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Abstract

We prove that indistinguishability obfuscation (iO) and one-way functions do not naturally
reduce to any language within NP∩coNP. This is proved within the framework introduced by
Asharov and Segev (FOCS ’15) that captures the vast majority of techniques that have been
used so far in iO-based constructions.

Our approach is based on a two-fold generalization of a classic result due to Impagliazzo
and Naor (Structure in Complexity Theory ’88) on non-deterministic computations via decision
trees. First, we generalize their approach from the, rather restrictive, model of decision trees
to arbitrary computations. Then, we further generalize the argument within the Asharov-Segev
framework.

Our result explains why iO does not seem to suffice for certain applications, even when
combined with the assumption that one-way functions exist. In these cases it appears that
additional, more structured, assumptions are necessary. In addition, our result suggests that
any attempt for ruling out the existence of iO by reducing it “ad absurdum” to a potentially
efficiently-decidable language may encounter significant difficulties.
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1 Introduction

Program obfuscation, the task of making code unintelligible while preserving its functionality, was
first rigorously studied by Barak et al. [BGI+01]. In that work, they defined a notion of indistin-
guishability obfuscation (iO), which guarantees that obfuscations of any two functionally equivalent
circuits of the same size are computationally indistinguishable. As shown by Barak et al. iO is
always realizable, albeit inefficiently: the obfuscator can simply canonicalize the input circuit C by
outputting the lexicographically first circuit that computes the same function. The interest in iO
has gained considerable momentum following the works of Garg et al. [GGH+13] who proposed an
efficient candidate construction of iO for all circuits and of Sahai and Waters [SW14], who demon-
strated the applicability of iO for the construction of many powerful cryptographic primitives.

In spite of its wide applicability, we cannot even hope to prove that iO implies one-way functions.
Indeed, if P = NP then one-way functions do not exist but iO does exist (since the lexicographically
first circuit that computes the same function can be found efficiently). Therefore, we do not expect
to build many “cryptographically interesting” tools just from iO, but usually need to combine it
with other assumptions. It is known that iO can be combined with the assumption that NP ̸= coRP
to obtain one-way functions [KMN+14], which (again, combined with iO) give rise to many pow-
erful primitives such as public-key encryption, CCA-secure encryption, identity-based encryption,
attribute-based encryption, NIZKs, deniable encryption, and more [SW14].

At the same time, some primitives still elude construction based solely on iO and one-way
functions. In such cases, one typically combines iO with more stuctured building blocks. An example
for such a primitive is homomorphic encryption, for which the only known iO-based construction
combines iO with re-randomizable encryption [CLT+15]. The latter building block is only known
to be constructed based on structured number-theoretic or lattice-based assumptions.

In the case of homomorphic encryption (or any other primitive that implies collision-resistant
hashing [IKO05]), assuming structured primitives appears somewhat necessary. As shown by Asharov
and Segev [AS15] there is no construction of collision-resistant hash functions based on one-way
functions and iO, as long as the obfuscator is used in a black-box manner (a related result, dis-
cussed in Section 1.3 was shown for one-way permutations [AS16]). This appears to mirror the
situation of one-way functions, for which analogous separations were shown by Simon [Sim98] and
Rudich [Rud88]. This leads us to ask:

Does iO exhibit the same lack of structure as one-way functions?

Traditionally, highly-structured cryptography has been associated with languages in NP∩ coNP.
One prime example is natural decision languages associated with the search problem of inverting a
one-way permutation. Other examples include many of the specific number theoretic assumptions
underlying modern cryptography, such as factoring and discrete logarithm, as well as approximating
shortest vectors within any factor larger than the square root of the lattice dimension [GG00, AR05].

Thus, a natural way to rephrase the above question is to ask whether iO implies any hard to
decide language in NP ∩ coNP. Beyond shedding more light on the nature of iO an answer to this
question would also have concrete implications on our ability to rule out its existence. Perhaps
the most basic approach for ruling out iO is to reduce it to a language that can be efficiently
decided. Languages within NP ∩ coNP are certainly more likely to be efficiently decidable than
languages outside of it. Indeed, this is one of the main reasons for which cryptographers seldom
sleep well [Kil88]. Showing that iO does not reduce to such languages may be interpreted as evidence
that ruling out its existence may be more challenging that one may expect.

1



1.1 Our Contributions

Our main result is the following theorem:

Theorem 1.1. There is no fully black-box construction of an NP∩coNP-language from a one-way
function f and an indistinguishability obfuscator for the class of all oracle-aided circuits Cf .

Following Asharov and Segev [AS15, AS16], by considering indistinguishability obfuscation for
oracle-aided circuits, we capture the vast majority of techniques that have been used so far in
constructions based on indistinguishability obfuscation. These include, in particular, non-black-box
techniques such as the punctured programming approach of Sahai and Waters [SW14] and its many
variants (e.g., [BPR15, BPW16, GPS15, GPS+16]), as well as sub-exponential security assumptions
(we refer the reader to Section 1.2.1 for an overview of our framework and of the type of constructions
that it captures).

We emphasize that our result considers a one-way function and an indistinguishability obfuscator
as two independent building blocks. This is due to the following three main reasons. First, although
indistinguishability obfuscation is known to imply one-way functions under reasonable worst-case
assumptions [KMN+14], this enables us to prove an unconditional result. Second, since indistin-
guishability obfuscation on its own does not seem to imply any “useful” form of hardness (e.g., if
P = NP then efficient indistinguishability obfuscation is possible), proving such a result without
taking one-way functions into account does not seem to have any meaningful cryptographic impli-
cations. Finally, and most importantly, this enables us to capture the vast majority of techniques
that have been used so far in constructions based on indistinguishability obfuscation. Specifically,
as a corollary, we rule out fully black-box constructions of an NP∩coNP-language from any building
block that can be constructed based on a one-way function and indistinguishability obfuscation for
oracle-aided circuits. These include, trapdoor functions [SW14], one-way permutations and trapdoor
permutations [BPW16, GPS+16], deniable encryption [SW14], oblivious transfer [SW14], functional
encryption [Wat15], and many more.

1.2 Overview of Our Approach

We present a distribution over oracles relative to which the following two properties hold: (1) There
exist a one-way function f and an indistinguishability obfuscator for the class of all oracle-aided
circuits Cf , but (2) any oracle-aided NP∩coNP-language can be decided using a relatively small
number of oracle queries. The distribution is based on the Asharov-Segev framework [AS15, AS16],
who showed that it enables the existence of the two building blocks under consideration. Our effort
is thus devoted to devising an algorithm that decides oracle-aided NP∩coNP-languages.

Our approach in constructing such an algorithm is based on a two-fold generalization of a classic
result due to Impagliazzo and Naor [IN88] on non-deterministic computations via decision trees.
Roughly speaking, they showed that for the decision-tree analogues of the oracle-aided complexity
classes NP and coNP it holds that NP ∩ coNP ⊆ PTFNP. First, we generalize their approach from
the, rather restrictive, model of decision trees to arbitrary computations. Then, we generalize their
approach to arbitrary computations with the framework of Asharov and Segev, enabling us to prove
meaningful negative results on the power of indistinguishability obfuscation.

In Section 1.2.1 we describe the framework and the specific distribution over oracles that enable
us to prove a meaningful impossibility result for constructions that are based on indistinguishability
obfuscation. Next, in Section 1.2.2, as a warm-up we show that the techniques of Impagliazzo and
Naor [IN88] generalize from decision trees to arbitrary computations. We conclude this overview
with a discussion in Section 1.2.3 of the main challenges that arise when trying to extend these
techniques to our framework.
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1.2.1 Capturing Non-Black-Box Constructions via iO for Oracle-Aided Circuits

Constructions that are based on indistinguishability obfuscation are almost always non-black-box.
This fact makes it extremely challenging to prove any meaningful impossibility results using our
current techniques for ruling out black-box constructions [IR89, RTV04]. As an example, a typical
such construction would apply the obfuscator to a function that uses the evaluation circuit of a
pseudorandom generator or a pseudorandom function, and this requires specific implementations of
its underlying building blocks.

However, as observed by Asharov and Segev [AS15], most of the non-black-box techniques that
are used with such constructions have essentially the same flavor: The obfuscator is applied to
functions that can be constructed in a fully black-box manner from a low-level primitive, such as
a one-way function. In particular, the vast majority of constructions rely on the obfuscator itself
in a black-box manner. By considering the stronger primitive of an indistinguishability obfuscator
for oracle-aided circuits (see Definition 2.2), Asharov and Segev showed that such non-black-box
techniques in fact directly translate into black-box ones. These include, in particular, non-black-
box techniques such as the punctured programming approach of Sahai and Waters [SW14] and its
variants (as well as sub-exponential security assumptions – which are already captured by most
frameworks for black-box impossibility results).

Our result is obtained by presenting an oracle Γ relative to which the following two properties
hold: (1) any language L in NP∩coNP can be decided, and (2) there exist an exponentially-secure
one-way function f and an exponentially-secure indistinguishability obfuscator iO for the class of all
polynomial-size oracle-aided circuits Cf . Our oracle is the same as in [AS16], and consists of three
functions: (1) a random function f that will serve as the one-way function, (2) a random injective
length-increasing function O that will serve as the obfuscator (an obfuscation of an oracle-aided
circuit C is a “handle” O(C, r) for a uniformly-chosen string r), and (3) a function Eval that enables
evaluations of obfuscated circuits (Eval has access to both f and O): Given a handle O(C, r) and
an input x, it “finds” C and returns Cf (x).

The vast majority of our effort is in showing that relative to Γ any NP∩coNP-language can be
decided using a rather small number of oracle queries. As for the second part, we derive the exis-
tence of an exponentially-secure one-way function and an exponentially-secure indistinguishability
obfuscator directly from [AS16].

1.2.2 Warm-up: Deciding NP∩coNP Languages Relative to a Random Oracle

In this section we show that any oracle-aided NP∩coNP-language can be decided using a polynomial
number of queries in the random-oracle model. We begin with providing some essential notation,
and then describe our algorithm for deciding any such language.

Notation. An oracle-aided language L defines a set Lf ⊆ {0, 1}∗ for any possible function f :
{0, 1}∗ → {0, 1}∗. This naturally leads to the following standard definition of the oracle-aided
complexity class NP ∩ coNP (also known as a type-2 complexity class – see Section 2.1 for more
details): Given an oracle-aided language L, we say that L ∈ NP ∩ coNP if there exist oracle-aided
polynomial-size circuits R and R and a polynomial p(·), such that for any function f and for any
x ∈ {0, 1}∗ exactly one of the following two properties is satisfied:

• x ∈ Lf : There exists a witness w ∈ {0, 1}p(|x|) such that Rf (x,w) = 1 and for any w′ ∈
{0, 1}p(|x|) it holds that Rf

(x,w′) = 0.

• x /∈ Lf : There exists witness w ∈ {0, 1}p(|x|) such thatRf
(x,w) = 1 and for any w′ ∈ {0, 1}p(|x|)

it holds that Rf (x,w′) = 0.
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In other words, for any function f , we have that Rf and Rf
compute the witness relations of

Lf and of it complement L
f
.

The algorithm. Given any such pair (R, R) associated with an oracle-aided NP∩coNP-language
L, we now describe an oracle-aided algorithm that decides the language Lf for any function f . That
is, for any function f and for any instance x ∈ {0, 1}n it holds that Af (x) = YES if and only if
x ∈ Lf . The algorithm A first initializes an empty set of queries/answers Q which will contain the
actual queries made by A to the true oracle f . It then repeats the following for polynomial number
of iterations (the polynomial is determined by the number of oracle-gates in the circuits R and R):

1. Simulating YES: A finds an oracle f ′
yes that is consistent with Q, and a witness w′

yes such

that Rf ′
yes(x,w′

yes) = 1.
If there does not exist a pair (f ′

yes, w
′
yes) as above, then it halts and outputs NO (i.e., x ̸∈ Lf ).

2. Simulating NO: A finds an oracle f ′
no that is consistent with Q, and a witness w′

no such that

Rf ′
no(x,w′

no) = 1.
If there does not exist a pair (f ′

no, w
′
no) as above, then A halts and outputs YES (i.e., x ∈ Lf ).

3. Update: A queries f with all inputs to oracle gates in the computations Rf ′
yes(x,w′

yes) and

Rf ′
no(x,w′

no).

In order to prove the correctness of the algorithm, there are two cases to consider according
to whether x ∈ Lf or not. In the first case, assume that x ∈ Lf and let w∗

yes ∈ {0, 1}
p(n) be the

lexicographically smallest witness for which Rf (x,w∗
yes) = 1. We first claim that in that case, A

never halts and outputs NO during the computation (in Step 1). This is because the pair (f, w∗
yes)

exists, Q is always consistent with the true oracle f , and thus A can always set (f ′
yes, w

′
yes) = (f, w∗

yes).
The proof then relies on the following observation: In each iteration, either (1) A halts and

outputs YES in Step 2, or (2) in the update phase, A queries f with at least one new query that
is made by R during the computation of Rf (x,w∗

yes) = 1.

Intuitively, if neither of the above holds, then we can construct a “hybrid” oracle f̃ that behaves

like f in the computation Rf (x,w∗
yes) = 1 and behaves like f ′

no in the computation Rf ′
no(x,w′

no) = 1.

This hybrid oracle can be constructed since the two evaluationsRf (x,w∗
yes) = 1 andRf ′

no(x,w′
no) = 1

have no further intersection queries rather than the queries that are already in Q. According to

this hybrid oracle f̃ , it holds that Rf̃ (x,w∗
yes) = Rf̃

(x,w′
no) = 1, and thus x ∈ Lf̃ and x ̸∈ Lf̃

simultaneously, in contradiction to the assumption that the pair (Rf ,Rf
) describes a language Lf̃

for all functions f̃ .
Using this claim, since there are only polynomially many f -queries in the evaluation Rf (x,w∗

yes)
= 1, the algorithm must halt and output YES after a polynomial number of iterations (more
specifically, after at most q + 1 iterations, where q is the number of oracle gates in the circuit R).
This is because after q + 1 iterations, the algorithm cannot find a pair (f ′

no, w
′
no) in Step 2 that is

consistent with Q that satisfies Rf ′
no(x,w′

no) = 1, since all such oracles f ′
no (that are consistent with

Q) also satisfy Rf ′
no(x,w∗

yes) = 1. We therefore conclude that if x ∈ Lf , then A always outputs YES
after polynomially-many iterations.

The case of x ̸∈ Lf is proven analogously, where the two executions that are being considered in

each iteration are Rf ′
yes(x,w′

yes) and R
f
(x,w∗

no) = 1, where w∗
no ∈ {0, 1}

p(n) is the lexicographically

smallest witness for non-membership. We conclude that A always decides whether x ∈ Lf or not.
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1.2.3 Deciding NP∩coNP Languages Relative to Our Oracle

We extend the attack described above to work relative to our oracle, which is a much more structured
oracle than a random oracle and therefore raises the following three technical challenges described
below. We remark that the work of [AS16] deals with somewhat similar challenges, but our algorithm
is significantly more involved than the inverter algorithm of [AS16] (and therefore our case turns
out significantly more challenging).

Recall that our oracle Γ consists of three different oracles: A length-preserving function f , an
injective length-increasing function O, and an “evaluation” oracle Eval that depends on both f and
O. We now sketch the challenges that these oracles introduce.

The first challenge is that the evaluation oracle Eval is not just a “simple” function. This oracle
performs (by definition) exponential-time computations (e.g., an exponential number of queries to
O). The second challenge is that since the oracle Eval depends on both f and O, each query to
Eval determines many other queries to f and O implicitly, which we need to make sure that they
are considered in the attack. Specifically, given the structured dependencies between f , O and
Eval, in some cases it may not be possible to construct a hybrid oracle even if there are no more
intersection queries (in the basic attack, such a hybrid oracle always exists). We overcome these
challenges by carefully defining the dependencies between our oracles, and by forcing the algorithm
to issue various additional queries other than the queries that appear in the “real” executions (i.e.,

the computations R(x,w∗
yes) or R

Γ
(x,w∗

no)) but are still related with these executions. By doing so,

we are able to guarantee the consistency of the relevant executions between the hybrid oracle Γ̃, the
simulated oracles Γ′

yes and Γ′
no, and the real oracle Γ.

Finally, the third challenge is the fact that O is injective, which causes the following problem. In

our case, we are forced to assume that (RΓ,RΓ
) define a language in NP∩ coNP only when O is an

injective length-increasing function and not just any arbitrary function as in the basic algorithm (as
otherwise our obfuscator may not preserve functionality). Therefore, when constructing the hybrid
oracle Õ, we must ensure that it is also injective in order to reach a contradiction. However, the
hybrid oracle Õ might be non-injective when there is some overlap between the images of the true
oracle O and the sampled oracles O′

yes and O′
no on elements that are not in Q.

We deal with this challenge by showing that any such an overlap can be used to construct an
algorithm that is able to hit a valid image of O without querying its pre-image before. We then show
that the latter can occur only with a small probability. However, due to some subtle technicalities
in the proof, we need to make sure that this probability is very small, and we achieve this by a fine
tuning of the expansion factor of the oracle O.

1.3 Related Work

Bitansky, Paneth and Wichs [BPW16] and Garg, Pandey and Srinivasan [GPS15] recently showed
that indistinguishability obfuscation can be used for constructing a trapdoor permutation family.
Their constructions are captured by our framework (as they rely on the obfuscator itself in a black-
box manner), but do not imply an NP∩coNP-language (this would have contradicted our results).
Specifically, whereas any one-way permutation over {0, 1}n does imply an NP∩coNP-language, their
constructions provide a family of permutations, and the domains of the permutations are subsets of
{0, 1}n which depend on the underlying building blocks – and this does not seem to enable defining
an NP∩coNP-language. The work of Asharov and Segev [AS16] showed that these drawbacks are
in fact inherent to constructions of one-way permutations that rely on the obfuscator itself in a
black-box manner.

As discussed above, our approach builds upon the work of Impagliazzo and Naor [IN88], which in
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turn can be viewed as significantly extending Rudich’s techniques for showing that one-way functions
do not imply one-way permutations in a black-box manner. Specifically, as recently observed by
Rosen, Segev, and Shahaf [RSS16], Rudich’s proof already generalizes (perhaps somewhat implicitly)
to ruling out constructions of unique-TFNP instances (i.e., TFNP instances that are guaranteed to
always have a unique solution). In this light, our first generalization of the work of Impagliazzo
and Naor (which was described in Section 1.2.2) shows, in particular, that one-way functions do not
imply NP∩coNP-languages.

1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we introduce the cryptographic
primitives under consideration in this paper, as well as some standard notation. In Section 3 we
formalize the class of constructions to which our result applies, and present the structure of our
proof, which is then provided in Section 4.

2 Preliminaries

In this section we present the notation and basic definitions that are used in this work. For a
distribution X we denote by x ← X the process of sampling a value x from the distribution X.
Similarly, for a set X we denote by x ← X the process of sampling a value x from the uniform
distribution over X . For an integer n ∈ N we denote by [n] the set {1, . . . , n}. For a language
L ⊂ {0, 1}∗, we let χL : {0, 1}∗ → {0, 1} denote the characteristic function of L, that is, χL(x) = 1
if and only if x ∈ L.

2.1 Oracle-Aided Languages and Complexity Classes

We consider the standard notions of languages and complexity classes when naturally generalized
to oracle-aided computations. Our definitions follow the standard approach that was introduced
in the classic complexity-theory literature for proving separations between complexity classes by
considering type-2 languages and complexity classes (see, for example, [BCE+95, CIY97] and the
references therein)1.

An oracle-aided language L defines a set LO ⊆ {0, 1}∗ for any possible oracle O : {0, 1}∗ →
{0, 1}∗. This naturally leads to the following standard (non-uniform) definitions of the type-2
complexity classes NP2 and coNP2:

• We say that L ∈ NP2 if there exists a sequence R = {Rn}n∈N of polynomial-size oracle-aided
circuits such that for any oracle O : {0, 1}∗ → {0, 1}∗ the sequence of circuits RO = {RO

n }n∈N
computes an NP-relation for the language LO. That is, there exists a polynomial ℓ(·) such
that for any oracle O, for any n ∈ N, and for any x ∈ {0, 1}n it holds that x ∈ LO if and only
if there exists a “witness” w ∈ {0, 1}ℓ(n) such that RO

n (x,w) = 1.

• We say that L ∈ coNP2 if there exists a sequence R = {Rn}n∈N of polynomial-size oracle-aided

circuits such that for any oracle O : {0, 1}∗ → {0, 1}∗ the sequence of circuits RO
= {RO

n }n∈N
computes an NP-relation for the language {0, 1}∗ \LO. That is, there exists a polynomial ℓ(·)
such that for any oracle O, for any n ∈ N, and for any x ∈ {0, 1}n it holds that x /∈ LO if and

only if there exists a “witness” w ∈ {0, 1}ℓ(n) such that RO
n (x,w) = 1.

1A type-2 relation is a relation in which one of the arguments can be an oracle, and this can be directly used for
defining type-2 languages, reductions, and complexity classes.
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2.2 Indistinguishability Obfuscation for Oracle-Aided Circuits

We consider the standard notion of indistinguishability obfuscation [BGI+12, GGH+13] when nat-
urally generalized to oracle-aided circuits (i.e., circuits that may contain oracle gates in addition
to standard gates) [AS15, AS16]. We first define the notion of functional equivalence relative to a
specific function (provided as an oracle), and then we define the notion of an indistinguishability ob-
fuscation for a class of oracle-aided circuits. In what follows, when considering a class C = {Cn}n∈N
of oracle-aided circuits, we assume that each Cn consists of circuits of size at most n.

Definition 2.1. Let C0 and C1 be two oracle-aided circuits, and let f be a function. We say that
C0 and C1 are functionally equivalent relative to f , denoted Cf

0 ≡ Cf
1 , if for any input x it holds that

Cf
0 (x) = Cf

1 (x).

Definition 2.2. A probabilistic polynomial-time algorithm iO is an indistinguishability obfuscator
relative to an oracle Γ for a class C = {Cn}n∈N of oracle-aided circuits if the following conditions
are satisfied:

• Functionality. For all n ∈ N and for all C ∈ Cn it holds that

Pr
[
CΓ ≡ ĈΓ : Ĉ ← iOΓ(1n, C)

]
= 1.

• Indistinguishability. For any probabilistic polynomial-time distinguisher D = (D1, D2) there
exists a negligible function negl(·) such that

AdviOΓ,iO,D,C(n)
def
=

∣∣∣∣Pr [ExpiOΓ,iO,D,C(n) = 1
]
− 1

2

∣∣∣∣ ≤ negl(n)

for all sufficiently large n ∈ N, where the random variable ExpiOΓ,iO,D,C(n) is defined via the
following experiment:

1. b← {0, 1}.
2. (C0, C1, state)← DΓ

1 (1
n) where C0, C1 ∈ Cn and CΓ

0 ≡ CΓ
1 .

3. Ĉ ← iOΓ(1n, Cb).

4. b′ ← DΓ
2 (state, Ĉ).

5. If b′ = b then output 1, and otherwise output 0.

3 The Class of Constructions and Proof Overview

In this section we formalize the class of constructions to which our negative result applies. Then,
we formally state our main theorem, and present the structure of our proof (which is provided in
Section 4).

3.1 The Class of Constructions

We consider fully black-box constructions of oracle-aided languages in the intersection of NP and
coNP from a one-way function f and an indistinguishability obfuscator for all oracle-aided circuits
Cf (we refer the reader to Section 1.1 for the importance of considering a one-way function and an
indistinguishability obfuscator as two independent building blocks). We now formally define the class
of constructions considered in this section, tailoring our definitions to the specific primitives under
consideration. We remind the reader that two oracle-aided circuits, C0 and C1, are functionally
equivalent relative to a function f , denoted Cf

0 ≡ Cf
1 , if for any input x it holds that Cf

0 (x) = Cf
1 (x)

(see Definition 2.1). The following definition is based on those of [AS15, AS16] (which, in turn, are
motivated by [Lub96, Gol00, RTV04]).
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Definition 3.1. A fully black-box construction of an NP∩coNP-language L from a one-way function
and an indistinguishability obfuscator for the class C of all polynomial-size oracle-aided circuits,
consists of a pair of oracle-aided polynomial-time algorithms (R,R), a polynomial p(·), an oracle-
aided polynomial-time algorithm M , and “security loss” functions ϵM,1(·) and ϵM,2(·), such that the
following conditions hold:

• Correctness: For any functions f and iO such that iO(C; r)f ≡ Cf for all C ∈ C and
r ∈ {0, 1}∗, for any n ∈ N and for any x ∈ {0, 1}n, exactly one of the following two properties
is satisfied:

– x ∈ Lf,iO
n : There exists w ∈ {0, 1}p(n) such that Rf,iO(x,w) = 1 and for any w′ ∈

{0, 1}p(n) it holds that Rf,iO
(x,w′) = 0.

– x /∈ Lf,iO
n : There exists w ∈ {0, 1}p(n) such that Rf,iO

(x,w) = 1 and for any w′ ∈
{0, 1}p(n) it holds that Rf,iO(x,w′) = 0.

• Black-box proof of security: For any functions f and iO such that iO(C; r)f ≡ Cf for
all C ∈ C and r ∈ {0, 1}∗, for any oracle-aided algorithm A that runs in time TA(·), if Af,iO

decides the language Lf,iO
n for infinitely many values of n ∈ N, then either

Pr
[
MA,f,iO (f (x)) ∈ f−1(f(x))

]
≥ ϵM,1 (TA(n)) · ϵM,2(n)

for infinitely many values of n ∈ N, where the probability is taken over the choice of x← {0, 1}n
and over the internal randomness of M , or∣∣∣∣Pr [ExpiO(f,iO),iO,MA,C(n) = 1

]
− 1

2

∣∣∣∣ ≥ ϵM,1 (TA(n)) · ϵM,2(n)

for infinitely many values of n ∈ N (see Definition 2.2 for the description of the experiment
ExpiO(f,iO),iO,MA,C(n)).

Note that, following Asharov and Segev [AS15, AS16], we split the security loss in the above def-
inition to an adversary-dependent security loss (the function ϵM,1(·)) and an adversary-independent
security loss (the function ϵM,2(·)), as this allows us to capture constructions where one of these
losses is super-polynomial whereas the other is polynomial (see, for example, [BPR15, BPW16] as
well as many other recent constructions that are based on indistinguishability obfuscation and have
a polynomial adversary-related security loss but a super-polynomial adversary-independent security
loss).

Equipped with Definition 3.1, we are ready to state out main theorem:

Theorem 3.2. Let (R,R, p,M, TM , ϵM,1, ϵM,2) be a fully black-box construction of an NP ∩ coNP-
language L from a one-way function f and an indistinguishability obfuscator for the class of all
polynomial-size oracle-aided circuits Cf . Then, it holds that

ϵM,1

(
2n

1/ζ
)
· ϵM,2(n) ≤ 2−n/4

for some constant ζ > 1. That is, either the adversary-dependent security loss ϵM,1(·) is at least
quasi-polynomial, or the adversary-independent security loss ϵM,2(·) is exponential.

Theorem 3.2 rules out standard “polynomial-time polynomial-loss” reductions. More gener-
ally, the theorem implies that if the adversary-dependent security loss ϵM,1(·) is polynomial (as
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expected in cryptographic reductions), then the adversary-independent security loss ϵM,2(·) must
be exponential. This rules out constructions that are based on indistinguishability obfuscation with
sub-exponential security (see, for example, [BPR15, BPW16] as well as many other recent construc-
tions that are based on indistinguishability obfuscation and have a polynomial adversary-related
security loss but a sub-exponential adversary-independent security loss).

3.2 Proof Overview and the Oracle Γ

Our result is obtained by presenting a distribution over oracles Γ relative to which the following two
properties hold: (1) there exists an algorithm that decides languages LΓ in NP2∩coNP2, and (2) there
exist an exponentially-secure one-way function f and an exponentially-secure indistinguishability
obfuscator iO for the class of all polynomial-size oracle-aided circuits Cf . In what follows we
describe the oracle Γ, and then explain the structure of our proof.

The oracle Γ. The oracle Γ is identical to that of Asharov and Segev [AS16], while slightly
generalized via a parameter a constant c > 1 (which we will use as a fixed constant later on,
depending on the reduction under consideration). The oracle Γ is a triplet

(
f,O,Evalf,O

)
that is

sampled from a distribution, denoted Sc, as follows:

• The function f = {fn}n∈N. For every n ∈ N, the function fn is a uniformly chosen function
fn : {0, 1}n → {0, 1}n.
Looking ahead, we will prove that f is a one-way function relative to Γ.

• The functions O = {On}n∈N and Evalf,O = {Evalf,On }n∈N. For every n ∈ N the function

On is an injective function On : {0, 1}2n → {0, 1}10n
c

chosen uniformly at random. The
function Evalf,On on input (Ĉ, x) ∈ {0, 1}10nc × {0, 1}n finds the unique pair (C, r) ∈ {0, 1}n ×
{0, 1}n such that On(C, r) = Ĉ, where C is an oracle-aided circuit and r is a string (uniqueness
is guaranteed since On is injective). If such a pair exists, it evaluates and outputs Cf (x), and
otherwise it outputs ⊥.
Looking ahead, we will use O and Eval for realizing an indistinguishability obfuscator iO
relative to Γ for the class of all polynomial-size oracle-aided circuits Cf .

The structure of our proof. Our proof consists of two parts: (1) showing that relative to Γ
(or, the distribution over oracles Sc), there exists an algorithm that decides any language LΓ ∈
NPΓ∩coNPΓ with all but exponentially-small probability over the choice of the oracle Γ← Sc, and
(2) showing that relative to Γ the function f is an exponentially-secure one-way function and that the
pair (O,Eval) can be used for implementing an exponentially-secure indistinguishability obfuscator
for oracle-aided circuits Cf . In what follows, we call an oracle-aided algorithm A a q-query algorithm,
for some function q = q(n), if when given any input x ∈ {0, 1}n it A makes at most q(n) queries to
the oracle Γ, and each of its queries to Eval consists of a circuit of size at most q(n).

Part 1: Deciding languages in NP∩coNP. We prove that relative to our oracle Γ there
exists an algorithm that decides any language LΓ ∈ NPΓ ∩ coNPΓ with all but exponentially-small
probability over the choice of Γ← Sc, by making poly(n) · 22n1/c

queries to the oracle Γ. Although
the algorithm makes a super-polynomial number of queries, this range of parameters suffices for
proving our main result. In Section 4 we prove the following theorem:

Theorem 3.3. Let L be an oracle-aided language, let R and R be oracle-aided polynomial-time
algorithms corresponding to the witness-relation algorithms of L and of its complement L, respec-
tively, and let c ≥ 2. If R and R satisfy the correctness requirement stated in Definition 3.1, then
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there exists a q-query algorithm A with q(n) = poly(n) · 22·n1/c
such that

Pr
[
AΓ decides LΓ

n

]
≥ 1− 2−5n

for every n ∈ N, where the probability is taken over the choice of Γ← Sc. Moreover, the algorithm
A can be implemented in time poly(n) · 22·n1/c

given access to a PSPACE-complete oracle.

Part 2: The existence of a one-way function and an indistinguishability obfuscator.
The oracle Γ that we consider here is almost identical to the one introduced in [AS16], where the
only difference is the increased output length of the function O (which only makes their proof easier).

Specifically, the one-way function relative to Γ is simply the oracle f . The obfuscator iO for
the class C of all polynomial-time oracle-aided circuits Cf is defined as follows: For obfuscating an
oracle-aided circuit C ∈ {0, 1}n (i.e., we denote by n = n(C) the bit length of C’s representation),
the obfuscator iO samples r ← {0, 1}n uniformly at random, computes Ĉ = On(C, r), and outputs
the circuit Eval(Ĉ, ·). That is, the obfuscated circuit consists of a single Eval gate with hardwired
input Ĉ. The following theorem follows directly from [AS16]:

Theorem 3.4. For any constant c ≥ 1 and for any oracle-aided 2n/4-query algorithm A it hold that

Pr
[
AΓ(f(x)) ∈ f−1(f(x))

]
≤ 2−n/2

and ∣∣∣∣Pr [ExpiOΓ,iO,A,C(n) = 1
]
= 1− 1

2

∣∣∣∣ ≤ 2−n/4

for all sufficiently large n ∈ N, where the probability is taken over the choice of Γ← Sc and internal
randomness of A for both cases, in addition to the choice of x← {0, 1}n in the former case and to
the internal randomness of the challenger in the latter case.

Equipped with Theorems 3.3 and 3.4, in Appendix A we conclude the proof of Theorem 3.2.

4 Deciding NP∩coNP Languages Relative to Γ

In this section we prove Theorem 3.3 by presenting an oracle-aided algorithm for deciding any
language satisfying the correctness requirement stated in Definition 3.1. Recall that in Section
1.2 we showed that the approach of Impagliazzo and Naor [IN88] can be generalized from decision
trees to arbitrary computations. Here, we show that it can even be generalized relative to our
highly-structured oracle.

In Section 4.1 we describe our algorithm, denoted A, together with some preliminary notation
that we use throughout the proof. Then, in Section 4.2 we define a “bad” event, denoted badA,Γ(x),
and show that it occurs during an execution ofA with probability at most 2−6n, where the probability
is taken over the choice of Γ ← Sc. In Section 4.3 we show that if this bad event does not occur,
then the algorithm A is always correct on any given input. That is, we prove the following claim:

Claim 4.1. For every n ∈ N and x ∈ {0, 1}n it holds that

Pr
Γ

[
AΓ(x) = χLΓ

n
(x) | badA,Γ(x)

]
= 1 .
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This enables us to prove Theorem 3.3 via a simple union bound. That is,

Pr
Γ

[
∃x ∈ {0, 1}n s.t. AΓ(x) ̸= χLΓ(x)

]
≤

∑
x∈{0,1}n

Pr
Γ

[
AΓ(x) ̸= χLΓ

n
(x)

]
≤ 2n ·

(
Pr
Γ

[
AΓ(x) ̸= χLΓ(x) | badA,Γ(x)

]
+ Pr

Γ
[badA,Γ(x)]

)
≤ 2n

26n
= 2−5n,

which implies that PrΓ
[
AΓ decides LΓ

n

]
≥ 1− 2−5n.

4.1 The Algorithm A

In this section we present the algorithm A that decides membership of an instance x ∈ {0, 1}n. We
start with introducing our notation.

Notation. The algorithm A proceeds in iterations, where in each iteration A samples two sets of
oracle queries Partial(Γ′

yes) and Partial(Γ′
no). We let Q denote the set of actual queries that are made

by A to the true oracle Γ.
For example, we write [Om(C, r) = Ĉ] ∈ Q to denote that Q contains an Om-query with input

(C, r) and output Ĉ. Likewise, [fm(x) = y] ∈ Partial(Γ′) denotes that there is some fm query in
Partial(Γ′) with input x and output y (for either Γ′ = Γ′

yes or Γ
′
no). We use the symbol ⋆ to indicate

an arbitrary value, for instance [Eval(Ĉ, a) = ⋆] ∈ Q denotes that A made an Eval call to Γ on the
pair (Ĉ, a), but we are not interested in the value that was returned by the oracle.

For every query of the form [Evalm(Ĉ, a) = ⊥] ∈ Q for some a ∈ {0, 1}m, the algorithm can
also conclude that [Evalm(Ĉ, b) = ⊥] for every b ∈ {0, 1}m. We therefore introduce the set of
queries ExtendedQ, which is the set of all queries in Q, and contains in addition the set of queries{
[Evalm(Ĉ, b) = ⊥]

}
b∈{0,1}m

for every query [Evalm(Ĉ, a) = ⊥] ∈ Q.

The set of queries/answers that the algorithm samples. Our algorithm A samples in
each iteration some oracle queries/answers Partial(Γ′

yes) = (f ′
yes,O′

yes,Eval
′
yes) and Partial(Γ′

no) =
(f ′

no,O′
no,Eval

′
no) that are consistent (i.e., return the same results) with the list of queries ExtendedQ,

and in particular with the set of actual queries Q. Note that even though the size of ExtendedQ
might be exponential in n, the sizes of the sets Partial(Γ′

yes) and Partial(Γ′
no) depend on the number

of oracle-gates in R and R, and are polynomial in n.
Since the oracles (f,O,Eval) have some dependencies, we want that these dependencies will

appear explicitly in the set of queries/answers that the algorithm samples (looking ahead, by doing
so, we will be able to construct a hybrid oracle Γ̃). Formally, we say that the set of queries/answers
Partial(Γ′) (for either Partial(Γ′

yes) or Partial(Γ
′
no)) is consistent if the following holds:

Definition 4.2 (Consistent oracle queries/answers). Let Partial(Γ′) = (f ′,O′,Eval′) be a set of
queries/answers. We say it is consistent if for every m ∈ N it holds that:

1. For every query
[
Evalm(Ĉ, a) = β

]
∈ Eval′ with with |Ĉ| = 10mc, |a| = m and β ̸= ⊥, there

exists a query
[
Om(⋆) = Ĉ

]
∈ O′.
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2. For every query
[
Evalm(Ĉ, a) = β

]
∈ Eval′ with |Ĉ| = 10mc, |a| = m and β ̸= ⊥, let[

Om(C, r) = Ĉ
]
∈ O′ that is guaranteed to exist by the previous requirement, for some

C, r ∈ {0, 1}m. Then, the oracle f ′ contains also queries/answers sufficient for the evalu-
ation of Cf ′

(a), and the value of this evaluation is indeed β.

3. For every query [O′
m(⋆) = Ĉ] ∈ O′ there exists a query [Eval′m(Ĉ, α) = β] ∈ Eval′, for some

arbitrary α ∈ {0, 1}m.

While the first two requirements are quite natural and come to model that there is consistency in
Partial(Γ′), the third requirement has somewhat different role. Whenever the algorithm A samples
some image of O, i.e., whenever it samples a query [O′

m(⋆) = Ĉ] ∈ O′, we are interested to learn
whether Ĉ is a valid image with respect to the true oracle O. This is because the oracle O is
injective, and any collision between the oracles O and O′ disallows us from constructing the hybrid
oracle Γ̂. We therefore require to sample one addition query [Eval′(Ĉ, α)] for some arbitrary value
α. When A queries the true oracle Γ at the end of the iteration, it also learns whether Ĉ is a valid
image of O or not.

Augmented oracle queries. Assume that x ∈ LΓ, and let w∗
yes be the lexicographically smallest

witness such that RΓ(x,w∗
yes) = 1. We now consider the set of oracle queries that are associated

with the execution RΓ(x,w∗
yes) = 1. This set of queries contain some additional queries that do not

necessarily appear in that execution, but are still associated with it. Let Real(R,Γ, x, w∗
yes) denote

the set of actual queries to Γ in the evaluation of RΓ(x,w∗
yes) = 1. Then:

Definition 4.3 (Augmented oracle queries, case x ∈ LΓ). Assume that x ∈ LΓ and let w∗
yes be the

lexicographically smallest witness such that RΓ(x,w∗
yes) = 1. The set of extended queries, denoted

AugQyes(R,Γ, x, w∗
yes), consists of the queries in Real(R,Γ, x, w∗

yes), and in addition:

For every query [Evalm(Ĉ, a) = β] ∈ Real(R,Γ, x, w∗
yes) with |Ĉ| = 10mc, |a| = m and

β ̸= ⊥, let C, r ∈ {0, 1}m be the unique pair such that Om(C, r) = Ĉ.

1. The set AugQyes(R,Γ, x, w∗
yes) contains also the Om-query [Om(C, r) = Ĉ].

2. The set AugQyes(R,Γ, x, w∗
yes) contains all the f-queries/answers sufficient to for

the evaluation of Cf (a).

Similarly to the above, we define the set of extended oracle queries for the case where x ̸∈ LΓ.

Let w∗
no be the lexicographically smallest witness such thatRΓ

(x,w∗
no) = 1, and let Real(R,Γ, x, w∗

no)
be the set of actual queries to Γ in this evaluation. Let AugQno(R,Γ, x, w∗

no) be the equivalent set
of queries, similarly to Definition 4.3.

Let ℓ(n) be un upper bound on the number of oracle-gates in the circuits R and R. Let
ℓ̂ = max{|AugQyes(R,Γ, x, w∗

yes)|, |AugQno(R,Γ, x, w∗
no)|}. It is easy to see that ℓ̂(n) ≤ (2n+1)·ℓ(n) ≤

ℓ(n)3.
We are now ready to describe the algorithm A.

The algorithm A. The algorithm A has oracle access to Γ, and proceeds as follows given as
input an instance x ∈ {0, 1}n:

1. Initialize an empty list Q of oracle queries/answers to Γ (looking ahead, the list Q will always
be consistent with the true oracle Γ.). Define ExtendedQ accordingly.
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2. Querying fm and Om for small m. Let t = (log 8ℓ̂)1/c + n1/c. The algorithm A queries
the oracle fm on all inputs |x| = m for all m ≤ t. It queries Om(C, r) for all |C|= |r|=m≤ t.
Denote this set of queries by Q∗. Add all these queries to Q,ExtendedQ.

3. Run the following for ℓ̂+ 1 iterations:

(a) Simulating YES:
i. A finds a set Partial(Γ′

yes) = (f ′
yes,O′

yes,Eval
′
yes) of oracle queries/answers that is

consistent with the list of queries/answers ExtendedQ, and a witness w′
yes such that

RPartial(Γ′
yes)(x,w′

yes) = 1.

ii. If there does not exist a pair (Partial(Γ′
yes), w

′
yes) as above, then it halts and outputs

NO (i.e., x ̸∈ LΓ).

(b) Simulating NO:
i. A finds an oracle Partial(Γ′

no) = (f ′
no,O′

no,Eval
′
no) of oracle queries/answers that is

consistent with the list of queries/answers ExtendedQ, and a witness w′
no such that

RPartial(Γ′
no)(x,w′

no) = 1.

ii. If there does not exist a pair (Partial(Γ′
no), w

′
no) as above, then A halts and outputs

YES (i.e., x ∈ LΓ).

(c) Update: A queries Γ with all the queries in Partial(Γ′
yes) and Partial(Γ′

no) that are not
in Q, and updates the list Q and ExtendedQ accordingly2.
Moreover, for every [Evalm(Ĉ, a) = ⊥] ∈ Q for some m ∈ N, it adds to ExtendedQ the set

of queries
{
[Eval(Ĉ, b) = ⊥]

}
b∈{0,1}m

.

4. In case the algorithm has not halted yet, it outputs ⊥.

In the initial phase, A queries at most 2 · 2t queries of fm and 2 · 22t queries of Om. That is, at
most 4 · 22t queries, which are no more than poly(n) · 22n1/c

queries. In addition, in each iteration
it makes at most 2ℓ̂ queries to Γ, and runs for ℓ̂ + 1 iterations. Recall that ℓ̂(n) ≤ ℓ(n)3, and
thus A makes no more than ℓ(n)10 queries in all iterations. We conclude that A makes at most

poly′(n) · 22n1/c
queries, for some polynomial poly′(n).

4.2 The Event badA,Γ

In this section we define an event which may cause A to fail on a given instance x ∈ {0, 1}n, and
bound its probability. Before we define the event badA,Γ(x), we start with the definition of the event
Hitn, an event that considers an execution of MΓ(1n) for some arbitrary algorithm M and an oracle
Γ← Sc.

Definition 4.4. For any oracle-aided algorithm M , consider the following event Hitn that may
occur during an execution of MΓ(1n): The algorithm outputs an output β ∈ {0, 1}10n

c

for which
there exists an input α ∈ {0, 1}n such that On(α) = β, yet β was not an output of a previous
O-query.

We show:

Claim 4.5. For any oracle-aided algorithm MΓ(1n) making at most q ≤ 2n/2 queries, any n, f and
O−n = {Om}m∈N,m̸=n,

Pr
On

[Hitn] ≤
1

26nc .

2Note that the sets Partial(Γ′
yes) and Partial(Γ′

no) contain only the necessary queries in the evaluations

RPartial(Γ′
yes)(x,w′

yes) = 1 and RPartial(Γ′
no)(x,w′

no) = 1 and therefore are of polynomial-size.
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Proof. Fix M,n, f and O−n. The input space of On is 22n, whereas its output space is 210n
c
. Since

On is chosen uniformly at random, there are at most 22n elements in the range of On, and these are
distributed uniformly in a space of size 210n

c
. Any query to On reveals one point in the range, but

does not reveal any information about the other points. Therefore, the oracle queries do not give
significant information regarding the range of On, and an algorithm cannot hit points in the range
without previous queries of On.

Formally, we follow the computation of MΓ(1n) and choose the function On during this com-
putation. We store a table T (O) of queries/answers to O. With each On-query α, we look for
a pair (α, β) in T (O) for some β ∈ {0, 1}10n

c

. If such a pair exists, we return β. Otherwise, we
choose a value γ ∈ {0, 1}10n

c

uniformly at random under the constraint that it avoids all previous
images in T (O) (since O is injective), and add the pair (α, γ) to the table T (O). When M halts,
there are at most q entries in the table T (O). Let y denote the output of M . We then continue to
choose the function O such that the function is injective. All the other choices of the function O
are independent of the value y, and therefore, the probability that one of these 22n − q points hit
the fixed point y is:

Pr
On

[Hitn] =

22n−q−1∑
i=0

1

210nc − (q + i)
≤ 22n

210nc − 22n
≤ 1

26nc .

The event badA,Γ(x). We consider the following event, denoted as badA,Γ(x).

Definition 4.6. Let x ∈ {0, 1}n. If x ∈ LΓ, then let w∗
yes be the lexicographically smallest wit-

ness such that RΓ(x,w∗
yes) = 1, and let RealQ(Π,Γ, α, x∗)

def
= AugQyes(R,Γ, x, w∗

yes). Otherwise

(i.e., x ̸∈ LΓ), let w∗
no be the lexicographically smallest witness such that RΓ

(x,w∗
no) = 1, and let

RealQ(Π,Γ, α, x∗)
def
= AugQno(R,Γ, x, w∗

no).
Consider the following events that may occur with respect to the sampled oracles Partial(Γ′

no),
Partial(Γ′

yes) in some iteration i (for i = 1 . . . , L) and some m ∈ N:

The event bad
(1)
A,Γ,i,m(x): There exist values α, β ∈ {0, 1}2m such that α ̸= β, and there exists

γ ∈ {0, 1}10m
c

for which [O′
m(α) = γ] ∈ Partial(Γ′

no) ∪ Partial(Γ′
yes) \ Q and [Om(β) = γ] ∈

RealQ(Π,Γ, α, x∗).

The event bad
(2)
A,Γ,i,m(x): There exists a query of the form [Eval′m(Ĉ, a) = ⊥] ∈ Partial(Γ′

no) ∪
Partial(Γ′

yes)\Q, for some Ĉ ∈ {0, 1}10m
c

and a ∈ {0, 1}m, but [Om(C, r) = Ĉ] ∈ RealQ(Π,Γ, α, x∗)
for some C, r ∈ {0, 1}m.

We let badA,Γ(x)
def
=

∨
i∈[L],m∈N,k∈[2] bad

(k)
A,Γ,i,m(x).

We show that:

Claim 4.7. For every x ∈ {0, 1}n it holds that:

Pr
Γ
[ badA,Γ(x) ] ≤ 2−6n .

Proof. Fix x ∈ {0, 1}n. We consider each one of the internal events of badA,Γ(x) (Definition 4.6):
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• The event bad
(1)
A,Γ,i,m(x). We claim that bad

(1)
A,Γ,i,m(x) implies the event Hitm. In particular,

since x is fixed we can consider an algorithmMΓ(1n) that receives no input, and invokes AΓ(x).
When A reaches iteration i, we look at the set of simulated queries [O′

m(α) = γ] and consider
the values γ. If indeed there exists a query [O′

m(α) = γ] ∈ Partial(Γ′
no) ∪ Partial(Γ′

yes) \Q and
also [Om(β) = γ] ∈ RealQ(Π,Γ, α, x∗), we hit a valid output of O without querying it before.
Clearly, there are no more than 2ℓ̂ queries in Partial(Γ′

no) ∪ Partial(Γ′
yes), and from Claim 4.5

we conclude that:

Pr
Γ

[
bad

(1)
A,Γ,i,m(x)

]
≤ 2ℓ̂

26mc

• The event bad
(2)
A,Γ,i,m(x). We claim that this event also implies the event Hitm. As previously,

in case there exists a pair (C, r) ∈ {0, 1}2m for which [Om(C, r) = Ĉ] ∈ RealQ(Π,Γ, α, x∗), we
managed to hit and output of O without querying it beforehand. We conclude:

Pr
Γ

[
bad

(2)
A,Γ,i,m(x)

]
≤ 2ℓ̂

26mc

Bounding the probability of badA,Γ(x). By construction, Q∗ contains all possible Om-queries

for every m ≤ t, and therefore the events bad
(k)
A,Γ,i,m(x) cannot occur for m ≤ t (for all i, k). We

therefore conclude that for every t ≥ (log 8ℓ̂)1/c + n1/c:

Pr
Γ
[badA,Γ(x)] ≤ Pr

 ∨
i∈[ℓ̂],m∈N,k∈[2]

bad
(k)
A,Γ,i,m(x)


≤

ℓ̂∑
i=1

∞∑
m=t

2∑
k=1

2ℓ̂

26mc =

∞∑
m=t

4ℓ̂2

26mc ≤ 2 · 4ℓ̂
2

26tc

≤ 8 · ℓ̂2

2(log 8ℓ̂)626n
=

8ℓ̂2

(8ℓ̂)6 · 26n
≤ 2−6n .

4.3 Deciding Membership

We proceed to show that A always succeeds to decide LΓ
n, assuming that the event badA,Γ(x) does

not occur. We have:

Claim 4.8. For every x ∈ {0, 1}n

Pr
Γ

[
AΓ(x) = χLΓ

n
(x) | badA,Γ(x)

]
= 1 .

Proof. Fix Γ and x ∈ {0, 1}n. We now show that if badA,Γ(x) does not occur, then A outputs
χLΓ

n
(x), that is, if x ∈ LΓ

n it outputs YES, whereas if x ̸∈ LΓ
n it outputs NO.

Analyzing the case where x ∈ LΓ.

Claim 4.9. Assume that x ∈ LΓ, let w∗
yes be as above, and assume that the event badA,Γ(x) does

not occur. Then, A never outputs NO in Step 3(a)ii, and in each iteration of Step 3, exactly one
of the following occurs:
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1. A halts and outputs YES in Step 3(b)ii.

2. During the update phase, A adds to ExtendedQ at least one of the queries that appear in
AugQyes(R,Γ, x, w∗

yes).

Proof. First, since the pair (Γ, w∗
yes) exists, and since Q and ExtendedQ are always consistent with

the true oracle Γ, the algorithm A never halts and outputs NO in Step 3(a)ii. In particular, it can
always set (Partial(Γ′

yes), w
′
yes) = (Γ, w∗

yes).
Assume that neither one of the above conditions holds. Then, we show that there exists an

hybrid oracle Γ̃ = (f̃ , Õ, Ẽval) that relative to it, the following contradicting facts hold:

• The hybrid oracle Γ̃ behaves identically to the oracle Γ in the evaluation of RΓ(x,w∗
yes) = 1.

• The hybrid oracle Γ̃ behaves identically to the partial oracle Partial(Γ′
no) in the evaluation of

RPartial(Γ′
no)(x,w′

no) = 1.

That is, relative to the oracle Γ̃, it holds that RΓ̃(x,w∗
yes) = 1 and RΓ̃

(x,w′
no) = 1, and therefore

there exists a witness w∗
yes for membership x ∈ LΓ̃ and a witness w′

no for non-membership x ̸∈ LΓ̃,
in contradiction.

We construct the hybrid oracle Γ̃ = (f̃ , Õ, Ẽval) using both Γ = (f,O,Eval) and Partial(Γ′
no) =

(f ′
no,O′

no,Eval
′
no), as follows. For sake of cleanliness, in the following we omit the no subscript and

just write Partial(Γ′
no) = (f ′,O′Eval′). Moreover, we let RealQ(Π,Γ, α, x∗) = AugQyes(R,Γ, x, w∗

yes).
Note that since condition 2 in the claim does not hold, we have that RealQ(Π,Γ, α, x∗)∩Partial(Γ′

no) ⊆
ExtendedQ (i.e., A has learned all the queries that are in the intersection of these two evaluations.)

• The oracle f̃ . For every m ≤ t, the set of queries Q∗ contains all the functions {fm}m≤t and

thus agrees completely with f (i.e., also with f ′). We therefore set f̃m = fm.
For every m > t, we define the function f̃m as follows. For every x such that [fm(x) = y′] ∈
RealQ(Π,Γ, α, x∗), we set f̃m(x) = y′. For every [fm(x) = y] ∈ Partial(Γ′

no), we set f̃m(x) = y.
Since RealQ(Π,Γ, α, x∗) ∩ Partial(Γ′

no) ⊆ ExtendedQ, we have that there is no contradiction,
i.e, there are no input x and outputs y, y′ such that y ̸=y′ and [fm(x) = y′] ∈ Partial(Γ′

no) and
[fm(x) = y] ∈ RealQ(Π,Γ, α, x∗). For any other value x ̸∈ RealQ(Π,Γ, α, x∗) ∪ Partial(Γ′

no), we
set f̃m(x) = 0m.
Before we continue to define the oracle Õ, we first define some set of output values that Õ will
have to avoid. For every m > t, we define the set avoid-Om as

avoid-Om =

{
Ĉ ∈ {0, 1}10m

c

| ∃ [Evalm(Ĉ, ⋆) = ⋆] ∈ RealQ(Π,Γ, α, x∗)

∪ Partial(Γ′
no)

}
.

• The oracle Õ. The oracle is already defined for every m ≤ t. For every m > t, we define
the function Õm as follows. For every [Om(x) = y] ∈ RealQ(Π,Γ, α, x∗), we set Õm(x) = y.
Likewise, for every [O′

m(x) = y] ∈ Partial(Γ′
no), we set Õm(x) = y. Since RealQ(Π,Γ, α, x∗) ∩

Partial(Γ′
no) ⊆ Q, we have that there is no contradiction, that is, for any input x that has

already been defined, it holds that Om(x) = O′
m(x).

Moreover, since badA,Γ(x) does not occur, it holds that the partially defined function Õm is

injective. That is, there do not exist two inputs α ̸= β ∈ {0, 1}m for which Õm(α) = Õm(β).
Otherwise, either O′

m is not injective, Om is not injective, or the event badA,Γ(x) occurs (the

event bad
(1)
i,m(x) in Definition 4.6: there exist α, β ∈ {0, 1}2m such that α ̸= β, and there exists

γ ∈ {0, 1}10m
c

for which [O′
m(α) = γ] ∈ Partial(Γ′

no) and [Om(β) = γ] ∈ RealQ(Π,Γ, α, x∗)).
We then complete the definition of Õm arbitrarily, under the restriction that Õm is injective
and avoids the image avoid-Om. This is always possible since the possible space of O is of size
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210n
c
, there are 22n points that should be defined, and only polynomially many points in the

image are already defined.

• The oracle Ẽval. We define the oracle Ẽval using the oracles f̃ and Õ exactly as the true
oracle Eval is defined using the true oracles f and O. We now show that Ẽval is consistent with
RealQ(Π,Γ, α, x∗) and Partial(Γ′

no). That is, that every query [Evalm(⋆, ⋆)] ∈ AugQ(Π,Γ, x∗)∪
Partial(Γ′) has the same answer with Ẽval, and therefore RΓ̃(x,w∗

yes) = RΓ(x,w∗
yes) = 1 and

RΓ̃
(x,w′

no) = RPartial(Γ′
no)(x,w′

no) = 1. We have:

1. Assume that there exists [Eval′(Ĉ, a) = β] ∈ Partial(Γ′
no) for some β ̸= ⊥. We show

that Ẽval(Ĉ, a) = β as well. Since the oracle Partial(Γ′
no) = (f ′,O′,Eval′) is consistent

(recall Definition 4.2), then there exists a query
[
Om(C, r) = Ĉ

]
∈ Partial(Γ′

no) and f ′

contains all the necessary queries/answers for the evaluation of Cf ′
(a), and it also holds

that Cf ′
(a) = β. However, since any (f ′,O′)-queries in Partial(Γ′

no) have the exact same

answer with (f̃ , Õ), it holds that C f̃ (a) = β and Õ(C, r) = Ĉ, and so, from the definition

of Ẽval it holds that Ẽval(Ĉ, a) = β as well.

2. Assume that there exists [Eval(Ĉ, a) = β] ∈ RealQ(Π,Γ, α, x∗) for some β ̸= ⊥. We show

that Ẽval(Ĉ, a) = β as well. According to Definition 4.3, the set of queries RealQ(Π,Γ, α, x∗)
contains also the query [O(c, r) = Ĉ], and also all the necessary f -queries for the evalua-
tion of Cf (a) (which is evaluated to β).
Since these queries appear in RealQ(Π,Γ, α, x∗), it holds that f̃ and Õ agree on the same

queries, and therefore Ẽval(Ĉ, a) = β, as well.

3. For every query [Eval(Ĉ, a) = ⊥] ∈ RealQ(Π,Γ, α, x∗)∪Partial(Γ′
no) we show that Ẽval(Ĉ, a) =

⊥ as well. There might be a contradiction only if one of the following occurs:
(a) Assume that [Eval′(Ĉ, a) = ⊥] ∈ Partial(Γ′

no) but [O(C, r) = Ĉ] ∈ RealQ(Π,Γ, α, x∗)
for some C, r, a ∈ {0, 1}m and Ĉ ∈ {0, 1}10m

c

. However, this case implies that the

event badA,Γ(x) occurs (see bad
(2)
i,m(x) in Definition 4.6).

(b) Assume that [Eval(Ĉ, a) = ⊥] ∈ RealQ(Π,Γ, α, x∗) but [O′(C, r) = Ĉ] ∈ Partial(Γ′
no)

for some C, r, a ∈ {0, 1}m and Ĉ ∈ {0, 1}10m
c

. We claim that this case implies that A
adds to ExtendedQ one of the queries that appear in RealQ(Π,Γ, α, x∗). In particular,
since the oracles Partial(Γ′

yes) and Partial(Γ′
no) are consistent, and since [O′(C, r) =

Ĉ] ∈ Partial(Γ′
no), from Requirement 3 in Definition 4.2 we conclude that Partial(Γ′

no)
includes also a query [Eval(Ĉ, α) = β] ∈ Partial(Γ′

no) for some arbitrary α ∈ {0, 1}m.
This implies that in the update phase, A queries Γ on [Eval(Ĉ, α)], receives ⊥, and
adds to ExtendedQ the set {[Eval(Ĉ, b) = ⊥]}b∈{0,1}m , and in particular also the query

[Eval(Ĉ, a) = ⊥] which exists also in RealQ(Π,Γ, α, x∗).
Therefore, assuming that Condition 2 in Claim 4.9 does not hold, this case cannot
occur.

This completes the proof of Claim 4.9.
Assuming that x ∈ LΓ, then after ℓ̂ iterations the set ExtendedQ contains all the queries in

AugQyes(R,Γ, x, w∗
yes). Therefore, the algorithm cannot find in Step 3(b)ii an oracle Partial(Γ′

no)

that is consistent with ExtendedQ and a witness w′
no for which RPartial(Γ′

no)(x,w′
no) = 1. As a result,

A halts and outputs YES.

Analyzing the case where x ̸∈ LΓ. Similarly to the above, we have the following claim:
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Claim 4.10. Assume that x ̸∈ LΓ, let w∗
no be as above, and assume that the event badA,Γ(x) does

not occur. Then, A never outputs YES in Step 3b, and in each iteration of Step 3, exactly one of
the following occurs:

1. A halts and outputs NO in Step 3a.

2. During the update phase, A adds to ExtendedQ at least one one of the queries that appear in
AugQno(R,Γ, x, w∗

no).

Assuming that x ̸∈ LΓ, then after ℓ̂ iterations the set ExtendedQ contains all the queries in
AugQno(R,Γ, x, w∗

no). Therefore, the algorithm cannot find in Step 3(a)ii an oracle Partial(Γ′
yes) that

is consistent with ExtendedQ and a witness w′
yes for which RPartial(Γ′

yes)(x,w′
yes) = 1. As a result, A

halts and outputs NO.

Combining Claims 4.9 and 4.10, we conclude that for every input x ∈ {0, 1}n:

Pr
Γ

[
AΓ(x) ̸= χLΓ(x) | badA,Γ(x)

]
= 0 .

This concludes the proof of Claim 4.8.
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A Proof of Theorem 3.2

Proof of Theorem 3.2. Let (R,R, p,M, ϵM,1, ϵM,2) be a fully black-box construction of an NP∩
coNP-language L from a one-way function f and an indistinguishability obfuscator iO for the class
C of all polynomial-size oracle-aided circuits Cf . Recall that M is an oracle-aided polynomial-
time algorithm, and we let c > 0 denote a constant such that TM (n) ≤ nc (i.e., nc upper bounds
the running time of M on inputs of length n). By considering the distribution S2c, Theorem 3.3

guarantees the existence of an oracle-aided algorithm A that runs in time TA(n) = poly(n) · 22n1/2c

such that:
Pr

[
APSPACE,Γ decides LΓ

n

]
≥ ϵA(n)

for any n ∈ N, where ϵA(n) = 1 − 2−5n, and the probability is taken over the choice of Γ ← S2c.
Definition 3.1 then states that there are two possible cases to consider: A can be used either for
inverting the one-way function f , or for breaking the security of the indistinguishability obfuscator
iO. In the first case we obtain from Definition 3.1 that

Pr
[
MAPSPACE,Γ

(f(x)) ∈ f−1(f(x))
]
≥ ϵM,1 (TA(n)) · ϵM,2(n) · ϵA(n)

for infinitely many values of n ∈ N, where the probability is taken over the choice of x← {0, 1}n and
Γ← S2c, and over the internal randomness ofM . The algorithmM may invokeA on various security
parameters (i.e., in general M is not restricted to invoking A only on security parameter n), and we
denote by ℓ(n) the maximal security parameter on which M invokes A (when M itself is invoked
on security parameter n). Thus, viewing MA as a single oracle-aided algorithm that has access to
a PSPACE-complete oracle and to Γ, its running time TMA(n) satisfies TMA(n) ≤ TM (n) · TA(ℓ(n))
(this follows since M may invoke A at most TM (n) times, and the running time of A on each such

invocation is at most TA(ℓ(n))). In particular, viewing M ′ def
= MAPSPACE

as a single oracle-aided
algorithm that has oracle access to Γ, implies that M ′ is a q-query algorithm where q(n) = TMA(n).
Theorem 3.4 then implies that either 2n/4 ≤ q(n) or ϵM,1 (TA(n)) · ϵM,2(n) · ϵA(n) ≤ 2−n/2. In the
first sub-case, noting that ℓ(n) ≤ TM (n) ≤ nc, we obtain that

2n/4 ≤ q(n) = TMA(n) ≤ TM (n) · TA(ℓ(n)) ≤ TM (n) · TA(n
c)

The running time TA(n
c) of the adversary A (when given access to a PSPACE-complete oracle) on

inputs of length nc is upper bounded by poly(nc) · 22(nc)1/2c ≤ 2 · 22
√
n, and since TM (n) ≥ nc this

rules out this sub-case. In the second sub-case, we have that ϵM,1 (TA(n)) · ϵM,2(n) · ϵA(n) ≤ 2−n/2.
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Applying TA(n) ≤ 22n
c
and ϵA(n) ≥ 1/2 we have that ϵM,1(2

n1/ζ
)·ϵM,2(n) ≤ 2−n/4 for some constant

ζ > 1.
In the second case we obtain from Definition 3.1 that∣∣∣∣Pr [ExpiO(f,iO),iO,MA,C(n) = 1

]
− 1

2

∣∣∣∣ ≥ ϵM,1 (TA(n)) · ϵM,2(n) · ϵA(n).

Theorem 3.4 then implies that either 2n/4 ≤ q(n) or ϵM,1 (TA(n)) · ϵM,2(n) · ϵA(n) ≤ 2−n/4. Similarly
to the previous case, the first sub-case can be ruled out, and in the second sub-case we have that
ϵM,1(2

n1/ζ
) · ϵM,2(n) ≤ 2−n/4 for some constant ζ > 1.
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