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Abstract

We show that a simple function has small unbounded error communication complex-
ity in the k-party number-on-forehead (NOF) model but every probabilistic protocol
that solves it with sub-exponential advantage over random guessing has cost essentially

Ω
(√

n
4k

)

bits. Such a separation was first shown for k = 2 independently by Buhrman et

al. [8] and Sherstov [24]. A very recent work of Sherstov [27] can be combined with an
earlier work of Beigel [7] to yield such a separation for up to k = Θ(log log n) players.
To the best of our knowledge, our result provides the first such separation that works
all the way up to k ≤ δ log n players, where δ < 1 is a constant. Additionally, our
communication lower bounds for k-party probabilistic protocols for a function that has
efficient unbounded error protocols are quantitatively stronger than previous bounds.
In particular, for any constant k, our bound on communication for such a function is
Ω
(

n1/2
)

in contrast to the best known previous bound of Ω
(

n1/3
)

.
This has the following consequence for boolean Threshold circuits: let THR and

MAJ denote respectively the classes of linear threshold functions that have unbounded
weights and polynomially bounded weights. Further, let PARk (ANYk) denote the class
of functions that are parities of k bits (any k-junta). For every 2 ≤ k ≤ δ log n, we

show that there exists a function in linear size THR ◦ PARk that needs 2n
Ω(1)

size to be
computed by every circuit in the class MAJ ◦ SYM ◦ ANYk−1, where SYM represents
the class of all symmetric functions. Applying a result of Goldmann et al. [15] to the
above, similar lower bounds on the size of circuits of the form MAJ ◦THR ◦ANYk−1 for
computing the function follow.

The main technical ingredient of our result is to show that a composed function of
the form f ◦ PAR has exponentially small discrepancy while f has sign degree just 1.
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1 Introduction

Chandra, Furst and Lipton [9] introduced the “number-on-forehead” (NOF) model of multi-
party communication, over thirty years ago, to obtain lower bounds on the size of branching
programs. In this model, there are k players each having an input that is metaphorically
held on their foreheads. Every forehead is visible to a player except her own. The two
features that make this model much more subtle than its classical two-party counterpart,
are the mutual overlap of information and the fact that as k grows, each player misses less
information. Indeed, starting with the surprising work of Grolmusz [16], several work (see
for example [3, 1, 13]) have shown that there are very counter-intuitive protocols especially
when k is larger than logn. This makes proving multi-party lower bounds on the cost of
protocols quite challenging. However, researchers have been well motivated to take on this
challenge due to many well known applications of such lower bounds in diverse areas like
circuit complexity, proof complexity, and pseudo-random generators. More recently new
applications have emerged in areas like data-structures [21] and distributed computing [14].

In a seminal work, Babai, Frankl and Simon [2] introduced communication complexity
classes for the 2-party model. Corresponding to polynomial time being the notion of efficient
computation on a Turing machine, [2] argues that poly-log of the input length of communi-
cation is a natural notion of efficient protocols. Armed with this notion, most computational
complexity classes have their analogues in communication complexity. This also extends
easily to the NOF model and gives rise to complexity classes Pcc

k ,BPPcc
k ,NPcc

k ,PPcc
k etc.

While it is very hard to separate Turing machine complexity classes, many separation in the
communication world is known when k = 2. For instance Equality function easily separates
Pcc
2 from BPPcc

2 . Set-Disjointness famously separates BPPcc
2 from PPcc

2 . However, for k ≥ 3
things become much more delicate. While for k ≥ 3 Beame et al. [5] separated Pcc

k from
BPPcc

k not too long ago, it is still outstanding to find an explicit function witnessing this
separation for even k = 3. A very recent line of work [20, 12, 11, 26, 27, 22] showed that
Set-Disjointness also separates BPPcc

k and PPcc
k for k ≤ δ · log n for some constant δ < 1.

In this paper, we consider the class PPcc
k . Babai et al. realized that the Turing machine

complexity class PP has two different natural versions in the communication world. Let ǫ be
the advantage of a probabilistic protocol over random guessing. Then, one way to measure
cost of the protocol is to sum up the total number of bits communicated in the worst case with
log 1

ǫ . Functions that admit k-party probabilistic protocols of poly-logarithmic cost in this
model form the class PPcc

k . The other model is unrestricted: it does not penalize by adding
the log 1

ǫ term to the cost, i.e. the cost is just the total number of bits communicated in the
worst case. Protocols in this model are allowed to use only private random coins (see Section
2.1) and must, on each input, have non-zero advantage over random guessing. Functions that
have efficient k-party protocol in this model form the class UPPcc

k . It is not difficult to see
PPcc

k ⊆ UPPcc
k . The fact this inclusion is strict for k = 2 was relatively recently shown

independently by Buhrman, Vereshchagin and de Wolf [8] and by Sherstov [24]. Although
not explicitly stated in the literature, a very recent work of Sherstov [27] can be combined
with an earlier work of Beigel [7] to yield such a separation for up to k = Θ(log log n)
players1. Our main theorem in this work addresses this problem for k = ω(log log n). We
show that PPcc

k is strictly contained in UPPcc
k for 2 ≤ k ≤ δ · log n, for some constant δ < 1.

More precisely, we extend the function defined by Goldmann, H̊astad and Razborov [15] as
follows:

Definition 1. Let

P (x, y1, . . . , yk) ≡
n−1
∑

i=0

n4k−1
∑

j=0

2iy1j . . . ykj(xi,2j + xi,2j+1)

1See Section 1.1 to get more details of the relation between our and earlier work.
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where x ∈ {±1}2n24k , yi ∈ {±1}n4k for each i.
Then, GHRN

k

(

x, y1, . . . , yk
)

≡ sgn(2P (x, y1, . . . , yk) + 1), where N = 2n24k.

Note that the function GHRN
k is a k + 1-partite function for which in a k + 1-party

communication game the inputs are assigned to players in the following natural way: inputs
x, y1, . . . , yk are held on foreheads of Player 1, Player 2, . . . , Player k + 1 respectively. Our
main theorem is given below.

Theorem 1 (Main Theorem). Let Π be any k + 1-party probabilistic public-coin protocol
solving the GHRN

k function with advantage ǫ > 0. Then,

Cost
(

Π
)

+ log
(

1/ǫ
)

≥ Ω

(
√
N

4k
− logN − k

)

.

Observe that Theorem 1 lower bounds precisely the cost of a PPcc
k+1 protocol computing

GHRN
k . On the other hand, note that GHRN

k is a composition of a linear threshold function
with N parities of arity k+1. A well known simple fact (refer to Section 3 for a proof) says
that every such function has a UPPcc

k+1 protocol of cost O(logN). This immediately yields
the following separation result:

Corollary 1. For all 1 ≤ k ≤ δ · logn, the GHRN
k function is not in PPcc

k+1 but is in the
class UPPcc

k+1, where δ > 0 is some constant.

An additional motivation for our work comes from the study of constant-depth circuits
with Threshold gates. There are two types of Threshold gates that have been considered
in the literature. The first one is with unbounded weights and the class of such gates is
denoted by THR. The second is with polynomially bounded weight, called Majority gates.
We denote the class of such gates by MAJ. Goldmann et al. [15] showed that although THR
is strictly contained in MAJ◦MAJ, a simple function computable by linear size THR◦PAR2

needs exponential size to be computed by MAJ ◦ SYM circuits, where SYM denotes gates
computing arbitrary symmetric functions. We strengthen their result to depth-three circuits
as follows:

Theorem 2. For each k ≥ 2, the function GHRN
k ∈ THR ◦ PARk+1 needs size

2
Ω
(√

N

4k
− logN

k

)

to be computed by depth-three circuits of the form MAJ ◦ SYM ◦ANYk.

Let us remark that Theorem 2 continues to yield non-trivial bounds as long as k < δ log n,
for a certain constant δ > 0. It is also worth noting that a result of [15] immediately yields,
from the above theorem, the following interesting result:

Corollary 2. There exists a function that is computed very efficiently by THR ◦ PARk+1

circuits but requires 2
Ω
(√

N

4k
− logN

k

)

size to be computed by depth-three circuits of the form
MAJ ◦ THR ◦ANYk.

While earlier communication bounds (using the work of Sherstov [27] and Beigel [7])
would also yield a separation between depth-two and three circuits, Corollary 2 significantly
improves over previous results in the following ways: first the lower bound on the size of

depth-3 circuits implied by earlier work is essentially 2
Ω
(

N1/3

4k

)

which is weaker than ours.
Second, the bottom fan-in allowed for depth-3 circuits for previous work would be at most
O(log log n). Even for the regime of constant k, the separation between the bottom fan-in of
the depth-2 and depth-3 circuits in previous work is larger than the necessary difference of
one that we obtain. These differences with previous work is discussed in more detail in the
next section.
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1.1 Previous Work

The standard way to lower bound the cost of PPcc
k protocols for computing a function f

is to establish upper bounds on the discrepancy over cylinder intersections of f under an
appropriately chosen input distribution. Doing this for k ≥ 3 is delicate and essentially the
only known method is due to Babai, Nisan and Szegedy [4]. This general prescription has
been refined in Raz [23] and then successfully applied for various functions [10, 6, 26, 27, 1].
However, trying to directly use these ideas faces the following problem: First, almost all
of these works bound the discrepancy of a composed function of the form h ◦ g, where g is
some nicely behaved function and h crucially has high sign degree. However, the fact that
h has high sign degree seems to make the composed function difficult for UPPcc

k protocols.
In particular, when k = 2 and h is symmetric, Sherstov [25] proves that such functions have
high sign rank and consequently are hard for even UPPcc

2 protocols. This gives rise to a
natural challenge of proving multi-party discrepancy bounds when h has low sign degree.

However, some results are known when h has low sign degree. In a recent work, Theorem
5.7 of Sherstov [27] upper bounds the discrepancy of a composed function f ◦g in terms of the
ǫ-approximate degree of f and a quantity called the repeated discrepancy of g. Beigel showed
in [7] that a polynomial p : {0, 1}n → {−1, 1} with integer coefficients of degree d which sign
represents the ODD-MAX-BIT function (which is a linear threshold function) must have
weight 2Ω(n/d2). A closer inspection of the proof reveals that any real polynomial of degree
d which approximates ODD-MAX-BIT upto error 1 − ǫ must have ǫ ≤ 2−Ω(n/d2). Consider
a function F that is a composition of ODD-MAX-BIT with a hard inner k-party function
g with block size m. Plugging these values into Sherstov’s theorem generates a discrepancy

upper bound for F of roughly
(

c · G(k,m)
)−n1/3

for some constant δ, where G(k,m) is the
repeated discrepancy of g that depends on k and m and c is a large constant. There are
various choices for g like IP or unique disjointness that will then yield for F discrepancy
upper bounds of the form 2−n1/3

for values of k upto δ · log(n). The main problem with this
approach is that the UPPcc

k upper bound seems to break down when k = ω(log log n) for
the following reason: to get these bounds it seems that the block size of the inner function
g increases exponentially with k. Hence, when k = ω(log log n) we have m = (log n)ω(1).
A naive unbounded error protocol for a composed function, where the outer function is a
linear threshold function is as in the proof of Corollary 1. In this protocol, roughly, we
(randomly) pick an instance of inner function g with an advantage that can be exponentially
small due to the large weights of an outer function ODD-MAX-BIT. This forces the protocol
to solve the inner function correctly with probability almost 1. The hardness of g makes the
communication cost now almost Ω(m) which as we saw for k = ω(log log n) is super-poly-
logarithmic. This renders the UPPcc

k protocol inefficient and it is not clear therefore how to
use this approach to separate PPcc

k from UPPcc
k for such large values of k.

The constraint of the hardness of the inner function also weakens the circuit lower bounds
that arise as compared to those that arise from our results. The natural implementation of
F is by a depth-3 circuit. When one tries to implement it as a depth-2 circuit, one can
obtain polynomially sized THR ◦ PARα(k,m), where again α blows up exponentially in k. In
contrast, our target function is expressed naturally by THR◦PARk+1 circuits which we show
cannot be computed by small sized MAJ ◦ THR ◦ ANYk circuits (as stated in Corollary 2).
This allows us to have bottom fan-in of Ω(log n) in our depth-3 circuits whereas previous
results would allow fan-in O(log log n).

Finally, our proof is self-contained and simpler than the much more involved work of
Sherstov [27]. Of course, the arguments in [27] are more general and thus the two approaches
seem incomparable.
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1.2 Our Proof Technique and Organization

We work with the GHR function which is easily seen to be the composition of the universal
threshold function [18] and Parity. The universal threshold function derives its name from
the fact that by setting some of its bits appropriately one can induce any arbitrary threshold
function. In that sense, it is the hardest function of sign degree 1. To estimate the discrepancy
of GHRN

k , we extend ideas from [15] who estimated this in the setting of two players. The
basic intuition can be seen after observing that for a given setting of y1, . . . , yk the GHRN

k

function essentially depends on the sign of a plus-minus combination of Aj ’s for 0 ≤ j ≤
n4k − 1, where

Aj ≡
1

2

n−1
∑

i=0

2i
(

xi,2j + xi,2j+1

)

.

The relevant sign of each Aj depends on the parity of the bits y1,j , . . . , yk,j . Further, the set
of bits in x that each Aj depends on is disjoint from the set of bits that Aj′ depends on.
We sample x such that each Aj are i.i.d. binomial distributions centered at 0 with range
[−2n + 1, 2n − 1]. Let this distribution be µx. We sample each yi uniformly at random.
We want to ensure that the GHRN

k function, under this distribution, behaves in a way that
leaves the players with little clue about the outcome unless the relevant sign to be associated
with each Aj is determined. To do this, as done in [15], one is forced to sample in a slightly
more involved way: first sample y’s uniformly at random. Then sample x according to µx,

conditioned on the fact that P =
∑n4k−1

j=0 Ajy1,j · · · yk,j is very close to its mean compared to

its standard deviation (which is as high as 2Ω(n)). Note that the median of each Aj is about
2n/2, which gives us plenty of room to exploit. This turns out to be the hard distribution
but to establish this requires technical work.

Organization: Section 2 develops the basic notions and lemmas. Section 3 establishes
our main technical result, Theorem 3, which upper bounds the k-wise discrepancy of the
GHR function. Using this, we prove Theorem 1 and Corollary 1. Section 4 derives the
circuit consequences of Theorem 2 and Corollary 2. Finally, Section 5 concludes with some
open problems.

2 Preliminaries

2.1 The NOF model

In the k-party model of Chandra et al.[9], k players with unlimited computational power
wish to compute a function f : X1×· · ·×Xk → {−1, 1} on some input x = (x1, . . . , xk). For
the purpose of this paper, we consider inputs of the form Xi ∈ {−1, 1}ni . On input x, player
i is given (x1, . . . , xi−1, xi+1, . . . , xk), which is why it is figuratively said that xi is on the
ith player’s forehead. Players communicate by writing on a blackboard, so every player sees
every message. We denote by Dk(f) the deterministic k-party communication complexity
of f , namely the number of bits exchanged in the best deterministic protocol for f on the
worst case input.

A probabilistic protocol Π with access to public (private) randomness computes f with
advantage ǫ if the probability that Π and f agree is at least 1/2 + ǫ for all inputs. The cost
of Π is the maximum number of bits it communicates over it’s internal random choices in
the worst case. Rǫ(f) is the cost of the best such protocol. Let us define two other notions.

PPk(f) ≡ min
ǫ

[

Rpub
ǫ (f) + log

(

1

ǫ

)]

, UPPk(f) ≡ min
ǫ

[

Rpriv
ǫ (f)

]

(1)

Note that privateness of the random coins is essential. It is a simple exercise to show that
every function can be computed using 2 bits if allowed public coins. Define PPcc

k = {f :
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PPk(f) = polylog(n)} and UPPcc
k = {f : UPPk(f) = polylog(n)}, where n is the maximum

length of an input to a player.

2.2 Cylinder intersections, discrepancy and the cube norm

Let f : X1 × · · · × Xk → {−1, 1}. A subset Si ⊆ X1 × · · · × Xk is a cylinder in the ith
direction if membership in S does not depend on the ith coordinate. A subset S is called a
cylinder intersection if it can be represented as the intersection of k cylinders, S = ∩k

i=1Si,
where Si is a cylinder in the ith direction.

Definition 2. Let µ be a distribution on X1 × · · · ×Xk. The discrepancy of f according to
µ, Disckµ(f) is

max
S

∣

∣

∣

∣

Pr
µ
[f(x1, . . . , xk) = 1 ∧ (x1, . . . , xk) ∈ S]− Pr

µ
[f(x1, . . . , xk) = −1 ∧ (x1, . . . , xk) ∈ S]

∣

∣

∣

∣

where the maximum is taken over all cylinder intersections S.

The k in Disckµ denotes the dimension of the underlying cylinder intersections. We
will drop this superscript when it is clear from the context what k is. Let Disc(f) =
minµDisckµ(f).
The discrepancy method is a powerful tool that lower bounds the randomized communication
complexity in terms of the discrepancy. The following lemma can be found for example in
[19].

Lemma 1. Rǫ(f) ≥ log(2ǫ/Disc(f)).

We now recall a useful technique that upper bounds the discrepancy of a function under
a product distribution. It is a standard lemma and can be found in [11] and [23] for example.

Lemma 2. Let f : X × Y1 × · · · × Yk → {−1, 1}, and µ any product distribution. Then,

(Disck+1
µ (f))2

k ≤ Ey01 ,y
1
1 ,...,y

0
k,y

1
k

[∣

∣

∣
ExΠa∈{0,1}kf(x, y

a1
1 , . . . , yakk )

∣

∣

∣

]

2.3 The binomial distribution

Definition 3. Let B(N) denote the distribution obtained as the sum of 2N independent
Bernoulli variables, each of which take values 1/2,−1/2 with probability 1/2 each.

A few important things to observe are that B(N) takes only integral values, it is centered
and symmetric around 0, so B(N) is identically distributed to −B(N). Its range is [−N,N ].

Let us denote Pr[B(N) = 0] by p0. It is a well known fact that p0 =
(2NN )
4N

= Θ
(

1
N1/2

)

.

The following lemma tells us that the probability of a binomial distribution taking any value
close to its mean is significantly high.

Lemma 3. Let W be a binomial random variable distributed according to B(N). Let p0
denote Pr[W = 0]. Then for all j ∈ [−N,N ],

p0 −O

(

j2

N3/2

)

≤ Pr[W = j] ≤ p0
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Proof. Note that for j ≥ N/2, the bound to be proved is trivial. Thus we assume j < N/2.

Pr[W = j − 1]− Pr[W = j] =

[(

2N

N + j − 1

)

−
(

2N

N + j

)]

· 1

22N

=

[

(2N)!

(N + j − 1)!(N − j + 1)!
− (2N)!

(N + j)!(N − j)!

]

· 1

22N

=
(2N)!

(N + j − 1)!(N − j)!
· 2j − 1

(N − j + 1)(N + j)
· 1

22N

=

(

2N

N + j

)

· 2j − 1

N − j + 1
· 1

22N

≤
(

2N

N

)

· 1

22N
· 2j

N − j

since the middle binomial coefficient is the maximum. Thus, we have ∀i, |i| ≤ j,

Pr[W = i− 1]− Pr[W = i] ≤
(

2N

N

)

2j

N − j
· 1

22N

Since
(2NN )
4N

= Θ
(

1
N1/2

)

,

Pr[W = 0]− Pr[W = j] ≤
j
∑

i=1

|Pr[W = i− 1]− Pr[W = i]| ≤ 2j2

N − j
·O
(

1

N1/2

)

≤ 2 · 2j2
N

·O
(

1

N1/2

)

Since j ≤ N/2

≤ O

(

j2

N3/2

)

3 A discrepancy upper bound for the multiparty GHR func-

tion

In this section, we prove essentially an O
(

2−
√
N/4k

)

upper bound on the discrepancy of the

GHRN
k function where the first player gets N input bits. This gives us an inverse exponential

upper bound on the discrepancy if k < ǫ log(N) for any constant ǫ. Goldmann et al. [15]
showed that when k = 2, if there is a low cost one-way protocol for GHRN

2 , then it must
have low advantage. Sherstov [24] noted that the same proof technique can be adapted to
prove an upper bound on the discrepancy on GHRN

2 . We generalize this for higher k. In
particular, we show

Theorem 3. For any k ≥ 1,

Disc(GHRN
k ) = O

(

(8e)kN1/4

2
√
N/4k · 2k/2

)

,

where GHRN
k is defined as in Definition 1, and N is the maximum number of bits a player

gets (in this case the first player).

Proof of Theorem 1. It follows directly from Theorem 3 and Lemma 1.
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Proof of Corollary 1. From Theorem 1, it follows that for all 1 ≤ k ≤ δ · log n, the GHRN
k

function is not in PPcc
k+1 where δ > 0 is some constant. Let us see an easy unbounded

error protocol for GHRN
k . Note that all the weights of the top threshold are positive. One

player chooses and announces a bottom layer Parity gate with probability proportional to it’s
corresponding weight. The cost of announcing this is O(log(N)). The probability of success
equals

∑

w+
i /w, where w

+
i ’s are the weights of the gates which agree with the output. Since

∑

w+
i >

∑

w−
i (the gates which disagree with the output), the probability of success is

strictly greater than 1/2.

Recall that N = 2n24k. The proof technique of Theorem 3 is inspired from that of
Goldmann et al. [15].

Proof of Theorem 3. Let Aj =
1
2

∑n−1
i=0 2i(xi,2j + xi,2j+1). It is easy to see that Aj can take

any integer value in [−2n+1, 2n− 1]. Let µx be a distribution on the x’s that make the Aj ’s
independent and binomially distributed according to B(2n − 1) as defined in Definition 3.
Such a distribution exists because each Aj depends on a disjoint set of variables. For each
i ∈ {1, . . . , k}, let µi be the uniform distribution on the yi. We choose a tuple (x, y1, . . . , yk)
by first picking yi ∼ µi independently for each i, and then picking x ∼ µx under the condition
that |P (x, y1, . . . , yk)| = 2k. Let us call this distribution µ.

We will now show an upper bound on the discrepancy of GHRN
k under the distribution µ.

Let S denote the characteristic function (0-1 valued) of a cylinder intersection. By Definition
2, the discrepancy of GHRN

k according to µ is

Discµ(GHRN
k ) = max

S

∣

∣Eµ

[

GHRN
k (x, y1, . . . , yk)S(x, y1, . . . , yk)

]∣

∣ (2)

The following lemma will enable us to switch to working with a product distribution on the
inputs, for which we have nice techniques for proving lower bounds.

Lemma 4. For µx, µ1, . . . , µk as defined above,

Pr
µx,µ1,...,µk

[|P (x, y1, . . . , yk)| = 2k] ≥ Ω

(

1√
n2(n+2k)/2

)

Proof. We will show that for any fixed y1, . . . , yk, if we sample x according to µx, then

P (x, y1, . . . , yk)/2 =
∑n4k−1

j=0 Ajy1j · · · ykj is distributed according to B(n4k(2n − 1)). First
note that no matter what the values of y1, . . . , yk, Ajy1j · · · ykj is always distributed according
to B(2n−1). This is because this distribution is symmetric around 0. Next, observe that the

sum of binomials is a binomial. This shows that
∑n4k−1

j=0 Ajy1j · · · ykj is distributed according

to B(n4k(2n − 1)).
Hence by plugging in N = n4k(2n − 1) and j = 2k in Lemma 3,

Pr
µx,µ1,...,µk

[|P (x, y1, . . . , yk)| = 2k] ≥ Θ

(

1

(n4k(2n − 1))1/2

)

−O

(

4k

(n4k(2n − 1))3/2

)

= Ω

(

1√
n2(n+2k)/2

)

We could discard the second term since it equals O
(

1
(4k)1/2·(n(2n−1)3/2)

)

, and is dominated

by the first term.

Define a function q by

q(x, y1, . . . , yk) =

{

P (x, y1, . . . , yk)/2
k if |P (x, y1, . . . yk)| = 2k

0 otherwise
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This means that if (x, y1, . . . , yk) is chosen according to the distribution µx × µ1 × · · · × µk,
then q(x, y1, . . . , yk) = GHRN

k (x, y1, . . . , yk) on the domain of µ, and 0 otherwise. Using
Lemma 4,

Discµ(GHRN
k ) ≤ |Eµx,µ1,...,µk

[q(x, y1, . . . , yk)S(x, y1, . . . , yk)]| ·O
(√

n2
n+2k

2

)

(3)

This can be seen by expanding the expectation in the above equation and in Equation 2 and
comparing term by term. We can then use the definition of conditional probability to obtain
the above inequality. It suffices to show

|Eµx,µ1,...,µk
[q(x, y1, . . . , yk)S(x, y1, . . . , yk)]| ≤ O

(

2−
n+2k

2
−ǫ
)

(4)

for some constant ǫ > 0 to give us an inverse exponential discrepancy. For notational
convenience, use Ex when we mean Ex∼µx from now on. Now that we have a product
distribution, we can use Lemma 2,

|Eµx,µ1,...,µk
[q(x, y1, . . . , yk)S(x, y1, . . . , yk)]|

≤



Ey01 ,y
1
1 ,...,y

0
k,y

1
k

∣

∣

∣

∣

∣

∣

Ex





∏

a1,...,ak∈{0,1}
q(x, ya11 , . . . , yakk )





∣

∣

∣

∣

∣

∣





1/2k

(5)

We will now upper bound the RHS of the above equation by splitting the outer expectation
into two terms, the first of which has low probability. We will require certain properties of
Hadamard matrices to upper bound the second term. Let α ∈ {0, 1}k. Define 2k subsets of
indices as Iα = {j ∈ [n4k] : ∀i ∈ [k], (y0i )j = −1αi · (y1i )j}. Since our distribution on y0i , y

1
i ’s

are uniform and independent, the probability of each Iα being empty is equal. An easy

counting gives us the probability of Iα being empty as
(

2k−1
2k

)n4k

. By a union bound, the

probability that any one of them is empty is at most 2k ·
(

2k−1
2k

)n4k

. We have the following.



Ey01 ,y
1
1 ,...,y

0
k,y

1
k

∣

∣

∣

∣

∣

∣

Ex





∏

a1,...,ak∈{0,1}
q(x, ya11 , . . . , yakk )





∣

∣

∣

∣

∣

∣





1/2k

≤
(

2k
(

1− 1

2k

)n4k

+ Z

)1/2k

where Z = Ey01 ,y
1
1 ,...,y

0
k,y

1
k:∀α,Iα 6=∅

∣

∣

∣Ex
∏

a1,...,ak∈{0,1} q(x, y
a1
1 , . . . , yakk )

∣

∣

∣

Claim 1. For all y01, . . . , y
0
k, y

1
1, . . . , y

1
k such that Iα is non-empty for each α ∈ {0, 1}k, we

have
∣

∣

∣

∣

∣

∣

Ex





∏

a1,...,ak∈{0,1}
q(x, ya11 , . . . , yakk )





∣

∣

∣

∣

∣

∣

≤ O

(

2k log(e)2k · 22k 1

(2n/2)2k−1
· 2

(k+1)2k+1

23n/2

)
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Let us assume the claim to be true for now. We have from Equation 3 that

Discµ(GHRN
k ) ≤ |Eµx,µ1,...,µk

[q(x, y1, . . . , yk)S(x, y1, . . . , yk)]| O
(√

n2
n+2k

2

)

≤
(

2k
(

1− 1

2k

)n4k

+O

(

2k log(e)2k · 22k 1

(2n/2)2k−1
· 2

(k+1)2k+1

23n/2

))1/2k

·O
(√

n2
n+2k

2

)

≤
[

2k/2
k

(

1− 1

2k

)n2k

+O

(

(4e)k

(2
n
2 )

1− 1

2k · 2
3n
2
· 1

2k

)]

O
(√

n2
n+2k

2

)

≤ O

(

(

e−1/2k
)n2k

· 2n/2+k +
(8e)k

√
n

2
( 3n

2
−n

2
)· 1

2k

)

Using the fact that
(

1− 1
β

)

< e−1/β

= O

(

e−n · 2n/2+k +
(8e)k

√
n

2n/2k

)

= O

(

(8e)k
√
n

2n/2k

)

Assuming k < n/2

which proves Theorem 3. Assuming k ≤ ǫ log(n) for any constant ǫ < 1 gives us an inverse
exponential upper bound on the discrepancy.

Now it only remains to prove Claim 1.

3.1 Proof of Claim 1

Recall that we need to show the following. For all y01, . . . , y
0
k, y

1
1, . . . , y

1
k such that Iα is

non-empty for each α, we want

∣

∣

∣

∣

∣

∣

Ex





∏

a1,...,ak∈{0,1}
q(x, ya11 , . . . , yakk )





∣

∣

∣

∣

∣

∣

≤ O

(

2k log(e)2k · 22k 1

(2n/2)2k−1
· 2

(k+1)2k+1

23n/2

)

Fix any such y01, . . . , y
0
k, y

1
1, . . . , y

1
k. Note that the LHS of the above equation is

∣

∣

∣

∣

∣

∣

Pr
x





∏

a1,...,ak∈{0,1}
q(x, ya11 , . . . , yakk ) = 1



− Pr
x





∏

a1,...,ak∈{0,1}
q(x, ya11 , . . . , yakk ) = −1





∣

∣

∣

∣

∣

∣

For convenience, for all a ∈ {0, 1}k let us denote P (x, ya11 , . . . , yakk ) by Pa and let Sa denote
Pa/2. By the definition of q, we have

∣

∣

∣

∣

∣

∣

Ex





∏

a∈{0,1}k
q(x, ya11 , . . . , yakk )





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

Pr





∏

a∈{0,1}k

Pa

2k
= 1



− Pr





∏

a∈{0,1}k

Pa

2k
= −1





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

Pr
x





∏

a∈{0,1}k
Sa = 2(k−1)2k



− Pr
x





∏

a∈{0,1}k
Sa = −2(k−1)2k





∣

∣

∣

∣

∣

∣

(6)

Let Wα =
∑

j∈Iα Aj(y
0
1)j . . . (y

0
k)j . It will be useful to note here that Wα only takes integral

values. We will use this fact crucially later. Let Pk denote the 2k × 1 matrix whose rows are
indexed by a = (a1, . . . , ak) ∈ {0, 1}k, and the ath row of Pk is P (x, ya11 , . . . , yakk ). Similarly
define matrices Sk and Wk.
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Claim 2. The following holds true for all k

Pk = 2Sk = 2Hk ·Wk

where Hk is a 2k × 2k Hadamard matrix defined as Hk =

[

Hk−1 Hk−1

Hk−1 −Hk−1

]

and H0 =
[

1
]

.

Let us first state a well known property of Hk =

[

Hk−1 Hk−1

Hk−1 −Hk−1

]

where H0 =
[

1
]

.

Fact 1. Let Hk be as defined above. Then, (Hk)ij = (−1)〈i,j〉 for all i, j ∈ {0, 1}k.

In other words,Hk is the communication matrix of the inner product (modulo 2) function.
Let us now prove Claim 2.

Proof. Let a ∈ {0, 1}k. Pa = 2
∑n4k

j=1Aj(y
a1
1 )j · · · (yakk )j and Wα =

∑

j∈Iα Aj(y
0
1)j · · · (y0k)j .

Say j ∈ Iα where α ∈ {0, 1}k. Note that (yaii )j = −1 · (y0i )j iff ai = 1, αi = 1. Hence

(ya11 )j · · · (yakk )j = (−1)(
∑

i ai·αi)(y01)j · · · (y0k)j = (−1)〈a,α〉(y01)j · · · (y0k)j .

Pa = 2
n4k
∑

j=1

Aj(y
a1
1 )j · · · (yakk )j = 2





∑

α∈{0,1}k

∑

j∈Iα
(−1)〈a,α〉Aj(y

0
1)j · · · (y0k)j





= 2





∑

α∈{0,1}k
(−1)〈a,α〉Wα





= 2(Hk)a ·Wk

where (Hk)a denotes the ath row of Hk. Thus, Pk = 2Sk = 2Hk ·Wk.

3.1.1 On integral solutions to Hadamard constraints

In this subsection, we will prove that the number of integral solutions to Wk such that
∏

a∈{0,1}k Sa = 2(k−1)2k is equal to the number of integral solutions to Wk such that
∏

a∈{0,1}k Sa = −2(k−1)2k . Moreover, we show that the total number of integral solutions
is small, and the values of |Wa| are not too large in any integral solutions. Recall from
Equation 6 that for all y01, . . . , y

0
k, y

1
1, . . . , y

1
k such that Iα is non-empty for each α, we have

∣

∣

∣

∣

∣

∣

Ex





∏

a∈{0,1}k
q(x, ya11 , . . . , yakk )





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

Pr
x





∏

a∈{0,1}k
Sa = 2(k−1)2k



− Pr
x





∏

a∈{0,1}k
Sa = −2(k−1)2k





∣

∣

∣

∣

∣

∣

This allows us to pair the “positive” and “negative” solutions, and higher order terms in the

difference of probabilities
∣

∣

∣Prx

[

∏

a∈{0,1}k Sa = 2(k−1)2k
]

− Prx

[

∏

a∈{0,1}k Sa = −2(k−1)2k
]∣

∣

∣

cancel out. We will require the following well known property of Hadamard matrices.

Fact 2. Let H be an N ×N Hadamard matrix. Then, H is invertible, and H−1 = 1
NH.

Claim 3. The number of integral solutions to Wk such that
∏

a∈{0,1}k Sa = +2(k−1)2k equals

the number of integral solutions such that
∏

a∈{0,1}k Sa = −2(k−1)2k .
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Proof. The constraints we have are Hk ·Wk = Sk. Since Wa is integral for all a, and Hk is a
±1 matrix, this implies that Sa’s are integral as well. Thus, using Fact 2 we get 1

2k
Hk ·Sk =

Wk, or Hk · Sk

2k
= Wk. Let us consider two cases, one where ∀a ∈ {0, 1}k,

∣

∣

Sa

2k

∣

∣ = 1/2, and

another where there exists an a such that
∣

∣

Sa

2k

∣

∣ 6= 1/2.

• Let us assume ∀a,
∣

∣

Sa

2k

∣

∣ = 1/2. We show something slightly stronger, namely that every

setting of each Sa

2k
to ±1/2 gives us an integer solution to the Wa’s. Since Hk is a ±1

matrix of even dimension, the parity of the number of appearances of +1/2 equals the
parity of number of appearances of −1/2 in the sum (Hk)R · Sk

2k
, where (Hk)R is the

Rth row of Hk. This holds for every row R. Thus, WR is always an integer. This
means the number of positive solutions equals the number of negative solutions in this
case.

• The absolute value of Sa must equal a power of 2 for each a since the product of them
is a power of 2. If there exists an Sa whose value is not ±2k−1, then there must exist an
Sb (consider the last such one) which is a multiple of 2k since

∏

a∈{0,1}k Sa = ±2(k−1)2k .

Since Sb/2
k is an integer, and we had an integral solution to Wk, flipping the sign of

Sb can change the value of any Wc to Wc ± 2 · Sj/2
k, which remains an integer. This

is a bijection between positive and negative solutions.

The following lemmas just require Hk to be the 2k × 2k Hadamard matrix as defined in
Claim 2, Sa’s to be integer valued such that

∏

a∈{0,1}k Sa = ±2(k−1)2k , and Hk ·Wk = Sk.

Lemma 5. The number of integral solutions to Wk is at most 2k log(e)2k .

We will require the following standard fact about binomial coefficients.

Fact 3. For all n and for all k ∈ [n],
(

n
k

)k ≤
(

n
k

)

≤
(

n·e
k

)k
.

Proof of Lemma 5. Suppose
∏

a∈{0,1}k Sa = ±2(k−1)2k . This means we have to distribute

(k − 1)2k powers of 2 among 2kSa’s (which are all integers). This equals the number of

non-negative integer solutions to m1 + · · ·+m2k = (k− 1)2k, which equals
(

k2k−1
(k−1)2k

)

. This is

at most
(

k2k

(k−1)2k

)

, which is at most
(

k2k·e
(k−1)2k

)(k−1)2k

by Fact 3. Now we will use the fact that

1 + x ≤ ex and conclude that this is bounded above by ek2
k
, which equals 2k log(e)2k . Each

of these can give at most 1 integral solution to the Wa’s because the system of constraints
is linearly independent.

We now state an upper bound on the value of |Wa| in every integral solution.

Lemma 6. For all a ∈ {0, 1}k, |Wa| ≤ 2(k+1)2k .

Proof. First note that for each a, |Wa| ≤
∑

a∈{0,1}k
|Sa|
2k

since Hk · Sk = Wk. We show that
∑

a∈{0,1}k |Sa| is at most 2k2
k
. Suppose not. By a simple averaging argument, there must be

an b such that |Sb| > 2k2
k

2k
, which is 2k(2

k−1), which is at least 2(k−1)2k if k ≥ 1. But this is

not possible since
∏

a∈{0,1}k Sa = ±2(k−1)2k and Si’s are integers.
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3.1.2 Using properties of the binomial distribution

Recall from Equation 6 that for all y01, . . . , y
0
k, y

1
1, . . . , y

1
k such that Iα is non-empty for each α,

we want to upper bound
∣

∣

∣Prx

[

∏

a∈{0,1}k Sa = 2(k−1)2k
]

− Prx

[

∏

a∈{0,1}k Sa = −2(k−1)2k
]∣

∣

∣.

Recall that we defined Wα =
∑

j∈Iα Aj(y
0
1)j . . . (y

0
k)j . For any α ∈ {0, 1}k, note that Wα

is always distributed according to B(cα(2
n − 1)), where cα = |Iα| 6= 0. We can prove this

in a manner similar to that in the proof of Lemma 4. In Claim 3, we showed that the
number of integral solutions to Wk such that

∏

a∈{0,1}k Sa = 2(k−1)2k equals the number of

integral solutions such that
∏

a∈{0,1}k Sa = −2(k−1)2k . Note that if the solution to Wk is
not integral, then it has probability 0 since for each a,Wa takes only integral values. Let us
call a solution to Wk to be positive if the corresponding value of

∏

a∈{0,1}k Sa = 2(k−1)2k ,

and negative if the value is
∏

a∈{0,1}k Sa = −2(k−1)2k . Arbitrarily pair up the positive and
negative solutions. We will bound the difference of probabilities of each pair.

∣

∣

∣
Prx

[

∏

a∈{0,1}k Sa = 2(k−1)2k
]

− Prx

[

∏

a∈{0,1}k Sa = −2(k−1)2k
]∣

∣

∣

≤
∑

w,w′

∣

∣

∣Pr
x
[Wk = w]− Pr

x
[Wk = w′]

∣

∣

∣

where w = (wa)a∈{0,1}k , w
′ = (w′

a)a∈{0,1}k are positive and negative solutions respectively to

Wk such that
∏

a∈{0,1}k Sa = ±2(k−1)2k . The term Prx[Wk = w] equals Prx[
∧

a∈{0,1}k Wa =
wa]. In Lemma 6 we showed that for each α, the absolute value of Wα in any integral solution

can be at most 2(k+1)2k . Each Wα is distributed according to B(cα(2
n − 1)), cα > 0, since

|Iα| > 0.
Now for a particular positive solution w, negative solution w′ and any y01, . . . , y

0
k, y

1
1, . . . , y

1
k

such that Iα is non-empty for each α,

∣

∣

∣Pr
x
[Wk = w]− Pr

x
[Wk = w′]

∣

∣

∣ =

∣

∣

∣

∣

∣

∣

Pr[
∧

a∈{0,1}k
Wa = wa]− Pr[

∧

a∈{0,1}k
Wa = w′

a]

∣

∣

∣

∣

∣

∣

By plugging in N = cα(2
n−1) and j = 2(k+1)2k in Lemma 3, we obtain p0 ≥ Prx[Wα = wα] ≥

p0−O

(

2(k+1)2k+1

23n/2

)

, where p0 = Pr[Wα = 0] = O
(

1
2n/2

)

. For convenience in calculations, let

us say Prx[Wα = wα] ∈
(

p0 ±O

(

2(k+1)2k+1

23n/2

))

. Recall that Wα’s are independent of each

other since they depend on disjoint variables. Thus,

∣

∣

∣Pr[
∧

a∈{0,1}k Wa = wa]− Pr[
∧

a∈{0,1}k Wa = w′
a]
∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

(

p0 ±O

(

2(k+1)2k+1

23n/2

))2k

−
(

p0 ±O

(

2(k+1)2k+1

23n/2

))2k
∣

∣

∣

∣

∣

∣

≤ 22
k

(2n/2)2k−1
· 2

(k+1)2k+1

23n/2

The last inequality holds because the highest order term after binomially expanding both
terms is 1

2n2k/2
, which cancel each other. Note that the sum of the binomial coefficients is

22
k
, and each term after the first is at most 1

(2n/2)2
k−1

· 2(k+1)2k+1

23n/2 . Thus, the sum of the

remaining terms can be bounded above by 22
k 1

(2n/2)2
k−1

· 2(k+1)2k+1

23n/2 . By Claim 5, the number
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of solutions (and hence number of pairs) is at most 2k log(e)2k . Thus,

∣

∣

∣
Prx

[

∏

a∈{0,1}k Sa = 2(k−1)2k
]

− Prx

[

∏

a∈{0,1}k Sa = −2(k−1)2k
]∣

∣

∣

≤
∑

w,w′

∣

∣

∣
Pr
x
[Wk = w]− Pr

x
[Wk = w′]

∣

∣

∣
≤ 2k log(e)2k · 22k 1

(2n/2)2k−1
· 2

(k+1)2k+1

23n/2

which proves Claim 1. Using Equation 3, this proves Theorem 3.

4 Circuit Lower Bounds

In this section, we will show how we obtain depth-3 circuit lower bounds on the class MAJ ◦
THR ◦ ANYk for functions that are in THR ◦ PARk+1. First let us state the results that
were known prior to this work.

Lemma 7 (Folklore). Any function f ∈ SYM ◦ANYk of size s has a deterministic simulta-
neous (k + 1) player protocol of cost O(k log(s)) for any partitioning of the input bits.

Proof. Since each of the bottom layer gates have fan-in at most k, there must exist a player
who sees all the inputs to it. The protocol decides beforehand which gate ‘belongs’ to which
player. All players simultaneously broadcast their contribution to the top SYM gate using
at most log(s) bits each.

A consequence of this is an upper bound for randomized protocols for depth-3 circuits,
which may be found in [10] for example and is stated below without proof.

Lemma 8 (Folklore). Given any function f ∈ MAJ ◦ SYM ◦ ANYk of size s, and any
partition of the input bits, there exists a randomized protocol computing f with advantage
Ω(1/s) and cost O(k log(s)).

Let us now prove Theorem 2.

Proof. Suppose GHRN
k could be computed by MAJ ◦ SYM ◦ ANYk circuits of size s =

2o(
√
N/4k). Using the protocol mentioned in Lemma 8, the cost of the protocol is O(k log(s))

and advantage Ω(1/s). Using Theorem 1, O(k log(s) + log(s)) ≥ Ω
(√

N
4k

− log(N)− k
)

,

which gives log(s) ≥ Ω
(√

N
4k

− log(N)
k − k

)

Thus, s ≥ 2
Ω
(√

N

4k
− log(N)

k
−1

)

≥ 2
Ω
(√

N

4k
− log(N)

k

)

By definition, MAJ ◦ MAJ ⊆ MAJ ◦ SYM. Also, Goldmann et al. [15] (Theorem 26)
showed that MAJ◦THR circuits can be simulated by MAJ◦MAJ circuits with a polynomial
blowup. More precisely, a MAJ ◦ THR circuit of size s can be simulated by a MAJ ◦MAJ
circuit of size sα · nβ for some constants α, β. Hence, Corollary 2 follows by a similar proof
as that of Lemma 8.

5 Conclusion

We have shown that GHRN
k needs essentially Ω(

√
N/4k

)

cost to be solved in the PPcc
k+1

model. Since it follows almost from the definition of GHRN
k that it has O(logN) cost

UPPcc
k+1 protocols, this provides the first separation of PPcc

k from UPPcc
k for the NOF model

when O(log logN) ≤ k ≤ δ · logN for some constant δ > 0. In general, current techniques
do not allow us to go beyond logN number of players to prove lower bounds for the cost
of even deterministic protocols. This remains one of the most interesting problems in NOF
complexity. However, let us remark that for many of the functions used in the literature (see
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for example [16, 3, 1, 13]), there are surprisingly efficient protocols when k > logN . Moreover
these protocols are typically deterministic and either simultaneous or barely interactive. On
the other hand, we do not immediately see an efficient randomized interactive protocol for
GHRN

k at k > logN . This raises the following question: Is GHRN
k a hard function for even

k > logN?
Another question that may be within reach to answer is the following: our work shows

that the PPcc
k complexity of GHRN

k is Ω
(√

N
)

for any constant k. Is there a function that
has Ω(N) cost in PPcc

k but has efficient UPPcc
k protocols? This is open even for the two-

player case.
Finally, proving super-logarithmic lower bounds for UPPcc

k protocols for any explicit
function remains a very interesting challenge for even k = 3. Hansen and Podolskii [17]
have shown that meeting this challenge is enough to yield super-polynomial lower bounds
for THR ◦ THR circuits.
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[3] László Babai, Anna Gál, Peter G. Kimmel, and Satyanarayana V. Lokam. Communi-
cation complexity of simultaneous messages. SIAM J. Comput., 33(1):137–166, 2003.
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