
Non-commutative computations: lower bounds and polynomial
identity testing

Guillaume Lagarde ∗ Guillaume Malod † Sylvain Perifel ‡

June 6, 2016

Abstract

In the setting of non-commutative arithmetic computations, we define a class of circuits that gener-
alize algebraic branching programs (ABP). This model is called unambiguous because it captures the
polynomials in which all monomials are computed in a similar way (that is, all the parse trees are iso-
morphic).

We show that unambiguous circuits of polynomial size can compute polynomials that require ABPs
of exponential size, and that they are incomparable with skew circuits.

Generalizing a result of Nisan [17] on ABPs, we provide an exact characterization of the complexity
of any polynomial in our model, and use it to prove exponential lower bounds for explicit polynomials
such as the determinant.

Finally, we give a deterministic polynomial-time algorithm for polynomial identity testing (PIT)
on unambiguous circuits over R and C, thus providing the largest class of circuits so far in a non-
commutative setting for which we can derandomize PIT.

∗Univ Paris Diderot, Sorbonne Paris Cité, LIAFA, UMR 7089 CNRS, F-75205 Paris, France. Email:
guillaume.lagarde@liafa.univ-paris-diderot.fr.
†Univ Paris Diderot, Sorbonne Paris Cité, IMJ-PRG, UMR 7586 CNRS, Sorbonne Universités, UPMC Univ Paris 06, F-75013,

Paris, France. Email: malod@math.univ-paris-diderot.fr.
‡Univ Paris Diderot, Sorbonne Paris Cité, LIAFA, UMR 7089 CNRS, F-75205 Paris, France. Email:

sylvain.perifel@liafa.univ-paris-diderot.fr.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 94 (2016)

1 Introduction

Arithmetic circuits as a model for complexity-theoretic questions has enjoyed an increase of interest over the
last ten years. This is due in particular to a general strategy, called geometric complexity theory, to tackle the
main open question of complexity, P versus NP, via algebraic means (see the survey [7] or the website [12]).
One of its intermediate goals is to prove that computing the permanent cannot be efficiently reduced to
computing the determinant. This question can naturally be seen as an analogue of P versus NP when using
arithmetic circuits as model of computation, as introduced by Valiant in founding articles [23, 24]. Interest
in arithmetic circuits was also sparked by a string of applications of a measure based on partial derivatives
(see the surveys [22, 8]). Recent generalizations of this technique, coupled with strong parallelization results
for arithmetic circuits, have brought us very close to showing that the permanent cannot be written as a small
determinant (see the survey [20]).

One of the earlier articles using such a notion of partial derivatives is Nisan [17], which studies com-
putations in the non-commutative ring F〈X〉: variables do not commute so that xy and yx are distinct
monomials. Studying non-commutative computations is an important endeavour, as they arise naturally
(for instance when computing over matrices), but also because they can have applications for commutative
computations (see [9, 5], in particular the use of non-commutative determinants to approximate the commu-
tative permanent). Moreover, non-commutativity is one kind of restriction that can be imposed on general
arithmetic computations. Others, such as multilinearity, have yielded lower bounds (see [18], again using
partial derivatives), and it is hoped that exploring restricted computations and obtaining lower bounds will
help to get results in the general case. Nisan [17] again provides an early example, proving exponential
lower bounds for non-commutative arithmetic formulas and more generally for non-commutative algebraic
branching programs in 1991. However this did not lead to superpolynomial lower bounds for general non-
commutative circuits. Very little progress was made for a long time, and there is still no known lower bound
for general non-commutative arithmetic circuits that is stronger than those that we already have for general
commutative arithmetic circuits. Recently, Hrubeš, Wigderson, and Yehudayoff [13] suggested a new line
of attack on the general arithmetic circuit lower bound question, linking it to the classical Sum-of-squares
problem. Finally, Nisan’s results was extended in [15] to a more powerful model, so-called skew circuits,
arithmetic circuits where every multiplication involves at most one argument which is not a variable or a
constant. There, non-commutative skew circuits were shown to be exponentially more powerful than non-
commutative branching programs, but exponentially less powerful than general non-commutative circuits.
This model and some extensions are the strongest model of non-commutative computation for which we
have superpolynomial lower bounds.

Here, we again extend Nisan’s result but in a different direction. Given a (non-commutative) circuit,
we can look at the set of monomials it produces (before any grouping/cancellations). If we pretend that the
computation is also non-associative, the monomial comes with parentheses to indicate the “way” in which
it was computed. The pattern of parentheses for a given monomial (the structure of the monomial in a
sense) can also be seen as a tree. We will focus on circuits where this structure or tree is the same for all
the monomials computed by the circuit, and we will call these circuits unambiguous. If one computes an
algebraic branching program as a circuit, then monomials are all obtained by successive multiplication on the
right, and they all have the same structure. Our model is thus more general than the one considered by Nisan.
Perhaps the most striking aspect of Nisan’s paper, more than its elegance, is that it goes much farther than
the usual results in complexity, which try to get, for a specific polynomial, either a lower bound or an upper
bound, with big O notation, hopefully asymptotically matching. In contrast, Nisan gives an exact expression
for the complexity of any polynomial. More precisely, the minimal size of a branching program computing
a polynomial f is expressed via the ranks of a family of matrices defined by f , for all branching programs
in a certain “canonical” form. We prove a generalization of his theorem, characterizing the minimal size
of a “canonical” unambiguous circuit computing any polynomial f , also in terms of ranks of matrices.

2

This exact characterization also yields exponential lower bounds, making unambiguous circuits another
“strongest” model of non-commutative computation for which we have superpolynomial lower bounds (it is
incomparable with the models of [15], see Section 5).

Finally we consider the problem of Polynomial Identity Testing (PIT) for our model. In a general setting,
PIT asks whether a given circuit computes the zero polynomial. The Schwartz-Zippel Lemma [10, 25, 21]
yields a simple and efficient randomized algorithm: evaluate the circuit at a random point and answer “non-
zero” iff the result was non-zero. Finding a deterministic algorithm (“derandomizing PIT”) would imply
circuit lower bounds [14], making the search for such an algorithm an important open problem. In the
non-commutative setting there is also a polynomial-time randomized algorithm [6] (for polynomial-degree
circuits only). But here derandomization has some significant results. A first efficient white-box1 determin-
istic algorithm for non-commutative ABPs was given by Raz & Shpilka [19]. Here we use ideas from a
simpler construction given by Arvind et al. [1, 2] to get a polynomial-time deterministic PIT algorithm for
unambiguous circuits over R or C. This seems to be the strongest non-commutative model so far for which
PIT has been derandomized.

2 Non-commutative computations, parse trees and unambiguous circuits

We consider non-commutative computations (over a field F and a set X of variables): the variables do not
commute (that is we do not have xy = yx). Nevertheless addition is still commutative and the rules for
the constants do not change, according to the underlying field F. We can therefore think of monomials as
strings over the alphabet X . The ring of non-commutative polynomials over a field F and a set X of vari-
ables is denoted by F〈X〉. We will use the following convenient notation for polynomials of F〈x1, . . . , xn〉:
P (x1, . . . , xn) =

∑
x̄ ax̄x̄, where x̄ denotes a monomial xα1

1 · · ·xαn
n , and ax̄ ∈ F the corresponding coeffi-

cient in P .
As basic model of computation, we use arithmetic circuits (see the survey [22]): that is, directed acyclic

graphs in which vertices of indegree zero are called input gates; all the other vertices are labeled with + or
×; and the unique vertex of outdegree zero is called the output gate. We add the following important points:
• input gates are only labeled with variables x ∈ X , not constants;
• multiplication gates have fan-in two, their inputs are ordered and the multiplication is interpreted

according to this order (the left child is multiplied before the right child);
• addition gates have unbounded fan-in and perform a linear combination of their inputs, with the asso-

ciated coefficients αi ∈ F being given on the edges.
Let us emphasize that an addition gate can possibly have only one input, thus performing a scalar multipli-
cation. The polynomial computed by each gate is defined inductively in a natural way.

Nisan [17] studied non-commutative computations, mainly concentrating on algebraic branching pro-
grams (ABP). An ABP is a directed acyclic graphAwith two distinguished vertices s (source) and t (target),
such that every arc is labeled with a constant α ∈ F or a variable x ∈ X . The weight of a path in A is the
monomial equal to the product of the labels of the arcs in the path. The polynomial computed by A is
then the sum of the weights of all paths from s to t in A. This computation model is at least as powerful
as formulas (and indeed strictly stronger in the multilinear commutative setting, see [11]), and at most as
powerful as general circuits.

Actually, simulating an ABP by an arithmetic circuit yields a skew circuit, i.e., a circuit where, for every
multiplication gate, at least one of its arguments is an input gate. Indeed, if we build the circuit inductively,
to obtain a gate computing the same polynomial as a vertex in the ABP we just need to multiply previously
obtained polynomials on the right and by variables or constants. So the resulting circuit is not only skew,

1A PIT algorithm is white-box if it can use the structure of the computation model; it is black-box if it only requires an evaluation
oracle.

3

but every “right” argument of a multiplication gate is an input gate: let us call such a circuit right-skew. We
will now describe more precisely the way monomials are obtained using the notion of parse trees from [16].

Definition 1. The set of parse trees of a circuit C is defined by induction on its size:
• if C is of size 1 it has only one parse tree: itself;
• if the output gate of C is a +-gate whose arguments are the gates α and β, the parse trees of C are

obtained by taking either a parse tree of the subcircuit rooted at α and the arc from α to the output or
a parse tree of the subcircuit rooted at β and the arc from β to the output;
• if the output gate of C is a ×-gate whose arguments are the gates α and β, the parse trees of C are

obtained by taking a parse tree of the subcircuit rooted at α, a parse tree of a disjoint copy of the
subcircuit rooted at β, and the arcs from α and β to the output.

A parse tree T computes a polynomial val(T) in a natural way: this is the monomial equal to the product of
the variables labeling the leaves of T (from left to right), multiplied by the coefficient equal to the product
of the constants labeling the edges pointing to a +-gate. So parse trees are in one-to-one correspondence
with the monomials computed by the circuit (before regrouping), and summing the values of the parse trees
thus yields the computed polynomial.

It is easy to see that the parse trees of a right-skew circuit are all in the shape of a comb. In other words,
any monomial, say xi1 · · ·xid , is computed in the following way: ((((xi1xi2)xi3) · · ·xid). This “comb”
shape is exactly like the paths of an ABP, and the two models are basically identical.

These ideas were used in [15] to obtain lower bounds for skew circuits, not just right-skew (or left-skew
by symmetry). Part of the intuition explaining the weakness of such circuits is that, although parse trees do
not have the shape of a comb any longer, they are still like paths: they are trees but at each branching one
of the branches stops immediately. Although one cannot use the same ideas as in Nisan’s case directly, this
“path” structure of parse trees means that the degree of the monomial is built up incrementally, so that we
can pinpoint exactly the gate where a specific degree is reached in all parse trees.

Instead of focusing on this incremental nature of the parse trees of right-skew circuits, we can also
remark that they all have the same “shape”. This is not true of general skew circuits, for instance if we have
just a sum of a right-skew circuit and a left-skew circuit. The circuits we will be interested in are those
where all parse trees have the same shape, not necessarily a comb or a path as in the case of skew circuits,
but a general tree (see Figures 1 and 2).

Definition 2 (Unambiguous circuits). Two parse trees T and T ′ are isomorphic if there is a bijection f
from the vertices of T to the vertices of T ′ such that:

1. leaves are sent to leaves, +-gates to +-gates, ×-gates to ×-gates;
2. there is an arc from u to v iff there is one from f(u) to f(v);
3. the order of arguments for ×-gates is preserved: if u is the left argument and v the right argument of

a ×-gate w, then f(u) is the left argument and f(v) the right argument of f(w).
A circuit is called unambiguous if all its parse trees are isomorphic. The isomorphism class is called the
shape of the circuit.

Note that because there are no constants on the leaves, an unambiguous circuit computes a homogeneous
polynomial at each gate. In particular, the output is a homogeneous polynomial.

Let us emphasize that the class of polynomials computable by unambiguous circuits of polynomial size is
quite large and natural: it contains all the ABPs as already explained (cf. Figure 2), as well as for instance the
palindrome polynomial (cf. Section 5) used in [17, 15]. It is rich enough to contain, for all k, the polynomial
fk (also defined in [15]) which requires exponential-size circuits of skew-depth k, thus creating a hierarchy
of increasing power inside general non-commutative circuits. A final example: the Θ(n2n) computation
of the permanent, tersely explained by Nisan in [17], is also unambiguous and is asymptotically as fast as
Ryser’s formula (but has the advantage of being monotone and non-commutative).

4

+

× × ×

z w + +

× ×

a b c

−3 1 1
2

2 1 −1

(a) An unambiguous circuit C.

+

×

+

×

(b) The shape of the circuit C.

FIGURE 1: An unambiguous circuit and its shape. Note: the output gate is drawn at the bottom.

+

×

+

×

×

+

FIGURE 2: Shape of an ABP turned into an unambiguous circuit.

Let us now focus on our first goal: generalizing Nisan’s result and giving a characterization of the size of
unambiguous circuits necessary to compute a given polynomial. To get his results, Nisan focused on ABPs
with a specific structure (homogeneous, layered, with linear forms on the edges). In our case also, we will
need such a canonical form for unambiguous circuits.

Definition 3 (Canonical form for unambiguous circuits). A circuit C is canonical if:
1. C is unambiguous.
2. C is layered, starting with input gates, then +-gates, then ×-gates, alternating until a final +-gate.

+-gates at a given layer can only use ×-gates from the previous layer as arguments, while ×-gates at
a given layer must use +-gates as arguments, at least one of which is from the previous layer.

3. Each +-gate has a unique position in the shape. That is, each +-gate appears at most once in any
parse tree and, for any two parse trees T and T ′ containing an addition gate u, the isomorphism from
T to T ′ maps u to u (see Figure 3).

Any unambiguous circuit can be rendered canonical at a small cost, as shown in the lemma below, whose
proof is given in the appendix.

Lemma 1. Given an unambiguous circuit C of degree d and size s, it is possible to construct in polynomial
time a canonical unambiguous circuit C′ of size at most 2ds computing the same polynomial.

3 Decomposition lemma for canonical unambiguous circuits

Nisan observed that if P has an ABP of small size, then, for all i, P can be decomposed as a small sum of
polynomials of the form g·hwhere g and h are homogeneous polynomials of respective degrees i and (d−i).

5

+

× ×

+ + +

a b c

1 1

1 1 1

(a) An unambiguous circuit C not in
canonical form.

+

×

+ +

a b

1

1 1

(b) A parse tree of C with the
red gate on the right.

+

×

+ +

b c

1

1 1

(c) Another parse tree ofC with the
red gate on the left.

FIGURE 3: An unambiguous circuit violating Condition 3 of the definition of canonical form.

h1 g h2

j dg dh − j

FIGURE 4: j-product of two monomials g and h.

This is a common step in lower bound proofs: writing any computation in the model under consideration as
a small sum of “building blocks” for which some complexity measure is very low. Here we extend Nisan’s
decomposition to canonical unambiguous circuits.

Because the position of each +-gate in the shape is unique, we can associate to each +-gate α a unique
type (i, p) ∈ N2 which encodes the position of the addition gate in the shape. For that we need to define the
degree of a gate γ in a shape: this is merely the number of leaves in the subtree rooted at γ (thus, in any
parse tree, a gate which corresponds to γ in the shape computes, if it does not vanish, a monomial of this
precise degree).

Definition 4 (Type of a gate). Let α be an addition gate: it corresponds to an addition gate γ in the shape.
Let i be the degree of γ. If L is the unique path (in the shape) from γ to the output gate, we denote by
β1, . . . , βk the gates (in the shape) which appear as left input of a ×-gate of L. Let p be the sum of the
degrees of the βi. Then, the type of α is (i, p).

Intuitively, i is the degree computed by α and p is the degree of the monomials which are concatenated
on the left in computations involving α (see Figure 5). In order to state our decomposition result we need a
definition from [15] which we restate here.

Definition 5 (j-products, see Figure 4). Given homogeneous polynomials g, h ∈ F〈X〉 of degrees dg and
dh respectively and an integer j ∈ [0, dh], we define the j-product of g and h — denoted g ×j h — as
follows:
• When g and h are monomials, then we can factor h uniquely as a product of two monomials h1h2

such that deg(h1) = j and deg(h2) = dh − j. In this case, we define g ×j h to be h1 · g · h2.
• The map is extended bilinearly to general homogeneous polynomials g, h. Formally, let g, h be gen-

eral homogeneous polynomials, where g =
∑

` g`, h =
∑

i hi and g`, hi are monomials of g, h
respectively. For j ∈ [0, dh], each hi can be factored uniquely into h1

i , h
2
i such that deg(h1

i) = j and
deg(h2

i) = dh − j. And g ×j h is defined to be
∑

i

∑
` h

1
i g`h

2
i .

Proposition 1 (Decomposition for canonical unambiguous circuits). If a polynomial P of degree d is com-
puted by a canonical unambiguous circuit and if (i, p) is an existing type2 of addition gate, then P can be
written as P =

∑ki,p
j=1 fj ×p hj , where:

2That is, at least one addition gate is of this type.

6

deg. i

+
α

×

×

+

+

β1

+

βk

deg. p
+

+

(a) A shape and a gate α of type (i, p).

p i

f

d− p− i

(b) Repartition of the variables in the monomial cor-
responding to the shape.

FIGURE 5: Type of a gate in a shape.

1. ki,p is the number of addition gates of type (i, p) and f1, . . . , fki,p are the polynomials computed by
these gates;

2. ∀j,deg(fj) = i and deg(hj) = d− i.

Proof. (See Figure 5 for an illustration.) Let C be a canonical unambiguous circuit computing the poly-
nomial P . We have: P =

∑
T ∈S val(T), where S is the set of all parse trees of C. Let α1, . . . , αki,p be

the gates of type (i, p) in C, computing respectively the polynomials f1, f2, . . . , fki,p . By definition of the
type, the fj are of degree i. For 1 6 j 6 ki,p, let Sj bet the set of parse trees containing the gate αj .
Because a parse tree contains at most one addition gate of a given type, and because the type of a +-gate
is unique, we have Sj ∩ Sk = ∅ for j 6= k. Moreover, if a given type exists, every parse tree contains an
addition gate of this type because the considered circuit is unambiguous. Thus the Sj are a partition of S:
S = S1 t S2 t · · · t Ski,p , where t denotes the disjoint union. We can then rewrite the previous equality as

P =
∑
T ∈S val(T) =

∑ki,p
j=1

∑
T ∈Sj

val(T).
Fix j ∈ [1, ki,p]. Consider the circuit Cj(y) obtained by changing αj into an input gate labeled with a

new variable y and deleting unused gates. Remark that Cj(fj) = C (abusing notations and using the name
of the circuit for the computed polynomial). Let Tj be the set of parse trees of Cj containing the input gate
αj . The value of any parse tree T ∈ Tj is of the form y ×p hT where hT is a monomial of degree (d − i).
Then, by bilinearity of the j-product, Vj(y) :=

∑
T ∈Tj val(T) = y ×p hj , where hj is a polynomial of

degree (d− i). Remark that
∑
T ∈Sj

val(T) = Vj(fj) and therefore
∑
T ∈Sj

val(T) = fj ×p hj .

4 Exact complexity for canonical unambiguous circuits

We will use the number of +-gates of a canonical unambiguous circuit as a proxy for its size. The following
lemma, whose proof is in the appendix, shows that this is a good measure of overall size.

Lemma 2. Let C be a canonical unambiguous circuit with s +-gates. Then we can transform C into a new
canonical unambiguous circuit, without changing the shape, with s +-gates and at most s2 ×-gates.

We will use this notion of size to get an exact expression of the complexity of computing a given
polynomial with a canonical unambiguous circuit. To do this, we create a complexity measure which is

7

an extension for canonical unambiguous circuits of the one given by Nisan [17] for algebraic branching
programs. For a given homogeneous polynomial P of degree d and each integer i 6 d, Nisan defined the
partial derivative matrix M (i)(P), which is a nd−i×ni matrix whose rows are indexed by monomials onX
of degree (d−i) and columns by monomials of degree i. The entry (m1,m2) of the matrix is defined to be the
coefficient of the monomial m1m2 in P . Intuitively speaking, the rank of the matrix M (i)(P) is a measure
of how “correlated” the prefix of length i of a monomial appearing in P is to the rest of the monomial. Small
ABPs have “information bottlenecks” at each degree i, and hence the amount of correlation in the computed
polynomial must be low. In our case the correlation will be between the prefix of degree p and the suffix of
degree (d− p− i) on the one hand, and the middle part of degree i on the other hand.

Definition 6. Let P be a polynomial of degree d on n variables (x1, x2, . . . , xn). For (i, p) ∈ [0, d]× [0, d]
with i + p 6 d, we define M (i,p)(P) to be a matrix of size nd−i × ni. Lines are indexed by all pairs
(x̄, z̄) ∈ {x1, . . . , xn}p × {x1, . . . , xn}d−p−i. Columns are indexed by words ȳ ∈ {x1, . . . , xn}i. Finally,
M (i,p)(P)(x̄,z̄),ȳ is the coefficient of the monomial x̄ · ȳ · z̄ in P .

We can now express exactly the number of additions needed to compute a given polynomial by a canon-
ical unambiguous circuit.

Theorem 1. Let P be a homogeneous polynomial of degree d and T a shape with d leaves. Then the minimal
number of addition gates needed to compute P by a canonical unambiguous circuit with shape T is exactly
equal to

∑
(i,p)∈S

rank
(
M (i,p)(P)

)
, where S is the set of all existing types of +-gates in the shape T .

Proof. Fix a canonical unambiguous circuit C with shape T which computes P . Fix also (i, p) — an existing
type of addition gate — and let α1, . . . , αk be all the (i, p)-addition gates in C. Let P =

∑ki,p
j=1 fj ×p hj be

the decomposition given by Proposition 1. To simplify notations, set also k = ki,p.

First step: decomposition of the matrix M (i,p) as L(i,p)R(i,p). We show that M (i,p) is the product of two
“small” matrices L(i,p) and R(i,p):
• R(i,p) is a matrix of size k × ni. Rows are indexed by all gates α1, . . . , αk. Columns are indexed by

monomials ȳ ∈ {x1, . . . , xn}i. R(i,p)
t,ȳ is the coefficient of the monomial ȳ in the polynomial computed

by the gate αt.
• L(i,p) is a matrix of size nd−i×k. Rows are indexed by all pairs (x̄, z̄) ∈ {x1, . . . , xn}p×{x1, . . . , xn}d−p−i.

Columns are indexed by all gates α1, . . . , αk. L(i,p)
(x̄,z̄),t is the coefficient of the monomial x̄z̄ in the poly-

nomial computed by the circuit where αt is replaced by an input gate with value 1. That is: L(i,p)
(x̄,z̄),t is

the coefficient of the monomial x̄z̄ in the polynomial ht.
One can easily verify that M (i,p) = L(i,p)R(i,p).

Second step: lower bound. Since rank
(
M (i,p)

)
6 rank

(
L(i,p)

)
6 k, the number k of addition gates of

type (i, p) must be at least rank(M (i,p)). Therefore, considering all existing types, we have just proved that
the number of addition gates is at least

∑
(i,p)∈S rank

(
M (i,p)(P)

)
.

Third step: upper bound. We prove that if rank
(
M (i,p)

)
< k, we can delete one (i, p)-addition gate in

the circuit. We will possibly be increasing at the same time the number of ×-gates but, thanks to Lemma 2,
this is innocuous. If rank

(
L(i,p)

)
= rank

(
R(i,p)

)
= k, then, by a linear algebra argument, rank

(
M (i,p)

)
should also be k. Thus, either L(i,p) or R(i,p) is of rank strictly less than k.

If rank
(
R(i,p)

)
< k, then one row (let us say, w.l.o.g., the first row) of R(i,p) is a linear combination of

the other rows. Going back to the meaning of the matrix, it means that the polynomial f1 computed by the
gate α1 is a linear combination of the polynomials f2, . . . , fk computed by the gates α2, . . . , αk. Let us say
f1 =

∑k
i=2 cifi for ci ∈ F. We construct a new circuit where α1 is deleted. We denote by β1, . . . , βm the

8

×-gates which receive as input α1. In the new circuit, we create (k − 1) copies of β1, . . . , βm — namely
β2

1 , . . . , β
2
m, β

3
1 , . . . β

3
m, . . . , β

k
1 , . . . , β

k
m. βij does exactly the same computation as βj , but instead of taking

α1 as input, it takes αi. Finally, an addition gate in the old circuit which took as input a βj now takes∑k
i=2 ciβ

i
j as input.

If rank
(
L(i,p)

)
< k, then one column (let us say, w.l.o.g., the first column) of L(i,p) is a linear combi-

nation of the other columns. This means that there are constants c2, . . . , ck such that h1 =
∑k

j=2 cjhj . Let
γ1, . . . , γm be all the coefficients on the input edges of α1 coming respectively from multiplication gates
β1, . . . , βm. In the new circuit, we delete α1 and we add for all 1 6 l 6 m, 2 6 j 6 k an edge between
βl and αj with the coefficient cjγl. The new circuit computes the polynomial

∑k
j=2(fj + cjf1) ×p hj . By

bilinearity of the j-product, this is equal to

k∑
j=2

(fj ×p hj + (cjf1)×p hj) =
k∑
j=2

fj ×p hj +
k∑
j=2

(cjf1)×p hj

=
k∑
j=2

fj ×p hj +

k∑
j=2

f1 ×p (cjhj) =

k∑
j=2

fj ×p hj + f1 ×p

 k∑
j=2

(cjhj)


=

k∑
j=2

fj ×p hj + f1 ×p h1 = P.

Remark 1. When the shape is right-skew (thus corresponding to an ABP), then p = 0 in the proof above, and
M (i,p) is the usual matrix M (i) of Nisan [17]. Since the number of additions gates in the shape corresponds
exactly to the number of vertices in an ABP in canonical form, our result is a direct extension of Nisan’s.

5 Comparison with skew circuits.

In this section we show that the classes of polynomials computed by polynomial-size unambiguous circuits
on the one hand, and by polynomial-size skew circuits on the other hand, are incomparable. Remark first
that [15] shows that the square of the palindrome polynomial defined below needs exponential-size skew
circuits. But this polynomial clearly has unambiguous circuits of polynomial size: therefore, unambiguous
is not included in skew.

In the remainder of this section we construct a polynomial computable by a skew circuit of polynomial
size but not by unambiguous circuits of polynomial size. The idea is the following: given a canonical
unambiguous circuit of degree d (without any condition on its shape), there is always an addition gate of
type (i, p) where i ∈ [d3 ,

2d
3], p ∈ [0, d − i] (Lemma 3, proof given in the appendix). We then consider

a polynomial such that the associated matrices M (i,p) have an exponential rank for all i ∈ [d3 ,
2d
3], p ∈

[0, d − i]. According to the previous section, this means that computing the polynomial by unambiguous
circuits requires at least an exponential number of gates.

Lemma 3. Given a canonical unambiguous circuit computing a polynomial of degree d, there is always an
existing type (i, p) where i ∈ [d3 ,

2d
3], p ∈ [0, d− i].

Define the palindrome of degree d on n variables as:

Pald(x1, . . . , xn) :=
∑

z̄∈{x1,..,xn}d/2
z̄.z̄m,

9

where z̄m is the mirror of z̄ (e.g z̄m = x3x2x1 if z̄ = x1x2x3). The moving palindrome of degree n on
(n+ 1) variables is:

Palnmov(x1, . . . , xn, w) :=
∑

l∈[0, 2n
3

]

wlPal
n
3 (x1, . . . , xn)w

2n
3
−l,

where w is a fresh variable (distinct from the xi). The first proposition below is easy to prove, the second is
an application of our size characterization for canonical unambiguous circuits.

Proposition 2. Palnmov(x1, . . . , xn, w) is computable by a skew circuit of size polynomial in n.

Proposition 3. Computing Palnmov(x1, . . . , xn, w) with a canonical unambiguous circuit requires at least
nn/6 gates.

Proof. We will show that: ∀i ∈ [n3 ,
2n
3],∀p ∈ [0, n − i], rank(M (i,p)(Palnmov)) > nn/6. The proposition

will then follow thanks to Lemma 3 and Theorem 1. Let us fix a particular (i, p), i ∈ [n3 ,
2n
3], p ∈ [0, n− i].

Because i 6 2n
3 we have p+ (n− p− i) > n

3 . Then one of the two following cases occurs.
Case p > n

6 . In this case we show first that

rank(M (i,p)(Palnmov)) > rank(M (i,p)(wp−
n
6 Pal

n
3 (x1, . . . , xn)wn−p−

n
6)).

Indeed,
M (i,p)(Palnmov) =

∑
l∈[0, 2n

3
]

M (i,p)(wlPal
n
3 (x1, . . . , xn)w

2n
3
−l);

And remark then that, if (a, b) is a coordinate of a non-zero coefficient of

M (i,p)(wp−
n
6 Pal

n
3 (x1, . . . , xn)wn−p−

n
6)

and (a′, b′) is a coordinate of a non-zero coefficient of

M (i,p)(wlPal
n
3 (x1, . . . , xn)w

2n
3
−l),

with l 6= p − n
6 , then a 6= a′ and b 6= b′. Finally, observe that in this case, every line and column of

M (i,p)(wp−
n
6 Pal

n
3 (x1, . . . , xn)wn−p−

n
6) contains at most one non-zero coefficient and there are exactly

nn/6 non-zero coefficients. Thus:

rank
(
M (i,p)(Palnmov)

)
> rank

(
M (i,p)(wp−

n
6 Pal

n
3 (x1, . . . , xn)wn−p−

n
6)
)
> nn/6.

Case n− p− i > n
6 . With similar arguments, we have this time

rank
(
M (i,p)(Palnmov)

)
> rank

(
M (i,p)(wp+i−

n
6 Pal

n
3 (x1, . . . , xn)w

5n
6
−p−i)

)
> nn/6.

6 Lower bounds for permanent and determinant

In the non-commutative setting we need to define an order on the variables of each monomial of the perma-
nent or the determinant. We will start by considering the so-called Cayley permanent and determinant:

perCn =
∑
s∈Sn

n∏
i=1

x1,s(1) · · ·xn,s(n) and detCn =
∑
s∈Sn

sgn(s)
n∏
i=1

x1,s(1) · · ·xn,s(n).

To get lower bounds we need to estimate the ranks of certain matrices M (i,p). The following lemma is
proved exactly in the same way as Lemma 2 in [17].

10

Lemma 4. For all i 6 n, p 6 n− i, rank
(
M (i,p)(perCn)

)
= rank

(
M (i,p)(detCn)

)
=
(
n
i

)
.

We can now obtain the following lower bounds, thanks to Lemma 3.

Theorem 2. Computing perCn or detCn with an unambiguous circuit requires at least
(
n
n/3

)
gates.

For other orders on the monomials we once again follow Nisan.

Definition 7. Two polynomials P and Q are called weakly equivalent if for each monomial of P with non-
zero coefficient there exists a monomial of Q with the same variables (but perhaps in a different order) with
non-zero coefficient, and vice-versa.

Lemma 5. For all i 6 n, p 6 n− i, rank
(
M (i,p)

)
for any polynomial weakly equivalent to the permanent

or the determinant is at least
(
n
i

)
.

Theorem 3. Computing a polynomial weakly equivalent to perCn or detCn with an unambiguous circuit
requires at least

(
n
n/3

)
gates.

7 Polynomial Identity Testing via Hadamard product

Here, we give a deterministic polynomial-time algorithm for PIT for the polynomials computed by unam-
biguous non-commutative circuits. As far as we know, this is the largest non-commutative model for which
we have a deterministic polynomial-time algorithm for the problem.3 We will use the following binary
operation over polynomials from [1].

Definition 8. Given two polynomials P =
∑

x̄ ax̄x̄ and Q =
∑

x̄ bx̄x̄, the Hadamard product of P and Q,
written P �Q, equals

∑
x̄ ax̄bx̄x̄.

In [1], a logspace algorithm is given which, on input two ABPs A and B, outputs a new ABP C com-
puting the Hadamard product of the polynomials computed by A and B. Consequently, they observed that
this result gives the following derandomization for PIT.

Theorem 4 ([1]). The problem of polynomial identity testing for non-commutative algebraic branching
programs over R is in P.

Here, we extend this result: we give a construction to perform the Hadamard product of two unam-
biguous circuits with the same shape. In other words, we prove that the class of unambiguous circuits of
a given shape is stable under Hadamard product. As in the case of ABPs, it will provide a deterministic
polynomial-time algorithm for PIT over unambiguous circuits.

W.l.o.g. we work with homogeneous polynomials. Indeed, if P and Q are decomposed into homoge-
neous components P =

∑n
k=1 Pi and Q =

∑n
k=1Qi, then P � Q =

∑n
k=1 Pi � Qi. Circuits will be

supposed canonical, since Lemma 1 gives an explicit algorithm working in polynomial time to transform
an unambiguous circuit into its canonical form. The idea is to create a circuit computing iteratively the
Hadamard product of all pairs of addition gates of same type. The regularity of the parse tree will allow us
to spread the Hadamard product layer by layer.

3A deterministic polynomial-time algorithm for PIT on non-commutative skew circuits is claimed in [4], but in fact it only
works for circuits that are both skew and unambiguous (private communication with the authors). Actually, this algorithm seems to
be removed from the conference version [3].

11

Lemma 6. Let d, d′ ∈ N and let (Pi)16i6n and (Qi)16i6m be families of polynomials with deg(Pi) = d
and deg(Qi) = d′. Set also (αi,j)16i6n,16j6m ∈ Rnm and (βi,j)16i6n,16j6m ∈ Rnm. Then:∑

(i,j)

αi,jPiQj

�
∑

(i,j)

βi,jPiQj

 =
∑

(i,j),(k,l)

αi,jβk,l(Pi � Pk)(Qj �Ql).

Theorem 5 (Hadamard product of two unambiguous circuits). Let C and D be two unambiguous circuits
in canonical form, of the same shape, and of size s and s′, that compute two polynomials P and Q. Then
P �Q is computed by an unambiguous circuit of size at most ss′; moreover, this circuit can be constructed
in polynomial time.

Proof. The new circuit computes the Hadamard product of all pairs (α1, α2) ∈ C × D of addition gates of
the same type. As the output gate in C and in D are of the same type4, the new circuit will in particular
compute the Hadamard product of P and Q. If the degree of α1 and α2 is 1, then the Hadamard product is
trivial since the gates compute variables.

Suppose we have constructed the circuit until layer i (that is, for each gate of degree less than or equal to
i). We now show how to construct the layer (i+ 1). Let α1 ∈ C and α2 ∈ D be two addition gates of degree
(i + 1) and of same type. Because the circuits are unambiguous, α1 (resp. α2) computes a polynomial of
the form R1 = (

∑
(i,j) αi,jPiQj) (resp. R2 = (

∑
(i,j) βi,jPiQj)), where the Pi are all of identical types,

and where the Qj are also all of identical types. Lemma 6 then shows how to compute R1 � R2 from the
previously computed Pi � Pj and Qi �Qj .

By induction, we thus construct the desired circuit layer by layer. Given a type, if there were i (resp. j)
addition gates of this type in C (resp. in D), we have created exactly ij gates in the new circuit. Therefore,
the total number of gates in the new circuit is no more than ss′.

Corollary 1. There is a deterministic polynomial-time algorithm for PIT for polynomials computed by non-
commutative unambiguous circuits over R.

Proof. Given P (x1, . . . , xn) computed by a unambiguous circuit, construct the circuit which computes
(P �P)(x1, . . . , xn) and evaluate it on (1, 1, . . . , 1). The output is the sum of the squares of the coefficients
of P , therefore it is equal to 0 if and only if P is equal to the zero polynomial.

Remark 2. From a circuit computing a polynomial P =
∑

x̄ ax̄x̄ over C, it is not hard to deduce a circuit
for the conjugate P̄ =

∑
x̄ āx̄x̄. Therefore, a similar algorithm works over C, since (P � P̄) =

∑
x̄ |ax̄|2x̄.

We also obtain another corollary that is to be compared with the results of Section 6.

Corollary 2. Over R, in the non-commutative setting, computing the determinant with an unambiguous
circuit is as hard as computing the permanent.

Proof. Remark that det�det = per. Therefore, by Theorem 5, from a circuit computing the determinant,
we can build in polynomial time a circuit computing the permanent.

References

[1] Vikraman Arvind, Pushkar S. Joglekar, and Srikanth Srinivasan. Arithmetic circuits and the hadamard
product of polynomials. In IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2009, December 15-17, 2009, IIT Kanpur, India, pages 25–
36, 2009.

4because C and D have the same shape

12

[2] Vikraman Arvind, Partha Mukhopadhyay, and Srikanth Srinivasan. New results on noncommutative
and commutative polynomial identity testing. Computational Complexity, 19(4):521–558, 2010.

[3] Vikraman Arvind and S. Raja. The complexity of bounded register and skew arithmetic computation.
In Zhipeng Cai, Alex Zelikovsky, and Anu G. Bourgeois, editors, Computing and Combinatorics -
20th International Conference, COCOON 2014, Atlanta, GA, USA, August 4-6, 2014. Proceedings,
volume 8591 of Lecture Notes in Computer Science, pages 572–583. Springer, 2014.

[4] Vikraman Arvind and S. Raja. The complexity of two register and skew arithmetic computation.
Electronic Colloquium on Computational Complexity (ECCC), 21:28, 2014.

[5] A. Barvinok. New Permanent Estimators via Non-Commutative Determinants. ArXiv Mathematics
e-prints, July 2000.

[6] Andrej Bogdanov and Hoeteck Wee. More on noncommutative polynomial identity testing. In Pro-
ceedings of the 20th Annual IEEE Conference on Computational Complexity, CCC ’05, pages 92–99,
Washington, DC, USA, 2005. IEEE Computer Society.

[7] Peter Bürgisser, J. M. Landsberg, Laurent Manivel, and Jerzy Weyman. An overview of mathemat-
ical issues arising in the geometric complexity theory approach to VP 6= VNP. SIAM J. Comput.,
40(4):1179–1209, August 2011.

[8] Xi Chen, Neeraj Kayal, and Avi Wigderson. Partial derivatives in arithmetic complexity and beyond.
Foundations and Trends in Theoretical Computer Science, 6(1-2):1–138, 2011.

[9] Steve Chien, Lars Eilstrup Rasmussen, and Alistair Sinclair. Clifford algebras and approximating the
permanent. J. Comput. Syst. Sci., 67(2):263–290, 2003.

[10] Richard A. DeMillo and Richard J. Lipton. A probabilistic remark on algebraic program testing. Inf.
Process. Lett., 7(4):193–195, 1978.

[11] Zeev Dvir, Guillaume Malod, Sylvain Perifel, and Amir Yehudayoff. Separating multilinear branching
programs and formulas. In Proceedings of the 44th Symposium on Theory of Computing Conference,
STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 615–624, 2012.

[12] GCT publications. http://gct.cs.uchicago.edu/.

[13] Pavel Hrubes, Avi Wigderson, and Amir Yehudayoff. Non-commutative circuits and the sum-of-
squares problem. Electronic Colloquium on Computational Complexity (ECCC), 17:21, 2010.

[14] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means proving
circuit lower bounds. Comput. Complex., 13(1/2):1–46, December 2004.

[15] Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower bounds for non-commutative skew
circuits. Electronic Colloquium on Computational Complexity (ECCC), 22:22, 2015.

[16] Guillaume Malod and Natacha Portier. Characterizing valiant’s algebraic complexity classes. J. Com-
plexity, 24(1):16–38, 2008.

[17] Noam Nisan. Lower bounds for non-commutative computation (extended abstract). In Proceedings of
the 23rd ACM Symposium on Theory of Computing, ACM Press, pages 410–418, 1991.

[18] Ran Raz. Multi-linear formulas for permanent and determinant are of super-polynomial size. J. ACM,
56(2), 2009.

13

http://gct.cs.uchicago.edu/

[19] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-commutative models.
Comput. Complex., 14(1):1–19, April 2005.

[20] Ramprasad Saptharishi. Recent progress on arithmetic circuit lower bounds. Bulletin of the EATCS,
114, 2014.

[21] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM,
27(4):701–717, October 1980.

[22] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open questions.
Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010.

[23] L. G. Valiant. Completeness Classes in Algebra. In STOC ’79: Proceedings of the eleventh annual
ACM symposium on Theory of computing, pages 249–261, New York, NY, USA, 1979. ACM Press.

[24] L. G. Valiant. Reducibility by Algebraic Projections. In Logic and Algorithmic: an Interna-
tional Symposium held in honor of Ernst Specker, volume 30 of Monographies de l’Enseignement
Mathémathique, pages 365–380, 1982.

[25] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the International
Symposiumon on Symbolic and Algebraic Computation, EUROSAM ’79, pages 216–226, London,
UK, UK, 1979. Springer-Verlag.

A Proof of Lemma 1

The proof of Lemma 1 relies on a careful inspection of the proof of [16, Lemma 2]. A circuit is called
multiplicatively disjoint if each ×-gate has disjoint subcircuits as inputs. The result [16, Lemma 2] states
that every circuit C of degree d can be turned efficiently into an equivalent multiplicatively disjoint circuit
of size (|C|+ d)O(1).

The formal degree of a gate is the degree of the polynomial computed by this gate if no cancellation
would occur, that is:
• the formal degree of an input gate (labeled with a variable) is 1;
• the formal degree of a +-gate g =

∑
αigi is the maximum of the formal degrees of the gates gi;

• the formal degree of a ×-gate g = g1g2 is the sum of the formal degrees of the gates g1 and g2.

Proof of Lemma 1. Condition (2) is easy to obtain. If the output of a ×-gate is the input of another ×-gate,
just add a useless +-gate between the two. If the output of an addition gate g1 is the input of some +-gates
g2, . . . , gk, delete g1 and add to the inputs of g2, . . . , gk the previous inputs of g1 with the associated linear
coefficients. Thus, condition (2) is obtained at the cost of a blow-up of factor at most 2.

Condition (3) is obtained by applying the algorithm to transform a general circuit into a multiplicatively
disjoint circuit from [16, Lemma 2]. The resulting circuit has size 6 2ds. For the sake of completeness, we
recall the construction here (modified a little bit for the needs of non-commutativity).

For each gate α ∈ C of formal degree e, the new circuit C′ contains distinct gates α1, α2, . . . , αd+1−e.
αk is called a clone of index k of α. In C, if α is a ×-gate of formal degree e with left input β of formal
degree e1 and right input γ of formal degree e2, then in C′, αk has left input βk and right input γk+e1 . In C,
if α is a +-gate of formal degree e with inputs β1, β2, . . . , βj with coefficients c1, c2, . . . , cj , then, in C′, αk
has inputs β1

k, β
2
k, . . . , β

j
k with coefficients c1, . . . , cj .

The proof that C′ is multiplicatively disjoint and computes the same polynomial as C is given in [16,
Lemma 2]. There it is also proved that, in C′, all gates in the subcircuit defined by a gate αk of formal
degree e are clones whose index lie between k and k + e− 1: we will call that the index property.

14

We prove by contradiction that C′ respects condition (3). Let αj be an addition gate in C′ and T and T ′
two parse trees which contain αj but at two different positions. Let l1, l2, . . . , la (resp. g1, g2, . . . , gb) be the
unique path in T (resp. T ′) from the output gate to αk (thus la = gb = αk). Because αk does not share
the same position in the two parse trees, it means that there is a minimal c such that lc and gc are +-gates
with different positions. It means that lc−1 and gc−1 are two ×-gates (because the circuit is constituted of
alternating layers) and that lc and gc are inputs of lc−1 and gc−1, one as left input, one as right input (let us
say in that order). As the circuit is unambiguous, lc and gc must be of same degree e. gc−1 and lc−1 are
clones of same index because the path from the output gate to these gates are identical. Let us say they are
of index k. Thus lc is a clone of index k and gc is a clone of index k+ e (because of the construction and the
fact that one is a left input, the other a right input of the multiplication gate). Thanks to the index property,
this means that the subcircuits defined by lc and gc are clones whose index lies between k and k+ e− 1 for
lc and between k+e and k+2e−1 for gc. These two sub-circuits are thus disjoints, but this in contradiction
with the fact that αj belongs to both of them.

B Proof of Lemma 2

Proof. Denote by si the number of +-gates on the i-th layer of C. If C has strictly more than s2 ×-gates,
then one layer i contains strictly more than s2

i ×-gates. It means that two different×-gates on the same layer
perform the same computation; therefore one of them can be deleted and its output replaced by the output
of the other one.

C Proof of Lemma 3

Proof. It is sufficient to prove that there is a +-gate of degree i ∈ [d3 ,
2d
3]: the condition on p follows

immediately from the definition of the type. Let α be a ×-gate of degree > 2
3d as close as possible to the

leaves. Let β, γ be the inputs of α and i, j their respective degree. We have i + j > 2d
3 , 1 6 i 6 2d

3 , 1 6
j 6 2d

3 . These conditions force i or j to be in [d3 ,
2d
3].

15

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

