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Abstract

Using John’s Theorem, we prove a lower bound on the bounded rigidity of a sign matrix,
defined as the Hamming distance between this matrix and the set of low-rank, real-valued
matrices with entries bounded in absolute value. For Hadamard matrices, our asymptotic leading
constant is tighter than known results by a factor of two whenever the approximating matrix
has sufficiently small entries.

1 Introduction

Motivated to prove circuit lower bounds, Valiant [Val77] introduced rigidity as a complexity measure
on matrices. For a matrix M ∈ Rn×n and target rank r ∈ [n] the rigidity RM (r) is the minimum
number of entries that must be changed in M to reduce its rank to r over R. In other words, M has
Hamming distance RM (r) from the set of rank r real matrices1. Valiant showed RM (r) > (n− r)2
when M is a random real matrix, and he proved that sufficiently rigid matrices correspond to
functions requiring either super-linear size or super-logarithmic depth linear arithmetic circuits.
A family of matrices with RM (r) > Ω(n1.01) for any r 6 n/100 would suffice. Alas, finding
explicit rigid matrices remains an open question, as does proving that an explicit function is not
computable by any O(log n)-depth circuit with O(n) gates. The bound RM (r) > Ω(n

2

r log(n/r))
by [Fri93, SSS97] is the best we know. It becomes trivial when r is linear in n.

The lack of progress in finding explicit rigid matrices led researchers to investigate relaxations
such as the requirement that the low-rank approximation matrix have magnitude-bounded en-
tries. This relaxed measure, called bounded rigidity, still has applications to separating communi-
cation complexity classes [Lok01] and captures the natural question of whether sign matrices suffice
for low-rank approximations or real-valued matrices provide a significant advantage. Krause and
Waack [KW91] derive depth-two circuit lower bounds using a very related measure. We focus on
bounded rigidity and refer the reader to Lokam’s survey [Lok09] for more on general matrix rigidity.

The following definition formalizes bounded rigidity. The next section reviews known bounds.

Definition 1.1. The bounded rigidity of a matrix M = (Mij) ∈ Rn×n for target rank r ∈ [n] and
entry bound θ ∈ R+ is defined as

RM (r, θ) = min
C
{|C| : rk(M − C) 6 r, max

ij
|Mij − Cij | 6 θ},

where |C| denotes the number of nonzero entries of the matrix C ∈ Rn×n with entries C = (Cij).

1Although we focus on real matrices, the definition of rigidity and the circuit implications hold over any field.
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1.1 Prior Results on Bounded Rigidity

While general rigidity lower bounds remain elusive, previous work on bounded rigidity provides
asymptotically optimal lower bounds for popular candidate rigid matrices: Hadamard matrices.
Defined as any H ∈ {−1, 1}n satisfying HHT = nI, where I is the identity matrix, Hadamard
matrices arise frequently. An example is the Walsh (a.k.a. Sylvester) matrix, defined for n a power
of two as Wx,y = (−1)

∑
xiyi , where we index W by x, y ∈ {0, 1}n, and the sum in the exponent is

over the reals. The best general rigidity lower bounds for H stand at RH(r) > Ω(n2/r) [KR98].
We summarize prior results on bounded rigidity. Theorem 1.2 is due to De Wolf [dW06] and

involves quantum arguments. Theorem 1.3 comes from Kashin and Razborov [KR98] and improves
a theorem by Lokam [Lok01]. Pudlák [Pud00] proves a similar result.

Theorem 1.2 ([dW06]). Let H ∈ {−1, 1}n×n satisfy HHT = nI. For any r ∈ [n] and any θ ∈ R+

RH(r, θ) >
n2(n− r)

2θn+ r(θ2 + 2θ)
.

Theorem 1.3 ([KR98]). Let H ∈ {−1, 1}n×n satisfy HHT = nI. For any r ∈ [n] and any θ ∈ R+

RH(r, θ) >
n2(n− r)

(θ + 1)(2n+ r(θ − 1))
.

Observe that since |C| < n2 in Definition 1.1, we can assume θ > 1 without loss of generality.
Although best and simplest for Hadamard matrices, Theorem 1.3 also extends to give bounds

for arbitrary matrices in terms of their full set of singular values. All previous results hold for
generalized (complex) Hadamard matrices, defined as any H ∈ Cn×n having unit entries and
satisfying HH∗ = nI. The Discrete Fourier Transform matrix is one such example.

1.2 Bounded Rigidity as a Function of the Largest Singular Value

We now describe our main theorem. For a rank r matrix A ∈ Rn×n agreeing with M ∈ {−1, 1}n×n
in most entries, the proof of our main theorem gives upper and lower bound on the matrix inner
product

∑
u,v Au,vMu,v. The upper bound utilizes a consequence of John’s Theorem to control

vector magnitudes, and the lower bound follows directly from the bounded rigidity definition.

Theorem 1.4. For any M ∈ {−1, 1}n×n and for any r ∈ [n] and θ 6 n
σ1(M)

√
r
− 1

RM (r, θ) >
n2

θ + 1
− θn

√
r · σ1(M)

θ + 1
,

where σ1(M) = max
x,y∈Rn

〈x,My〉
‖x‖2 · ‖y‖2

denotes the largest singular value of M .

For a Hadamard matrix H, we get the following corollary, since σ1(H) =
√
n.

Corollary 1.5. Let H ∈ {−1, 1}n×n satisfy HHT = nI. For any r ∈ [n] and θ 6
(
n
r

)1/2 − 1

RH(r, θ) >
n2

θ + 1
− θn3/2

√
r

θ + 1
.
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Previous theorems already provide asymptotically tight bounds for Hadamard matrices when
θ = O(1). This follows from the simple fact that RM (r, 1) 6 n(n− r) for any M with unit entries.

Our bound is stronger in the regime of 1 < θ �
(
n
r

)1/2
because prior bounds scale with n like

n2

(2+o(1))θ , whereas our bound scales like n2/(θ + 1). Finally, notice that whenever θ = ω(n), the

general rigidity bound of RH(r) > Ω(n2/r) trumps the bounded rigidity results.

Remark 1. Kashin and Razborov [KR98] and Lokam [Lok01] state their results for Hadamard
matrices, but their arguments, which both use the Hoffman-Wielandt inequality [HW53], provide
a general relationship between singular values and bounded rigidity. Letting σi(M) denote the ith
largest singular value of M ∈ {−1, 1}n×n, their implicit bound for any parameter β ∈ (0, 1] is

RM (r, θ) >
n2 −

∑r
i=1 σi(M)2 − (1− β)2n2

(1 + βθ)2 − (1− β)2
.

Hadamard matrices have σi(H) =
√
n for i ∈ [n]. Our bound only depends on the largest singular

value, but the asymptotic dependence on n never surpasses that of previous results. Indeed, we can
replace

∑r
i=1 σi(M)2 with n

√
rσ1(M) in the above bound, since

∑n
i=1 σi(M)2 = n2 for any n × n

sign matrix. Although we do not improve the scaling with n, we believe that our alternate proof
technique is interesting. Kashin and Razborov [KR98] set β = r/n to achieve Theorem 1.3. We

observe that setting β = (r/n)1/2 leads to an improved bound in the regime of 1 < θ �
(
n
r

)1/2
.

With this choice of β, their bound achieves asymptotic scaling of n2/(θ+ 1), matching our bound.

The largest singular value σ1(M) also makes an appearance in a related result by Lokam [Lok01],
which improves a theorem of Krause and Waack [KW91]. It generalizes the above theorems to hold
for sign representations at the cost of an added assumption on the approximating matrix. Define
the sign function sgn : R→ {−1, 1} as sgn(x) = 1 if x > 0 and sgn(x) = −1 if x < 0.

Theorem 1.6 ([Lok01]). Consider M ∈ {−1, 1}n×n. If A ∈ Rn×n has rank r and 1 6 |Aij | 6 θ

for all i, j ∈ [n], then sgn(Aij) 6= sgn(Mij) for at least
1

4

(
n2/θ − rσ21(M)

)
pairs (i, j) ∈ [n]× [n].

The proof of our main theorem straightforwardly extends to prove the following related theorem.

Theorem 1.7. Consider M ∈ {−1, 1}n×n. If A ∈ Rn×n has rank r and 1 6 |Aij | 6 θ for all
i, j ∈ [n], then sgn(Aij) 6= sgn(Mij) for at least n2/(θ+1)−n

√
rσ1(M)θ/(θ+1) pairs (i, j) ∈ [n]×[n].

2 John’s Theorem and Matrix Factorization

We will use John’s Theorem to find a matrix factorization with vectors bounded in 2-norm. For
more about John’s Theorem, see Ball’s survey [Bal97]. We only need the following consequence.

Theorem 2.1 (John’s Theorem [Joh48]). For any full-dimensional, symmetric convex set K ⊆ Rr
there exists an invertible linear map T such that Br ⊆ T (K) ⊆

√
r · Br, where Br denotes the

r-dimensional `2-unit ball and
√
r · Br = {x ∈ Rr | ‖x‖2 6

√
r}.

The following corollary encapsulates our use of John’s Theorem. Essentially the same result
appears in Rothvoß’ [Rot14] in the context of communication complexity. Our result differs in that
we explicitly incorporate the maximum magnitude of any matrix entry.
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Corollary 2.2. For any rank r matrix A = (Aij) ∈ Rn×n with maxij |Aij | 6 θ there exists vectors
u1, . . . , un, v1, . . . , vn ∈ Rr such that 〈ui, vj〉 = Aij and ‖ui‖2 6

√
r and ‖vj‖2 6 θ for i, j ∈ [n].

Proof. Consider any r-dimensional factorization Aij = 〈xi, yj〉. Define K as the convex hull of the
set {±xi | i ∈ [n]}. Use the mapping T from John’s Theorem to define vectors ui = Txi and
vj = (T−1)T yj for i, j ∈ [n]. These new vectors satisfy the first condition because 〈ui, vj〉 = 〈xi, yj〉.
They satisfy the second condition because ui = Txi ∈

√
r ·Br for all i ∈ [n]. For the third condition,

for any vector vj consider a vector z ∈ T (K) maximizing |〈z, vj〉|. The inclusion Br ⊆ T (K) implies

|〈z, vj〉| > ‖vj‖2.

Since T (K) is the convex hull of the vectors {±ui}, we know that z can be expressed as a convex
combination of {±ui}. By the triangle inequality, we conclude |〈z, vj〉| 6 maxi |〈ui, vj〉| 6 θ.

3 Proof of Theorem 1.4

Let C be a minimizer for the set defined in RM (r, θ) and denote A = M −C. Let U, V ⊆ Rr be the
sets of vectors that Corollary 2.2 guarantees. Index A as Au,v = 〈u, v〉 =

∑r
k=1 ukvk and extend

this indexing to M . Note that we have switched notation so u, v ∈ Rr are vectors (and indices)
and uk, vk ∈ R are vector elements. We will upper and lower bound the quantity

∑
u,v〈u, v〉Muv.

For the upper bound, we use the definition of σ1(M), the Cauchy-Schwarz inequality, and the
2-norm bounds on u ∈ U and v ∈ V to compute∑

u∈U,v∈V
〈u, v〉Muv =

r∑
k=1

∑
u∈U,v∈V

Muvukvk

6
r∑

k=1

σ1(M)

√∑
u∈U

u2k

√∑
v∈V

v2k

6 σ1(M) ·

√√√√ r∑
k=1

∑
u∈U

u2k ·

√√√√ r∑
k=1

∑
v∈V

v2k

= σ1(M) ·
√∑
u∈U
‖u‖22 ·

√∑
v∈V
‖v‖22 6 σ1(M) · nθ

√
r.

For the lower bound, we use that |Au,v| 6 θ from the bounded rigidity definition and compute∑
u,v

Au,vMu,v >
(
n2 − |C|

)
− θ|C| = n2 − (θ + 1)|C|.

Rearranging gives the theorem.

4 Conclusion

We introduced a new connection between convex geometry and complexity theory and presented a
slightly improved lower bound on the bounded rigidity of sign matrices.

Other theorems, such as Forster’s sign rank lower bound [For02] and the discrepancy lower
bound via Lindsey’s Lemma [Juk12], hold for all M ∈ {−1, 1}n×n with σ1(M) = O(

√
n). It would

be interesting to generalize our result or these theorems to arbitrary real matrices with bounded
entries. For example, Codenotti asks as Problem 6 in his survey [Cod99] whether examining singular
values suffices to prove better results on the general matrix rigidity of matrices with bounded entries.
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