
The Chasm at Depth Four, and Tensor Rank:

Old results, new insights

Suryajith Chillara ∗ Mrinal Kumar † Ramprasad Saptharishi ‡ V Vinay §

June 14, 2016

Abstract

Agrawal and Vinay [AV08] showed how any polynomial size arithmetic circuit can be thought
of as a depth four arithmetic circuit of subexponential size. The resulting circuit size in this sim-
ulation was more carefully analyzed by Koiran [Koi12] and subsequently by Tavenas [Tav15].
We provide a simple proof of this chain of results. We then abstract the main ingredient to
apply it to formulas and constant depth circuits, and show more structured depth reductions
for them.

In an apriori surprising result, Raz [Raz10] showed that for any n and d, such that ω(1) ≤
d ≤ O

(
log n

log log n

)
, constructing explicit tensors T : [n]d → F of high enough rank would imply

superpolynomial lower bounds for arithmetic formulas over the field F. Using the additional
structure we obtain from our proof of the depth reduction for arithmetic formulas, we give a
new and arguably simpler proof of this connection. We also extend this result for homogeneous
formulas to show that, in fact, the connection holds for any d such that ω(1) ≤ d ≤ no(1).

1 Introduction

Agrawal and Vinay [AV08] showed how any polynomial size1 arithmetic circuit can be thought
of as a depth four arithmetic circuit of subexponential size. This provided a new direction to seek
lower bounds in arithmetic circuits. A long list of papers attest to increasingly sophisticated lower
bound arguments, centered around the idea of shifted partial derivates due to Kayal, to separate
the so called arithmetic version of P vs NP (cf. [Sap15]).

∗Chennai Mathematical Institute, Research supported in part by a TCS PhD fellowship. Part of the work done while
visiting Tel Aviv University. suryajith@cmi.ac.in
†Rutgers University, Research supported in part by a Simons Graduate Fellowship. Part of the work done while

visiting Tel Aviv University. mrinal.kumar@rutgers.edu
‡Tel Aviv University ramprasad@cmi.ac.in. The research leading to these results has received funding from the

European Communitys Seventh Framework Programme (FP7/2007-2013) under grant agreement number 257575.
§Limberlink Technologies Pvt Ltd and Chennai Mathematical Institute vinay@jed-i.in
1in fact, subexponential size

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 96 (2016)

The depth reduction chasm was more carefully analyzed by Korian [Koi12] and subsequently
by Tavenas [Tav15]. Given the importance of these depth reduction chasms, it is natural to seek
new and/or simpler proofs. In this work, we do just that.

We use a simple combinatorial property to prove our result. We then show how this can be
extended to showing chasms for formulas and constant depth circuits. In the case of formulas, we
show the top layer of multiplication gates have a much larger number of factors and therefore has
more structure than a typical depth reduced circuit. We hope that such structural properties lead
to better lower bounds for formulas. In fact, we use this additional structure to give a new proof
of a result of Raz [Raz10] which shows that for an appropriate range of parameters, construct-
ing explicit tensors of high enough rank implies super-polynomial lower bounds for arithmetic
formulas.

More formally, let f ∈ F[x1, x2, . . . , xd] be a set multilinear polynomial of degree d in nd vari-
ables, where for every i ∈ [d], xi is a subset of variables of size n. In a natural way, f can be viewed
as a tensor f : [n]d → F. Raz [Raz10] showed if ω(1) ≤ d ≤ O(log n/ log log n) and f is computed
by an arithmetic formula of size poly(n), then the rank of f as a tensor is far from nd−1 (the trivial
upper bound2). We use the additional structure obtained from our proof of depth reduction for
formulas and constant depth arithmetic circuits, to give a very simple of proof of this result. As an
extension, we also show that, in fact, the tensor rank of f is far from nd−1 as long as f is computed
by a homogeneous formula of polynomial size and d is such that ω(1) ≤ d ≤ no(1).

This write up is organised as follows. We give new proofs of depth reduction for arithmetic
circuits (Section 2), for homogeneous arithmetic formulas (Section 3) and for constant depth arith-
metic circuits (Section 4). We end by applying the new proof of depth reduction for homogeneous
formulas to show a simple proof of Raz’s upper bound [Raz10] on the tensor rank of polynomials
computed by small arithmetic formulas in Section 5.

For standard definitions concerning arithmetic circuits, arithmetic formulas etc, we refer the
reader to the survey of Saptharishi [Sap15]. For an introduction to connections between tensor
rank and arithmetic circuits, we refer the reader to an excellent summary of such results in Raz’s
original paper [Raz10]. Throughout this paper, unless otherwise stated, by depth reduction, we
mean a reduction to homogeneous depth four circuits. By a ΣΠΣΠ[b] circuit, we denote a depth
four circuit such that the fan-in of every product gate at the bottom level is at most d, and by
ΣΠ[a]ΣΠ[b] circuit, we denote a ΣΠΣΠ[b] circuit which also has the property that the fan-in of
every product gate adjacent to the output gate has fan-in at least a, i.e the polynomials computed
at the gates adjacent to the output gate have have at least a non-trivial factors.

2We know that there exist tensors g : [n]d → F of rank nd−1/d.

2

2 Depth reduction for arithmetic circuits

We shall need the classical depth reduction of [VSBR83, AJMV98].

Theorem 2.1 ([VSBR83, AJMV98]). Let f be an n-variate degree d polynomial computed by an arithmetic
circuit Φ of size s. Then there is an arithmetic circuit Φ′ computing f and has size s′ = poly(s, n, d) and
depth O(log d).

Moreover, the reduced circuit Φ′ has the following properties:

1. The circuit is homogeneous.

2. All multiplication gates have fan-in at most 5.

3. If u is any multiplication gate of Φ′, all its children v satisfy deg(v) ≤ deg(u)/2.

These properties can be inferred from their proof. A simple self-contained proof may be seen in
[Sap15]. Agrawal and Vinay [AV08] showed that arithmetic circuits can in fact be reduced to depth
four, and the result was subsequently strengthened by Koiran [Koi12] and by Tavenas [Tav15].

Theorem 2.2 ([AV08, Koi12, Tav15]). Let f be an n-variate degree d polynomial computed by a size s
arithmetic circuit. Then, for any 0 < t ≤ d, f can be computed by a homogeneous ΣΠΣΠ[t] circuit of top
fan-in sO(d/t) and size sO(t+d/t).

To optimize the size of the final depth four circuit, we should choose t =
√

d to get a ΣΠΣΠ[t]

circuit of size sO(
√

d). Note that this implies that if we could prove a lower bound of nω(
√

d) for
such ΣΠΣΠ[

√
d] circuits, then we would have proved a lower bound for general circuits. In this

section, we shall see a simple proof of Theorem 2.2.

Proof of Theorem 2.2. Using Theorem 2.1, we can assume that the circuit has O(log d) depth. If g
is a polynomial computed at any intermediate node of C, then from the structure of C we have a
homogeneous expression

g =
s

∑
i=1

gi1 · gi2 · gi3 · gi4 · gi5 (2.3)

where each gij is computed by a node in C as well, and deg(gij) ≤ deg(g)/2. In particular, if g
were the output gate of the circuit, the RHS may be interpreted as a ΣΠΣΠ[d/2] circuit of top fan-in
s computing f . To obtain a ΣΠΣΠ[t] circuit eventually, we shall perform the following steps on
the output gate:

1. For each summand gi1 . . . gir in the RHS, pick the gate gij with largest degree (if there
is a tie, pick the one with smaller index j). If gij has degree greater than t, expand gij

in-place using (2.3).

2. Repeat this process until all gij’s on the RHS have degree at most t.

3

g

g11g12g13g14g15 gs1gs2gs3gs4gs5· · ·

s

g111g112g113g114g115

·g12g13g14g15
· · ·

g1s1g1s2g1s3g1s4g1s5

·g12g13g14g15

s

gs11gs12gs13gs14gs15

·gs2gs3gs4gs5
· · ·

gss1gss2gss3gss4gss5

·gs2gs3gs4gs5

s

Figure 1: Depth reduction analysis

Each iteration of the above procedure increases the top fan-in by a multiplicative factor of s. If
we could show that the in O(d/t) iterations all terms on the RHS have degree at most t, then we
would have obtained an ΣΠΣΠ[t] circuit of top fanin sO(d/t) computing f .

Label a term gij bad if its degree is more than t/8. To bound the number of iterations, we count
the number of bad terms in each summand. Since we would always maintain homogeneity, the
number of bad terms in any summand is at most 8d/t (i.e., not too many). We show each iteration
increases the number of bad terms by at least one. This bounds the number of iterations by 8d/t.

In (2.3), if deg(g) = k, the largest degree term of any summand on the RHS is at least k/5
(since the sum of the degrees of the five terms must add up to k) and so continues to be bad if
k > t. But the largest degree term can have degree at most k/2. Hence the other four terms
must together contribute at least k/2 to the degree. This implies that the second largest term in
each summand has degree at least k/8. This term is bad too, if we started with a term of degree
greater than t. Therefore, as long as we are expanding terms of degree more than t using (2.3), we
are guaranteed its replacements have at least one additional bad term. As argued earlier, we can
never have more than 8d/t such terms in any summand and this bounds the number of iterations
by 8d/t.

Observe that the above procedure can be viewed as a tree, as described in Figure 1, where
each node represents an intermediate summand in the iterative process. From (2.3) it is clear that
the tree is s-ary. Furthermore, the number of “bad” terms strictly increases as we go down in the
tree (these are marked in red in Figure 1). Since the total number of bad terms in any node can be
at most 8(d/t), the depth of the tree is at most 8(d/t). Therefore, the total number of leaves is at
most s(8d/t). Moreover, since every polynomial with degree at most t can be written as a sum of
at most nO(t) monomials, the total size of the resulting ΣΠΣΠ[t] circuit is at most sO(t+d/t) (since
s ≥ n).

4

3 Depth reduction for homogeneous formulas

For the class of homogeneous formulas and shallow circuits, we will show that they can be depth
reduced to a more structured depth four circuit.

To quickly recap the earlier proof, we began with an equation f = ∑i gi1 · gi2 · gi3 · gi4 · gi5 and
recursively applied the same expansion on all the large degree gij’s. The only property we really
used was that in the above equation, there were at least two gij that had large degree.

For the case of homogeneous formulas and shallow circuits, there are better expansions that
we could use as a starting point.

Theorem 3.1 ([HY11]). Let f be an n-variate degree d polynomial computed by a size s homogeneous
formula. Then, f can be expressed as

f =
s

∑
i=1

fi1 · fi2 · · · fir (3.2)

where

1. the expression is homogeneous,

2. for each i, j, we have
(1

3

)j d ≤ deg(fij) ≤
(2

3

)j d and r = Θ(log d),

3. each fij is also computed by homogeneous formulas of size at most s.

With this, we are ready to prove a more structured depth reduction for homogeneous formu-
las.

Theorem 3.3. Let f be a homogeneous n-variate degree d polynomial computed by a size s homogeneous
formula. Then for any 0 < t ≤ d, f can be equivalently computed by a homogeneous ΣΠ[a]ΣΠ[t] formula
of top fan-in s10(d/t) where

a >
1
10

d
t

log t.

The resulting depth four circuit is more structured in the sense that the multiplication gates
at the second layer have a much larger fan-in (by a factor of log t). In Theorem 2.2, we only know
that the polynomials feeding into these multiplication gates have degree at most t. The theorem
above states that if we were to begin with a homogeneous formula, the degree t polynomials
factorize further to give Θ((d/t) log t) non-trivial polynomials instead of Θ(d/t) as obtained in
Theorem 2.2.

Proof. We start with equation (3.2) which is easily seen to be a homogeneous ΣΠΣΠ[2d/3] circuit
with top fan-in s:

f =
s

∑
i=1

fi1 · fi2 · · · fir

5

To obtain a ΣΠ[Θ((d/t) log t)]ΣΠ[t] circuit eventually, we shall perform the following steps on
the output gate:

1. For each summand fi1 . . . fir in the RHS, pick the gate fij with largest degree (if there
is a tie, pick the one with smaller index j). If fij has degree more than t, expand that fij

in-place using (3.2).

2. Repeat this process until all fij’s on the RHS have degree at most t.

Each iteration again increases the top fan-in by a factor of s. Again, as long as we are expanding
terms using (3.2) of degree k > t, we are guaranteed by Theorem 3.1 that each new summand has
at least one more term of degree at least k/9 > t/9.

To upper bound the number of iterations, we use a potential function — the number of factors
of degree strictly greater than t/9 in a summand. A factor that is of degree k > t and which is
expanded using (3.2) contributes at least two factors of degree > t/9 per summand. Thus, the net
increase in the potential per iteration is at least 1. Since this is a homogeneous computation, there
can be at most 9d/t such factors of degree > t/9. Thus, the number of iterations must be bounded
by 9d/t thereby yielding a ΣΠΣΠ[t] of top fan-in at most s9(d/t) and size s(t+9d/t). This argument
is similar to the argument in the proof of Theorem 2.2.

We now argue that the fan-in of every product gate at the second level in the ΣΠΣΠ[t] circuit
obtained is Θ(d/t log t).

To this end, we shall now show that we require Θ(d/t) iterations to make all the factors have
degree at most t. This, along with the fact that every iteration introduces a certain number of
non-trivial factors in every product will complete the proof. We will say a factor is small if degree
is at most t and big otherwise. To prove a lower bound on the number of iterations, we shall use a
different potential function — the total degree of all the big factors.

Given the geometric progression of degrees in Theorem 3.1, we can easily see that the total
degree of all the small factors in any summand is bounded above by 3t. Hence, the total degree
of all the big terms is d− 3t. But whenever (3.2) is applied on a big factor, we introduce several
small degree factors with total degree of at most 3t. Hence, the potential drops by at most 3t per
iteration. This implies that we require (d/3t) iterations to make it a constant.

Since every expansion via (3.2) introduces at least (log3 t) non-trivial terms, it would then
follow that every summand at the end has 1

(3 log 3)
d
t log t > 1

10
d
t log t non-trivial factors.

3.1 An alternate proof

While we proved Theorem 3.3 along the lines of Theorem 2.2, it is possible to provide an alternate
proof of it. We provide a sketch. Starting with a homogeneous formula, by Theorem 2.2 we get a

6

ΣΠΣΠ[t] circuit of the form
s′

∑
i=1

Qi1 . . . Qir

where deg(Qij) ≤ t and s′ = sO(d/t). From the innards of this proof, it can be observed that each of
the Qij’s is indeed computable by a homogeneous formula (formula, not a circuit) of size at most
s. By multiplying several polynomials (if necessary) of degree at most t/2, we may assume that
there are Θ(d/t) polynomials Qij in each summand, with their degree between t/2 and t.

Each of these polynomials may be expanded using (3.2). Since each such expansion adds
O(log t) additional factors and increases the fan-in by a factor of s, the overall top fan-in is now
s′ · sO(d/t). The number of factors however increases from Θ(d/t) to Θ((d/t) log t). The resulting
circuit is thus a ΣΠ[Θ((d/t) log t)]ΣΠ[t] circuit of top fan-in sO(d/t).

4 Depth reduction for constant depth circuits

In the same vein, a natural question is if we can obtain more structure for a constant depth circuit.
For example, is the resulting depth four circuit more structured when we begin with a depth 100
circuit? By suitably adapting the expansion equation, our approach can answer this question.

Lemma 4.1. Let f be an n-variate degree d polynomial computed by a size s circuit of product-depth3 ∆.
Then f can be expressed as

f =
s2

∑
i=1

fi2 · fi3 · · · fir · gi1 · · · gi` (4.2)

where

1. the expression is homogeneous,

2. for each i, j, we have
(1

3

)j d ≤ deg(fij) ≤
(2

3

)j d and r = Θ(log d),

3. each fij and gij is also computed by homogeneous formulas of size at most s and product-depth ∆.

4. ` = Ω(d1/∆)

5. all gij, fij are polynomials of degree at least 1.

Using this equation for the depth reduction yields the following theorem.

Theorem 4.3. Let f be an n-variate degree d polynomial computed by a size s homogeneous formula of
product-depth ∆. Then for any parameter t = o(d), we can compute f equivalently by a homogeneous
ΣΠ[Θ((d/t)·t1/∆)]ΣΠ[t] circuit of top fan-in at most sO(d/t) and size sO(t+d/t).

3the product depth is the number of multiplication gates encountered in any path from root to leaf

7

The multiplication gates at the second layer of the resulting depth four circuit have a much
larger fan-in than what is claimed in Theorem 2.2 or Theorem 3.3. When we begin with additional
structure in the circuit, it seems we get additional structure in the resulting depth four circuit.
Specifically, let us fix t =

√
d. The fan-in of the outer product gate would be Θ(

√
d) for a general

circuit (Theorem 2.2), Θ(
√

d · log d) for a homogeneous formula (Theorem 3.3), and Θ(
√

d · d1/100)

for a circuit of depth 100 (Theorem 4.3).

Proof of Lemma 4.1. Let Φ be the product depth-∆ formula computing f . By Theorem 3.1, we get

f =
s

∑
i=1

fi1 · fi2 · · · fir (4.4)

with the required degree bounds. From the proof of Theorem 3.1, it follows that each fij is in fact a
product of disjoint sub-formulas of Φ, and hence in particular fi1 is computable by size s formulas
of product-depth ∆. We shall expand fi1 again to obtain the gijs.

Since fi1 is a polynomial of degree at least d/3 computed by a size s formula Φ′ of product-
depth ∆, there must be some multiplication gate h in Φ′ of fan-in Ω(d1/∆). Therefore,

fi1 = A · [h] + B.

Here, [h] is the polynomial computed at the gate h. Since B is computed by Φ′ with h = 0, we can
induct on B to obtain

fi1 = A1[h1] + · · ·+ As[hs]

where each hi is a multiplication gate of fan-in Ω(d1/∆). Plugging this in (4.4), and replacing [hi]’s
by the factors, gives (4.2).

5 An Application: Tensor rank and formula lower bounds

Tensors are a natural higher dimensional analogue of matrices. For the purposes of this short note,
we shall take the equivalent perspective of set-multilinear polynomials. A detailed discussion on
this can be seen in [Sap15].

Definition 5.1 (Set-multilinear polynomials). Let x = x1 t · · · t xd be a partition of variables and let
|xi| = mi. A polynomial f (x) is said to be set-multilinear with respect to the above partition if every
monomial m in f satisfies |m ∩ Xi| = 1 for all i ∈ [d]. ♦

In other words, each monomial in f picks up one variable from each part in the partition.
It is easy to see that many natural polynomials such as the determinant, the permanent are all
set-multilinear for an appropriate partition of variables.

8

With this interpretation, a rank-1 tensor is precisely a set-multilinear product of linear forms
such as

f (x) = `1(x1) · · · `d(xd)

where each `i(xi) is a linear form in the variables in xi.

Definition 5.2 (Tensor rank, as set-multilinear polynomials). For polynomial f (x) that is set-multilinear
with respect to x = x1 t · · · t xd, the tensor rank of f (denoted by TensorRank(f)) is the smallest r for
which f can be expressed as a set-multilinear ΣΠΣ circuit:

f (x) =
r

∑
i=1

`i1(x1) · · · `id(xd).

♦

However, even computing the rank of an degree-3 tensor is known to be NP-hard [Hås90].
But one could still ask if one can prove good upper or lower bounds for some specific tensors, or
try to find an explicit tensor with large rank.

Properties of tensor rank

The following are a couple of basic properties that follow almost immediately from the definitions.

Lemma 5.3 (Sub-additivity of tensor rank). Let f and g be two set-multilinear polynomials on x1 t
· · · t xd. Then, TensorRank(f + g) ≤ TensorRank(f) + TensorRank(g).

Lemma 5.4 (Sub-multiplicativity of tensor rank). Let f (y) be set-multilinear on y = y1 t · · · t ya and
g(z) be set-multilinear on z = z1 t · · · zb with y ∩ z = ∅. Then polynomial f · g that is set-multilinear
on y ∪ z = y1 t · · · t ya t z1 t · · · zb satisfies4

TensorRank(f · g) ≤ TensorRank(f) · TensorRank(g).

The following is a trivial upper bound for the tensor rank of any degree d set-multilinear
polynomial f .

Lemma 5.5. Let f be a set-multilinear polynomial with respect to x = x1 t · · · t xd and say ni = |xi|.
Then,

TensorRank(f) ≤ ∏d
i=1 ni

maxi ni
.

In particular, if all ni = n, then TensorRank(f) ≤ nd−1.

4Tensor rank actually satisfies the relation TensorRank(f · g) = TensorRank(f) · TensorRank(g) but for this applica-
tion an upper bound would be enough.

9

A counting argument would imply that there do exist tensors of rank at least nd−1/d as each
elementary tensor has nd degrees of freedom and an arbitrary tensor has nd degrees of freedom. 5

So, it is a natural question to understand if we can construct explicit tensors of high rank? Raz
[Raz10] showed that in certain regimes of parameters involved, an answer to the above question
would yield arithmetic formula lower bounds. We elaborate on this now.

5.1 Tensor rank of small formulas

Henceforth, the variables in x are partitioned as x = x1 t · · · t xd with |xi| = n for all i ∈ [d]. The
main motivating question of Raz [Raz10] was the following:

If f is a set-multilinear polynomial that is computed by a small formula, what can one
say about its tensor rank?

Raz gave a partial6 answer to this question by showing the following result.

Theorem 5.6. Let Φ be a formula of size s ≤ nc computing a set-multilinear polynomial f (x) with respect
to x = x1 t · · · t xd. If d = O(log n/ log log n), then,

TensorRank(f) ≤ nd

nd/ exp(c)
.

To prove Theorem 5.6, Raz [Raz10] first showed that when d is small compared to n (specifi-
cally, d = O(log n/ log log n)), any small formula can be converted to a set-multilinear formula with
only a polynomial over-head. Formally, he shows the following theorem, which is interesting and
surprising in its own right7.

Definition 5.7 (Set-multilinear formulas). A formula Φ is said to be a set-multilinear formula if every
gate in the formula computes a set-multilinear polynomial syntactically.

That is, if f and g are polynomials computed by children of a + gate, then both f and g are set-
multilinear polynomials of the same degree over x, with possibly different partitions. And if f and g are
polynomials computed by children of a × gate, then both f and g are set-multilinear polyomials on disjoint
sets of variables. ♦

Theorem 5.8 ([Raz10]). Suppose d = O
(

log n
log log n

)
. If Φ is a formula of size s = poly(n) that computes

a set-multilinear polynomial f (x1, · · · , xd), then there is a set-multilinear formula of poly(s) size that
computes f as well.

5One might think that the above upper bound of nd−1 should be tight. Bizarrely, it is not! For example (cf. [Pam85]),
the maximum rank of any tensor of shape 2× 2× 2 is 3 and not 4 as one might expect! Tensor rank also behaves in
some strange ways under limits unlike the usual matrix rank.

6Partial in the sense that we do not know if the bound is tight.
7Indeed, it was believed that even transforming a formula into a homogeneous formula would cause a superpoly-

nomial blow up in its size if the degree of the polynomial computed by the formula is growing with n.

10

He then proceeds to show that set-mutlilinear formulas of polynomial size can only compute
polynomials with tensor rank non-trivially far from the upper bound of nd−1. More formally, he
shows the following theorem.

Theorem 5.9 ([Raz10]). Let Φ be a set-multilinear formula of size s ≤ nc computing a polynomial
f (x1, · · · , xd). Then,

TensorRank(f) ≤ nd

nd/ exp(c)
.

It is immediately clear that Theorem 5.9 and Theorem 5.8 imply Theorem 5.6. In this sec-
tion, we give a simple proof of Theorem 5.9 using Theorem 3.3. We refer the reader to Raz’s
paper [Raz10] or [Sap15] for a full proof of Theorem 5.8.

Proof of Theorem 5.9. We shall start with the set-multilinear formula Φ of size nc and reduce it to
depth-4 via Theorem 3.3 for a bottom degree parameter t that shall be chosen shortly. It is fairly
straightforward to observe that the depth reduction preserves multilinearity and set-multilinearity
as well. Therefore we now have a set-multilinear expression of the form

f = T1 + · · ·+ Ts′

where s′ ≤ s10(d/t) = n10c(d/t) and each Ti = Qi1 · · ·Qiai is a set-multilinear product. Let us fix
one such term T = Q1 · · ·Qa and we know that this is a set-multilinear product with a ≥ d log t

10t

non-trivial factors (by Theorem 3.3). Let di = deg(Qi). By the sub-multiplicativity of tensor rank
(Lemma 5.4) and the trivial upper bound (Lemma 5.5) we have

TensorRank(T) ≤ nd1−1 · · · nda−1

= nd−a

=⇒ TensorRank(f) ≤ s′ · nd−a (Lemma 5.3)

=
nd

na−10c(d/t)

Let us focus on the exponent of n in the denominator. Using the lower bound on a from Theo-
rem 3.3, we get

a− 10c(d/t) ≥ d log t
10t

− 10c
d
t

=
d
t

(
log t
10
− 10c

)

If we set log t
10 = 11c, then we get a− 10c(d/t) ≥ cd/t = d/ exp(c). Hence,

TensorRank(f) ≤ nd

nd/ exp(c)

11

We would like to remark that, in spirit, a tensor rank upper bound for formulas is essentially
a form of non-trivial reduction to set-multilinear depth three circuits. In this sense, this connection
between tensor rank upper bound and reduction to depth four is perhaps not too un-natural.

Also, observe that if instead of a general set-multilinear formula, we had started with a con-
stant depth set-multilinear formula, we would have obtained a slightly better upper bound (better
dependence on c) on the tensor rank of f . The improvement essentially comes from the fact that
the depth reduction for formulas with product depth ∆ to ΣΠΣΠ[t] guarantees that the fan-in of
product gates at the second level is at least Θ

(
d·d1/∆

t

)
(Section 4). We skip the details for the reader

to verify.

5.2 An improvement

The result of Raz [Raz10] required d = O(log n/ log log n) to be able to set-multilinearize the for-
mula without much cost. However, with this alternate proof via the improved depth reduction,
we can delay the set-multilinearization until a later stage and thus get the same upper bound on
the tensor rank for much larger d, provided that the formula we started with was homogeneous.

Theorem 5.10. Let f be a set-multilinear polynomial with respect to x = x1 t · · · t xd that is computed
by a homogeneous formula (not necessarily set-multilinear) Φ of size s = nc. If d is sub-polynomial in n,
that is log d = o(log n), then

TensorRank(f) ≤ nd

nd/ exp(c)
.

Proof. As earlier, we shall start with the formula Φ of size nc and reduce it to a ΣΠΣΠ[t] formula
Φ′ of size n10c(d/t) for a t that shall be chosen shortly. Again, Φ′ is a sum of terms of the form
T = Q1 · · ·Qa, a product of a ≥ d log t

10t non-trivial factors. The difference here is that this is not
necessarily a set-multilinear product. Let di = deg(Qi). Among the monomials in Qi, there may
be some that are divisible by two or more variables from some part xj and others that are products
of variables from distinct parts. For any S ⊂ [d] let, Qi,S be the sum of monomials of Qi that is
a product of exactly only variable from each xj for j ∈ S. Note that no monomials of Qi that is a
product of two or more variables from some xj can contribute to a set-multilinear monomial of f .
Thus, if SML(T) is the restriction of T to just the set-multilinear monomials of T, then

SML(T) = ∑
S1t···tSa=[d]
|Si |=di

Q1,S1 · · ·Qa,Sa

Here, S1, S2, . . . , Sa form a partition of the set [d]. We can observe that the tensor rank of each
summand is upper bounded by nd1−1nd2−1 · · · nda−1 and the number of summands is at most

12

(d
d1
)(d−d1

d2
) · · · (d−∑a−1

i=1 di
da

). Using Lemma 5.3 and Lemma 5.4, we get the following.

TensorRank(SML(T)) ≤ nd

na ·
(

d
d1 d2 · · · da

)
≤ nd−a · dd

= nd−a · nd log d/ log n

=⇒ TensorRank(f) ≤ nd/na−10c(d/t)−d log d/ log n

Again, let us focus on the exponent in the denominator

a− 10c · d
t
− d log d

log n
≥ d

t

(
log t
10
− 10c− t log d

log n

)

Once again we shall set t = 2O(c) so that log t
10 − 10c = c and since log d = o(log n) it follows that

d
t

(
log t
10
− 10c− t log d

log n

)
≥ d

exp(c)

Hence,

TensorRank(f) ≤ nd

nd/ exp(c)

Acknowledgements

Part of this work was done while the first two authors were visiting Tel Aviv University. We are
grateful to Amir Shpilka for supporting the visit.

References

[AJMV98] Eric Allender, Jia Jiao, Meena Mahajan, and V. Vinay. Non-Commutative Arithmetic
Circuits: Depth Reduction and Size Lower Bounds. Theoretical Computer Science, 209(1-
2):47–86, 1998. Pre-print available at eccc:TR95-043.

[AV08] Manindra Agrawal and V. Vinay. Arithmetic Circuits: A Chasm at Depth Four. In
Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2008), pages 67–75, 2008. Pre-print available at eccc:TR08-062.

[Hås90] Johan Håstad. Tensor Rank is NP-complete. J. Algorithms, 11(4):644–654, December
1990. Preliminary version in the 16th International Colloquium on Automata, Languages
and Programming (ICALP 1989).

13

http://dx.doi.org/10.1016/S0304-3975(97)00227-2
http://dx.doi.org/10.1016/S0304-3975(97)00227-2
http://eccc.hpi-web.de/report/1995/043/
http://dx.doi.org/10.1109/FOCS.2008.32
http://eccc.hpi-web.de/report/2008/062/
http://dx.doi.org/10.1016/0196-6774(90)90014-6

[HY11] Pavel Hrubeš and Amir Yehudayoff. Homogeneous Formulas and Symmetric Polyno-
mials. Computational Complexity, 20(3):559–578, 2011.

[Koi12] Pascal Koiran. Arithmetic Circuits: The Chasm at Depth Four Gets Wider. Theoretical
Computer Science, 448:56–65, 2012. Pre-print available at arXiv:1006.4700.

[Pam85] P. Pamfilos. On the maximum rank of a tensor product. Acta Mathematica Hungarica,
45(1):95–97, 1985.

[Raz10] Ran Raz. Tensor-rank and lower bounds for arithmetic formulas. In Proceedings of the
42nd Annual ACM Symposium on Theory of Computing (STOC 2010), pages 659–666, 2010.
Pre-print available at eccc:TR10-002.

[Sap15] Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity.
Github survey: https://github.com/dasarpmar/lowerbounds-survey/releases/,
2015.

[Tav15] Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. Inf. Com-
put., 240:2–11, 2015. Preliminary version in the 38th Internationl Symposium on the Math-
ematical Foundations of Computer Science (MFCS 2013).

[VSBR83] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast Parallel Com-
putation of Polynomials Using Few Processors. SIAM Journal of Computing, 12(4):641–
644, 1983. Preliminary version in the 6th Internationl Symposium on the Mathematical
Foundations of Computer Science (MFCS 1981).

14

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

http://dx.doi.org/10.1016/j.tcs.2012.03.041
http://arxiv.org/abs/1006.4700
http://dx.doi.org/10.1007/BF01955026
http://doi.acm.org/10.1145/2535928
http://eccc.hpi-web.de/report/2010/002/
https://github.com/dasarpmar/lowerbounds-survey/releases/
https://github.com/dasarpmar/lowerbounds-survey/releases/
http://dx.doi.org/10.1016/j.ic.2014.09.004
http://dx.doi.org/10.1137/0212043
http://dx.doi.org/10.1137/0212043

