic ideas introduced in [AMS08, AM08]. In
those papers, the main idea was to construct deterministic finite automata that isolate a
single monomial from the set of nonzero monomials of a polynomial f in F〈z1, z2, · · · , zn〉.
In the present paper, since we need to deal with exponential degree monomials, we carry
out a different kind of monomial isolation using nondeterministic automata.

1 Introduction

Noncommutative computation, introduced in complexity theory by Hyafil [Hya77] and Nisan
[Nis91], is a central field of algebraic complexity theory. The main algebraic structure of interest
is the free noncommutative ring F〈Z〉 over a field F, where Z = {z1, z2, · · · , zn}, zi, 1 ≤ i ≤ n
are free noncommuting variables.

One of the main problems in the subject is noncommutative Polynomial Identity Testing.
The problem can be stated as follows:

Let f ∈ F〈Z〉 be a polynomial represented by a noncommutative arithmetic circuit C. The
polynomial f can be either given by a black-box for C (using which we can evaluate C on
matrices with entries from F or an extension field), or the circuit C may be explicitly given.
The algorithmic problem is to check if the polynomial computed by C is identically zero.

We recall the formal definition of a noncommutative arithmetic circuit.

Definition 1. A noncommutative arithmetic circuit C over a field F and indeterminates
z1, z2, · · · , zn is a directed acyclic graph (DAG) with each node of indegree zero labeled by
a variable or a scalar constant from F: the indegree 0 nodes are the input nodes of the circuit.
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Each internal node of the DAG is of indegree two and is labeled by either a + or a × (indicating
that it is a plus gate or multiply gate, respectively). Furthermore, the two inputs to each ×
gate are designated as left and right inputs which is the order in which the gate multiplication
is done. A gate of C is designated as output. Each internal gate computes a polynomial (by
adding or multiplying its input polynomials), where the polynomial computed at an input node
is just its label. The polynomial computed by the circuit is the polynomial computed at its
output gate. An arithmetic circuit is a formula if the fan-out of every gate is at most one.

Notice that if the size of circuit C is s the degree of the polynomial computed by C can
be 2s. In the earlier result 1 by Bogdanov and Wee [BW05], a randomized polynomial-time
algorithm was shown for the case when the degree of the circuit C is polynomially bounded
in s and n [BW05]. The idea of the algorithm is based on a classical result of Amitsur-
Levitski [AL50]. We recall below that part of the Amitsur-Levitski theorem that is directly
relevant to polynomial identity testing.

Theorem 1 (Amitsur-Levitski Theorem). For any field F (of size more than 2d−1), a nonzero
noncommutative polynomial P ∈ F〈Z〉 of degree 2d− 1 cannot be a polynomial identity for the
matrix algebra Md(F). I.e. f does not vanish on all d× d matrices over F.

Bogdanov and Wee’s randomized PIT algorithm [BW05] applies the above theorem to
obtain a randomized PIT as follows: Let C(z1, z2, · · · , zn) be a circuit of syntactic degree
bounded by 2d − 1. For each i ∈ [n], substitute the variable zi by a d × d matrix Mi of

commuting indeterminates. More precisely, the (`, k)th entry of Mi is z
(i)
`,k where 1 ≤ `, k ≤ d.

By Theorem 1, the matrix Mf = f(M1,M2, . . . ,Mn) is not identically zero. Hence, in Mf

there is an entry (`′, k′) which has the commutative nonzero polynomial g`′,k′ over the variables

{z(i)`,k : 1 ≤ i ≤ n, 1 ≤ `, k ≤ d}. Notice that the degree of the polynomial g`′,k′ is at most
2d − 1. If we choose an extension field of F of size at least 4d, then we get a randomized
polynomial identity testing algorithm by the standard Schwartz-Zippel-Lipton-DeMello Lemma
[Sch80,Zip79,DL78].

The problem with this approach for general noncommutative circuits (whose degree can
be 2s) is that the dimension of the matrices grows linearly with the degree of the polynomial.
Therefore, this approach only yields a randomized exponential time algorithm for the problem.
It cannot yield an efficient algorithm for polynomial identity testing for a general noncommu-
tative circuit where the syntactic degree could be exponential in the size of the circuit. Finding
an efficient randomized identity test for general noncommutative circuits was a well-known
open problem. In this work we resolve it by giving such an algorithm.

2 Main Result

The crux of our result is the following theorem that we show about noncommutative identities
which is of independent mathematical interest.

Theorem 2. Let F be a field of size more than d. Let f ∈ F〈z1, z2, . . . , zn〉 be a nonzero
polynomial of degree d and with t nonzero monomials. Then f cannot be a polynomial identity
for the matrix ring Mk(F) for k = log t+ 1.

1We also note here that Raz and Shpilka [RS05] gives a white-box deterministic polynomial-time identity test
for noncommutative algebraic branching programs (ABPs). The result of Forbes-Shpilka [FS13] and Agrawal et
al., [AGKS15] gives a quasi-polynomial time black-box algorithm for small degree ABPs.
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The randomized polynomial identity test for noncommutative arithmetic circuits is an im-
mediate corollary. To see this, suppose C is a noncommutative arithmetic circuit of size s.
The degree of the polynomial f computed by the circuit is bounded by 2s and the number of
non-zero monomials in the polynomial computed by C is also bounded by 2s. This is because
the number of monomials of the polynomial computed by the circuit C is bounded by the
number of multiplicative sub-circuits of the given circuit C and the number of multiplicative
sub-circuits of C is bounded by 2s. In other words, the sparsity of the polynomial computed by
the circuit C is bounded by 2s. Thus, if f is not identically zero, by Theorem 2, the polynomial
f does not vanish if we substitute for each zi, (s+ 1)× (s+ 1) matrices of indeterminates (all
distinct). Indeed, f will evaluate to an (s+ 1)× (s+ 1) matrix whose entries are polynomials
in commuting variables of degree at most 2s. For each entry of this matrix, we can employ
the standard Schwartz-Zippel-Lipton-DeMello [Sch80,Zip79,DL78] lemma based algorithm for
commutative polynomials (by evaluating them over F or a suitable extension field). This proves
the main result of the paper.

Corollary 1. Polynomial identity testing for noncommutative arithmetic circuits is in ran-
domized polynomial time.

Remark 1. It is interesting to compare Theorem 2 with the classical Amitsur-Levitski theorem.
Our result brings out the importance of the number of monomials in a polynomial identity for
d × d matrices. It implies that any polynomial identity f for d × d matrices over a field F of
size more than deg f must have more than 2d−1 monomials.

We first describe the basic steps required for the proof of Theorem 2. Since we are working
in the free noncommutative ring F〈z1, z2, . . . , zn〉, notice that monomials are free words over
the alphabet {z1, z2, . . . , zn}, and the polynomial f is an F-linear combination of monomials.

Converting to a bivariate polynomial

It is convenient to convert the given noncommutative polynomial into a noncommutative poly-
nomial in F〈x0, x1〉, where x0 and x1 are two noncommuting variables. Let

f =

t∑
i=1

ciwi

with ci ∈ F, where wi are the nonzero monomials (over {z1, z2, . . . , zn}) of f . We use the
bivariate substitution ∀i ∈ [n] : zi → x0x

i
1x0 to encode the words over two variables x0, x1. By

abuse of notation, we write the resulting polynomial as f(x0, x1) ∈ F〈x0, x1〉. Since the above
encoding of monomials is bijective, the following claim clearly holds.

Claim 1. The bivariate noncommutative polynomial f(x0, x1) is nonzero if and only if the
original polynomial f ∈ F〈z1, z2, . . . , zn〉 is nonzero.

The degree D of f(x0, x1) is clearly bounded by (n+ 2)d.

Definition 2. LetM⊆ {x0, x1}D be a finite set of degree D monomials over variables {x0, x1}.
A subset of indices I ⊆ [D] is said to be an isolating index set for M if there is a monomial
m ∈ M such that for each m′ 6= m,m′ ∈ M, there is some index i ∈ I for which m[i] 6= m′[i].
I.e. no other monomial in M agrees with monomial m on all positions in the index set I.
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The following lemma says that every subset of monomials M⊆ {x0, x1}D has an isolating
index set of size log |M|. The proof is a simple halving argument.

Lemma 1. Let M⊆ {x0, x1}D be a finite set of degree D monomials over variables {x0, x1}.
Then M has an isolating index set of size k which is bounded by log |M|.

Proof. The monomials m ∈ M are seen as indexed from left to right, where m[i] denotes the
variable in the ith position of m. Let i1 ≤ D be the first index such that not all monomials
agree on the ith position. Let

S0 = {m : m[i1] = x0}
S1 = {m : m[i1] = x1}.

Either |S0| or |S1| is of size at most |M|/2. Let Sb1 denote that subset, b1 ∈ {0, 1}. We
replace the monomial set M by Sb1 and repeat the same argument for at most log |M| steps.
Clearly, by this process we identify a set of indices I = {i1, . . . , ik}, k ≤ log |M| such that
the set shrinks to a singleton set {m}. Clearly, I is an isolating index set as witnessed by the
isolated monomial m.

Remark 2. Notice that the size of the isolating index set denoted k is bounded by log t as well
as the degree D of the polynomial f(x0, x1).

NFA construction

In our earlier paper [AMS08] (for sparse polynomial identity testing) we used a deterministic
finite state automaton to isolate a monomial by designing an automaton which accepts a
unique monomial. This will not work for the proof of Theorem 2 because the number of states
that such a deterministic automaton requires is the length of the monomial which could be
exponentially large. It turns out that we can use a small nondeterministic finite automaton
which will guess the isolating index set for the set of nonzero monomials of f . The complication
is that there are exponentially many wrong guesses. However, it turns out that if we make
our NFA a substitution automaton, we can ensure that the monomials computed on different
nondeterministic paths (which correspond to different guesses of the isolating index set) all
have disjoint support. Once we have this property, it is easy to argue that for the correct
nondeterministic path, the computed commutative polynomial is nonvanishing (because the
isolated monomial cannot be cancelled). With this intuition, we proceed with the simple
technical details.

We describe the construction of a substitution NFA that substitutes, on its transition edges,
a new commuting variable for the variable (x0 or x1) that it reads. Formally, let A denote
the NFA given by a 5-tuple A = 〈Q,Σ = {x0, x1}, δ, qo, qf 〉, where Q = {q0, q1, q2, . . . , qk} and
qf = qk. We use the indices i1, . . . , ik from Lemma 1 to define the transition of A. The set of
indices partition each monomial m into k + 1 blocks as follows.

m[1, i1 − 1]m[i1]m[i1 + 1, i2 − 1]m[i2] · · · · · ·m[ik−1 + 1, ik−1]m[ik]m[ik+1, D],

where m[i] denotes the variable in ith position of m and m[i, j] denotes the submonomial
of m from positions i to j.

We use a new set of variables for different blocks and the indices i1, . . . , ik as follows. The
block variables are

⋃
j∈[k+1]{ξj}, and the index variables are

⋃
j∈[k]{y0,j , y1,j}.
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Now we are ready to describe the transitions of the automaton. When the NFA is reading
the input variables in block j, it will replace each xb, b ∈ {0, 1} by block variable ξj . Then the
NFA nondeterministically decides if block j is over and the current location is an index in the
isolating set. In that case, the NFA replaces the variable xb that is read by the index variable
yb,j and the NFA also increments the block number to j + 1. It will now make its transitions
in the (j + 1)st block as described above.

The NFA is formally described by the following simple transition rules. For 0 ≤ i ≤ k − 1,
and b ∈ {0, 1},

δ(qi, xb)
ξi+1−−→ qi

δ(qi, xb)
yb,i+1−−−→ qi+1.

We depict the description of the automaton in the following figure.

q0 q1 q2 qf
y0,1, y1,1 y0,2, y1,2 · · ·

ξ1 ξ2 ξ3 ξk+1

Clearly, the transitions of the automaton A can be described by two (k + 1) × (k + 1)
adjacency matrices Mx0 and Mx1 corresponding to the moves of the automaton on input x0
and input x1.

More precisely, for variable x0, we take the adjacency matrix Mx0 of the following labeled
directed graph extracted from the above automaton.

q0 q1 q2 qf
y0,1 y0,2 · · ·

ξ1 ξ2 ξ3 ξk+1

The corresponding matrix Mx0 of dimension (k + 1) × (k + 1), we substitute for x0 is the
following.

Mx0 =



ξ1 y0,1 0 . . . 0 0
0 ξ2 y0,2 . . . 0 0
0 0 ξ3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . ξk y0,k
0 0 0 . . . 0 ξk+1


Similarly, for variable x1 we take the adjacency matrix Mx1 of the following labeled directed
graph.

q0 q1 q2 qf
y1,1 y1,2 · · ·

ξ1 ξ2 ξ3 ξk+1
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The corresponding matrix Mx1 of dimension (k + 1) × (k + 1), we substitute for x1 is the
following.

Mx1 =



ξ1 y1,1 0 . . . 0 0
0 ξ2 y1,2 . . . 0 0
0 0 ξ3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . ξk y1,k
0 0 0 . . . 0 ξk+1


The rows and the columns of the matrices Mx0 and Mx1 are indexed by the states of the

automaton and the entries are either block variables or index variables as indicated in the
transition diagram. Let

f =
t∑
i=1

ciwi.

Define the matrix wi(Mx0 ,Mx1) obtained by substituting in wi the matrix Mxb for xb, b ∈
{0, 1} and multiplying these matrices. The following proposition is immediate as f is a linear
combination of the wi’s.

Proposition 1. Mf = f(Mx0 ,Mx1) =
∑t

i=1 ciwi(Mx0 ,Mx1).

Now we are ready to prove Theorem 2.

Proof of Theorem 2. We assume that n-variate polynomial f is converted to the bivariate poly-
nomial f(x0, x1) over x0 and x1. Let M denote the set of nonzero monomials of degree D
occurring in f , where D is the degree of f . Then we can write the polynomial f =

∑t
j=1 cjwj

in two parts

f =
∑
wj∈M

cjwj +
∑
wj 6∈M

cjwj ,

where
∑

wj∈M cjwj is the homogeneous degree D part of f .
Let us assume, without loss of generality, that w1 is in M and it is the monomial isolated

in Lemma 1, and the isolating index set be I = {i1, i2, · · · , ik} such that for all wj ∈ M,
wj |I 6= w1|I (i.e. the projections of each wj , j 6= 1 on index set I differs from the projection of
w1). Let

w1 = xb1xb2 · · ·xbD ,

where bj ∈ {0, 1}.
The following claim is immediate.

Claim 2. For each index set J = {j1, j2, · · · , jk} nondeterministically picked by the substitution
NFA, each nonzero degree D monomial wj occurring in f is transformed into a unique degree
D monomial wj,J (which is over the block and index variables). More precisely, let ξJ =

ξj1−11 ξj2−j12 · · · ξD−jkk+1 and yj,J = ya1,1ya2,2 · · · yak,k. Then

wj,J = ξJyj,J .
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Notice that for two distinct index sets J and J ′ we clearly have ξJ 6= ξJ ′ . We also note that
yj,J is essentially the projection of the degree D monomial wj to the index set J ; if variables
xb occurs in the jthk position of wj then it is replaced by yb,k in yj,J .

Furthermore, for each wj ∈M we note that the (qo, qf )th entry of the matrix wj(Mx0 ,Mx1)
is the sum

∑
J wj,J =

∑
J ξJyj,J . For different index sets J the monomials ξJyj,J are all distinct.

Let fJ be the polynomial

fJ =
t∑

j=1

cjwj,J =
∑
wj∈M

cjwj,J +
∑
wj /∈M

cjwj,J .

Claim 3. After the matrix substitution x0 = Mx0 and x1 = Mx1 in the polynomial f we note
that the (q0, qf )th entry of the matrix f(Mx0 ,Mx1) is

∑
J fJ .

The above claim clearly holds because the polynomial fJ is the contribution of the nonde-
terministic path corresponding to index set J .

Claim 4. For any two index sets J, J ′ and any monomial wj ∈M, the corresponding commu-
tative monomials wj,J and wj,J ′ are distinct.

To see this claim it suffices to see that wj,J = ξJyj,J and wj,J ′ = ξJ ′yj,J ′ and we have
already observed that ξJ 6= ξJ ′ .

Finally, we focus on the monomial w1,I occurring in the polynomial
∑

J fJ , where w1 is the
isolated monomial and I is the isolated index set.

Claim 5. The coefficient of w1,I in the polynomial
∑

J fJ is c1. As a consequence, the poly-
nomial

∑
J fJ which occurs in the (q0, qf ) entry of the matrix Mf = f(Mx0 ,Mx1) is nonzero

because the coefficient of w1,I in it is nonzero.

To see the above claim we note the following points:

1. For the monomials wj /∈ M notice that for each index set J of size k, the contribution
to the (q0, qf )th entry of the matrix f(Mx0 ,Mx1) is a monomial of degree deg(wj), and
deg(wj) < D. Hence, these monomials have no influence on the coefficient of w1,I in the
polynomial

∑
J fJ .

2. Consider monomials wj ∈M for j 6= 1. Notice that

w1,I = ξIy1,I ,

and for j 6= 1

wj,I = ξIyj,I ,

and the monomials y1,I and yj,I are different because I is an isolating index set and the
monomial w1 is isolated. I.e. the monomials w1,I and wj,I will necessarily differ in the
index variables occurring in them as a consequence of the isolation property.

Therefore, the monomials wj ∈ M for j 6= 1 also have no influence on the coefficient of
w1,I in the polynomial

∑
J fJ .
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Hence, we conclude that the (q0, qf )th entry of the matrix Mf = f(Mx0 ,Mx1) is a nonzero
polynomial

∑
J fJ in the commuting variables

⋃
j∈[k+1]{ξj} and

⋃
j∈[k]{y0,j , y1,j}. Moreover

the degree of polynomial
∑

J fJ is D. Now we can apply Schwartz-Zippel-Lipton-DeMello
Lemma [Sch80, Zip79, DL78] to conclude that the polynomial

∑
J fJ will be nonzero over a

suitable extension of size more than (n+ 2)d of the field F. Since the polynomial f is nonzero
over the algebra Mk+1(F), it is also nonzero over the algebra Mlog t+1(F). This completes the
proof of Theorem 2.
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