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Abstract

We study the communication rate of coding schemes for interactive communication that
transform any two-party interactive protocol into a protocol that is robust to noise.

Recently, Haeupler [Hae14] showed that if an ε > 0 fraction of transmissions are corrupted,
adversarially or randomly, then it is possible to achieve a communication rate of 1 − Õ(

√
ε).

Furthermore, Haeupler conjectured that this rate is optimal for general input protocols. This
stands in contrast to the classical setting of one-way communication in which error-correcting
codes are known to achieve an optimal communication rate of 1−Θ(H(ε)) = 1− Θ̃(ε).

In this work, we show that the quadratically smaller rate loss of the one-way setting can
also be achieved in interactive coding schemes for a very natural class of input protocols. We
introduce the notion of average message length, or the average number of bits a party sends
before receiving a reply, as a natural parameter for measuring the level of interactivity in a
protocol. Moreover, we show that any protocol with average message length ` = Ω(poly(1/ε))
can be simulated by a protocol with optimal communication rate 1−Θ(H(ε)) over an oblivious
adversarial channel with error fraction ε. Furthermore, under the additional assumption of
access to public shared randomness, the optimal communication rate is achieved ratelessly,
i.e., the communication rate adapts automatically to the actual error rate ε without having to
specify it in advance.

This shows that the capacity gap between one-way and interactive communication can be
bridged even for very small (constant in ε) average message lengths, which are likely to be
found in many applications.
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1 Introduction

In this work, we study the communication rate of coding schemes for interactive communication
that transform any two-party interactive protocol into a protocol that is robust to noise.

1.1 Error-Correcting Codes

The study of reliable transmission over a noisy channel was pioneered by Shannon’s work in the
1940s. He and others showed that error-correcting codes allow one to add redundancy to a mes-
sage, thereby transforming the message into a longer sequence of symbols, such that one can re-
cover the original message even if some errors occur. This allows fault-tolerant transmissions and
storage of information. Error-correcting codes have since permeated most modern computation
and communication technologies.

One focus of study has been the precise tradeoff between redundancy and fault-tolerance. In
particular, if one uses an error-correcting code that encodes a binary message of length k into a
sequence of n bits, then the communication rate of the code is said to be k/n. One wishes to make
the rate as high as possible. Shannon showed that for the random binary symmetric channel
(BSC) with error probability ε the (asymptotically) best achievable rate is C = 1 − H(ε), where
H(ε) = −ε log2 ε− (1− ε) log2(1− ε) denotes the binary entropy function.

Another realm of interest is the case of adversarial errors. In this case, the communication
channel corrupts at most an ε fraction of the total number of bits that are transmitted. Moreover,
one wishes to allow the receiver to correctly decode the message in the presence of any such
error pattern. The work of Hamming shows that one can achieve a communication rate of R =
1 − Θ(H(ε)), in particular, the so-called Gilbert-Varshamov bound of 1 − H(2ε) > 1 − 2H(ε).
Determining the optimal rate, or even just the constant hidden by the asymptotic Θ(H(ε)) term,
remains a major open question.

1.2 Interactive Communication

The work of Shannon and Hamming applies to the problem of one-way communication, in which
one party, say Alice, wishes to send a message to another party, say Bob. However, in many
applications, underlying (two-party) communications are interactive, i.e., Bob’s response to Alice
may be based on what he received from her previously and vice versa. As in the case of one-way
communication, one wishes to make such interactive communications robust to noise by adding
some redundancy.

At first sight, it seems plausible that one could use error-correcting codes to encode each round
of communication separately. However, this does not work correctly because the channel might
corrupt the codeword of one such round of communication entirely and as a result derail the en-
tire future conversation. With the naive approach being insufficient, it is not obvious whether it is
possible at all to encode interactive protocols in a way that can tolerate some small constant frac-
tion of errors in an interactive setting. Nonetheless, Schulman [Sch92, Sch93, Sch96] showed that
this is possible and numerous follow-up works over the past several years have led to a drastically
better understanding of error-correcting coding schemes for interactive communications .

1.3 Communication Rates of Interactive Coding Schemes

Only recently, however, has this study led to results shedding light on the tradeoff between the
achievable communication rate for a given error fraction or amount of noise.
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Kol and Raz [KR13] gave a communication scheme for random errors that achieves a com-
munication rate of 1 − O(

√
H(ε)) for any alternating protocol, where ε > 0 is the error rate.

[KR13] also developed powerful tools to prove upper bounds on the communication rate. Hae-
upler [Hae14] showed communication schemes that achieve a communication rate of 1 − O(

√
ε)

for any oblivious adversarial channel, including random errors, as well as a communication rate
of 1 − O(

√
ε log log(1/ε)) for any fully adaptive adversarial channel. These results apply to al-

ternating protocols as well as adaptively simulated non-alternating protocols (see [Hae14] for a
more detailed discussions). Lastly, given [KR13], Haeupler conjectured these rates to be optimal
for their respective settings. Therefore, there is an almost quadratic gap between the conjectured
rate achievable in the interactive setting and the 1−Θ(H(ε)) rate known to be optimal for one-way
communications.

1.4 Results

In this paper, we investigate this communication rate gap. In particular, we show that for a natural
and large class of protocols this gap disappears. Our primary focus is on protocols for oblivious
adversarial channels. Such a channel can corrupt any ε fraction of bits that are exchanged in the
execution of a protocol, and the simulation is required to work, with high probability, for any
such error pattern. This is significantly stronger, more interesting, and, as we will see, also much
more challenging than the case of independent random errors. We remark that, in contrast to
a fully adaptive adversarial channel, the decision whether an error happens in a given round is
not allowed to depend on the transcript of the execution thus far. This seems to be a minor but
crucially necessary restriction (see also Section 5).

As mentioned, the conjectured optimal communication rate of 1 − O(
√
ε) for the oblivious

adversarial setting is worse than the 1 − O(H(ε)) communication rate achievable in the one-way
communication settings. However, the conjectured upper bound seems to be tight mainly for
“maximally interactive” protocols, i.e., protocols in which the party that is sending bits changes
frequently. In particular, alternating protocols, in which Alice and Bob take turns sending a single
bit, seem to require the most redundancy for a noise-resilient encoding. On the other hand, the
usual one-way communication case in which one party just sends a single message consisting of
several bits is an example of a “minimally interactive” protocol. It is a natural question to consider
what the tradeoff is between achievable communication rate and the level of interaction that takes
place. In particular, most natural real-world protocols are rarely “maximally interactive” and
could potentially be simulated with communication rates going well beyond 1− O(

√
ε). We seek

to investigate this possibility.
Our first contribution is to introduce the notion of average message length as a natural measure of

the interactivity of a protocol in the context of analyzing communication rates. Loosely speaking,
the average message length of an n-round protocol corresponds to the average number of bits a
party sends before receiving a reply from the other party. A lower average message length roughly
corresponds to more interactivity in a protocol, e.g., a maximally interactive protocol has average
message length 1, while a one-way protocol with no interactivity has average message length n.
The formal definition of average message length appears as Definition 3.1 in Section 3.

Our second and main contribution in this paper is to show that for protocols with an average
message length of at least some constant in ε (but independent of the number of rounds n) one
can go well beyond the 1 − Θ(

√
ε) communication rate achieved by [Hae14] for channels with

oblivious adversarial errors. In fact, we show that for such protocols one can actually achieve a
communication rate of 1−Θ(H(ε)), matching the communication rate for one-way communication
up to the (unknown) constant in the H(ε) term.
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Theorem 1.1. For any ε > 0 and any n-round interactive protocol Π with average message length ` =
Ω(poly(1/ε)), it is possible to encode Π into a protocol over the same alphabet which, with probability at
least 1 − exp(−nε6), simulates Π over an oblivious adversarial channel with an ε fraction of errors while
achieving a communication rate of 1−Θ(H(ε)) = 1−Θ(ε log(1/ε)).

Under the (simplifying) assumption of public shared randomness, our protocol can furthermore
be seen to have the nice property of being rateless. This means that the communication rate adapts
automatically and only depends on the actual error rate ε without having to specify or know in
advance what amount of noise to prepare for.

Theorem 1.2. Suppose Alice and Bob have access to public shared randomness. For any ε′ > 0 and any
n-round interactive protocol Π with average message length ` = Ω(poly(1/ε′)), it is possible to encode Π
into protocol Πrateless over the same alphabet such that for any true error rate ε, executing Πrateless for
n(1 +O(H(ε)) +O(ε′ polylog(1/ε′))) rounds simulates Π with probability at least 1− exp(−nε′3).

We note that one should think of ε′ in Theorem 1.2 as chosen to be very small, in particular,
smaller than the smallest amount of noise one expects to encounter. In this case, the communi-
cation rate of the protocol simplifies to the optimal 1 − O(H(ε)) for essentially any ε > ε′. The
only reason for not choosing ε′ too small is that it very slightly increases the failure probability. As
an example, choosing ε′ = o(1) suffices to get ratelessness for any constant ε and still leads to an
essentially exponential failure probability. Alternatively, one can even set ε′ = n−1/6 which leads
to optimal communication rates even for tiny sub-constant true error fractions ε > n−0.2 while still
achieving a strong sub-exponential failure probability of at most exp(−

√
n).

1.5 Further Related Works

Schulman was the first to consider the question of coding for interactive communication and
showed that one can tolerate an adversarial error fraction of ε = 1/240 with an unspecified con-
stant communication rate [Sch92, Sch93, Sch96]. Schulman’s result also implies that for the easier
setting of random errors, one can tolerate any error rate bounded away from 1/2 by repeating
symbols multiple times. Since Schulman’s seminal work, there has been a number of subsequent
works pinning down the tolerable error fraction. For instance, Braverman and Rao [BR14] showed
that any error fraction ε < 1/4 can be tolerated in the realm of adversarial errors, provided that
one can use larger alphabet sizes, and this bound was shown to be optimal. A series of sub-
sequent works [BE14, GH14, GHS14, EGH15, FGOS15] worked to determine the error rate re-
gion under which non-zero communication rates can be obtained for a variety of models, e.g.,
adversarial errors, random errors, list-decoding, adaptivity, and channels with feedback. Un-
like the initial coding schemes of [Sch96] and [BR14] that relied on tree codes and as a result
required exponential time computations, many of the newer coding schemes are computationally
efficient [BK12, BN13, BKN14, GMS14, GH14]. All these results achieve small often unspecified
constant communication rate of Θ(1) which is fixed and independent of amount of noise. Only
the works of [KR13] and [Hae14], which are already discussed above in Section 1.3 achieve a com-
munication rate approaching 1 for error fractions going to zero.

2 Preliminaries

An interactive protocol Π consists of communication performed by two parties, Alice and Bob, over
a channel with alphabet Σ. Alice has an input x and Bob has an input y, and the protocol consists
of n rounds. During each round of a protocol, each party decides whether to listen or transmit a
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symbol from Σ, based on his input and the player’s transcript thus far. Alice’s transcript is defined
as a tuple of symbols from Σ, one for each round that has occurred, such that the ith symbol is
either (a.) the symbol that Alice sent during the ith round, if she chose to transmit, or (b.) the
symbol that Alice received, otherwise.

Moreover, protocols can utilize randomness. In the case of private randomness, each party is
given its own infinite string of independent uniformly random bits as part of its input. In the case
of shared randomness, both parties have access to a common infinite random string during each
round. In general, our protocols will utilize private randomness, unless otherwise specified.

In a noiseless setting, we can assume that in any round, exactly one party speaks and one party
listens. In this case, the listening party simply receives the symbol sent by the speaking party.

The communication order of a protocol refers to the order in which Alice and Bob choose to
speak or listen. A protocol is non-adaptive if the communication order is fixed prior to the start
of the protocol, in which case, whether a party transmits or listens depends only on the round
number. A simple type of non-adaptive protocol is an alternating protocol, in which one party
transmits during odd numbered rounds, while the other party transmits during even numbered
rounds. On the other hand, an adaptive protocol is one in which the communication order is not
fixed prior to the start; therefore, the communication order can vary depending on the transcript
of the protocol. In particular, each party’s decision whether to speak or listen during a round will
depend on his input, randomness, as well as the transcript of the protocol thus far.

For an n-round protocol over alphabet Σ, one can define an associated protocol tree of depth n.
The protocol tree is a rooted tree in which each non-leaf node of the tree has |Σ| children, and the
outgoing edges are labeled by the elements of Σ. Each non-leaf node is owned by some player,
and the owner of the node has a preferred edge that emanates from the node. The preferred edge
is a function of the owner’s input and any randomness that is allowed. Also, leaf nodes of the
protocol tree correspond to ending states.

A proper execution of the protocol corresponds to the unique path from the root of the protocol
tree to a leaf node, such that each traversed edge is the preferred edge of the parent node of the
edge. In this case, each edge along the path can be viewed as a successive round in which the
owner of the parent node transmits the symbol along the edge.

An example of a protocol tree is shown in Figure 1.

2.1 Communication Channels

For our purposes, the communication between the two parties occurs over a communication channel
that delivers a possibly corrupted version of the symbol transmitted by the sending party. In this
work, transmissions will be from a binary alphabet, i.e., Σ = {0, 1}.

In a random error channel, each transmission occurs over a binary symmetric channel with
crossover probability ε. In other words, in each round, if only one party is speaking, then the
transmitted bit gets corrupted with probability ε.

This work mainly considers the oblivious adversarial channel, in which an adversary gets to
corrupt at most ε fraction of the total number of rounds. However, the adversary is restricted
to making his decisions prior to the start of the protocol, i.e., the adversary must decide which
rounds to corrupt independently of the communication history and randomness used by Alice
and Bob. For each round that the adversary decides to corrupt, he can either commit a flip error
or replace error. Suppose a round has one party that speaks and one party that listens. Then, a
flip error means that the listening party receives the opposite of the bit that the transmitting party
sends. On the other hand, a replace error requires the adversary to specify a symbol α ∈ Σ for
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Figure 1: An example of a protocol tree for a 3-round interactive protocol. Nodes owned by Alice
are colored red, while those owned by Bob are colored blue. Note that Alice always speaks during
the first and third rounds, while Bob speaks during the second round. The orange edges are the
set of preferred edges for some choice of inputs of Alice and Bob. In this case, a proper execution
of the protocol corresponds to the path “011.”

the round. In this case, the listening party receives α regardless of which symbol was sent by the
transmitting party.

An adaptive adversarial channel allows an adversary to corrupt at most ε fraction of the total
number of rounds. However, in this case, the adversary does not have to commit to which rounds
to corrupt prior to the start of the protocol. Rather, the adversary can decide to corrupt a round
based on the communication history thus far, including what is being sent in the current round.
Thus, in any round that the adversary chooses to corrupt in which one party transmits and one
party receives, the adversary can make the listening party receive any symbol of his choice.

Note that we have not yet specified the behavior for rounds in which both parties speak or
both parties listen. Such rounds can occur for adaptive protocols when the communication occurs
over a noisy communication channel.

If both parties speak during a round, we stipulate that neither party receives any symbol dur-
ing that round (since neither party is expecting to receive a symbol).

Moreover, we stipulate that in rounds during which both parties listen, the symbols received
by Alice and Bob are unspecified. In other words, an arbitrary symbol may be delivered to each
of the parties, and we require that the protocol work for any choice of received symbols. Alterna-
tively, one can imagine that the adversary chooses arbitrary symbols for Alice and Bob to receive
without this being counted as a corruption (i.e., a free corruption that is not counted toward the
budget of ε fraction of corruptions). The reason for this model is to disallow the possibility of
transmitting information by using silence. An extensive discussion on the appropriateness of this
error model can be found in [GHS14].

3 Average Message Length and Blocked Protocols

One conceptual contribution of this work is to introduce the notion of average message length as
a natural measure of the level of interactivity of a protocol. While this paper uses it only in the
context of analyzing the optimal rate of interactive coding schemes, we believe that this notion
and parametrization will also be useful in other settings, such as compression. Next, we define
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this notion formally.

Definition 3.1. The average message length ` of an n-round interactive protocol Π is the minimum,
over all paths in the protocol tree of Π, of the average length in bits of a maximal contiguous block (spoken
by a single party) down the path.

More precisely, given any string s ∈ {0, 1}n, there exist integer message lengths l0, . . . , lk > 0 such
that along the path of Π given by s one player (either Alice or Bob) speaks between round 1 +

∑
j<i lj and

round
∑

j≤i lj for even i while the other speaks during the remaining intervals, i.e., those for odd i. We then
define `s to be the average of these message lengths l0, . . . , lk and define the average message length of Π
to be minimum over all possible inputs, i.e., ` = mins∈{0,1}n `s.

An alternate characterization of the amount of interaction in a protocol involves the number
of alternations in the protocol:

Definition 3.2. An n-round protocol Π is said to be k-alternating if any path in the protocol tree of Π can
be divided into at most k blocks of consecutive rounds such that only one person (either Alice or Bob) speaks
during each block.

More precisely, Π is k-alternating if, given any string s ∈ {0, 1}n, there exist k′ ≤ k integers
r0, r1, . . . , rk′ with 0 = r0 < · · · < rk′ = n, such that along the path of Π given by s, only one player
(either Alice or Bob) speaks for rounds ri + 1, . . . , ri+1 for any 0 ≤ i < k′.

It is easy to see that the two notions are essentially equivalent, as an n-round protocol with
average message length ` is an (n/`)-alternating protocol, and a k-alternating n-round protocol
has average message length n/k. Note that an n-round alternating protocol has average message
length 1, while a one-way protocol has average message length n. The average message length can
thus be seen as a natural measure for the interactivity of a protocol.

We emphasize that the average message length definition does not require message lengths to
be uniform along any path or across paths. In particular, this allows for the length of a response
to vary depending on what was communicated before, e.g., the statement the other party has just
made—a common phenomenon in many applications. Taking as an example real-world conver-
sations between two people, responses to statements can be as short as a simple “I agree” or much
longer, depending on what the conversation has already covered and what the opinion or input of
the receiving party is. Thus, a sufficiently large average message length roughly states that while
the ith response of a person can be short or long depending on the history of the conversation, no
sequence of responses can lead to two parties going back and forth with super short statements for
too long a period of time. This flexibility makes the average message length a highly applicable
parameter that is reasonably large in most settings of interest. We expect it to be a very useful
parametrization for questions going beyond the communication rate considered here.

However, the non-uniformity of protocols with an average message length bound can make
the design and analysis of protocols somewhat harder than one would like. Fortunately, adding
some dummy rounds of communication in a simple procedure we call blocking allows us to trans-
form any protocol with small number of alternations into a much more regularly structured pro-
tocol which we refer to as blocked.

Definition 3.3. An n-round protocol Π is said to be b-blocked if for any 1 ≤ j ≤ dn/be, only one person
(either Alice or Bob) speaks during all rounds r such that (j − 1)b < r ≤ jb.

Lemma 3.4. Any n-round k-alternating protocol Π can be simulated by a b-blocked protocol Π′ that con-
sists of at most n+ kb rounds.
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Proof of Lemma 3.4. Consider the protocol tree of Π, where each node corresponds to a state of the
protocol (with the root as the starting state) and each node has at most two edges leaving from
it (labeled ‘0’ and ‘1’). Moreover, each node is colored one of two colors depending on whether
Alice or Bob speaks next in the corresponding state, and the edges emanating from the node are
colored the same. The leaves of the protocol tree are terminating states of the protocol, and one
can view any (possibly corrupted) execution of the protocol as a path from the root to a leaf of the
tree, where the edge taken from any node indicates the bit that is transmitted by the sender from
the corresponding state.

Now, consider any path down the protocol tree. We can group the edges of the path into
maximal groups of consecutive edges of the same color. Now, if any group of edges contains a
number of edges that is not a multiple of b, then we add some dummy nodes (with edges) in the
middle of the group so that the new number of edges in the group is the next largest multiple of
b. It is clear that if we do this for every path down the original protocol tree, then the resulting
protocol tree will correspond to a protocol Π′ that is b-blocked and simulates Π (i.e., each leaf of
Π′ corresponds to a leaf of Π).

Moreover, note that the number of groups of edges is at most k, since Π is k-alternating. Also,
the number of dummy nodes we add in each group is at most b. It follows that the number of
nodes (and edges) down any original path of Π has increased by at most kn in Π′. Thus, the
desired claim follows.

4 Warmup: Interactive Coding for Random Errors

As a warmup for the much more difficult adversarial setting, we first consider the setting of ran-
dom errors, as this will illustrate several ideas including blocking, the use of error-correcting
codes, and how to incorporate those with known techniques in coding for interactive commu-
nication.

In this section, we suppose that each transmission of Alice and Bob occurs over a binary sym-
metric channel with an ε probability of corruption. Recall that we wish to encode an n-round
protocol Π into a protocol Πrandom

enc such that with high probability over the communication chan-
nel, execution of Πrandom

enc robustly simulates Π. By [Hae14], it is known that one can achieve a
communication rate of 1−O(

√
ε). In this section, we show how to go beyond the rate of 1−O(

√
ε)

for protocols with at least a constant (in ε) average message length.

4.1 Trivial Scheme for Non-Adaptive Protocols with Minimum Message Length

The first coding scheme we present for completeness is a completely trivial and straight forward
application of error correcting codes which works for non-adaptive protocols Π with a guaranteed
minimum message length. In particular, the coding scheme achieves a communication rate of
1−O(H(ε)) for non-adaptive protocols with minimum message length Ω((1/ε) log n).

In particular, we assume that Π is a a non-adaptive n-round protocol with message lengths of
size b1, b2, . . . , bk, i.e., Alice sends b1 bits, then Bob sends b2 bits, and so on. Moreover, we assume
that that b1, b2, . . . , bk ≥ b, where b = Ω((1/ε) log n) is the minimum message length.

Now, we can form the encoded protocol Πrandom
enc by simply having the transmitting party re-

place its intended message in Π (of bi bits) with the encoding (of length, say, b′i) of the message
under an error-correcting code of minimum relative distance Ω(ε) and rate 1 − O(H(ε)) and then
transmitting the resulting codeword. The receiver then decodes the word according to the nearest
codeword of the appropriate error-correcting code.
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Note that for any given message (codeword) of length b′i, the expected number of corrup-
tions due to the channel is εb′i. Thus, by Chernoff bound, the probability that the corresponding
codeword is corrupted beyond half the minimum distance of the relevant error-correcting code
is e−Ω(εb′) = n−Ω(1). Since k = O(n/b) = O(nε/ log n), the union bound implies that the prob-
ability that any of the k < n messages is corrupted beyond half the minimum distance is also
n−Ω(1). Thus, with probability 1 − n−Ω(1), Πrandom

enc simulates the original protocol without error.
Moreover, the overall communication rate is clearly 1 − O(H(ε)) due to the choice of the error-
correcting codes.

Remark 4.1. Note that the aforementioned trivial coding scheme has the disadvantage of working only for
nonadaptive protocols with a certain minimum message length, which is a much stronger assumption than
average message length. In Section 4.2, we show how to get around this problem by converting the input
protocol to a blocked protocol.

Another problem with the coding scheme is that the minimum message length is required to be Ωε(log n).
This is in order to ensure that the probability of error survives a union bound, as the trivial coding scheme
has no mechanism for recovering if a particular message gets corrupted. This also results in a success
probability of only 1−1/poly(n) instead of the 1− exp(n) one would like to have for a coding scheme. Sec-
tion 4.2 shows how to rectify both problems by combining the reduced error probability of a error correcting
code failing with any existing interactive coding scheme, such as [Hae14].

4.2 Coding Scheme for Protocols with Average Message Length of Ω(log(1/ε)/ε2)

In this section, we build on the trivial scheme discussed earlier to provide an improved coding
scheme that handles any protocol Π with an average message length of at least ` = Ω(log(1/ε)/ε2).

The first step will be to transform Π into a protocol that is blocked. Note that the Π is a k-
alternating protocol, where k = n/` = O(nε2/ log(1/ε)). Thus, by Lemma 3.4, we can transform
Π into a b-blocked protocol Πblk, for b = Θ(log(1/ε)/ε), such that Πblk simulates Π and consists of
nb = n+ kb = n(1 +O(ε)) rounds.

Now, we view Πblk as a q-ary protocol with nb/b rounds, where q = 2b. This can be done by
grouping the symbols in each b-sized block as a single symbol from an alphabet of size q. Next,
we can use the coding scheme of [Hae14] in a blackbox manner to encode this q-ary protocol as a
q-ary protocol Π′ with nb

b (1 + Θ(
√
ε′)) rounds such that Π′ simulates Π under oblivious random

errors with error fraction ε′ (i.e., each q-ary symbol is corrupted (in any way) with an independent
probability of at most ε′). We pick ε′ = ε4.

Finally, we transform Π′ into a binary protocol Πrandom
enc as follows: We expand each q-ary sym-

bol of Π′ back into a sequence of b bits and then expand the b bits into b′ > b bits using an error-
correcting code. In particular, we use an error-correcting code C : {0, 1}b → {0, 1}b′ with block
length b′ = b + (2c + δ) log2(1/ε) and minimum distance 2c log(1/ε) for appropriate constants c, δ
(such a code is guaranteed to exist by the Gilbert-Varshamov bound). Thus, Πrandom

enc is a b′-blocked
binary protocol with nb · b

′

b (1+Θ(
√
ε′)) = n(1+O(ε log(1/ε)) rounds. Moreover, each b′-sized block

of Πrandom
enc simply simulates each q-ary symbol of Π′ and the listening party simply decodes the

received b′ bits to the nearest codeword of C.
To see that Πrandom

enc successfully simulates Π in the presence of random errors with error frac-
tion ε, observe that a b′-block is decoded incorrectly if and only if more than d/2 of the b′ bits are
corrupted. By the Chernoff bound, the probability of such an event is < ε4 (for appropriate choice
of c, δ). Thus, since Π′ is known to simulate Π under oblivious errors with error fraction ε4, it
follows that Πrandom

enc satisfies the desired property.
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5 Conceptual Challenges and Key Ideas

In this section, we wish to provide some intuition for the difficulties in surpassing the 1 − Θ(
√
ε)

communication rate for interactive coding when dealing with non-random errors. We do this be-
cause the adversarial setting comes with a completely new set of challenges that are somewhat
subtle but nonetheless fundamental. As such, the techniques used in the previous section for in-
teractive coding under random errors still provide a good introduction to some of the building
blocks in the framework we use to deal with the adversarial setting, but they are not sufficient to
circumvent the main technical challenges. Indeed, we show in this section that the adversarial set-
ting inherently requires several completely new techniques to beat the 1−Θ(

√
ε) communication

rate barrier.
We begin by noting that all existing interactive coding schemes encode the input protocol Π

into a protocol Π′ with a certain type of structure: There are some, a priori specified, communica-
tion rounds which simulate rounds of the original protocol (i.e., result in a walk down the protocol
tree of Π), while other rounds constitute redundant information which is used for error correction.
In the case of protocols that use hashing (e.g., [Hae14], [KR13]), this is directly apparent in their
description, as rounds in which hashes and control information are communicated constitute re-
dundant information. However, this is also the case for all protocols based on tree codes (e.g.,
[BR14, GHS14, GH14]): To see this, note that in such protocols, one can simply use an underly-
ing tree code that is linear and systematic, with the non-systematic portion of the tree code then
corresponding to redundant rounds.

We next present an argument which shows that, due to the above structure, no existing coding
scheme can break the natural 1−Ω(

√
ε) communication rate barrier, even for protocols with near-

linear o(n) average message lengths. This will also provide some intuition about what is required
to surpass this barrier.

Suppose that for a (randomized) n-round communication protocol Π, the simulating protocol
Π′ has the above structure and a communication rate of 1−ε′. The simulation Π′ thus consists of ex-
actlyN = n/(1−ε′) rounds. Note that, since every simulation must have at least n non-redundant
rounds, the fraction of redundant rounds in Π′ can be at most ε′. Given that the position of the
redundant rounds is fixed, it is therefore possible to find a window of (ε/ε′)N consecutive rounds
in Π′ which contain at most εN redundant rounds, i.e., an ε′ fraction. Now, consider an oblivious
adversarial channel that corrupts all the redundant information in the window along with a few
extra rounds. Such an adversary renders any error correction technique useless, while the few ex-
tra errors derail the unprotected parts of the communication, thereby rendering essentially all the
non-redundant information communicated in this window useless as well—all while corrupting
essentially only εN rounds in total. This implies that in the remainingN−(ε/ε′)N communication
rounds outside of this window, there must be at least n non-redundant rounds in order for Π′ to
be able to successfully simulate Π. However, it follows that N − (ε/ε′)N ≥ n = N(1 − ε′) which
simplifies to 1− (ε/ε′) ≥ 1− ε′, or ε′2 ≥ ε, implying that the communication rate of 1− ε′ can be at
most 1− Ω(

√
ε), where ε is the fraction of errors applied by the channel.

One can note that a main reason for the 1 − Ω(
√
ε) limitation in the above argument is that

the adversary can target the rounds with redundant information in the relevant window. For
instance, in the interactive coding scheme of [Hae14], the rounds with control information are
in predetermined positions of the encoded protocol, and so, the adversary knows exactly which
locations to corrupt.

Our idea for overcoming the aforementioned limitations in the case of an oblivious adversarial
channel is to employ some type of information hiding to hide the locations of the redundant
rounds carrying control/verification information. In particular, we randomize the locations of
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control information bits within the output protocol, which allows us to guard against attacks that
target solely the redundant information. In order to allow for this synchronized randomization in
the standard private randomness model assumed in this paper, Alice and Bob use the standard trick
of first running an error-corrected randomness exchange procedure that allows them to establish
some shared randomness hidden from the oblivious adversary that can be used for the rest of the
simulation. Note that this inherently does not work for a fully adaptive adversary, as the adversary
can adaptively choose which locations to corrupt based on any randomness that has been shared
over the channel. In fact, we believe that beating the 1−Ω(

√
ε) communication rate barrier against

fully adaptive adversaries may be fundamentally impossible for precisely this reason.
Information hiding, while absolutely crucial, does not, however, make use of a larger average

message length which, according to the conjectures of [Hae14], is necessary to beat the 1− Ω(
√
ε)

barrier. The idea we use for this, as already demonstrated in Section 4, is the use of blocking and
the subsequent application of error-correcting codes on each such block.

Unfortunately, the same argument as given above shows that a straightforward application of
block error-correcting codes, as done in Section 4, cannot work against an oblivious adversarial
channel. The reason is that in such a case, an application of systematic block error-correcting codes
would be possible as well, and such codes again have pre-specified positions of redundancy which
can be targeted by the adversarial channel. In particular, one could again disable all redundant
rounds including the non-systematic parts of block error-correcting codes in a large window of
(ε/ε′)N rounds and make the remaining communication useless with few extra errors. More con-
cretely, suppose that one simply encodes all blocks of data with a standard block error-correcting
code. For such block codes, one needs to specify a priori how much redundancy should be added,
and the natural direction would be to set the relative distance to, say, 100ε given that one wants to
prepare against an error rate of ε. However, this would allow the adversary to corrupt a constant
fraction (e.g., 1/200) of error correcting codes beyond their distance, thus making a constant frac-
tion of the communicated information essentially useless. This would lead to a communication
rate of 1−Θ(1). It can again be easily seen that in this tradeoff, the best fixed relative distance one
can choose for block error-correcting codes is essentially

√
ε, which would lead to a rate loss of

H(
√
ε) for the error-correcting codes but would also allow the adversary to corrupt at most a

√
ε

fraction of all codewords. This would again lead to an overall communication rate of 1− Ω̃(
√
ε).

Our solution to the hurdle of having to commit to a fixed amount of redundancy in advance
is to use rateless error-correcting codes. Unlike block error-correcting codes with fixed block
length and minimum distance, rateless codes encode a message into a potentially infinite stream
of symbols such that having access to enough uncorrupted symbols allows a party to decode the
desired message with a resulting communication rate that adapts to the true error rate without
requiring a priori knowledge of the error rate. Since it is not possible for Alice and Bob to know
in advance which data bits the adversary will corrupt, rateless codes allow them to adaptively
adjust the amount of redundancy for each communicated block, thereby allowing the correction
of errors without incurring too great a loss in the overall communication rate.

6 Main Result: Interactive Coding for Oblivious Adversarial Errors

In this section, we develop our main result. We remind the reader that in the oblivious adversarial
setting assumed throughout the rest of this paper, the adversary is allowed to corrupt up to an ε
fraction of the total number of bits exchanged by Alice and Bob. The adversary commits to the
locations of these bits before the start of the protocol. Alice and Bob will use randomness in their
encoding, and one asks for a coding scheme that allows Alice and Bob to recover the transcript
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of the original protocol with exponentially high probability in the length of the protocol (over the
randomness that Alice and Bob use) for any fixed error pattern chosen by the adversary.

For simplicity in exposition, we assume that the input protocol is binary, so that the simulating
output protocol will also be binary. However, the results hold virtually as-is for protocols over
larger alphabet. We first provide a high-level overview of our construction of an encoded protocol.
The pseudocode of the algorithm appears in Figure 3.

6.1 High-Level Description of Coding Scheme

Let us describe the basic structure of our interactive coding scheme. Suppose Π is an n-round
binary input protocol with average message length ` ≥ poly(1/ε). Using Lemma 3.4, we first
produce a B-blocked binary protocol Πblk with n′ rounds that simulates Π.

Our encoded protocol Πoblivious
enc will begin by having Alice and Bob performing a randomness

exchange procedure. More specifically, Alice will generate some number of bits from her private
randomness and encode the random string using an error-correcting code of an appropriate rate
and distance. Alice will then transmit the encoding to Bob, who can decode the received string.
This allows Alice and Bob to maintain shared random bits. The randomness exchange procedure is
described in further detail in Section 6.3.

Next, Πoblivious
enc will simulate the B-sized blocks (which we call B-blocks) of Πblk in order in a

structured manner. Each B-block will be encoded as a string of 2B bits using a rateless code, and
the encoded string will be divided into chunks of size b < B. For a detailed discussion on the
encoding procedure via rateless codes, see Section 6.4.

Now, Πoblivious
enc will consist of a series of Niter iterations. Each iteration consists of transmitting

b′ rounds, and we call such a b′-sized unit a mini-block, where b′ > b. Each mini-block will consist
of b data bits, as well as b′ − b bits of control information. The data bits in successive mini-blocks
will taken from the successive b-sized chunks obtained by the encoding under the rateless code.
Meanwhile, the control information bits are sent by Alice and Bob in order to check whether they
are in sync with each other and to allow a backtracking mechanism to tack place if they are not.

For a particular B-block that is being simulated, mini-blocks keep getting sent until the receiv-
ing party of the B-block is able to decode the correct B-block, after which Alice and Bob move on
to the next B-block in Π.

In addition to data bits, each mini-block also contains b′ − b bits of control information. A
party’s unencoded control information during a mini-block consists of some hashes of his view
of the current state of the protocol as well as some backtracking parameters. The aforementioned
quantities are encoded using a hash for verification as well as an error-correcting code. Each party
sends his encoded control information as part of each mini-block. The locations of the control
information within each mini-block will be randomized for the sake of information hiding, using
bits from the shared randomness of Alice and Bob. This is described in further detail in Section 6.5.
Moreover, we note that the hashes used for the control information in each mini-block are seeded
using bits from the shared randomness. The structure of each mini-block is shown in Figure 2.

After each iteration, Alice and Bob try to decode each other’s control information in order to
determine whether they are in sync. If not, the parties decide whether to backtrack in a controlled
manner (see Section 6.6 for details).

Throughout the protocol, Alice maintains a block index cA (which indicates which block of Πblk

she believes is currently being simulated), a chunk counter jA, a transcript (of the blocks in Πblk that
have been simulated so far) TA, a global counter m (indicating the number of the current iteration),
a backtracking parameter kA, as well as a sync parameter syncA. Similarly, Bob maintains cB , jB , TB ,
m, kB , and syncB .
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Figure 2: Each B-block of Πblk gets encoded into chunks of size b using a rateless code. Every
b′-sized mini-block in Πoblivious

enc consists of the b bits of such a chunk, along with (b′ − b)/2 bits of
Alice’s control information and (b′ − b)/2 bits of Bob’s control information. The positions of the
control information within a mini-block are randomized. Note that rounds with Alice’s control
information are in green, while rounds with Bob’s control information are in light blue.

6.2 Parameters

We now set the parameters of the protocol. For convenience, we will define a loss parameter ε′ < ε.
Our interactive coding scheme will incur a rate loss of Θ(ε′ polylog(1/ε′)), in addition to the usual
rate loss of Θ(H(ε)). Alice and Bob are free to decide on an ε′ based on what rate loss they are
willing to tolerate in the interactive coding scheme. In particular, note that if ε′ = Θ(ε2), then
the rate loss of Θ(ε′ polylog(1/ε′)) is overwhelmed by Θ(H(ε)). For the purposes of Theorem 1.1,
it will suffice to take ε′ = Θ(ε2) at then end, but for the sake of generality, we maintain ε′ as a
separate parameter.

We now take the average message length threshold to be Ω(1/ε′3), i.e., we assume that our
input protocol Π has average message length ` = Ω(1/ε′3). Then, Π has at most alt = n/` = O(nε′3)
alternations. Moreover, we take B = Θ(1/ε′2) and b = s = Θ(1/ε′), with B = sb. Then, by
Lemma 3.4, note that n′ ≤ n+ alt ·B = n(1 +O(ε′)).

We also take b′ = b+ 2c log(1/ε′), so that within each b′-sized mini-block, each party transmits
c log(1/ε′) bits of (encoded) control information.

Finally, we take Niter = n′

b (1 + Θ(ε log(1/ε)) iterations. This will guarantee, with high probabil-
ity, that at the end of the protocol, Alice and Bob have successfully simulated all blocks of Πblk, and
therefore, Π. Also, it should be noted that we append trivial blocks of zeros (sent by, say, Alice) to
the end of Πblk to simulate in case Πoblivious

enc ever runs out of blocks of Πblk to simulate (because it
has reached the bottom of the protocol tree) before Niter iterations of Πoblivious

enc have been executed.

6.3 Randomness Exchange

Alice and Bob will need to have some number of shared random bits throughout the course of the
protocol. The random bits will be used for two main purposes: information hiding and seeding hash
functions, which will be discussed in Section 6.5. As it turns out, it will suffice for Alice and Bob
to have l′ = O(nε′ polylog(1/ε′)) shared random bits for the entirety of the protocol, using some
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additional tricks.
Thus, in the private randomness model, it suffices for Alice to generate the necessary number

of random bits and transmit them to Bob using an error-correcting code. More precisely, Alice gen-
erates a uniformly random string str ∈ {0, 1}l′ , uses an error-correcting code Cexchange : {0, 1}l′ →
{0, 1}10εNiterb

′
of relative distance 2/5 to encode str, and transmits the encoded string to Bob. Since

the adversary can corrupt only at most ε fraction of all bits, the transmitted string cannot be cor-
rupted beyond half the minimum distance of Cexchange. Hence, Bob can decode the received string
and determine str.

Note that the exchange of randomness via the codeword in Cexchange results in a rate loss of
Θ(ε), which is still overwhelmed by Θ(H(ε)).

6.4 Sending Data Bits Using “Rateless” Error-Correcting Codes

To transmit data from blocks of Πblk, we will use an error-correcting code that has incremental
distance properties. One can think of this as a rateless code with minimum distance properties.
Recall that b = s = Θ(1/ε′) and B = sb. In particular, we require an error-correcting code Crateless :
{0, 1}B → {0, 1}2B for which the output is divided in to 2s chunks of b bits each such that the
code restricted to any contiguous block (with cyclic wrap-around) of > s chunks has a certain
guaranteed minimum distance. The following lemma guarantees the existence of such a code.

Lemma 6.1. For sufficiently large b, s, there exists an error-correcting code C : {0, 1}sb → {0, 1}2sb such
that for any a = 0, 1, . . . , 2s − 1 and j = s + 1, s + 2, . . . , 2s, the code Ca,j : {0, 1}sb → {0, 1}jb
formed by restricting C to the bits ab, ab + 1, . . . , ab + jb − 1 (modulo 2sb) has relative distance at least
δj = H−1

(
j−s
j −

1
4s

)
, while C has relative distance at least δ2s = 1

15 . (Here, H−1 denotes the unique
inverse of H that takes values in [0, 1/2].)

Proof of Lemma 6.1. We use a slight modification of the random coding argument that is often used
to establish the Gilbert-Varshamov bound. Suppose we pick a random linear code. For s < j ≤ 2s,
let us consider the probability Pa,j that the resulting Ca,j does not have relative distance at least
δj . Consider any codeword y ∈ {0, 1}jb in Ca,j . The probability that y has Hamming weight less
than δj is at most 2−jb(1−H(δj)). Thus, by the union bound, we have that the probability that Ca,j
contains a codeword of Hamming weight less than δj is at most

Pa,j = 2sb · 2−jb(1−H(δj)) = 2
sb−jb

(
1− j−s

j
+ 1

4s

)
= 2−jb/4s

≤ 2−b/4.

Similarly, P , the probability that C contains a codeword of Hamming weight less than 2
15s, is at

most

P ≤ 2sb · 2−2sb(1−H(2/15)) ≤ 2−sb/4 ≤ 2−b/4.

Therefore, by another application of the union bound, the probability that some Ca,j or C does
not have the required relative distance is at most

P +
∑

0≤a≤2s−1
s<j≤2s

Pa,j ≤ (2s2 + 1) · 2−b/4 < 1

for sufficiently large b, s.
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Remark 6.2. For our purposes, b = s = Θ(1/ε′). Therefore, for suitably small ε′ > 0, there exists such an
error-correcting code C as guaranteed by Lemma 6.1. Moreover, it is possible to find a such a code by brute
force in time poly(1/ε′).

Thus, Alice and Bob can agree on a fixed error-correcting code Crateless of the type guaranteed
by Lemma 6.1 prior to the start of the algorithm. Now, let us describe how data bits are sent during
the iterations of Πoblivious

enc . The blocks of Πoblivious
enc are simulated in order as follows.

First, suppose Alice’s block index cA indicates a B-block in Πblk during which Alice is the
sender. Then in Πoblivious

enc , Alice will transmit up to a maximum of 2s chunks (of size b) that will
encode the data x from that block. More specifically, Alice will compute y = Crateless(x) ∈ {0, 1}2B
and decompose it as y = y0 ◦ y1 ◦ · · · ◦ y2s−1, where ◦ denotes concatenation and y0, y1, . . . , y2s−1 ∈
{0, 1}b.

Recall that each mini-block of Πoblivious
enc contains b data bits (in addition to b′ − b control bits).

Thus, Alice can send each yi as the data bits of a mini-block. The chunk that Alice sends in a given
iteration depends on the global counter m. In particular, Alice always sends the chunk ym mod 2s.
Moreover, Alice keeps a chunk counter jA, which is set to 0 during the first iteration in which she
transmits a chunk from y and then increases by 1 during each subsequent iteration (until jA = 2s,
at which point jA stops increasing).

On the other hand, suppose Alice’s block index cA indicates a B-block in Πblk during which
Alice is the receiver. Then, Alice listens for data during each mini-block. Alice stores her received
b-sized chunks as g̃0, g̃1, . . . and increments her chunk counter jA after each iteration to keep track
of how many chunks she has stored, along with a, an index indicating which ya she expects the
first chunk g̃0 to be. Once Alice has received more than s chunks (i.e., jA > s), she starts to keep
an estimate x̃ of the data x that Bob is sending that Alice has by decoding g̃0 ◦ g̃1 ◦ · · · ◦ g̃jA−1 to the
nearest codeword of Cratelessa,jA

. This estimate is updated after each subsequent iteration. As soon as
Alice undergoes an iteration in which she receives valid control information suggesting that x̃ = x
(if Alice’s estimate x̃ matches the hash of x that Bob sends as control information, see Section 6.5),
she advances her block index cA and appends her transcript TA with x̃.

Note that it is possible that jA reaches 2s and Alice has not yet received valid control infor-
mation suggesting that he has decoded x. In this case, Alice resets jA to 0 and also resets a to
the current value of m, thereby restarting the listening process. Also, during any iteration, if Al-
ice receives control information suggesting that jB < jA (i.e., Alice has been listening for a greater
number of iterations than Bob has been transmitting), then again, Alice resets jA and a and restarts
the process.

Remark 6.3. The key observation is that using a rateless code allows the amount of redundancy in data that
the sender sends to adapt to the number of errors being introduced by the adversary, rather than wasting
redundant bits or not sending enough of them.

6.5 Control Information

Alice’s unencoded control information in themth iteration consists of (1.) a hash h(m)
A,c = hash(cA, S)

of the block index cA, (2.) a hash h
(m)
A,x = hash(x, S) of the data in the current block of Πblk be-

ing communicated, (3.) a hash h
(m)
A,k = hash(kA, S) of the backtracking parameter kA, (4.) a hash

h
(m)
A,T = hash(TA, S) of Alice’s transcript TA, (5.) a hash h

(m)
A,MP1 = hash(TA[1, MP1], S) of Alice’s

transcript up till the first meeting point, (6.) a hash h(m)
A,MP2 = hash(TA[1, MP2], S) of Alice’s transcript

up till the second meeting point, (7.) the chunk counter jA, and (8.) the sync parameter syncA. Here,
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S refers to a string of fresh random bits used to seed the hash functions (note that S is different for
each instance). Thus, we write Alice’s unencoded control information as

ctrl
(m)
A =

(
h

(m)
A,c , h

(m)
A,x , h

(m)
A,k , h

(m)
A,T , h

(m)
A,MP1, h

(m)
A,MP2, jA, syncA

)
.

Bob’s unencoded control information ctrl
(m)
B is similar in the analogous way.

For the individual hashes, we can use the following Inner Product hash function hash : {0, 1}l×
{0, 1}r → {0, 1}p, where r = lp:

hash(X,R) =
(
〈X,R[1,l]〉, 〈X,R[l+1,2l]〉, . . . , 〈X,R[lp−(l−1),lp]〉

)
,

where the first argument X is the quantity to be hashed, and the second argument R is a random
seed. This choice of hash function guarantees the following property:

Property 6.1. For any X,Y ∈ {0, 1}l such that X 6= Y , we have that PrR∼Unif({0,1}r)[hash(X,R) =
hash(Y,R)] ≤ 2−p.

Now, we wish to take output size p = O(log(1/ε′)) for each of the hashes so that the total size of
each party’s control information in any iteration is O(log(1/ε′)). Note that some of the quantities
we hash (e.g., TA, TB) actually have size l = Ω(n). Thus, for the corresponding hash function, we
would naively require r = lp = Ω(n log(1/ε′)) fresh bits of randomness for the seed (per iteration),
for a total of Ω(Nitern log(1/ε′)) bits of randomness. However, as described in Section 6.3, Alice
and Bob only have access to O(nε′polylog(1/ε′)) bits of shared randomness!

To get around this problem, we make use of δ-biased sources to minimize the amount of
randomness we need. In particular, we can use the δ-biased sample space of [NN93] to stretch
Θ(log(L/δ)) independent random bits into a string of L = Θ(Nitern log(1/ε′)) pseudorandom bits
that are δ-biased. We take δ = 2−Θ(Niter·p). The sample space guarantees that the L pseudoran-
dom bits are δΘ(1)-statistically close to being k-wise independent for k = log(1/δ) = Θ(Niter · p) =
Θ(Niter log(1/ε′)). Moreover, the Inner Product Hash Function satisfies the following modified
collision property, which follows trivially from Property 6.1 and the definition of δ-bias:

Property 6.2. For any X,Y ∈ {0, 1}l such that X 6= Y , we have that PrR[hash(X,R) = hash(Y,R)] ≤
2−p + δ, where R is sampled from a δ-biased source.

As it turns out, this property is good enough for our purposes. Thus, after the randomness
exchange, Alice and Bob can simply take Θ(log(L/δ)) bits from str and stretch them into an L-bit
string strstretch as described. Then, for each iteration, Alice and Bob can simply seed their hash
functions using bits from strstretch.

6.5.1 Encoding and Decoding Control Information

Recall that during the mth iteration, Alice’s (unencoded) control information is ctrl(m)
A , while Bob’s

(unencoded) control information is ctrl(m)
B . In this section, we describe the encoding and decoding

functions that Alice and Bob use for their control information. We start by listing the properties
we desire.

Definition 6.4. SupposeX ∈ {0, 1}l and V ∈ {∗,¬, 0, 1}l for some l > 0. Then, we define CorruptV (X) =
Y ∈ {0, 1}l as follows:

Yi =


Vi if Vi ∈ {0, 1}
Xi ⊕ 1 if Vi = ¬
Xi if Vi = ∗

.
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Moreover, we define wt(V ) to be the number of coordinates of V that are not equal to ∗.

Remark 6.5. Note that V corresponds to an error pattern. In particular, ∗ indicates a position that is not
corrupted, while ¬ indicates a bit flip, and 0/1 indicate a bit that is fixed to the appropriate symbol (see
Section 2.1 for details about flip and replace errors). The function CorruptV applies the error pattern V to
the bit string given as an argument. Also, wt(V ) corresponds to the number of positions that are targeted
for corruption.

We require a seeded encoding function Enc : {0, 1}l × {0, 1}r → {0, 1}o as well as a seeded
decoding function Dec : {0, 1}o × {0, 1}r → {0, 1}l ∪ {⊥} such that the following property holds:

Property 6.3. The following holds:

1. For any X ∈ {0, 1}l, R ∈ {0, 1}r, and V ∈ {∗,¬, 0, 1}o such that wt(V ) < 1
8o,

Dec(CorruptV (Enc(X,R)), R) = X.

2. For any X ∈ {0, 1}l and V ∈ {0, 1}o such that wt(V ) ≥ 1
8o,

Pr
R∼Unif({0,1}r)

[Dec(CorruptV (Enc(X,R)), R) 6∈ {X,⊥}] ≤ 2−Ω(l).

Remark 6.6. The second argument of Enc and Dec will be a seed, which is generated by taking r fresh
bits from the shared randomness of Alice and Bob. A decoding output of ⊥ indicates a decoding failure.
Moreover, (1.) of Property 6.3 guarantees that a party can successfully decode the other party’s control
information if at most a constant fraction of the encoded control information symbols are corrupted (this is
then used to prove Lemmas 6.17 and 6.18). On the other hand, (2.) of Property 6.3 guarantees that if a
larger fraction of the encoded control information symbols are corrupted, then the decoding party can detect
any possible corruption with high probability (this is then used to establish Lemma 6.19).

We now show how to obtain Enc, Dec that satisfy Property 6.3. The idea is that Enc consists
of a three-stage encoding: (1.) append a hash value to the unencoded control information, (2.)
encode the resulting string using an error-correcting code, and (3.) XOR each output bit with a
fresh random bit taken from the shared randomness.

For our purposes, we want l = O(log(1/ε′)) to be the number of bits in ctrl
(m)
A (or ctrl(m)

B ) and
o = c log(1/ε′).

First, we choose a hash function h : {0, 1}l × {0, 1}t → {0, 1}o′ that has the following property:

Property 6.4. Suppose X,U ∈ {0, 1}l, where U is not the all-zeros vector, and W ∈ {0, 1}o′ . Then,

Pr
R∼Unif({0,1}t)

[h(X + U,R) = h(X,R) +W ] ≤ 2−o
′
.

In particular, we can use the simple Inner Product Hash Function with t = l·o′ and o′ = Θ(log(1/ε′)):

h(X,R) =
(〈
X,R[1,l]

〉
,
〈
X,R[l+1,2l]

〉
, . . . ,

〈
X,R[l·o′−(l−1),l·o′]

〉)
.

Next, we choose a linear error-correcting code Chash : {0, 1}l+o′ → {0, 1}o of constant relative
distance 1/4 and constant rate.

We now take r = t+ o and define Enc as

Enc(X,R) = Chash(X ◦ h(X,R[o+1,r]))⊕R[1,o].
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Moreover, we define Dec as follows: Given Y,R, let X ′ be the decoding of Y + R[1,o] under Chash

(using the nearest codeword of Chash and then inverting the map Chash). We then define

Dec(Y,R) =

{
X ′[1,l] if h(X ′[1,l], R[o+1,r]) = X ′[l+1,l+o′]

⊥ if h(X ′[1,l], R[o+1,r]) 6= X ′[l+1,l+o′]

.

Remark 6.7. Note that we have r = O(log2(1/ε′)), which means that over the course of the protocol
Πoblivious

enc , we will need O(Niterr) = O(nε′ log2(1/ε′)) fresh random bits for the purpose of encoding and
decoding control information.

We now prove that the above Enc, Dec satisfy Property 6.3.

Proof. Note that if V ∈ {∗,¬, 0, 1}o satisfies wt(V ) < 1
8o, then note that the Hamming distance

between CorruptV (Enc(X,R)) and Enc(X,R) is less than 1
8o. Hence, since Chash has relative dis-

tance 1/4, it follows that under the error-correcting code Chash, CorruptV (Enc(X,R)) ⊕ R[1,o] and
Enc(X,R) ⊕ R[1,o] decode to the same element of {0, 1}l+o′ , namely, X ◦ h(X,R). Part (1.) of
Property 6.3 therefore holds.

Now, let us establish (2.) of Property 6.3. Consider a V ∈ {0, 1}o with wt(V ) ≥ 1
8o. Now, let us

enumerate W (1),W (2), . . . ,W (2wt(V )) ∈ {0, 1}o as the set of all 2wt(V ) vectors in {0, 1}o which have
a 0 in all coordinates where V has a ∗. Now, observe that the distribution of CorruptV (Enc(X,R))
over R1, R2, . . . , Ro taken i.i.d. uniformly in {0, 1} is identical to the distribution of

Chash(X ◦ h(X,R[o+1,r]))⊕W,

where W is chosen uniformly from
{
W (1),W (2), . . . ,W (2wt(V ))

}
. Now, note that for each W (i),

there exists a corresponding U (i) ∈ {0, 1}o+l such that under the nearest-codeword decoding of
Chash,

Chash(X ◦ h(X,R[o+1,r])))⊕W (i)

decodes to (X ◦ h(X,R[o+1,r]))⊕ U (i). Thus, we have that

Pr
R∼Unif({0,1}r)

[Dec(CorruptV (Enc(X,R)), R) 6∈ {X,⊥}]

= Pr
Ro+1...,Rr∼Unif({0,1})

1≤i≤2wt(V )

[
U (i) 6= (0, 0, . . . , 0) AND h

(
X ⊕ U (i)

[1,l]

)
= h

(
X,R[o+1,r]

)
⊕ U (i)

[l+1,l+o]

]
,

which, by Property 6.4, is at most 2−o
′
, thereby establishing (2.) of Property 6.3.

6.5.2 Information Hiding

We now describe how the encoded control information bits are sent within each mini-block. Recall
that in the mth iteration, Alice chooses a fresh random seed RA taken from the shared randomness
str and computes her encoded control information Enc(ctrl

(m)
A , RA). Similarly, Bob choosesRB and

computes Enc(ctrl(m)
B , RB). Recall that RA, RB are known to both Alice and Bob.

As discussed previously, the control information bits in each mini-block are not sent contigu-
ously. Rather, the locations of the control information bits within each b′-sized mini-block are
hidden from the oblivious adversary by using the shared randomness to agree on a designated
set of 2c log(1/ε′) locations. In particular, the locations of the control information bits sent by Alice
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and Bob during the mth iteration are given by the variables zAm,i and zBm,i (i = 1, . . . , c log(1/ε′)),
respectively. For eachm, these variables are chosen randomly at the beginning usingO(log2(1/ε′))
fresh random bits from the preshared string str. Since there are Niter iterations, this will require a
total of Θ(Niter · log2(1/ε′)) = Θ(nε′ log2(1/ε′)) random bits from str.

Thus, Alice sends the c log(1/ε′) bits of Enc(ctrl(m)
A , RA) in positions zAm,i (i = 1, . . . , c log(1/ε′))

of the mini-block of the mth iteration, and similarly, Bob sends the bits of Enc(ctrl(m)
B , RB) in posi-

tions zBm,i (i = 1, . . . , c log(1/ε′)). Meanwhile, Bob listens for Alice’s encoded control information in
positions zAm,i of the mini-block and assembles the received bits as a string Y ∈ {0, 1}c log(1/ε′), after
which Bob tries to decode Alice’s control information by computing Dec(Y,RA). Similarly, Alice
listens for Bob’s encoded control information in locations zBm,i and tries to decode the received bits.

After each iteration, Alice and Bob use their decodings of each other’s control information to
decide how to proceed. This is described in detail in Section 6.6.

Remark 6.8. The information hiding provided by the randomization of zAm,i and zBm,i (i = 1, . . . , c log(1/ε′))
ensures that an oblivious adversary generally needs to corrupt a constant fraction of bits in a mini-block
in order to corrupt a constant fraction of either party’s encoded control information bits in that mini-block.
Along with Property 6.3, this statement is used to prove Lemma 6.17.

6.6 Flow of the Protocol and Backtracking

Throughout Πoblivious
enc , each party maintains a state that indicates whether both parties are in sync

as well as parameters that allow for backtracking in the case that the parties are not in sync. After
each iteration, Alice and Bob use their decodings of the other party’s control information from that
iteration to update their states. We describe the flow of the protocol in detail.

Alice and Bob maintain binary variables syncA and syncB , respectively, which indicate the play-
ers’ individual perceptions of whether they are in sync. Note that syncA = 1 implies kA = 1 (and
similarly, syncB = 1 implies kB = 1). Moreover, in the case that syncA = 1 (resp. syncB = 1),
the variable speakA (resp. speakB) indicates whether Alice (resp. Bob) speaks in the cth

A (resp. cth
B )

block of Πblk, based on the transcript thus far.
Let us describe the protocol from Alice’s point of view, as Bob’s procedure is analogous. Note

that after each iteration, Alice attempts to decode Bob’s control information for that iteration.
We say that Alice successfully decodes Bob’s control information if the decoding procedure (see
Section 6.5.1) does not output ⊥. In this case, we write the output of the control information
decoder (for the mth iteration) as

c̃trl
(m)

B =
(
h̃

(m)
B,c , h̃

(m)
B,x, h̃

(m)
B,k , h̃

(m)
B,T , h̃

(m)
B,MP1, h̃

(m)
B,MP2, j̃B, s̃yncB

)
.

We now split into two cases, based on whether syncA = 1 or syncA = 0.

syncA = 1:

The general idea is that whenever Alice thinks she is in sync with Bob (i.e., syncA = 1), she
either (a.) listens for data bits from Bob while updating her estimate x̃ of block cA of Πblk, if
speakA = 0, or (b.) transmits, as data bits of the next iteration, the (m mod 2s)-th chunk of the
encoding of x (the cA-th B-block of Πblk) under Crateless, if speakA = 1 (see Section 6.4 for details).

If Alice is listening for data bits, then Alice expects that kA = kB = 1 and either (1.) cA = cB ,
TA = TB or (2.) cA = cB + 1, TB = TA[1 . . . (cB − 1)B]. Condition (1.) is expected to hold if Alice
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has still not managed to decode the B-block x that Bob is trying to relay, while (2.) is expected if
Alice has managed to decode x and has advanced her transcript but Bob has not yet realized this.

On the other hand, if Alice is transmitting data bits, then Alice expects that kA = kB = 1, as
well as either (1.) cA = cB , TA = TB , or (2.) cB = cA + 1, TB = TA ◦ x, or (3.) cA = cB + 1,
TB = TA[1 . . . (cB − 1)B]. Condition (1.) is expected to hold if Bob is still listening for data bits
and has not yet decoded Alice’s x, while (2.) is expected to hold if Bob has already managed to
decode x and advanced his block index and transcript, and (3.) is expected to hold if Bob has been
transmitting data bits to Alice (for the (cA − 1)-th B-block of Πblk), but Bob has not realized that
Alice has decoded the correct B-block and moved on.

Now, if Alice manages to successfully decode Bob’s control information in the most recent
iteration, then Alice checks whether the hashes h̃(m)

B,c , h̃(m)
B,k , h̃(m)

B,T , h̃(m)
B,x, as well as s̃yncB are consis-

tent with Alice’s expectations (as outlined in the previous two paragraphs). If not, then Alice sets
syncA = 0. Otherwise, Alice proceeds normally.

Remark 6.9. Note that in general, if a party is trying to transmit the contents x of a B-block and the other
party is trying to listen for x, then there is a delay of at least one iteration between the time that the listening
party decodes x and the time that the transmitting party receives control information suggesting that the
other party has decoded x. However, since b/B = O(ε′), the rate loss due to this delay turns out to be just
O(ε′).

syncA = 0:

Now, we consider what happens when Alice believes she is out of sync (i.e., syncA = 0). In
this case, Alice uses a meeting point based backtracking mechanism along the lines of [Sch92] and
[Hae14]. We sketch the main ideas below:

Specifically, Alice keeps a backtracking parameter kA that is initialized as 1 when Alice first
believes she has gone out of sync and increases by 1 each iteration thereafter. (Note that kA is also
maintained when syncA = 1, but it is always set to 1 in this case.) Alice also maintains a counter
EA that counts the number of discrepancies between kA and kB , as well as meeting point counters
v1 and v2. The counters EA, v1, v2 are initialized to zero when Alice first sets syncA to 0.

The parameter kA measures the amount by which Alice is willing to backtrack in her transcript
TA. More specifically, Alice creates a scale k̃A = 2blog2 kAc by rounding kA to the largest power of
two that does not exceed it. Then, Alice defines two meeting points MP1 and MP2 on this scale to
be the two largest multiples of k̃AB not exceeding |TA|. More precisely, MP1 = k̃AB

⌊
|TA|
kAB

⌋
and

MP2 = MP1 − k̃AB. Alice is willing to rewind her transcript to either one of TA[1 . . . MP1] and
TA[1 . . . MP2], the last two positions in her transcript where the number of B-blocks of Πblk that
have been simulated is an integral multiple of k̃A.

If Alice is able to successfully decode Bob’s control information, then she checks h̃(m)
B,k . If it

does not agree with the hash of kA (suggesting that kA 6= kB), then Alice increments EA. Alice
also increments EA if s̃yncB = 1.

Otherwise, if h̃(m)
B,k matches her computed hash of kA, then Alice checks whether either of

h̃
(m)
B,MP1, h̃

(m)
B,MP2 matches the appropriate hash of TA[1 . . . MP1]. If so, then Alice increments her counter

v1, which counts the number of times her first meeting point matches one of the meeting points of
Bob. If not, then Alice then checks whether either of h̃(m)

B,MP1, h̃
(m)
B,MP2 matches the hash of TA[1 . . . MP2]

and if so, she increments her counter v2, which counts the number of times her second meeting
point matches one of the meeting points of Bob.
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In the case that Alice is not able to successfully decode Bob’s control information from the most
recent iteration (i.e., the decoder outputs ⊥), she increments EA.

Regardless of which of the above scenarios holds, Alice then increases kA by 1 and updates k̃A,
MP1, and MP2 accordingly.

Next, Alice checks whether to initiate a transition. Alice only considers making a transition if
kA = k̃A ≥ 2 (i.e., kA is a power of two and is ≥ 2). Alice first decides whether to initiate a meeting
point transition. If v1 ≥ 0.2kA, then Alice rewinds TA to TA[1 . . . MP1] and resets kA, k̃A, syncA to
1 and EA, v1, v2 to 0. Otherwise, if v2 ≥ 0.2kA, then Alice rewinds TA to TA[1 . . . MP2] and again
resets kA, k̃A, syncA to 1 and EA, v1, v2 to 0.

If Alice has not made a meeting point transition, then Alice checks whether EA ≥ 0.2kA. If so,
Alice undergoes an error transition, in which she simply resets kA, k̃A, syncA to 1 and EA, v1, v2 to 0
(without modifying TA).

Finally, if kA = k̃A ≥ 2 but Alice has not made any transition, then she simply resets v1, v2 to 0.

Remark 6.10. The idea behind meeting point transitions is that if the transcripts TA and TB have not
diverged too far, then there is a common meeting point up to which the transcripts of Alice and Bob agree.
Thus, during the control information of each iteration, both Alice and Bob send hash values of their two
meeting points in the hope that there is a match. For a given scale k̃A, there are k̃A hash comparisons that
are generated. If at least a constant fraction of these comparisons result in a match, then Alice decides
to backtrack and rewind her transcript to the relevant meeting point. This ensures that in order for an
adversary to cause Alice to backtrack incorrectly, he must corrupt the control information in a constant
fraction of iterations.

6.7 Pseudocode

We are now ready to provide the pseudocode for the protocol Πoblivious
enc , which follows the high-

level description outlined in Section 6.1 and is shown in Figure 3. The pseudocode for the helper
functions AliceControlFlow, AliceUpdateSyncStatus, AliceUpdateControl,
AliceDecodeControl, AliceAdvanceBlock, AliceUpdateEstimate, and AliceRollback for Alice
is also displayed. Bob’s functions BobControlFlow, BobUpdateSyncStatus, BobUpdateControl,
BobDecodeControl, BobAdvanceBlock, BobUpdateEstimate, and BobRollback are almost identi-
cal, except that “A” subscripts are replaced with “B” and are thus omitted. Furthermore, the
function InitializeSharedRandomness is the same for Alice and Bob.

6.8 Analysis of Coding Scheme for Oblivious Adversarial Channels

Now, we show that the coding scheme presented in Figure 3 allows one to tolerate an error fraction
of ε under an oblivious adversary with high probability.

6.8.1 Protocol States and Potential Function

Let us define states for the encoded protocol Πoblivious
enc . First, we define

`+ =
⌊
max{`′ ∈ [1,min{|TA|, |TB|}] : TA[1 . . . `′] = TB[1 . . . `′]

⌋
, `− = |TA|+ |TB| − 2`+.

In other words, `+ is the length of the longest common prefix of the transcripts TA and TB , while
`− is the total length of the parts of TA and TB that are not in the common prefix. Also recall
that δs+1, δs+2, . . . , δ2s are defined as in Lemma 6.1. Furthermore, we define δ0, δ1, . . . , δs = 0 for
convenience.
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Global parameters

b′ = b+ 2c log(1/ε′) Πblk = B-blocked simulating protocol for Π (see Lemma 3.4)

Niter =
n′

b
(1 + Θ(ε log(1/ε))) l′ = Θ(nε′ polylog(1/ε′))

ε′ = ε2 Chash : {0, 1}Θ(log(1/ε′)) → {0, 1}Θ(log(1/ε′)) (see Section 6.5.1)
b = s = Θ(1/ε′) Cexchange : {0, 1}l

′
→ {0, 1}10εNiterb

′
(see Section 6.3)

B = sb Crateless : {0, 1}B → {0, 1}2B (see Lemma 6.1)

Alice Bob

—————– Random string exchange —————–

Choose a random string str ∈ {0, 1}l′

w ← Cexchange(str)

w′ ← nearest codeword of Cexchange to w̃
str← (Cexchange)−1(w′)

—————– Initialization —————–

TA ← ∅
x← nil
kA, k̃A, cA, syncA ← 1
EA, v1, v2, jA, speakA, a,m, MP1, MP2← 0

InitializeSharedRandomness()

if Alice speaks in the first block of Πblk then
speakA ← 1
x← contents of first block of Πblk

y = y0 ◦ y1 ◦ · · · ◦ y2s−1 ← Crateless(x)
end if

TB ← ∅
x← nil
kB , k̃B , cB , syncB ← 1
EB , v1, v2, jB , speakB , a,m, MP1, MP2← 0

InitializeSharedRandomness()

if Bob speaks in the first block of Πblk then
speakB ← 1
x← contents of first block of Πblk

y0 ◦ y1 ◦ · · · ◦ y2s−1 ← Crateless(x)
end if

—————– Block transmission (repeat Niter times) —————–

AliceUpdateControl()

Send r[i] in slot zAm,i for i = 1, . . . , (b′ − b)/2
Listen during slots z̃Bm,i for i = 1, . . . , (b′ − b)/2
and write bits to r̃

if syncA = 1 and speakA = 1 then
Send the bits of ym mod 2s in the b
remaining slots

else
Listen during the b remaining slots and
store as gA

end if

AliceControlFlow()

BobUpdateControl()

Send r[i] in slot zBm,i for i = 1, . . . , (b′ − b)/2
Listen during slots z̃Am,i for i = 1, . . . , (b′ − b)/2
and write bits to r̃

if syncB = 1 and speakB = 1 then
Send the bits of ym mod 2s in the b
remaining slots

else
Listen during the b remaining slots and
store as gB

end if

BobControlFlow()

—————– End of repeat —————–

w
w̃

Figure 3: Encoded protocol Πoblivious
enc for tolerating oblivious adversarial errors.
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Algorithm 1 Procedure for Alice to process received data bits and control info from a mini-block
1: function ALICECONTROLFLOW

B Update phase:

2: c̃trl
(m)

B ← ALICEDECODECONTROL

3: if c̃trl
(m)

B 6=⊥ then

4:
(
h̃

(m)
B,c , h̃

(m)
B,x, h̃

(m)
B,k , h̃

(m)
B,T , h̃

(m)
B,MP1, h̃

(m)
B,MP2, j̃B, s̃yncB

)
← c̃trl

(m)

B

5: if syncA = 0 then
6: if h̃(m)

B,k 6= hash
(m)
B,k(kA) or s̃yncB = 1 then

7: EA ← EA + 1
8: else if hash(m)

B,MP1(TA[1 . . . MP1]) = h̃
(m)
B,MP1 or hash(m)

B,MP2(TA[1 . . . MP1]) = h̃
(m)
B,MP2 then

9: v1 ← v1 + 1
10: else if hash(m)

B,MP1(TA[1 . . . MP2]) = h̃
(m)
B,MP1 or hash(m)

B,MP2(TA[1 . . . MP2]) = h̃
(m)
B,MP2 then

11: v2 ← v2 + 1
12: end if
13: end if
14: else if syncA = 0 then
15: EA ← EA + 1
16: end if

17: if syncA = 0 then
18: kA ← kA + 1
19: k̃A ← 2blog2 kAc

20: end if

21: ALICEUPDATESYNCSTATUS

B Transition phase:

22: if kA = k̃A ≥ 2 and v1 ≥ 0.2kA then
23: ALICEROLLBACK(MP1)
24: else if kA = k̃A ≥ 2 and v2 ≥ 0.2kA then
25: ALICEROLLBACK(MP2)
26: else if kA = k̃A ≥ 2 and EA ≥ 0.2kA then
27: a← (m+ 1) mod 2s
28: kA, k̃A, syncA ← 1
29: EA, v1, v2, jA ← 0
30: else if kA = k̃A ≥ 2 then
31: v1, v2 ← 0
32: end if

33: MP1← k̃AB
⌊
|TA|
k̃AB

⌋
34: MP2← MP1− k̃AB
35: m← m+ 1
36: end function
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Algorithm 2 Procedure for Alice to update sync status
1: function ALICEUPDATESYNCSTATUS

2: syncA ← 0

3: if kA = 1 then
4: if c̃trl

(m)

B 6= ⊥ and h̃(m)
B,k = hash

(m)
B,k(1) then

5: if s̃yncB = 0 then
6: syncA ← 1; jA ← 0; a← (m+ 1) mod 2s

7: else if hash(m)
B,c (cA) = h̃

(m)
B,c and hash(m)

B,T (TA) = h̃
(m)
B,T then

8: syncA ← 1
9: if speakA = 0 then

10: if jA ≤ j̃B then
11: ALICEUPDATEESTIMATE

12: else
13: jA ← 0; a← (m+ 1) mod 2s
14: end if
15: else
16: jA ← min{jA + 1, 2s}
17: end if
18: else if speakA = 1 and hash(m)

B,c (cA + 1) = h̃
(m)
B,c and hash

(m)
B,T (TA ◦ x) = h̃

(m)
B,T then

19: syncA ← 1
20: ALICEADVANCEBLOCK

21: else if Bob speaks in block (cA − 1) of Πblk and hash
(m)
B,c (cA − 1) = h̃

(m)
B,c and

hash
(m)
B,T (TA[1 . . . (cA − 2)B]) = h̃

(m)
B,T and hash

(m)
B,x(TA[((cA − 2)B + 1) . . . (cA − 1)B]) = h̃

(m)
B,x

then
22: syncA ← 1
23: if speakA = 0 then
24: jA ← 0; a← (m+ 1) mod 2s
25: else
26: jA ← min{jA + 1, 2s}
27: end if
28: end if
29: else if c̃trl

(m)

B = ⊥ then
30: syncA ← 1
31: if speakA = 0 then
32: if jA 6= 0 then
33: ALICEUPDATEESTIMATE

34: else
35: a← (m+ 1) mod 2s
36: end if
37: else
38: jA ← min{jA + 1, 2s}
39: end if
40: end if
41: end if
42: end function
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Algorithm 3 Procedure for Alice to update control information
1: function ALICEUPDATECONTROL

2: ctrl
(m)
A ← (hashA,m(cA), hash

(m)
A,x(x), hash

(m)
A,k (kA), hash

(m)
A,T (TA), hash

(m)
A,MP1(TA[1 . . . MP1]),

hash
(m)
A,MP2(TA[1 . . . MP2]), jA, syncA)

3: r← Chash
(
ctrl

(m)
A ◦ hash(m)

A,ctrl

(
ctrl

(m)
A

))
⊕ V (m)

A

4: end function

Algorithm 4 Procedure for Alice to decode control information sent by Bob
1: function ALICEDECODECONTROL

2: z← decoding of r̃⊕ V (m)
B under Chash (inverse of Chash applied to nearest codeword)

3: zc ◦ zh ← z, where zc has length (b′ − b)/2

4: if hash(m)
B,ctrl(z

c) = zh then
5: return zc

6: else
7: return ⊥
8: end if
9: end function

Algorithm 5 Procedure for Alice to advance the block index and prepare for future transmissions
1: function ALICEADVANCEBLOCK

2: if speakA = 1 then
3: TA ← TA ◦ x
4: else
5: TA ← TA ◦ x̃
6: end if

7: cA ← cA + 1
8: jA ← 0

9: if Alice speaks in block cA of Πblk then
10: speakA ← 1
11: x← contents of block cA of Πblk

12: y = y0 ◦ y1 ◦ · · · ◦ y2s−1 ← Crateless(x)
13: else
14: speakA ← 0
15: a← (m+ 1) mod 2s
16: x← nil
17: end if
18: end function
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Algorithm 6 Procedure for Alice to update her estimate of the contents of the current block based
on past data blocks

1: function ALICEUPDATEESTIMATE

2: g̃jA ← gA
3: jA ← jA + 1

4: if jA > s then
5: x̃← result after decoding (g̃0, g̃1, . . . , g̃jA−1) via the nearest codeword in Cratelessa,jA

6: if hash(m)
B,x(x̃) = h̃

(m)
B,x then

7: ALICEADVANCEBLOCK

8: else if jA = 2s then
9: jA ← 0

10: a← (m+ 1) mod 2s
11: end if
12: end if
13: end function

Algorithm 7 Procedure for Alice to backtrack to a previous meeting point
1: function ALICEROLLBACK(MP)
2: TA ← TA[1 . . . MP]
3: cA ← MP

B + 1

4: kA, k̃A, syncA ← 1
5: EA, v1, v2, jA ← 0

6: if Alice speaks in block cA of Πblk then
7: speakA ← 1
8: x← contents of block cA of Πblk

9: y = y0 ◦ y1 ◦ · · · ◦ y2s−1 ← Crateless(x)
10: else
11: speakA ← 0
12: a← (m+ 1) mod 2s
13: x← nil
14: end if
15: end function
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Algorithm 8 Procedure for Alice and Bob to use exchanged random string to initialize hash func-
tions, information hiding mechanism, and encoding functions for control information

1: function INITALIZESHAREDRANDOMNESS

2: p← Θ(log(1/ε′))
3: δ ← 2−Θ(Niter·p)

4: L← Θ(Nitern log(1/ε′))
5: Let str = strloc ◦ str′, where strloc is of length Θ(Niter · log2(1/ε′)) and str′ is of length

Θ(log(L/δ))
6: S ← δ-biased length L pseudorandom string derived from str′ (via the biased sample

space of [NN93])

B Generate locations for information hiding in each iteration:

7: for i = 0 to Niter − 1 do
8: Choose zAi,1, z

A
i,2, . . . , z

A
i,(b′−b)/2, z

B
i,1, z

B
i,2, . . . , z

B
i,(b′−b)/2 to be distinct numbers in

{1, 2, . . . , b′} using O(log2(1/ε′)) fresh random bits from strloc

9: end for

B Set up parameters for encoding control information during each iteration

10: for i = 0 to Niter − 1 do
11: V

(i)
A ← (b′ − b)/2 fresh random bits from strloc

12: V
(i)
B ← (b′ − b)/2 fresh random bits from strloc

13: Initialize hash(i)
A,ctrl, hash

(i)
B,ctrl to an inner product hash function with output length

Θ(log(1/ε′)) and seed fixed as Θ(log(1/ε′)) fresh random bits from strloc

14: end for

B Initialize hash functions for control information in each iteration:

15: for i = 0 to Niter − 1 do
16: Initialize hash(i)

A,c, hash
(i)
A,x, hash(i)

A,k, hash(i)
A,T , hash(i)

A,MP1, hash(i)
A,MP2, hash(i)

B,c, hash
(i)
B,x,

hash
(i)
B,k, hash(i)

B,T , hash(i)
B,MP1, hash(i)

B,MP2 to be inner product hash functions with output
length Θ(log(1/ε′)) and seed fixed using fresh random bits from S

17: end for
18: end function
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Now we are ready to define states for the protocol Πoblivious
enc as its execution proceeds.

Definition 6.11. At the beginning of an iteration (the start of the code block in Figure 3 that is repeated
Niter times), the protocol is said to be in one of three possible states:

• Perfectly synced state: This occurs if syncA = syncB = 1, kA = kB = 1, `− = 0, cA = cB , and
jA ≥ jB if Alice is the sender in block cA = cB of Πblk (resp. jB ≥ jA if Bob is the sender in B-block
cA = cB of Πblk). In this case, we also define j = min{jA, jB}.

• Almost synced state: This occurs if syncA = syncB = 1, kA = kB = 1, and one of the following
holds:

1. `− = B, cB = cA + 1, and TB = TA ◦w, where w represents the contents of the cA-th B-block
of Πblk. In this case, we define j = jB .

2. `− = B, cA = cB + 1, and TA = TB ◦w, where w represents the contents of the cB-th B-block
of Πblk. In this case, we define j = jA.

3. `− = 0, cA = cB , jB > jA, and Alice speaks in B-block cA = cB of Πblk. In this case, we
define j = jB .

4. `− = 0, cA = cB , jA > jB , and Bob speaks in B-block cA = cB of Πblk. In this case, we define
j = jA.

• Unsynced state: This is any state that does not fit into the above two categories.

We also characterize the control information sent by each party during an iteration based on
whether/how it is corrupted.

Definition 6.12. For any given iteration, the encoded control information sent by a party is categorized as
one of the following:

• Sound control information: If a party’s unencoded control information for an iteration is decoded
correctly by the other party (i.e., the output of Dec correctly retrieves the intended transmission), and

no hash collisions (involving the hashes contained in the control information c̃trl
(m)

A or c̃trl
(m)

B ) occur,
then the (encoded) control information is considered sound.

• Invalid control information: If the attempt to decode a party’s unencoded control information by
the other party results in a failure (i.e., Dec outputs ⊥), then the (encoded) control information is
considered invalid.

• Maliciously corrupted control information: If a party’s control information is decoded incorrectly
(i.e., Dec does not output ⊥, but the output does not retrieve the intended transmission) or a hash

collision (involving the hashes contained in the control information c̃trl
(m)

A or c̃trl
(m)

B ) occurs, then
the (encoded) control information is considered maliciously corrupted.

Next, we wish to define a potential function Φ that depends on the current state in the encoded
protocol. Before we can do so, we define a few quantities:

Definition 6.13. Suppose the protocol is in a perfectly synced state. Then, we define the quantities err and
inv as follows:

• err is the total number of data (non-control information) bits that have been corrupted during the last
j iterations.
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• inv is the number of iterations among the last j iterations for which the control information of at least
one party was invalid or maliciously corrupted.

Definition 6.14. Suppose the protocol is in an unsynced state. Then, we define malA as follows: At the
start of Πoblivious

enc , we initialize malA to 0. Whenever an iteration occurs from a state in which syncA = 0,
such that either Alice’s or Bob’s control information during that iteration is maliciously corrupted, malA
increases by 1 at the end of line 21 of AliceControlFlow during that iteration. Moreover, whenever Alice
undergoes a transition (i.e., one of the “if” conditions in lines 22-29 of AliceControlFlow is true), malA
resets to 0.

The variable malB is defined in the obvious analagous manner.

Definition 6.15. For the sake of brevity, a variable varAB will denote varA + varB (e.g., kAB = kA + kB
and EAB = EA + EB).

Now, we are ready to define the potential function Φ.

Definition 6.16. Let C0, C1, C2, C3, C4, C5, C6, C7, Cinv, Cmal, C,D > 0 be suitably chosen constants (to
be determined by Lemmas 6.22, 6.23, 6.24 and Theorem 6.25). Then, we define the potential function Φ
associated with the execution of Πoblivious

enc according to the state of the protocol (see Definition 6.11):

Φ =



`+(1 + C0H(ε)) + (jb− C · err · log(1/ε))−Db · inv perfectly synced
max{`A, `B} · (1 + C0H(ε))− (j + 1)b almost synced
`+(1 + C0H(ε))− C1`

− + b(C2kAB − C3EAB) unsynced, (kA, syncA) = (kB, syncB)

−2C7BmalAB − Z1

`+(1 + C0H(ε))− C1`
− + bC5(−0.8kAB + 0.9EAB) unsynced, (kA, syncA) 6= (kB, syncB)

−C7BmalAB − Z2

,

where Z1 and Z2 are defined by:

Z1 =


bC4 if kA = kB = 1 and syncA = syncB = 1
1
2bC4 if kA = kB = 1 and syncA = syncB = 0

0 otherwise
,

and

Z2 =

{
bC6 if kA = kB = 1

0 otherwise
.

6.8.2 Bounding Iterations with Invalid or Maliciously Corrupted Control Information

We now prove some lemmas that bound the number of iterations that can have invalid or mali-
ciously corrupted control information.

Lemma 6.17. If the fraction of errors in a mini-block is O(1), say, < 1
20 , then with probability at least

1− ε′2, both parties can correctly decode and verify the control symbols sent in the block.

Proof. Let ν < 1/20 be the fraction of errors in a mini-block. Recall that Alice’s control information
in the mini-block consists of c log(1/ε′) randomly located bits. LetX be the number of these control
bits that are corrupted. Note that E[X] = νc log(1/ε′). Now, since the control information is
protected with an error correcting code of distance c log(1/ε′)/4, we see that Bob can verify and
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correctly decode Alice’s control symbols as long as X < c log(1/ε′)/8. Note that by the Chernoff
bound,

Pr
(
X > c log(1/ε′)/8

)
≤ e−

c log(1/ε′)
8 − c log(1/ε

′)
20

3

≤ ε′c/40
,

which is < ε′2/2 for a suitable constant c. Similarly, the probability that Alice fails to verify and
correctly decode Bob’s control symbols is < ε′2/2. Thus, the desired statement follows by a union
bound.

Lemma 6.18. With probability at least 1 − 2−Ω(ε′Niter), the number of iterations in which some party’s
control information is invalid but neither party’s control information is maliciously corrupted is O(εNiter).

Proof. First of all, consider the number of iterations of Πoblivious
enc for which the fraction of errors

within the iteration is at least 1/20. Since the total error fraction throughout the protocol is ε, we
know that at at most 20εNiter iterations have such an error fraction.

Next, consider any “low-error” iteration in which the error fraction is less than 1/20. By
Lemma 6.17, the probability that control information of some party is invalid (but neither party’s
control information is maliciously corrupted) is at most ε′2. Then, by the Chernoff bound, the num-
ber of “low-error” iterations with invalid control information is at most (ε′2 + ε′)Niter = O(ε′Niter)
with probability at least 1− 2−Ω(ε′Niter).

It follows that with probability at least 1−2−Ω(ε′Niter), the total number of iterations with invalid
control information (but not maliciously corrupted control information) is O(εNiter).

Lemma 6.19. With probability at least 1 − 2−Ω(ε′2Niter), the number of iterations in which some party’s
control information is maliciously corrupted is at most O(ε′2Niter).

Proof. Suppose a particular party’s control information is maliciously corrupted during a certain
iteration (say, the mth iteration). Without loss of generality, assume Alice’s control information is
maliciously corrupted. Then, we must have one of the following:

1. The number of corrupted bits in the encoded control information of Alice is > 1
8

(
b′−b

2

)
, i.e.,

the fraction of control information bits that is corrupted is greater than 1
8 .

2. The number of corrupted bits in the encoded control information of Alice is < 1
8

(
b′−b

2

)
, but

a hash collision occurs for one of h(m)
A,c , h(m)

A,x , h(m)
A,k , h(m)

A,T , h(m)
A,MP1, h(m)

A,MP2.

Note that by Property 6.3, case (1.) happens with probability at most

2−Θ(log(1/ε′)) ≤ ε′2,

for suitable constants.
Next, we consider the probability that case (2.) occurs. By Property 6.2, we have that the

probability of a hash collision any specific quantity among cA, x, kA, TA, TA[1, MP1], TA[1, MP2] is
at most 2−Θ(log(1/ε′)) + 2−Θ(Niter log(1/ε′)) ≤ ε′2 for appropriate constants. Thus, by a simple union
bound, the probability that any one of the aforementioned quantities has a hash collision is at most
6ε′2.

A simple union bound between the two events shows that the probability that Alice’s control
information in a given iteration is maliciously corrupted is at most 7ε′2. Similarly, the probability
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that Bob’s control information in a given iteration is maliciously corrupted is also at most 7ε′2.
Hence, the desired claim follows by the Chernoff bound (recall that there is limited independence,
due to the fact that we use pseudorandom bits to seed hash functions, but this is not a problem
due to our choice of parameters (see Section 6.5)).

6.8.3 Evolution of Potential Function During Iterations

We now wish to analyze the evolution of the potential function Φ as the execution of the protocol
proceeds. First, we define some notation that will make the analysis easier:

Definition 6.20. Suppose we wish to analyze a variable var over the course of an iteration. For the purpose
of Lemmas 6.22, 6.23, and 6.24, we let var denote the value of the variable at the start of the iteration
(the start of the code block in Figure 3 that is repeated Niter times). Moreover, we let var′ denote the
value of the variable just after the “update phase” of the iteration (lines 2-21 of AliceControlFlow and
BobControlFlow), while we will let var′′ denote the value of the variable at the end of the iteration (at the
end of the execution of AliceControlFlow and BobControlFlow).

Moreover, we will use the notation ∆var to denote var′′ − var, i.e., the change in the variable over the
course of an iteration. For instance, ∆Φ = Φ′′ − Φ.

Definition 6.21. During an iteration of Πoblivious
enc , Alice is said to undergo a transition if one of the

“if” conditions in lines 22-29 of AliceControlFlow is true. The transition is called a meeting point
transition (or MP transition) if either line 23 or line 25 is executed, while the transition is called an error
transition if lines 27-29 are executed. Transitions for Bob are defined similarly, except that one refers to
lines in the corresponding BobControlFlow function.

Now, we are ready for the main analysis. Lemmas 6.22, 6.23, and 6.24 prove lower bounds on the
change in potential, ∆Φ, over the course of an iteration, depending on (1.) the state of the protocol
prior to the iteration and (2.) whether/how control information is corrupted during the iteration.

Lemma 6.22. Suppose the protocol is in a perfectly synced state at the beginning of an iteration. Then, the
change in potential Φ over the course of the iteration behaves as follows, according to the subsequent state
(at the end of the iteration):

1. If the subsequent state is perfectly synced or almost synced, then:

• If the control information received by both parties is sound, then ∆Φ ≥ b−Ct · log(1/ε), where
t is the number of data (non-control) bits that are corrupted in the next iteration.
• If the control information received by at least one party is invalid or maliciously corrupted, then

∆Φ ≥ −Ct · log(1/ε)− (D − 1)b ≥ −Ct · log(1/ε)−min{Cinvb, CmalB}.

2. If the subsequent state is unsynced, then ∆Φ ≥ −CmalB.

Proof. Assume that the protocol is currently in a perfectly synced state, and, without loss of gen-
erality, suppose that Alice is trying to send data bits corresponding to cA-th B-block of Πblk to
Bob.

For the first part of the lemma statement, assume that the state after the next iteration is per-
fectly synced or almost synced. At the end of the iteration, Bob updates his estimate of what Alice
is sending, and there are three cases:

• Case 1: Bob is still not able to decode the cA-th B-block that Alice is sending, and jB does
not reset to zero. In this case, it is clear that j increases by 1, while err increases by t. Thus,
∆Φ ≥ b − Ct · log(1/ε) if the control information received by both parties is sound, while
∆Φ ≥ −Ct · log(1/ε)− (D − 1)b otherwise (as inv increases by 1).
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• Case 2: Bob is still not able to decode the cA-th B-block that Alice is sending, but jB resets to
0 (after increasing to 2s). Then, note that if both parties receive sound control information in
the next iteration, we have

∆Φ ≥ (b− Ct · log(1/ε)) + (Db · inv + C(err + t) log(1/ε)− 2B).

Moreover, we must have err + t ≥ 1
2δ2s(2B) = 1

15B, which implies that

Db · inv + C(err + t) log(1/ε)− 2B ≥ 0,

as desired (for suitably large C).

On the other hand, suppose some party receives invalid or maliciously corrupted control
information in the next iteration. Then,

∆Φ ≥ (−Ct · log(1/ε)− (D − 1)b) + (Db · (inv + 1) + C(err + t) log(1/ε)− 2B).

Thus, to prove the lemma, it suffices to show

Db · (inv + 1) + C(err + t) log(1/ε)− 2B ≥ 0. (1)

Let j0 be the last/most recent value of jB occurring after an iteration in which Bob receives
sound control information (or j0 = 0 if such an iteration did not occur). Thus, in the last
2s − j0 − 1 iterations, Bob has not received sound control information. This implies that
inv ≥ 2s− j0 − 1 and err ≥ 1

2δj0j0b. Thus, we reduce (1) to showing the following:

D(2s− j0)b+
C

2
δj0j0b · log(1/ε)− 2B ≥ 0. (2)

Note that if j0 ≤ s, then δj0 = 0, and so the lefthand side of (2) is at least

Dsb− 2B = (D − 2)B ≥ 0,

as desired. Hence, we now assume that j0 > s. Then, by Lemma 6.1, δj0 ≥ H−1
(
j0−s
j0
− 1

4s

)
(recall that H−1 is the unique inverse of H that takes values in [0, 1/2]). Thus, (2) reduces to
showing

C

2
H−1

(
j0 − s
j0

− 1

4s

)
log(1/ε) ≥ D − 2s(D − 1)

j0
. (3)

Note that if j0 ≤ D−1
D · 2s, then (3) is clearly true, as the righthand side of (3) is nonpositive.

If j0 > D−1
D · 2s, then note that the righthand side of (3) is at most 1 (since j0 ≤ 2s), while the

lefthand side is at least

C

2
H−1

(
1− s

D−1
D · 2s

− ε′

4

)
log(1/ε) ≥ C

2
H−1

(
D − 2

2(D − 1)
− ε′

4

)
log(1/ε)

≥ 1.

• Case 3: Bob manages to decode the cA-th B-block and updates his transcript. Then, the
protocol either transitions to an almost synced state or remains in a perfectly synced state
(if Alice receives maliciously corrupted control information indicating that Bob has already
advanced his transcript). Thus,

∆Φ ≥ (b− Ct · log(1/ε)) +B(1 + C0H(ε)) + C(err + t) log(1/ε)− (j + 2)b+Db · inv,

31



Hence, it suffices to show that

B(1 + C0H(ε)) + C(err + t) log(1/ε)− (j + 2)b+Db · inv ≥ 0. (4)

Note that j ≥ s. Suppose j0 is the last/most recent value of jB occurring after an iteration in
which Bob receives sound control information (or j0 = 0 if such an iteration did not occur).
Then, inv ≥ j − j0. Hence, (4) reduces to showing

B(1 + C0H(ε)) + C · err′ · log(1/ε)− (j + 2)b+Db(j − j0) ≥ 0. (5)

Note that if j0 ≤ s, then the lefthand side of (5) is at least

B(1 + C0H(ε))− (j + 2)b+Db(j − s) ≥ B(1 + C0H(ε)) + (D − 1)jb−DB − 2b

≥ B(1 + C0H(ε)) + (D − 1)B −DB − 2b

≥ B(C0H(ε)− 2ε′)

≥ 0,

as desired.

Now, assume j0 > s. Let ε0 be the fraction of errors in the first j0b data bits sent since Alice
and Bob became perfectly synced (or since the last reset). Then,

err′ ≥ ε0j0b.

Hence, the lefthand side of (5) is at least

B(1 + C0H(ε)) + j0b(Cε0 log(1/ε)− 1)− 2b+ (D − 1)b(j − j0). (6)

Note that if Cε0 log(1/ε) ≥ 1, then the above quantity is clearly nonnegative, as B ≥ b/ε′ ≥
2b. Thus, let us assume that Cε0 log(1/ε) < 1. Now, recall from our choice of Crateless and
the fact that Bob had not successfully decoded the blocks sent by Alice before the current
iteration, we have ε0 ≥ 1

2δj0 , which implies that

j0 − s
j0

− 1

4s
= H(δj0) ≤ H(2ε0).

Hence,

j0 ≤
s

1−H(2ε0)− 1
4s

.

Now, (6) is at least

B(1 + C0H(ε)) +
B(Cε0 log(1/ε)− 1)

1−H(2ε0)− 1
4s

− 2b

≥ B(1 + C0H(ε)) +
B(Cε0 log(1/ε)− 1)

1−H(2ε0)− ε′

4

− 2b

≥ B

(
1 + C0H(ε)− (1− Cε0 log(1/ε))

(
1 +H(2ε0) +

ε′

4
+ 2

(
H(2ε0) +

ε′

4

)2
)
− 2ε′

)

≥ B
(

1 + C0H(ε)− 1−H(2ε0)− ε′

4
− 2H(2ε0)2 − ε′H(2ε0)− ε′2

8
+ Cε0 log(1/ε)− 2ε′

)
≥ B

(
C0H(ε)− 4ε′ − 3H(2ε0) + Cε0 log(1/ε)

)
. (7)
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Note that if ε0 < ε, then (7) is bounded from below by

B(C0H(ε)− 4ε′ − 3H(2ε)) ≥ B
(
(4H(ε)− 4ε′) + ((C0 − 4)H(ε)− 3H(2ε))

)
≥ 0,

since H(ε) ≥ ε ≥ ε′, C0 ≥ 10, and 2H(ε) ≥ H(2ε).

On the other hand, if ε0 ≥ ε, then (7) is bounded from below by

B
(
(4H(ε)− 4ε′) + (Cε0 log(1/ε0)− 3H(2ε0))

)
≥ 0,

as long as C ≥ 10.

This completes the proof of the first part of the lemma.
Next, we prove the second part of the lemma. Assume that the protocol is currently in a

perfectly synced state and that the subsequent state is unsynced. Then, note that the control in-
formation of at least one party must be maliciously corrupted. Observe that k′′A = k′′B = 1, and
`−
′′ ≤ 2B, while E′′A = E′′B = 0. Thus, if sync′′A = sync′′B , then

∆Φ ≥ −jb− 2C1B + 2bC2 − bC4 ≥ −CmalB,

while if sync′′A 6= sync′′B , then

∆Φ ≥ −jb− 2C1B − 1.6bC5 − bC6 ≥ −CmalB,

since jb ≤ 2B.

Lemma 6.23. Suppose the protocol is in an almost synced state at the beginning of an iteration. Then, the
change in potential Φ over the course of the iteration behaves as follows, according to the control information
received during the iteration:

• If the control information received by both parties is sound, then ∆Φ ≥ b.

• If the control information received by at least one party is invalid, but neither party’s control infor-
mation is maliciously corrupted, then the potential does not change, i.e., ∆Φ ≥ −b ≥ −Cinvb.

• If the control information received by at least one party is maliciously corrupted, then ∆Φ ≥ −CmalB.

Proof. Assume the protocol lies in an almost synced state. We consider the following cases, ac-
cording to the subsequent state in the protocol.

• Case 1: The subsequent state is perfectly synced. Then, we must have that ∆Φ ≥ (j+1)b ≥ b.

• Case 2: The subsequent state is also almost synced. Then, note that the control informa-
tion received by some party must be invalid or maliciously corrupted. Moreover, since
max{`A, `B} remains unchanged and j can increase by at most 1, it follows that ∆Φ ≥ −b ≥
−CmalB.

• Case 3: The subsequent state is unsynced. Then, observe that the control information re-
ceived by some party must be maliciously corrupted. Note that `+′′ ≥ max{`A, `B}−B, and
`−
′′ ≤ 3B. Moreover, k′′A = k′′B = 1. Therefore, if sync′′A = sync′′B , then

∆Φ ≥ −B(1 + C0H(ε))− 3C1B + 2bC2 − bC4

≥ −CmalB,
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while if sync′′A 6= sync′′B , then

∆Φ ≥ −B(1 + C0H(ε))− 3C1B − 1.6bC5 − bC6

≥ −CmalB,

as desired.

Lemma 6.24. Suppose the protocol is in an unsynced state at the beginning of an iteration. Then, the
change in potential Φ over the course of the iteration behaves as follows, according to the control information
received during the iteration:

1. If the control information received by both parties is sound, then ∆Φ ≥ b.

2. If the control information received by at least one party is invalid, but neither party’s control infor-
mation is maliciously corrupted, then ∆Φ ≥ −Cinvb.

3. If the control information received by at least one party is maliciously corrupted, then ∆Φ ≥ −CmalB.

Proof. We consider several cases, depending on the values of kA, kB and what transitions occur
before the end of the iteration.

• Case 1: kA 6= kB .

– Subcase 1: No transitions occur before the start of the next iteration.

a.) If the control information sent by both parties is sound or invalid, then note that
∆kA = ∆EA ∈ {0, 1} and ∆kB = ∆EB ∈ {0, 1}. Also, at least one of ∆kA, ∆kB
must be 1, while `+, `−, malAB remain unchanged. Moreover, the state will remain
an unsynced state with k′′A 6= k′′B . Therefore,

∆Φ ≥ b(−0.8C5 + 0.9C5) ≥ b.

b.) If at least one party’s control information is maliciously corrupted and kA, kB > 1,
then note that the state at the beginning of the next iteration will also be unsynced
with k′′A 6= k′′B . Also, observe that ∆kA = ∆kB = 1, while `+, `− remain unchanged.
Thus,

∆Φ ≥ 2b(−0.8C5)− 2C7B ≥ −CmalB.

c.) If at least one party’s control information is maliciously corrupted and one of kA, kB
is 1, then without loss of generality, assume kA = 1 and kB > 1. Note that kB
increases by 1. Also, if kA does not increase, then `− can increase by at most B.
Hence,

∆Φ ≥ −0.8bC5 − 2C7B −max{0.8bC5, C1B} ≥ −CmalB.

– Subcase 2: Only one of Alice and Bob undergoes a transition before the start of the next
iteration. Without loss of generality, assume that Alice makes the transition. Also, let

P1 =

{
0.2C7(kA + 1)B − (1 + C0H(ε) + C1)kAB if Alice has an MP trans.
0 otherwise

(8)
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Note that P1 ≥ 0 for a suitable choice of constants C0, C1, C7. Also observe that if
kA ≥ 3, then

EA ≤
1

2
(kA + 1)− 1 + 0.2 · 1

2
(kA + 1) = 0.6kA − 0.4 ≤ 0.7(kA − 1), (9)

since an error transition did not occur when Alice’s backtracking parameter was equal
to 1

2(kA + 1), and an additional 1
2(kA + 1)− 1 iterations have occurred since then. Note

that (9) also holds if kA < 3 since it must be the case that EA = 0.

a.) Suppose the control information sent by each party is sound. Then, note that
(k′′A, sync

′′
A) 6= (k′′B, sync

′′
B). Moreover, if Alice’s transition is a meeting point transi-

tion, then we must have malA ≥ 0.2(kA + 1), and the transition can cause Alice’s
transcript TA to be rewound by at most kAB bits, which implies that ∆`− ≤ kAB
and ∆`+ ≥ −kAB.
Thus, if kA, kB > 1, then by (9), we have

∆Φ ≥ 0.8bC5(kA − 1)− 0.9bC5EA + (−0.8bC5 + 0.9bC5) + P1

≥ 0.8bC5(kA − 1)− 0.9bC5 · 0.7(kA − 1) + 0.1bC5

≥ 0.27bC5

≥ b,

while if kA = 1 and kB > 1, then

∆Φ ≥ −0.8bC5 + 0.9bC5 + P1

≥ 0.1bC5

≥ b.

Finally, if kB = 1, then kA > 1 and so, by (9), we have

∆Φ ≥ 0.8bC5(kA − 1)− 0.9bC5EA − bC6 + P1

≥ 0.8bC5(kA − 1)− 0.9bC5 · 0.7(kA − 1)− bC6

≥ (0.17C5 − C6)b

≥ b.

b.) Suppose the control information sent by at least one party is invalid, but neither
party’s control information is maliciously corrupted. Again, we note that if Alice’s
transition is a meeting point transition, then malA ≥ 0.2(kA + 1) and ∆`− ≤ kAB
and ∆`+ ≥ −kAB.
First, suppose that kB = syncB = 1 and that Bob receives invalid control informa-
tion. Then, note that (k′′A, sync

′′
A) = (k′′B, sync

′′
B) = (1, 1). Thus, by (9),

∆Φ ≥ 0.8bC5(kA + 1)− 0.9bC5EA + 2bC2 − bC4 + P1

≥ 0.8bC5(kA + 1)− 0.9bC5 · 0.7(kA − 1) + 2bC2 − bC4

≥ (2C2 − C4 + 1.77C5)b

≥ −Cinvb.
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Next, suppose that kB = syncB = 1 but Bob receives sound information. Then, note
that (k′′A, sync

′′
A) 6= (k′′B, sync

′′
B). Hence, by (9),

∆Φ ≥ 0.8bC5(kA − 1)− 0.9bC5EA − bC6 + P1

≥ 0.8bC5(kA − 1)− 0.9bC5 · 0.7(kA − 1)− bC6

≥ (0.17C5 − C6)b

≥ −Cinvb.

Finally, suppose that (kB, syncB) 6= (1, 1). Then, ∆kB = ∆EB = 1. Thus, if kA > 1,
then by (9),

∆Φ ≥ 0.8bC5(kA − 1)− 0.9bC5EA + (−0.8bC5 + 0.9bC5) + P1

≥ 0.8bC5(kA − 1)− 0.9bC5 · 0.7(kA − 1) + 0.1bC5

≥ 0.27C5b

≥ −Cinvb,

while if kA = 1, Alice’s transition must be an error transition and so,

∆Φ ≥ −0.8bC5 + 0.9bC5

= 0.1C5b

≥ −Cinvb.

c.) Suppose the control information sent by at least one of the parties is maliciously
corrupted. If Alice’s transition is a meeting point transition, then malA ≥ 0.2(kA +
1)− 1, and TA can be rewound up to at most kAB bits during the transition.
First, suppose that (k′′B, sync

′′
B) 6= (1, 1). Then, ∆kB ≤ 1 and ∆malB ≤ 1. Thus, by

(9), we have

∆Φ ≥ 0.8bC5(kA − 1)− 0.9bC5EA − 0.8bC5 − C7B − bC6 + (P1 − C7B)

≥ 0.8bC5(kA − 1)− 0.9bC5 · 0.7(kA − 1)− 0.8bC5 − C7B − bC6 − C7B

≥ −(0.8C5 + C6)b− 2C7B

≥ −CmalB.

Next, suppose that (k′′B, sync
′′
B) = (1, 1). Then, since Bob does not undergo a transi-

tion, we have kB = syncB = 1. Also, the length of TB can increase by at most B bits
over the course of the next iteration. Hence,

∆Φ ≥ 0.8bC5kAB − 0.9bC5EAB − C1B + (P − C7B) + 2bC2 − bC4

≥ 0.8bC5(kA + 1)− 0.9bC5 · 0.7(kA − 1)− C1B − C7B + 2bC2 − bC4

≥ (2C2 − C4 + 1.6C5)b− (C1 + C7)B

≥ −CmalB.

– Subcase 3: Both Alice and Bob undergo transitions before the start of the next iteration.
Again, note that note that EA ≤ 0.7(kA − 1), due to (9). Similarly, EB ≤ 0.7(kB − 1).
Also, we define P1 as in (8) and define P2 analogously:

P2 =

{
0.2C7(kB + 1)B − (1 + C0H(ε) + C1)kBB if Bob has an MP trans.
0 otherwise

.
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Observe that P1, P2 ≥ 0 for a suitable choice of constants C0, C1, C7.
First, suppose that no party receives maliciously corrupted control information. Then,
note that if Alice undergoes a meeting point transition, then malA ≥ 0.2(kA+1), and the
transition can cause TA to be rewound by at most kAB bits. Similarly, if Bob undergoes
a meeting point transition, then malB ≥ 0.2(kB + 1), and the transition can cause TB to
be rewound by at most kBB bits. Thus, regardless of the types of transitions that Alice
and Bob make, we have

∆Φ ≥ 0.8bC5kAB − 0.9bC5EAB + P1 + P2 + 2bC2 − bC4

≥ 0.8bC5kAB − 0.9bC5 · 0.7((kA − 1) + (kB − 1)) + 2bC2 − bC4

≥ (2C2 − C4 + 1.6C5)b

≥ b,

Now, suppose some party receives maliciously corrupted control information. We in-
stead have malA ≥ 0.2(kA + 1)− 1 and malB ≥ 0.2(kA + 1)− 1. Thus,

∆Φ ≥ 0.8bC5kAB − 0.9bC5EAB + (P1 − C7B) + (P2 − C7B) + 2bC2 − bC4

≥ (2C2 − C4 + 1.6C5)b− 2C7B

≥ −CmalB,

as desired.

• Case 2: kA = kB = 1.

– Subcase 1: syncA = syncB = 1. Then, note that if both parties receive sound control
information, then sync′′A = sync′′B = 0. Thus,

∆Φ = −∆Z1 =
1

2
bC4 ≥ b.

On the other hand, if some party receives invalid control information but neither party
receives maliciously corrupted control information, then note that either sync′′A = sync′′B =
1, in which case,

∆Φ = 0 ≥ −Cinvb,

or sync′′A 6= sync′′B , in which case,

∆Φ ≥ −2bC2 + bC4 − 1.6bC5 − bC6 ≥ −Cinvb.

Finally, consider the case in which some party receives maliciously corrupted infor-
mation. Then, if sync′′A = sync′′B , note that ∆`− ≤ 2. Thus, if the subsequent state is
unsynced, then

∆Φ ≥ −2C1B ≥ −CmalB,

while if the subsequent state is perfectly or almost synced, then

∆Φ ≥ −2bC2 + bC4 − (2s+ 1)b ≥ −CmalB.

Otherwise, if sync′′A 6= sync′′B , then ∆`− ≤ 1, and so,

∆Φ ≥ −C1B − 2bC2 + bC4 − 1.6bC5 − bC6 ≥ −CmalB.
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– Subcase 2: syncA = syncB = 0. First, suppose both parties receive sound control infor-
mation. Then, either both parties do not undergo any transitions, in which case,

∆Φ ≥ 2bC2 +
1

2
bC4 ≥ b,

or both parties undergo a meeting point transition, in which case the subsequent state
is perfectly synced, and so,

∆Φ ≥ −2bC2 +
1

2
bC4 ≥ b.

Next, consider the case in which some party receives invalid control information, but
neither party receives maliciously corrupted control information. Suppose, without
loss of generality, that Alice receives invalid control information. Then, k′′A = sync′′A = 1.
Note that if k′′B = 2, then

∆Φ ≥ −2bC2 +
1

2
bC4 − 2.4bC5 ≥ −Cinvb.

Otherwise, if k′′B = 1, then either the subsequent state is perfectly synced, in which case

∆Φ ≥ −2bC2 +
1

2
bC4 ≥ −Cinvb,

or the subsequent state is almost synced, in which case

∆Φ ≥ B(1 + C0H(ε))− 2bC2 +
1

2
bC4 − b ≥ −Cinvb,

or the subsequent state is unsynced, in which case

∆Φ ≥ −1

2
bC4 ≥ −Cinvb.

Finally, consider the case in which some party receives maliciously corrupted control
information. If k′′A = k′′B = 2, then

∆Φ ≥ 2bC2 − 4C7B +
1

2
bC4 ≥ −CmalB.

On the other hand, if k′′A = k′′B = 1, then ∆`− ≤ 2. Thus, if the subsequent state is
unsynced, then

∆Φ ≥ −2(1 + C0H(ε) + C1)B − 1

2
bC4 ≥ −CmalB,

while if the subsequent state is perfectly or almost synced, then

∆Φ ≥ −2(1 + C0H(ε) + C1)B +
1

2
bC4 − b ≥ −CmalB.

If k′′A 6= k′′B , then without loss of generality, assume that k′′A = 2 and k′′B = 1. We then
have

∆Φ ≥ −(1 + C0H(ε) + C1)B − 2bC2 +
1

2
bC4 − 2.4bC5 − C7B ≥ −CmalB.
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– Subcase 3: syncA 6= syncB . Without loss of generality, assume that syncA = 1 and
syncB = 0.
First, suppose that neither party receives maliciously corrupted control information.
Then, k′′A = sync′′A = k′′B = sync′′B = 1. Thus, if the subsequent state is unsynced, then
we have

∆Φ ≥ 1.6bC5 + bC6 + 2bC2 − bC4 ≥ b,

while if the subsequent state is perfectly or almost synced, then

∆Φ ≥ 1.6bC5 + bC6 − b ≥ b.

Next, suppose that some party receives maliciously corrupted control information.
Note that k′′A = 1. If syncA = 1 and k′′B = 2, then ∆`− ≤ 1, and so,

∆Φ ≥ −C1B − 0.8bC5 − C7B + bC6 ≥ −CmalB.

If syncA = 1 and k′′B = 1, then either the subsequent state is unsynced, in which case,

∆Φ ≥ −C1B − (1 + C0H(ε) + C1)B + 0.8bC5 + bC6 + 2bC2 − bC4 ≥ −CmalB,

or the subsequent state is perfectly/almost synced, in which case,

∆Φ ≥ −C1B − (1 + C0H(ε) + C1)B + 1.6bC5 + bC6 − (2s+ 1)b ≥ −CmalB.

Finally, suppose syncA = 0. Then, note that

∆Φ ≥ −(1 + C0H(ε) + C1)B − 0.8bC5 − C7B ≥ −CmalB.

• Case 3: The protocol is in an unsynced state, and kA = kB > 1.

– Subcase 1: Suppose neither Alice nor Bob undergoes a transition before the start of the
next iteration. Then, we have ∆kA = ∆kB = 1. If the control information received by
both parties is either sound or invalid, then we have

∆Φ ≥ 2bC2 ≥ b.

On the other hand, if some party’s control information is maliciously corrupted, then

∆Φ ≥ 2bC2 − 2bC3 − 4BC7 ≥ −CmalB.

– Subcase 2: Suppose both Alice and Bob undergo a transition, and suppose at least one
of the transitions is a meeting point transition.

a.) Suppose `−′′ = 0 and kA + 1 = kB + 1 ≤ 4`−

B . Then, note that `+ decreases by at
most kAB = kBB. Thus,

∆Φ ≥ −kAB(1 + C0H(ε)) + C1`
− − 2C2b(kA − 1)− C4b

≥ −kAB(1 + C0H(ε)) + C1 ·
B(kA + 1)

4
− 2C2b(kA − 1)− C4b

= kAB

(
C1

4
− C0H(ε)− 2C2b

B
− 1

)
+
C1B

4
+ (2C2 − C4)b

≥ b.
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b.) Suppose `−′′ 6= 0. Without loss of generality, assume that Alice has made a meeting
point transition. Note that if Alice has made an incorrect meeting point transition,
then it is clear that mal′A ≥ 0.2(kA + 1). On the other hand, if she has made a
correct transition, then Bob has made an incorrect transition, since `−′′ 6= 0, and
so, mal′B ≥ 0.2(kA + 1). Since mal′A = mal′B, it follows that mal′AB ≥ 0.4(kA + 1) in
either case. Thus, if the control information in the current round is not maliciously
corrupted, then malAB ≥ 0.4(kA + 1), and so,

∆Φ ≥ −kAB(1 + C0H(ε) + C1)− 2C2b(kA − 1) + 2C7B · 0.4(kA + 1)− C4b

≥ kAB
(

0.8C7 − C0H(ε)− C1 −
2C2b

B
− 1

)
+ (2C2 − C4)b+ 0.8C7B

≥ b.

Otherwise, if some party’s control information in the current round is corrupted,
then malAB ≥ 0.4(kA + 1)− 2, and so,

∆Φ ≥ kAB
(

0.8C7 − C0H(ε)− C1 −
2C2b

B
− 1

)
+ (2C2 − C4)b− 3.2C7B

≥ −CmalB.

c.) Suppose that `−′′ = 0 but kA + 1 = kB + 1 > 4`−

B . Then observe that there must
have been at least

1

4
(kA + 1)− 0.2 · 1

2
(kA + 1)− 0.2 · 1

2
(kA + 1) = 0.05(kA + 1) (10)

maliciously corrupted rounds among the past kA rounds. This is because there
were 1

4(kA + 1) iterations taking place as Alice’s backtracking parameter increased
from 1

4(kA + 1) to 1
2(kA + 1), of which at most 0.2 · 1

2(kA + 1) iterations could have
had invalid control information for Alice, and at most 0.2 · 1

2(kA + 1) iterations
could have had sound control information for Alice (since Alice did not undergo a
meeting point transmission when her backtracking parameter reached kA+1

2 ). Thus,
malAB ≥ 2 · 0.05(kA + 1) = 0.1(kA + 1) and so,

∆Φ ≥ −kAB(1 + C0H(ε))− 2bC2(kA − 1) + C7B ·malAB − C4b

≥ kAB
(

0.1C7 − C0H(ε)− 2C2b

B
− 1

)
+ (2C2 − C4)b+ 0.1C7B

≥ b.

– Subcase 3: Suppose both Alice and Bob undergo error transitions. Then, E′A ≥ 0.2(kA+
1) and E′B ≥ 0.2(kB + 1) = 0.2(kA + 1). Therefore, if both parties receive sound control
information, then EA, EB ≥ 0.2(kA + 1), and so,

∆Φ ≥ C3bEAB − 2C2b(kA − 1)− C4b

≥ C3b(0.4kA + 0.4)− 2C2b(kA − 1)− C4b

≥ (0.4C3 − 2C2)kAb+ (2C2 + 0.4C3 − C4)b

≥ (0.8C3 − C4)b

≥ b.
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On the other hand, if some party receives invalid or maliciously corrupted control in-
formation, then EA, EB ≥ 0.2(kA + 1)− 1, and so,

∆Φ ≥ C3bEAB − 2C2b(kA − 1)− C4b

≥ (0.4C3 − 2C2)kAb+ (2C2 − 1.6C3 − C4)b

≥ (−1.2C3 − C4)b

≥ −Cinvb.

– Subcase 4: Suppose only one of Alice and Bob undergoes a transition before the next
iteration. Without loss of generality, assume Alice undergoes the transition.

a.) Suppose the transition is an error transition. If both parties’ control information is
sound, then observe that EA ≥ 0.2(kA + 1). Thus,

∆Φ ≥ −2bC2kA + bC3EA − 0.8bC5(kA + 2)

≥ −2bC2kA + bC3(0.2kA + 0.2)− 0.8bC5(kA + 2)

≥ kAb(0.2C3 − 0.8C5 − 2C2) + (0.2C3 − 1.6C5)b

≥ b.

Otherwise, if some party’s control information is invalid, but neither party’s control
information is maliciously corrupted, then EA ≥ 0.2(kA + 1)− 1 = 0.2kA− 0.8, and
so,

∆Φ ≥ −2bC2kA + bC3EA − 0.8bC5(kA + 2)

≥ −2bC2kA + bC3(0.2kA − 0.8)− 0.8bC5(kA + 2)

≥ kAb(0.2C3 − 0.8C5 − 2C2)− (0.8C3 + 1.6C5)b

≥ −Cinvb.

Finally, if some party’s control information is maliciously corrupted, then again,
we have EA ≥ 0.2kA − 0.8. Thus,

∆Φ ≥ −2bC2kA + bC3EA − 0.8bC5(kA + 2)− C7B

≥ kAb(0.2C3 − 0.8C5 − 2C2)− (0.8C3 + 1.6C5)b− C7B

≥ −CmalB.

b.) Suppose the transition is a meeting point transition. Then, since only one of the two
players is transitioning, either (1.) Alice is incorrectly transitioning, meaning that
mal′A,mal′B ≥ 0.2(kA + 1), or (2.) Bob should have also been transitioning, meaning
that mal′A,mal′B ≥ 1

2(kA + 1)− 0.2(kA + 1)− 0.2(kA + 1) ≥ 0.1(kA + 1). Either way,
mal′A,mal′B ≥ 0.1(kA + 1).
Hence, if neither party’s control information in the current round is maliciously
corrupted, then malA,malB ≥ 0.1(kA + 1), and so,

∆Φ ≥ −2bC2kA − 0.8bC5(kA + 2) + 2C7B ·malA + C7B ·malB

− kAB(1 + C0H(ε) + C1)

≥ −2bC2kA − 0.8bC5(kA + 2) + 0.3C7B(kA + 1)− kAB(1 + C0H(ε) + C1)

≥ kAB
(

0.3C7 − C1 − C0H(ε)− 2C2
b

B
− 0.8C5

b

B
− 1

)
− 1.6bC5 + 0.3C7B

≥ b.
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Otherwise, if there is maliciously corrupted control information in the current round,
then malA,malB ≥ 0.1(kA + 1)− 1 = 0.1kA − 0.9, and so,

∆Φ ≥ −2bC2kA − 0.8bC5(kA + 2) + 2C7B ·malA + C7B ·malB − C7B

− kAB(1 + C0H(ε) + C1)

≥ −2bC2kA − 0.8bC5(kA + 2) + 3C7B(0.1kA − 0.9)− C7B

− kAB(1 + C0H(ε) + C1)

≥ kAB
(

0.3C7 − C1 − C0H(ε)− 2C2
b

B
− 0.8C5

b

B
− 1

)
− 1.6bC5 − 2.7C7B

≥ −CmalB,

as desired.

Now, we are ready to prove the main theorem of the section, which implies Theorem 1.1 for
the choice ε′ = ε2.

Theorem 6.25. For any sufficiently small ε > 0 and n-round interactive protocol Π with average message
length ` = Ω(1/ε′3), the protocol Πoblivious

enc given in Figure 3 successfully simulates Π, with probability 1−
2−Ω(ε′2Niter), over an oblivious adversarial channel with an ε error fraction while achieving a communication
rate of 1−Θ(ε log(1/ε)) = 1−Θ(H(ε)).

Proof. Recall that Πblk has n′ rounds, where n′ = n(1+O(ε′)). Let Nmal be the number of iterations
of Πoblivious

enc in which some party’s control information is maliciously corrupted. Moreover, letNinv

be the number of iterations in which some party’s control information is invalid but neither party’s
control information is maliciously corrupted. Finally, letNsound be the number of iterations starting
at an unsynced or almost synced state such that both parties receive sound control information.

Now, by Lemma 6.19, we know that with probability 1− 2−Ω(ε′2Niter), Nmal = O(ε′2Niter). Also,
by Lemma 6.18, Ninv = O(εNiter) with probability 1 − 2−Ω(ε′Niter). Recall that the total number of
data bits that can be corrupted by the adversary throughout the protocol is at most εbNiter. Since
Niter = Nsound +Ninv +Nmal, Lemmas 6.22, 6.23, and 6.24 imply that at the end of the execution of
Πoblivious

enc , the potential function Φ satisfies

Φ ≥ bNsound − CεbNiter log(1/ε)− CinvbNinv − CmalBNmal

= b(Niter −Ninv −Nmal)− CεbNiter log(1/ε)− CinvbNinv − CmalBNmal

= bNiter − CεbNiter log(1/ε)− (Cinv + 1)bNinv − (CmalB + b)Nmal

= bNiter − CεbNiter log(1/ε)−O(ε) · (Cinv + 1)bNiter −O(ε′2) · (CmalB + b)Niter

= bNiter(1−O(ε) · (Cinv + 1)−O(ε′2) · (Cmals+ 1)− Cε log(1/ε))

= bNiter(1−O(ε log(1/ε)))

= b · n
′

b
(1 + Θ(ε log(1/ε)))

≥ n′(1 + C0H(ε)) + (C0 + 1)B.

Now, in order to complete the proof, it suffices to show that `+ ≥ n′. We consider several cases,
based on the ending state:
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• If the ending state is perfectly synced, then note that jb− C · err · log(1/ε) ≤ 2B. Thus,

`+ ≥ Φ− 2B

1 + C0H(ε)
≥ n′.

• If the ending state is almost synced, then note that

`+ ≥ Φ

1 + C0H(ε)
−B ≥ n′.

• If the ending state is unsynced and (kA, syncA) = (kB, syncB), then first consider the case
kA = kB = 1. In this case,

Φ ≤ `+(1 + C0H(ε)) + 2bC2,

and so,

`+ ≥ Φ− 2bC2

1 + C0H(ε)
≥ n′.

Now, consider the case kA = kB ≥ 2. Note that either `− ≥ B
4 (kA + 1) or

malAB ≥ 2 ·malA ≥ 2

(
1

2
k̃A − 0.2k̃A − 0.2k̃A

)
≥ 0.2k̃A ≥ 0.1(kA + 1)

(see (10)). If the former holds, then

Φ ≤ `+(1 + C0H(ε))− C1`
− + bC2kAB

≤ `+(1 + C0H(ε))− C1 ·
B

4
(kA + 1) + 2bC2kA

≤ `+(1 + C0H(ε)).

Otherwise, if the latter holds, then

Φ ≤ `+(1 + C0H(ε)) + bC2kAB − 2C7BmalAB

≤ `+(1 + C0H(ε)) + 2bC2kA − 2C7B(0.1(kA + 1))

≤ `+(1 + C0H(ε)).

Either way,

`+ ≥ Φ

1 + C0H(ε)
≥ n′.

• If the ending state is unsynced and kA 6= kB , then consider the following. Note that if kA = 1,
then EA = 0 ≤ 0.6kA − 0.4. On the other hand, if kA ≥ 2, then

EA ≤ 0.2k̃A + (kA − k̃A)

= kA − 0.8k̃A

≤ kA − 0.8

(
kA + 1

2

)
≤ 0.6kA − 0.4.
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Either way, EA ≤ 0.6kA − 0.4. Similarly, EB ≤ 0.6kB − 0.4. Thus,

Φ ≤ `+(1 + C0H(ε)) + bC5(−0.8kAB + 0.9EAB)

≤ `+(1 + C0H(ε)) + bC5(−0.8kAB + 0.9((0.6kA − 0.4) + (0.6kB − 0.4)))

≤ `+(1 + C0H(ε)).

Thus,

`+ ≥ Φ

1 + C0H(ε)
≥ n′.

Finally, we prove Theorem 1.2.

Proof. Consider the same protocol Πoblivious
enc as in Theorem 6.25, except that we discard the random

string exchange procedure at the beginning of the protocol. Since Alice and Bob have access
to public shared randomness, they can instead initialize str to a common random string of the
appropriate length and continue with the remainder of Πoblivious

enc . Moreover, in this case, ε′ is a
parameter that is set as part of the input. Then, it is clear that the analysis of Theorem 6.25 still
goes through. In this case, we have that the total number of rounds is

Niter b
′ =

n′b′

b
(1 +O(ε log(1/ε))) = n(1 +O(H(ε)) +O(ε′ polylog(1/ε′))),

while the success probability is 1− 2−Ω(ε′2Niter) = 1− 2−Ω(ε′3n), as desired.

Remark 6.26. It is routine to verify that the constantsC0, C1, C2, C3, C4, C5, C6, C7, Cinv, Cmal, C,D > 0
can be chosen appropriately such that the relevant inequalities in Lemmas 6.22, 6.23, 6.24, and Theorem 6.25
all hold.
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