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Abstract

We give upper and lower bounds on the power of subsystems of the Ideal Proof System (IPS),
the algebraic proof system recently proposed by Grochow and Pitassi [GP14], where the circuits
comprising the proof come from various restricted algebraic circuit classes. This mimics an
established research direction in the boolean setting for subsystems of Eztended Frege proofs,
where proof-lines are circuits from restricted boolean circuit classes. Except one, all of the
subsystems considered in this paper can simulate the well-studied Nullstellensatz proof system,
and prior to this work there were no known lower bounds when measuring proof size by the
algebraic complexity of the polynomials (except with respect to degree, or to sparsity).

We give two general methods of converting certain algebraic lower bounds into proof complexity
ones. Our methods require stronger notions of lower bounds, which lower bound a polynomial
as well as an entire family of polynomials it defines. Our techniques are reminiscent of existing
methods for converting boolean circuit lower bounds into related proof complexity results, such
as feasible interpolation. We obtain the relevant types of lower bounds for a variety of classes
(sparse polynomials, depth-3 powering formulas, read-once oblivious algebraic branching programs,
and multilinear formulas), and infer the relevant proof complexity results. We complement our
lower bounds by giving short refutations of the previously-studied subset-sum axiom using IPS
subsystems, allowing us to conclude strict separations between some of these subsystems.

Our first method is a functional lower bound, a notion of Grigoriev and Razborov [GR00],
which is a function f : {0,1}™ — F such that any polynomial f agreeing with f on the boolean
cube requires large algebraic circuit complexity. For our classes of interest, we develop functional
lower bounds where f (Z) equals 1/p(z) where p is a constant-degree polynomial, which in turn
yield corresponding IPS lower bounds for proving that p is nonzero over the boolean cube. In
particular, we show super-polynomial lower bounds for refuting variants of the subset-sum axiom
in various IPS subsystems.

Our second method is to give lower bounds for multiples, that is, to give explicit polynomials
whose all (nonzero) multiples require large algebraic circuit complexity. By extending known
techniques, we are able to obtain such lower bounds for our classes of interest, which we then use
to derive corresponding IPS lower bounds. Such lower bounds for multiples are of independent
interest, as they have tight connections with the algebraic hardness versus randomness paradigm.
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1 Introduction

Propositional proof complexity aims to understand and analyze the computational resources required
to prove propositional tautologies, in the same way that circuit complexity studies the resources
required to compute boolean functions. A typical goal would be to establish, for a given proof
system, super-polynomial lower bounds on the size of any proof of some propositional tautology.
The seminal work of Cook and Reckhow [CR79] showed that this goal relates quite directly to
fundamental hardness questions in computational complexity such as the NP vs. coNP question:
establishing super-polynomial lower bounds for every propositional proof system would separate
NP from coNP (and thus also P from NP). We refer the reader to Krajicek [Kra95] for more on this
subject.

Propositional proof systems come in a large variety, as different ones capture different forms
of reasoning, either reasoning used to actually prove theorems, or reasoning used by algorithmic
techniques for different types of search problems (as failure of the algorithm to find the desired
object constitutes a proof of its nonexistence). Much of the research in proof complexity deals
with propositional proof systems originating from logic or geometry. Logical proof systems include
such systems as resolution (whose variants are related to popular algorithms for automated theory
proving and SAT solving), as well as the Frege proof system (capturing the most common logic
text-book systems) and its many subsystems. Geometric proof systems include cutting-plane proofs,
capturing reasoning used in algorithms for integer programming, as well as proof systems arising from
systematic strategies for rounding linear- or semidefinite-programming such as the lift-and-project
or sum-of-squares hierarchies.

In this paper we focus on algebraic proof systems, in which propositional tautologies (or rather
contradictions) are expressed as unsatisfiable systems of polynomial equations and algebraic tools
are used to refute them. This study originates with the work of Beame, Impagliazzo, Krajicek,
Pitassi and Pudlak [BIK"96a], who introduced the Nullstellensatz refutation system (based on
Hilbert’s Nullstellensatz), followed by the Polynomial Calculus system of Clegg, Edmonds, and
Impagliazzo [CEIJ6], which is a “dynamic” version of Nullstellensatz. In both systems the main
measures of proof size that have been studied are the degree and sparsity of the polynomials appearing
in the proof. Substantial work has lead to a very good understanding of the power of these systems
with respect to these measures (see for example [BIK*96b, Raz98, Gri9g8,1PS99, BGIP01, AR01] and
references therein).

However, the above measures of degree and sparsity are rather rough measures of a complexity of
a proof. As such, Grochow and Pitassi [GP14] have recently advocated measuring the complexity of
such proofs by their algebraic circuit size and shown that the resulting proof system can polynomially
simulate strong proof systems such as the Frege system. This naturally leads to the question of
establishing lower bounds for this stronger proof system, even for restricted classes of algebraic
circuits.

In this work we establish such lower bounds for previously studied restricted classes of algebraic
circuits, and show that these lower bounds are interesting by providing non-trivial upper bounds
in these proof systems for refutations of interesting sets of polynomial equations. This provides
what are apparently the first examples of lower bounds on the algebraic circuit size of propositional
proofs in the Ideal Proof System (IPS) framework of Grochow and Pitassi [GP14].

We note that obtaining proof complexity lower bounds from circuit complexity lower bounds is
an established tradition that takes many forms. Most prominent are the lower bounds for subsystems
of the Frege proof system defined by low-depth boolean circuits, and lower bounds of Pudlédk [Pud97]
on Resolution and Cutting Planes system using the so-called feasible interpolation method. We
refer the reader again to Krajicek [Kra95] for more details. Our approach here for algebraic systems



shares features with both of these approaches.

The rest of this introduction is arranged as follows. In Section 1.1 we give the necessary
background in algebraic proof complexity, and explain the IPS system. In Section 1.2 we define the
algebraic complexity classes that will underlie the subsystems of IPS we will study. In Section 1.3
we state our results and explain our techniques, for both the algebraic and proof complexity worlds.

1.1 Algebraic Proof Systems

We now describe the algebraic proof systems that are the subject of this paper. If one has a
set of polynomials (called axzioms) fi,..., fm € F[x1,...,x,] over some field F, then (the weak
version of) Hilbert’s Nullstellensatz shows that the system fi(Z) = --- = f,(Z) = 0 is unsatisfiable
(over the algebraic closure of IF) if and only if there are polynomials g1, ..., g, € F[Z] such that
>2;95(@) fj(T) = 1 (as a formal identity), or equivalently, that 1 is in the ideal generated by the
{fi}s-

Beame, Impagliazzo, Krajicek, Pitassi, and Pudlak [BIK"96a] suggested to treat these {g;}; as
a proof of the unsatisfiability of this system of equations, called a Nullstellensatz refutation. This
is in particular relevant for complexity theory as one can restrict attention to boolean solutions
to this system by adding the boolean axioms, that is, adding the polynomials {z? — x;}"; to the
system. As such, one can then naturally encode NP-complete problems such as the satisfiability of
3CNF formulas as the satisfiability of a system of constant-degree polynomials, and a Nullstellensatz
refutation is then an equation of the form Y5, ¢;(Z) f;(Z) + iy hi(T) (2] — x3) = 1 for gj, h; € F[z].
This proof system is sound (only refuting unsatisfiable systems over {0,1}") and complete (refuting
any unsatisfiable system, by Hilbert’s Nullstellensatz).

Given that the above proof system is sound and complete, it is then natural to ask what is
its power to refute unsatisfiable systems of polynomial equations over {0,1}". To understand this
question one must define the notion of the size of the above refutations. Two popular notions are
that of the degree, and the sparsity (number of monomials). One can then show (see for example
Pitassi [Pit97]) that for any unsatisfiable system which includes the boolean axioms, there exist a
refutation where the g; are multilinear and where the h; have degree at most O(n + d), where each
fj has degree at most d. In particular, this implies that for any unsatisfiable system with d = O(n)
there is a refutation of degree O(n) and involving at most exp(O(n)) monomials. This intuitively
agrees with the fact that coNP is a subset of non-deterministic exponential time.

Building on the suggestion of Pitassi [Pit97] and various investigations into the power of
strong algebraic proof systems ([GHO03, RT08a, RT08b]), Grochow and Pitassi [GP14] have recently
considered more succinct descriptions of polynomials where one measures the size of a polynomial
by the size of an algebraic circuit needed to compute it. This is potentially much more powerful as
there are polynomials such as the determinant which are of high degree and involve exponentially
many monomials and yet can be computed by small algebraic circuits. They named the resulting
system the Ideal Proof System (IPS) which we now define.

Definition 1.1 (Ideal Proof System (IPS), Grochow-Pitassi [GP14]). Let fi(T),..., fm(T) €
Flz1,...,x,] be a system of polynomials. An IPS refutation for showing that the polynomials { f;};

have no common solution in {0,1}" is an algebraic circuit C(T,7,Z) € F[T,y1,- -+, Yms 21, - - - s Zn),
such that
1. C(z,0,0) = 0.

2. C(z, fl(f),...,fm(f),x% —xl,...,m% —xy,) = 1.

The size of the IPS refutation is the size of the circuit C. If C is of individual degree <1 in each y;
and z;, then this is a linear IPS refutation (called Hilbert IPS by Grochow-Pitassi [GP1]]), which



we will abbreviate as IPSyy. If C is of individual degree <1 only in the y; then we say this is a
IPS; 1 refutation. If C' comes from a restricted class of algebraic circuits C, then this is a called a
C-IPS refutation, and further called a C-IPSpin refutation if C' is linear in §,Z, and a C-IPSy
refutation if C' is linear in 7. %

Notice also that our definition here by default adds the equations {x? — z;}; to the system
{f;};. For convenience we will often denote the equations {z? — z;}; as > — Z. One need not add
the equations Z2 — T to the system in general, but this is the most interesting regime for proof
complexity and thus we adopt it as part of our definition.

The C-IPS system is sound for any C, and Hilbert’s Nullstellensatz shows that C-IPSyy is
complete for any complete class of algebraic circuits C (that is, classes which can compute any
polynomial, possibly requiring exponential complexity). We note that we will also consider non-
complete classes such as multilinear-formulas (which can only compute multilinear polynomials,
but are complete for multilinear polynomials), where we will show that the multilinear-formula-
TIPS N system is not complete for the language of all unsatisfiable sets of multilinear polynomials
(Example 4.10), while the stronger multilinear-formula-IPS; ;v version is complete (Corollary 4.15).
However, for the standard conversion of unsatisfiable CNFs into polynomial systems of equations,
the multilinear-formula-IPSyp 1y system is complete (Theorem 1.2).

Grochow-Pitassi [GP14] proved the following theorem, showing that the IPS system has surprising
power and that lower bounds on this system give rise to computational lower bounds.

Theorem 1.2 (Grochow-Pitassi [GP14]). Let ¢ = C1 A -+ A Cy, be an unsatisfiable CNF on n-
variables, and let fi,..., fm € Flzy1,..., 2] be its encoding as a polynomial system of equations.
If there is a size-s Frege proof (resp. Extended Frege) that {f;};,{x? — x;}; is unsatisfiable, then
there is a formula-IPSpy (resp. circuit-IPSpn) refutation of size poly(n,m, s) that is checkable in
randomized poly(n,m, s) time.!

Further, {f;};,{x? — x;}; has a IPSpy refutation, where the refutation uses multilinear polyno-
mials in VNP. Thus, if every IPS refutation of {f;};,{x? — i} requires formula (resp. circuit) size
> s, then there is an explicit polynomial (that is, in VNP) that requires size > s algebraic formulas
(resp. circuits). O

Remark 1.3. One point to note is that the transformation from Extended Frege to IPS refutations
yields circuits of polynomial size but without any guarantee on their degree. In particular, such
circuits can compute polynomials of exponential degree. In contrast, the conversion from Frege
to IPS refutations yields polynomial sized algebraic formulas and those compute polynomials of
polynomially bounded degree. This range of parameters, polynomials of polynomially bounded
degree, is the more common setting studied in algebraic complexity. %

The fact that C-IPS refutations are efficiently checkable (with randomness) follows from the
fact that we need to verify the polynomial identities stipulated by the definition. That is, one
needs to solve an instance of the polynomial identity testing (PIT) problem for the class C: given a
circuit from the class C decide whether it computes the identically zero polynomial. This problem is
solvable in probabilistic polynomial time (BPP) for general algebraic circuits, and there are various
restricted classes for which deterministic algorithms are known (see Section 3.1).

Motivated by the fact that PIT of non-commutative formulas? can be solved deterministically
([RS05]) and admit exponential-size lower bounds ([Nis91]), Li, Tzameret and Wang [LTW15] have
shown that IPS over non-commutative polynomials (along with additional commutator axioms)

'We note that Grochow and Pitassi [GP14] proved this for Extended Frege and circuits, but essentially the same
proof relates Frege and formula size.
2These are formulas over a set of non-commuting variables.



can simulate Frege (they also provided a quasipolynomial simulation of IPS over non-commutative
formulas by Frege; see Li, Tzameret and Wang [LTW15] for more details).

Theorem 1.4 (Li, Tzameret and Wang [LTW15]). Let ¢ = C1 A -+ A Cyp, be an unsatisfiable
CNF on n-variables, and let fi,..., fm € Flz1,...,2m] be its encoding as a polynomial system of
equations. If there is a size-s Frege proof that {f;};,{x? — x;}; is unsatisfiable, then there is a non-
commutative-IPS refutation of formula-size poly(n,m,s), where the commutator azioms x;x; — xjx;
are also included in the polynomial system being refuted. Further, this refutation is checkable in
deterministic poly(n,m,s) time. O

The above results naturally motivate studying C-IPS for various restricted classes of algebraic
circuits, as lower bounds for such proofs then intuitively correspond to restricted lower bounds
for the Extended Frege proof system. In particular, as exponential lower bounds are known for
non-commutative formulas ([Nis91]), this possibly suggests that such methods could even attack the
full Frege system itself.

1.2 Algebraic Circuit Classes

Having motivated C-IPS for restricted circuit classes C, we now give formal definitions of the
algebraic circuit classes of interest to this paper, all of which were studied independently in algebraic
complexity. Some of them capture the state-of-art in our ability to prove lower bounds and provide
efficient deterministic identity tests, so it is natural to attempt to fit them into the proof complexity
framework. We define each and briefly explain what we know about it. As the list is long, the
reader may consider skipping to the results (Section 1.3), and refer to the definitions of these classes
as they arise.

Algebraic circuits and formula (over a fixed chosen field) compute polynomials via addition and
multiplication gates, starting from the input variables and constants from the field. For background
on algebraic circuits in general and their complexity measures we refer the reader to the survey
of Shpilka and Yehudayoff [SY10]. We next define the restricted circuit classes that we will be
studying in this paper.

1.2.1 Low Depth Classes

We start by defining what are the simplest and most restricted classes of algebraic circuits. The
first class simply represents polynomials as a sum of monomials. This is also called the sparse
representation of the polynomial. Notationally we call this model )" [] formulas (to capture the fact
that polynomials computed in the class are represented simply as sums of products), but we will
more often call these polynomials “sparse”.

Definition 1.5. The class C = > [[ compute polynomials in their sparse representation, that is, as
a sum of monomials. The graph of computation has two layers with an addition gate at the top and
multiplication gates at the bottom. The size of a > [] circuit of a polynomial f is the multiplication
of the number of monomials in f, the number of variables, and the degree. %

This class of circuits is what is used in the Nullstellensatz proof system. In our terminology
ST TI-IPS1in is exactly the Nullstellensatz proof system.

Another restricted class of algebraic circuits is that of depth-3 powering formulas (sometimes
also called “diagonal depth-3 circuits”). We will sometimes abbreviate this name as a “>. A Y
formula”, where /\ denotes the powering operation. Specifically, polynomials that are efficiently
computed by small formulas from this class can be represented as sum of powers of linear functions.
This model appears implicitly in Shpilka [Shp02] and explicitly in the work of Saxena [Sax08].



Definition 1.6. The class of depth-3 powering formulas, denoted > A\ >, computes polynomials of
the following form

f@) => ti@)™,
=1

where £;(T) are linear functions. The degree of this >, \Y_ representation of f is max;{d;} and its
size isn -y 5 1(d; +1). O
One reason for considering this class of circuits is that it is a simple, but non-trivial model that is
somewhat well-understood. In particular, the partial derivative method of Nisan-Wigderson [N'W96]
implies lower bounds for this model and efficient polynomial identity testing algorithms are known
([Sax08,ASS13,FS13a,FS13b, FSS14], as discussed further in Section 3.1).
We also consider a generalization of this model where we allow powering of low-degree polynomials.

Definition 1.7. The class > AT’ computes polynomials of the following form
f@=>_fi@%,
i=1

where the degree of the f;(T) is at most t. The size of this representation is ("jt) yisi(di+1). O

We remark that the reason for defining the size this way is that we think of the f; as represented
as sum of monomials (there are ("jt) n-variate monomials of degree at most ¢) and the size captures
the complexity of writing this as an algebraic formula. This model is the simplest that requires the
method of shifted partial derivatives of Kayal [Kay12, GKKS14] to establish lower bounds, and this
has recently been generalized to obtain polynomial identity testing algorithms ([Forl5], as discussed
further in Section 3.1).

1.2.2 Oblivious Algebraic Branching Programs

Algebraic branching programs (ABPs) form a model whose computational power lies between that
of algebraic circuits and algebraic formulas, and certain read-once and oblivious ABPs are a natural
setting for studying the partial derivative matriz lower bound technique of Nisan [Nis91].

Definition 1.8 (Nisan [Nis91]). An algebraic branching program (ABP) with unrestricted
weights of depth D and width < r, on the variables x1,...,Ty, is a directed acyclic graph such
that:

e The vertices are partitioned in D + 1 layers Vp,...,Vp, so that Vi = {s} (s is the source
node), and Vp = {t} (t is the sink node). Further, each edge goes from V;_y to V; for some
0<i1<D.

e max |V;| <.
e FEach edge e is weighted with a polynomial f. € F[x].

The (individual) degree d of the ABP is the mazimum (individual) degree of the edge polynomials
fe.- The size of the ABP is the productn-r-d- D,
Each s-t path is said to compute the polynomial which is the product of the labels of its edges,
and the algebraic branching program itself computes the sum over all s-t paths of such polynomials.
There are also the following restricted ABP variants.

o An algebraic branching program is said to be oblivious if for every layer £, all the edge labels
in that layer are univariate polynomials in a single variable x;,.



o An oblivious branching program is said to be a read-once oblivious ABP (roABP) if each x;
appears in the edge label of exactly one layer, so that D = n. That is, each x; appears in the
edge labels in at exactly one layer. The layers thus define a variable order, which will be
r1 < -+ < Ty if not otherwise specified.

o An oblivious branching program is said to be a read-k oblivious ABP if each variable x;
appears in the edge labels of exactly k layers, so that D = kn.

e An ABP is non-commutative if each f. is from the ring F(ZT) of non-commuting variables
and has deg f. < 1, so that the ABP computes a non-commutative polynomial. %

Intuitively, roABPs are the algebraic analog of read-once boolean branching programs, the
non-uniform model of the class RL, which are well-studied in boolean complexity. Algebraically,
roABPs are also well-studied. In particular, roABPs are essentially equivalent to non-commutative
ABPs ([FS13b]), a model at least as strong as non-commutative formulas. That is, as an roABP reads
the variables in a fixed order (hence not using commutativity) it can be almost directly interpreted
as a non-commutative ABP. Conversely, as non-commutative multiplication is ordered, one can
interpret a non-commutative polynomial in a read-once fashion by (commutatively) exponentiating
a variable to its index in a monomial. For example, the non-commutative zy — yx can be interpreted
commutatively as z'y? — y'a? = 2y? — 2%y, and one can show that this conversion preserves the
relevant ABP complexity ([FF'S13b]). The study of non-commutative ABPs dates to Nisan [Nis91],
who proved lower bounds for non-commutative ABPs (and thus also for roABPs, in any order).
In a sequence of more recent papers, polynomial identity testing algorithms were devised for
roABPs ([RS05,FS12,FS13b, FSS14, AGKS15], see also Section 3.1). In terms of proof complexity,
Tzameret [Tzall] studied a proof system with lines given by roABPs, and recently Li, Tzameret
and Wang [LTW15] (Theorem 1.4) showed that IPS over non-commutative formulas is essentially
equivalent in power to the Frege proof system. Due to the close connections between non-commutative
ABPs and roABPs, this last result suggests the importance of proving lower bounds for roABP-
IPS as a way of attacking lower bounds for the Frege proof system (although our work obtains
roABP-IPSpn lower bounds without obtaining non-commutative-IPSyn lower bounds).

Finally, we mention that recently Anderson, Forbes, Saptharishi, Shpilka, and Volk [AFS™16]
obtained exponential lower bounds for read-k oblivious ABPs (when k = o(logn/loglogn)) as well
as a slightly subexponential polynomial identity testing algorithm.

1.2.3 Multilinear Formulas

The last model that we consider is that of multilinear formulas.

Definition 1.9 (Multilinear formula). An algebraic formula is a multilinear formula if the
polynomial computed by each gate of the formula is multilinear (as a formal polynomial, that is, as
an element of Flxy,...,z,]). The product depth is the mazximum number of multiplication gates
on any input-to-output path in the formula. O

Raz [Raz09,Raz06] proved quasi-polynomial lower bounds for multilinear formulas and separated
multilinear formulas from multilinear circuits. Raz and Yehudayoff proved exponential lower bounds
for small depth multilinear formulas [RY09]. Only slightly sub-exponential polynomial identity
testing algorithms are known for small-depth multilinear formulas ([OSV15]).

1.3 Owur Results and Techniques

We now briefly summarize our results and techniques, stating some results in less than full generality
to more clearly convey the result. We present the results in the order that we later prove them. We



start by giving upper bounds for the IPS (Section 1.3.1). We then describe our functional lower
bounds and the TIPSy N lower bounds they imply (Section 1.3.2). Finally, we discuss lower bounds
for multiples and state our lower bounds for IPS (Section 1.3.3).

1.3.1 Upper Bounds for Proofs within Subclasses of IPS

Various previous works have studied restricted algebraic proof systems and shown non-trivial
upper bounds. The general simulation (Theorem 1.2) of Grochow and Pitassi [GP14] showed
that the formula-IPS and circuit-IPS systems can simulate powerful proof systems such as Frege
and Extended Frege, respectively. The work of Li, Tzameret and Wang [LTW15] (Theorem 1.4)
show that even non-commutative-formula-IPS can simulate Frege. The work of Grigoriev and
Hirsch [GHO3] showed that proofs manipulating depth-3 algebraic formulas can refute hard axioms
such as the pigeonhole principle, the subset-sum axiom, and Tseitin tautologies. The work of Raz and
Tzameret [RT08a, RT08b] somewhat strengthened their results by restricting the proof to depth-3
multilinear proofs (in a dynamic system, see Appendix A).

However, these upper bounds are for proof systems (IPS or otherwise) for which no proof lower
bounds are known. As such, in this work we also study upper bounds for restricted subsystems of
IPS. In particular, we compare linear-IPS versus the full IPS system, as well as showing that even for
restricted C, C-IPS can refute interesting unsatisfiable systems of equations arising from NP-complete
problems (and we will obtain corresponding proof lower bounds for these C-IPS systems).

Our first upper bound is to show that linear-IPS can simulate the full IPS proof system when
the axioms are computationally simple, which essentially resolves a question of Grochow and
Pitassi [GP14, Open Question 1.13].

Theorem (Proposition 4.4). For |F| > poly(d), if f1,..., fm € Flx1,...,xz,] are degree-d polynomials
computable by size-s algebraic formulas (resp. circuits) and they have a size-t formula-IPS (resp.
circuit-IPS) refutation, then they also have a size-poly(d, s,t) formula-IPSpin (resp. circuit-IPSrn)
refutation. O

This theorem is established by pushing the “non-linear” dependencies on the axioms into the
IPS refutation itself, which is possible as the axioms are assumed to themselves be computable by
small circuits. We note that Grochow and Pitassi [GP14] showed such a conversion, but only for
IPS refutations computable by sparse polynomials. Also, we remark that this result holds even for
circuits of unbounded degree, as opposed to just those of polynomial degree.

We then turn our attention to IPS involving only restricted classes of algebraic circuits, and
show that they are complete proof systems. This is clear for complete models of algebraic circuits
such as sparse polynomials, depth-3 powering formulas® and roABPs. The models of sparse-IPSr iy
and roABP-IPSy v can efficiently simulate the Nullstellensatz proof system measured in terms of
number of monomials, as the former is equivalent to this system, and the latter follows as sparse
polynomials have small roABPs. Note that depth-3 powering formulas cannot efficiently compute
sparse polynomials in general (Corollary 6.9) so cannot efficiently simulate the Nullstellensatz system.
For multilinear formulas, showing completeness (much less an efficient simulation of sparse-IPSyx)
is more subtle as not every polynomial is multilinear, however the result can be obtained by a
careful multilinearization.

Theorem (Example 4.10, Corollary 4.15). The proof systems of sparse-IPSpin, > A\ Y. -IPSpin (in
large characteristic fields), and roABP-IPSy iy are complete proof systems (for systems of polynomials
with no boolean solutions). The multilinear-formula-IPSp iy proof system is not complete, but the

3Showing that depth-3 powering formulas are complete (in large characteristic) can be seen from the fact that any
multilinear monomial can be computed in this model, see for example Fischer [Fis94].
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depth-2 multilinear-formula-IPSy;py proof system is complete (for multilinear azioms) and can
polynomially simulate sparse-IPSpiy (for low-degree axioms). O

However, we recall that multilinear-formula-IPSyn is complete when refuting unsatisfiable CNF
formulas (Theorem 1.2).

We next consider the equation Y. ; a;z; — 3 along with the boolean axioms {z? — z;};. Deciding
whether this system of equations is satisfiable is the NP-complete subset-sum problem, and as such
we do not expect small refutations in general (unless NP = coNP). Indeed, Impagliazzo, Pudldk, and
Sgall [IPS99] (Theorem A.4) have shown lower bounds for refutations in the polynomial calculus
system (and thus also the Nullstellensatz system) even when @ = 1. Specifically, they showed
that such refutations require both Q(n)-degree and exp(§2(n))-many monomials, matching the
worst-case upper bounds for these complexity measures. In the language of this paper, they gave
exp(§2(n))-size lower bounds for refuting this system in > [[-IPSpy (which is equivalent to the
Nullstellensatz proof system). In contrast, we establish here poly(n)-size refutations for @ =1 in
the restricted proof systems of roABP-IPSy iy and depth-3 multilinear-formula-IPSp N (despite the
fact that multilinear-formula-IPSy N is not complete).

Theorem (Corollary 4.18, Proposition 4.19). Let F be a field of characteristic char(F) > n. Then
the system of polynomial equations Y"1 1 x; — B, {x? — x;}", is unsatisfiable for 3 € F\ {0,...,n},
and there are explicit poly(n)-size refutations within roABP-IPSLiy, as well as within depth-3
multilinear-formula-IPSyry. ]

This theorem is proven by noting that the polynomial p(t) := []j}_y(f — k) vanishes on >, z;
modulo {z? —z;}" ;, but p(B) is a nonzero constant. This implies that 3, z; — 3 divides p(}; ;) —
p(5). Denoting the quotient by f(Z), it follows that % f@) (2 —B) =1 mod {x? —z;}7 4,
which is nearly a linear-IPS refutation except for the complexity of establishing this relation over
the boolean cube. We show that the quotient f is easily expressed as a depth-3 powering circuit.
Unfortunately, proving the above equivalence to 1 modulo the boolean cube is not possible in the
depth-3 powering circuit model. However, by moving to more powerful models (such as roABPs
and multilinear formulas) we can give proofs of this multilinearization to 1 and thus give proper
IPS refutations.

1.3.2 Linear-IPS Lower Bounds via Functional Lower Bounds

Having demonstrated the power of various restricted classes of IPS refutations by refuting the
subset-sum axiom, we now turn to lower bounds. We give two paradigms for establishing lower
bounds, the first of which we discus here, named a functional circuit lower bound. This idea appeared
in the work of Grigoriev and Razborov [GR00] as well as in the recent work of Forbes, Kumar and
Saptharishi [FIKS16]. We briefly motivate this type of lower bound as a topic of independent interest
in algebraic circuit complexity, and then discuss the lower bounds we obtain and their implications
to obtaining proof complexity lower bounds.

In boolean complexity, the primary object of interest are functions. Generalizing slightly, one can
even seek to compute functions f : {0,1}" — F for some field F. In contrast, in algebraic complexity
one seeks to compute polynomials as elements of the ring Flz1,...,x,]. These two regimes are tied
by the fact that every polynomial f € F[Z] induces a function f: {0,1}" — F via the evaluation
f : T — f(Z). That is, the polynomial f functionally computes the function f . As an example,
22 —  functionally computes the zero function despite being a nonzero polynomial.

Traditional algebraic circuit lower bounds for the n x n permanent are lower bounds for
computing perm,, as an element in the ring F[{z; j}1<; j<n]. This is a strong notion of “computing
the permanent”, while one can consider the weaker notion of functionally computing the permanent,
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that is, a polynomial f € F[{z;;}]| such that f = perm, over {0,1}"*", where f is not required
to equal perm, as a polynomial. As perm, : {0,1}"*" — F is #P-hard (for fields of large
characteristic), assuming plausible conjectures (such as the polynomial hierarchy being infinite)
it follows that any polynomial f which functionally computes perm,, must require large algebraic
circuits. Unconditionally obtaining such a result is what we term a functional lower bound.

Goal 1.10 (Functional Circuit Lower Bound ([GR00, FKS16])). Obtain an explicit function f :
{0,1}" — F such that for any polynomial f € Flxzy,...,x,] satisfying f(Z) = f(Z) for all T € {0,1}",
it must be that f requires large algebraic circuits. O

Obtaining such a result is challenging, in part because one must lower bound all polynomials
agreeing with the function f (of which there are infinitely many). Prior work ([GK98, GR00, KS15])
has established functional lower bounds for functions when computing with polynomials over
constant-sized finite fields, and the recent work of Forbes, Kumar and Saptharishi [FKS16] has
established some lower bounds for any field.

While it is natural to hope that existing methods would yield such lower bounds, many lower
bound techniques inherently use that algebraic computation is syntactic. In particular, techniques
involving partial derivatives (which include the partial derivative method of Nisan-Wigderson [NW96]
and the shifted partial derivative method of Kayal [Kay12, GKIKS14]) cannot as is yield functional
lower bounds as knowing a polynomial on {0,1}" is not enough to conclude information about its
partial derivatives.

We now explain how functional lower bounds imply lower bounds for linear-IPS refutations in
certain cases. Suppose one considers refutations of the unsatisfiable polynomial system f(Z), {2? —
x;}™ ;. A linear-IPS refutation would yield an equation of the form g(Z)- f(Z)+3; hi(Z)- (7 —x;) = 1
for some polynomials g, h; € F[Z]. Viewing this equation modulo the boolean cube, we have that
g(@) - f(F) =1 mod {z? — x;};. Equivalently, since f(7) is unsatisfiable over {0,1}", we see that
g9(x) = Yr@ for T € {0,1}", as f(T) is never zero so this fraction is well-defined. It follows that if
the function Z — 1/f(z) induces a functional lower bound then ¢(Z) must require large complexity,
yielding the desired linear-IPS lower bound.

Thus, it remains to instantiate this program. While we are successful, we should note that this
approach as is seems to only yield proof complexity lower bounds for systems with one non-boolean
axiom and thus cannot encode polynomial systems where each equation depends on O(1) variables
(such as those naturally arising from 3CNFs).

Our starting point is to observe that the subset-sum axiom already induces a weak form of
functional lower bound, where the complexity is measured by degree.

Theorem (Corollary 5.4). Let F be a field of a characteristic at least poly(n) and 8 ¢ {0,...,n}.
Then Y, x; — 3,{x? — x;}; is unsatisfiable and any polynomial f € Flx1, ..., x,] with f(T) = ﬁ
for T € {0,1}", satisfies deg f > n. .

A lower bound of [§] 4 1 was previously established by Impagliazzo, Pudldk, and Sgall [IPS99]
(Theorem A.4), but the bound of ‘n’ (which is tight) will be crucial for our results.

We then lift this result to obtain lower bounds for stronger models of algebraic complexity. In

particular, by replacing “x;” with “x;y;” we show that the function m
dimension between T and 7, which is some measure of interaction between the variables in 7 and
those in 7 (see Section 3.3). This measure is essentially functional, so that one can lower bound
this measure by understanding the functional behavior of the polynomial on finite sets such as the
boolean cube. Our lower bound for evaluation dimension follows by examining the above degree
bound. Using known relations between this complexity measure and algebraic circuit classes, we

can obtain lower bounds for depth-3 powering linear-IPS.

has maximal evaluation
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Theorem (Corollary 5.10). Let F be a field of characteristic > poly(n) and 8 ¢ {0,...,n}. Then
S wiy — By — @i}, {y? — vi}i is unsatisfiable and any Y \S°-IPSpiy refutation requires size
> exp(Q2(n)). O

The above axiom only gets maximal interaction between the variables across a fized partition of
the variables. By introducing auxiliary variables we can create such interactions in variables across
any partition of (some) of the variables. By again invoking results showing such structure implies
computational hardness we obtain more linear-IPS lower bounds.

Theorem (Corollary 5.15). Let F be a field of characteristic > poly(n) and 5 ¢ {0, ..., (22")} Then
i< ZigTiti — B, {22 — 2,37 4, {zfj — 2 j}icj 15 unsatisfiable, and any roABP-IPSpn refutation (in
any variable order) requires exp(2(n))-size. Further, any multilinear-formula-IPS refutation requires
nf008n) _gize  and any product-depth-d multilinear-formula-IPS refutation requires n("/ logn)1/4/d?)
size. U

Note that our result for multilinear-formulas is not just for the linear-IPS system, but actually
for the full multilinear-formula-IPS system. Thus, we show that even though roABP-IPSyn and
depth-3 multilinear formula-IPS; s can refute the subset-sum axiom in polynomial size, slight
variants of this axiom do not have polynomial-size refutations.

1.3.3 Lower Bounds for Multiples

While the above paradigm can establish super-polynomial lower bounds for linear-IPS, it does
not seem able to establish lower bounds for the general IPS proof system over non-multilinear
polynomials, even for restricted classes. This is because such systems would induce equations such
as h(T)f(T)? + g(@)f(T) =1 mod {x? — x;}"_,, where we need to design a computationally simple
axiom f so that this equation implies at least one of h or g is of large complexity. In a linear-IPS
proof it must be that h is zero, so that for any = € {0, 1}"™ we can solve for g(¥), that is, (%) = 1/ @).
However, in general knowing f(Z) does not uniquely determine ¢(Z) or h(Z), which makes this
approach significantly more complicated. Further, even though we can efficiently simulate IPS by
linear-IPS (Proposition 4.4) in general, this simulation increases the complexity of the proof so that
even if one started with a C-IPS proof for a restricted circuit class C the resulting IPSy N proof may
not be in C-IPSyn.

As such, we introduce a second paradigm, called lower bounds for multiples, which can yield
C-IPS lower bounds for various restricted classes C. We begin by defining this question.

Goal 1.11 (Lower Bounds for Multiples). Design an explicit polynomial f(Z) such that for any
nonzero g(T) we have that the multiple g(z)f(Z) is hard to compute. O

We now explain how such lower bounds yield IPS lower bounds. Consider the system f, {z? —z;};
with a single non-boolean axiom. An IPS refutation is a circuit C(z,y,z) such that C(%,0,0) =0
and C(T, f, 7% —7) = 1, where (as mentioned) 2 — T denotes {z? —z;};. Expressing C(T, f,7>—7) as
a univariate in f, we obtain that 3°;+, Ci(Z,7* — %) f* = 1 — C(%, 0,7 — 7) for some polynomials C;.
For most natural measures of circuit complexity 1—C (7,0, 72 —7T) has complexity roughly bounded by
that of C' itself. Thus, we see that a multiple of f has a small circuit, as (Zi>1 Ci(z,7% - 7) fifl) f=

1 —C(%,0,7%2 — 7), and one can use the properties of the IPS refutation to show this is in fact a
nonzero multiple. Thus, if we can show that all nonzero multiples of f require large circuits then we
rule out a small IPS refutation.

We now turn to methods for obtaining polynomials with hard multiples. Intuitively if a
polynomial f is hard then so should small modifications such as f2 + 1 f, and this intuition is
supported by the result of Kaltofen [[Kal89] which shows that if a polynomial has a small algebraic
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circuit then so do all of its factors. As a consequence, if a polynomial requires super-polynomially
large algebraic circuits then so do all of its multiples. However, Kaltofen’s [Kal89] result is about
general algebraic circuits, and there are very limited results about the complexity of factors of
restricted algebraic circuits ([DSY09,0li15b]) so that obtaining polynomials for hard multiples via
factorization results seems difficult.

However, note that lower bound for multiples has a different order of quantifiers than the
factoring question. That is, Kaltofen’s [Kal89] result speaks about the factors of any small circuit,
while the lower bound for multiples speaks about the multiples of a single polynomial. Thus, it
seems plausible that existing methods could yield such explicit polynomials, and indeed we show
this is the case.

We begin by noting that obtaining lower bounds for multiples is a natural instantiation of
the algebraic hardness versus randomness paradigm. In particular, Heintz-Schnorr [HS80] and
Agrawal [Agr05] showed that obtaining deterministic (black-box) polynomial identity testing algo-
rithms implies lower bounds (see Section 3.1 for more on PIT), and we strengthen that connection
here to lower bounds for multiples. We can actually instantiate this connection, and we use slight
modifications of existing PIT algorithms to show that multiples of the determinant are hard in some
models.

Theorem (Informal Version of Lemma 6.2, Corollary 6.7). Let C be a restricted class of n-variate
algebraic circuits. Full derandomization of PIT algorithms for C yields a (weakly) explicit polynomial
whose nonzero multiples require exp(£2(n))-size as C-circuits.

In particular, when C is the class of sparse polynomials, depth-3 powering formulas, > \>_ HO(I)
formulas (in characteristic zero), or “every-order” roABPs, then all nonzero multiples of the n x n
determinant are exp(2(n))-hard in these models. O

The above statement shows that derandomization implies hardness. We also partly address the
converse direction by arguing (Section 6.1) that hardness-to-randomness construction of Kabanets
and Impagliazzo [K104] only requires lower bounds for multiples to derandomize PIT. Unfortunately,
this direction is harder to instantiate for restricted classes as it requires lower bounds for classes
with suitable closure properties.?

Unfortunately the above result is slightly unsatisfying from a proof complexity standpoint as the
(exponential-size) lower bounds for the subclasses of IPS one can derive from the above result would
involve the determinant polynomial as an axiom. While the determinant is efficiently computable,
it is not computable by the above restricted circuit classes (indeed, the above result proves that).
As such, this would not fit the real goal of proof complexity which seeks to show that there are
statements whose proofs must be super-polynomial larger than the length of the statement. Thus, if
we measure the size of the IPS proof and the axioms with respect to the same circuit measure, the
lower bounds for multiples approach cannot establish such super-polynomial lower bounds.

However, we believe that lower bounds for multiples could lead, with further ideas, to proof
complexity lower bounds in the conventional sense. That is, it seems plausible that by adding
extension variables we can convert complicated axioms to simple, local axioms by tracing through
the computation of that axiom. That is, consider the axiom xyzw. This can be equivalently written
as {a — zy,b— zw, c — ab, c}, where this conversion is done by considering a natural algebraic circuit
for xyzw, replacing each gate with a new variable, and adding an axiom ensuring the new variables
respect the computation of the circuit. While we are unable to understand the role of extension
variables in this work, we aim to give as simple axioms as possible whose multiples are all hard as

* Although, we note that one can instantiate this connection with depth-3 powering formulas (or even > A > Ho(l)

formulas) using the lower bounds for multiples developed in this paper, building on the work of Forbes [For15]. However,
the resulting PIT algorithms are worse than those developed by Forbes [Forl5].

14



this may facilitate future work on extension variables.
We now discuss the lower bounds for multiples we obtain.”

Theorem (Corollaries 6.9, 6.11, 6.13, 6.21, and 6.23). We obtain the following lower bounds for
multiples.

o All nonzero multiples of x1 - - - x,, require exp(€2(n))-size as a depth-3 powering formula (over
any field), or as a S A 1M formula (in characteristic zero).

o All nonzero multiples of (x1 +1)---(x, + 1) require exp(£2(n))-many monomials.

o All nonzero multiples of [];(x; + yi) require exp(2(n))-width as an roABP in any variable
order where T precedes .

e All nonzero multiples of [1;;(z; + ;) require exp(Q(n))-width as an roABP in any variable
order, as well as exp(2(n))-width as a read-twice oblivious ABP. O

We now briefly explain our techniques for obtaining these lower bounds, focusing on the simplest
case of depth-3 powering formulas. It follows from the partial derivative method of Nisan and
Wigderson [NW94] (see Kayal [Kay08]) that such formulas require exponential size to compute the
monomial z7 ...z, exactly. Forbes and Shpilka [F'S13a], in giving a PIT algorithm for this class,
showed that this lower bound can be scaled down and made robust. That is, if one has a size-s
depth-3 powering formula, it follows that if it computes a monomial x;, - - - x;, for distinct i; then
¢ < O(logs) (so the lower bound is scaled down). One can then show that regardless of what this
formula actually computes the leading monomial :Ejl” e m?j‘ (for distinct i; and positive a;;) must
have that £ < O(log s). One then notes that leading monomials are multiplicative. Thus, for any
nonzero g the leading monomial of g-x7 ...z, involves n variables so that if g-z1 ...z, is computed
in size-s then n < O(log s), giving s > exp(§2(n)) as desired. One can then obtain the other lower
bounds using the same idea, though for roABPs one needs to define a leading diagonal (refining an
argument of Forbes-Shpilka [F'S12]).

‘We now conclude our IPS lower bounds.

Theorem (Corollary 7.2, Corollary 7.3). We obtain the following lower bounds for subclasses of
1IPS.

e In characteristic zero, the system of polynomials x1 -+ - Tp, 21+ -+ xn — N, {xf —xi iy is
unsatisfiable, and any Y. N\ >_-IPS refutation requires exp(£2(n))-size.

e In characteristic > n, the system of polynomials, I[,;(xi +zj — 1), 21 + - + zn — n, {2? —
x;}i 18 unsatisfiable, and any roABP-IPS refutation (in any variable order) must be of size
exp(2(n)). O

Note that the first result is a non-standard encoding of 1 = AND(xzy,...,z,) = 0. Similarly, the
second is a non-standard encoding of AND(z1,...,2,) = 1 yet XOR(z;,z;) = 1 for all 7, j.

SWhile we discussed functional lower bounds for multilinear formulas, this class is not interesting for the lower
bounds for multiples question. This is because a multiple of a multilinear polynomial may not be multilinear, and
thus clearly cannot have a multilinear formula.
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1.4 Organization

The rest of the paper is organized as follows. Section 2 contains the basic notation for the paper. In
Section 3 we give background from algebraic complexity, including several important complexity
measures such as coefficient dimension and evaluation dimension (see Section 3.2 and Section 3.3).
We present our upper bounds for IPS in Section 4. In Section 5 we give our functional lower bounds
and from them obtain lower bounds for IPSy;n. Section 6 contains our lower bounds for multiples
of polynomials and in Section 7 we derive lower bounds for IPS using them. In Section 8 we list
some problems which were left open by this work.

In Appendix A we describe various other algebraic proof systems and their relations to IPS,
such as the dynamic Polynomial Calculus of Clegg, Edmonds, and Impagliazzo [CEI96], the ordered
formula proofs of Tzameret [Tzall], and the multilinear proofs of Raz and Tzameret [RT08a]. In
Appendix B we give an explicit description of a multilinear polynomial occurring in our IPS upper
bounds.

2 Notation

In this section we briefly describe notation used in this paper. We denote [n] := {1,...,n}. For a
vector @ € N™, we denote 7@ := z{' - - - 2% so that in particular ! = [/, z;. The (total) degree of a
monomial 7%, denoted degZ?, is equal to [a|; := Y, a;, and the individual degree, denoted ideg 7%, is
equal to ||~ := max{a;};. A monomial % depends on [a|y := |{i : a; # 0}| many variables. Degree
and individual degree can be defined for a polynomial f, denoted deg f and ideg f respectively, by
taking the maximum over all monomials with nonzero coefficients in f. We will sometimes compare
vectors @ and b as “@ < b”, which is to be interpreted coordinate-wise. We will use < to denote a
monomial order on F[Z], see Section 3.6.

Polynomials will often be written out in their monomial expansion. At various points we will
need to extract coefficients from polynomials. When “taking the coefficient of 7° in f € F[Z,7]” we
mean that both T and ¥ are treated as variables and thus the coefficient returned is a scalar in F,
and this will be denoted Coeffz7(f). However, when “taking the coefficient of 3° in f € F[Z|[y]” we
mean that T is now part of the ring of scalars, so the coefficient will be an element of F[Z], and this
coefficient will be denoted Coeﬁflyg( f)-

For a vector @ € N" we denote a<; € N to be the restriction of @ to the first i coordinates. For
a set S C [n] we let S denote the complement set. We will denote the size-k subsets of [n] by ([Z]).
We will use ml : F[Z] — F[Z] to denote the multilinearization operator, defined by Fact 3.12. We
will use 2 — T to denote the set of equations {x? — x;};.

To present algorithms that are field independent, this paper works in a model of computation
where field operations (such as addition, multiplication, inversion and zero-testing) over F can be
computed at unit cost, see for example Forbes [Forl4, Appendix A]. We say that an algebraic circuit
is t-explicit if it can be constructed in ¢ steps in this unit-cost model.

3 Algebraic Complexity Theory Background

In this section we state some known facts regarding the algebraic circuit classes that we will be
studying. We also give some important definitions that will be used later in the paper.
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3.1 Polynomial Identity Testing

In the polynomial identity testing (PIT) problem, we are given an algebraic circuit computing some
polynomial f, and we have to determine whether “f = 0”. That is, we are asking whether f is the zero
polynomial in F[z1,...,x,]. By the Schwartz-Zippel-DeMillo-Lipton Lemma [Zip79, Sch80,DL78],
if 0 # f € F[z] is a polynomial of degree < d and S C F, and @ € S™ is chosen uniformly at
random, then f(@) = 0 with probability at most® d/|S|. Thus, given the circuit, we can perform
these evaluations efficiently, giving an efficient randomized procedure for deciding whether “f = 07”.
It is an important open problem to find a derandomization of this algorithm, that is, to find a
deterministic procedure for PIT that runs in polynomial time (in the size of circuit).

Note that in the randomized algorithm of Schwartz-Zippel-DeMillo-Lipton we only use the circuit
to compute the evaluation f(@). Such algorithms are said to run in the black-box model. In contrast,
an algorithm that can access the internal structure of the circuit runs in the white-boxr model. It is
a folklore result that efficient deterministic black-box algorithms are equivalent to constructions of
small hitting sets. That is, a hitting set is set of inputs so that any nonzero circuit from the relevant
class evaluates to nonzero on at least one of the inputs in the set. For more on PIT we refer to the
survey of Shpilka and Yehudayoff [SY10].

A related notion to that of a hitting set is that of a generator, which is essentially a low-
dimensional curve whose image contains a hitting set. The equivalence between hitting sets and
generators can be found in the above mentioned survey.

Definition 3.1. Let C C Flxy,...,x,] be a set of polynomials. A polynomial G : F¢ — F" is a
generator for C with seed length ( if for all f €C, f =0 iff foG = 0. That is, f(Z) =0 in F[z]
iff f(G(y)) =0 in Fly]. Vi

In words, a generator for a circuit class C is a mapping G : F* — F”, such that for any nonzero
polynomial f, computed by a circuit from C, it holds that the composition f(G) is nonzero as well.
By considering the image of G on S¢, where S C F is of polynomial size, we obtain a hitting set for
C.

We now list some existing work on derandomizing PIT for some of the classes of polynomials we
study in this paper.

Sparse Polynomials: There are many papers giving efficient black-box PIT algorithms for > []
formulas. For example, Klivans and Spielman [KS01] gave a hitting set of polynomial size.

Depth-3 Powering Formulas: Saxena [Sax08] gave a polynomial time white-box PIT algorithm
and Forbes, Shpilka, and Saptharishi [FSS14] gave a sO(2185)_gize hitting set for size-s depth-3
powering formulas.

SSASII®Y Formulas:  Forbes [Forl5] gave an s9U85) size hitting set for size-s 33 A 3 [V
formulas (in large characteristic).

Read-once Oblivious ABPs: Raz and Shpilka [RS05] gave a polynomial time white-box PIT
algorithm. A long sequence of papers calumniated in the work of Agrawal, Gurjar, Korwar, and
Saxena [AGKS15], who gave a s?(2)_sized hitting set for size-s roABPs.

Read-k Oblivious ABPs: Recently, Anderson, Forbes, Saptharishi, Shpilka and Volk [AFS™16]

= _ k-1
obtained a white-box PIT algorithm running in time 20(n! =127 )

oblivious ABPs.

for n-variate poly(n)-sized read-k

SNote that this is non-trivial only if d < |S| < |F|, which in particular implies that f is not the zero function.
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3.2 Coefficient Dimension and roABPs

This paper proves various lower bounds on roABPs using a complexity measures known as coefficient
dimension. In this section, we define this measures and recall basic properties. Full proofs of these
claims can be found for example in the thesis of Forbes [Forl4].

We first define the coefficient matriz of a polynomial, called the “partial derivative matrix” in the
prior work of Nisan [Nis91] and Raz [Raz09]. This matrix is formed from a polynomial f € F[Z, 7]
by arranging its coefficients into a matrix. That is, the coefficient matrix has rows indexed by
monomials Z% in Z, columns indexed by monomials 7° in 7, and the (z%,7°)-entry is the coefficient
of Z%" in the polynomial f. We now define this matrix, recalling that Coeﬁ"ﬁ@g( f) is the coefficient
of Z%%" in f.

Definition 3.2. Consider f € F[z,7y]. Define the coefficient matrixz of f as the scalar matriz

(Cf)az = Coefl_z5(f) .

where coefficients are taken in F[Z,7|, for |ali, b1 < deg f. O

We now give the related definition of coefficient dimension, which looks at the dimension of the
row- and column-spaces of the coefficient matrix. Recall that Coeffﬂyg( f) extracts the coefficient of

@5 in f as a polynomial in F[Z|[7].
Definition 3.3. Let Coeffzp; : F[z,7] — 2F17] be the space of F[z|[y] coefficients, defined by

Coeffzy(f) == {Coefijg(f)}

z beNr

where coefficients of f are taken in F[z][y].
Similarly, define Coeffyz : F[z,7] — 2F) by taking coefficients in F[y][z]. O
The following basic lemma shows that the rank of the coefficient matrix equals the coefficient
dimension, which follows from simple linear algebra.
Lemma 3.4 (Nisan [Nis91]). Consider f € F[Z,7]. Then the rank of the coefficient matriz Cy obeys

rank Cy = dim Coeffz5(f) = dim Coeffyz(f) . O

Thus, the ordering of the partition ((Z,7) versus (7, Z)) does not matter in terms of the resulting
dimension. The above matrix-rank formulation of coefficient dimension can be rephrased in terms
of low-rank decompositions.

Lemma 3.5. Let f € F[z,y]. Then dim Coeffz;(f) equals the minimum r such that there are
g € F[z]" and h € F[y]" such that f can be written as f(Z,7) = S1_; 9:(T)h:(Y). O

We now state a convenient normal form for roABPs (see for example Forbes [Forl4, Corollary
4.4.2]).

Lemma 3.6. A polynomial f € Flxy,...,x,] is computed by width-r roABP iff there exist matrices
Ai(x;) € Flzi]™" of (individual) degree < deg f such that f = ([]i=; Ai(xi))11. Further, this
equivalence preserves explicitness of the roABPs up to poly(n,r,deg f)-factors. O

By splitting an roABP into such variable-disjoint inner-products one can obtain a lower bound
for roABP width via coefficient dimension. In fact, this complexity measure characterizes roABP
width.

Lemma 3.7. Let f € Flxy,...,xy,] be a polynomial. If f is computed by a width-r roABP then r >

max; dim Coeff; (f). Further, f is computable width—(maxi dim Coeﬁ'fgi|5>i(f)) roABP. [

<ilT>i
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Using this complexity measure it is rather straightforward to prove the following closure properties
of roABPs.

Fact 3.8. If f, g € F[x] are computable by width-r and width-s roABPs respectively, then
e f+ g is computable by a width-(r + s) roABP.
e f-g is computable by a width-(rs) roABP.

Further, roABPs are also closed under the follow operations.

o If f(z,y) € F[z,7] is computable by a width-r roABP in some variable order then the partial
substitution f(T, @), for @ e Fl9l, is computable by a width-r roABP in the induced order on
T, where the degree of this ToABP is bounded by the degree of the roABP for f.

o If f(z1,...,2n) is computable by a width-r roABP in variable order zy < --- < zy, then
f(z1y1, ..., xpyn) is computable by a poly(r,ideg f)-width roABP in variable order x1 < y; <
e < Ty < Yp.

Further, these operations preserve the explicitness of the roABPs up to polynomial factors in all
relevant parameters. O

We now state the extension of these techniques which yield lower bounds for read-k oblivious
ABPs, as recently obtained by Anderson, Forbes, Saptharishi, Shpilka and Volk [AFS™*16].

Theorem 3.9 ([AFST16]). Let f € Flxy,...,x,] be a polynomial computed by a width-w read-k
oblivious ABP. Then there exists a partition T = (u,v,w) such that

1. |al,|v] > n/kO®.
2. [@| < n/10.

3. dimp ) Coeffy;(fz) < w?, where fg is f as a polynomial in F(W)[d,v). O

3.3 Evaluation Dimension

While coefficient dimension measures the size of a polynomial f(Z,7) by taking all coefficients in
Y, evaluation dimension is a complexity measure due to Saptharishi [Sap12] that measures the
size by taking all possible evaluations in 3 over the field. This measure will be important for our
applications as one can restrict such evaluations to the boolean cube and obtain circuit lower bounds
for computing f(T,7) as a polynomial via its induced function on the boolean cube. We begin with
the definition.

Definition 3.10 (Saptharishi [Sap12]). Let S CF. Let Evalgy s : F[7,7] — oF(7] be the space of
F[z][y] evaluations over S, defined by

Evalzy s(f(7,9) == { f@.B) }.

Define Evalgy : F[7, 7] — 2F17 1o be Evalgy s when S =TF.
Similarly, define Evalyz g : F[T,y] — oFW by replacing T with all possible evaluations @ € S,
and likewise define Evalyz : F[Z,7] — oF vl O
The equivalence between evaluation dimension and coefficient dimension was shown by Forbes-
Shpilka [F'S13b] by appealing to interpolation.
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Lemma 3.11 (Forbes-Shpilka [[F'S13b]). Let f € F[z,y]. For any S C F we have that Evalgy s(f) C
span Coeffﬂ@(f) so that dim Evalﬂgvs(f) < dim Coeffz5(f). In particular, if |S| > ideg f then
dim Evalzy; ¢(f) = dim Coeffz;(f). O

While evaluation dimension and coefficient dimension are equivalent when the field is large
enough, when restricting our attention to inputs from the boolean cube this equivalence no longer
holds (in particular, we have to consider all polynomials that obtain the same values on the boolean
cube and not just one polynomial), but evaluation dimension will be still be helpful as it will always
lower bound coefficient dimension.

3.4 Multilinear Polynomials and Multilinear Formulas

We now turn to multilinear polynomials and classes that respect multilinearity such as multilinear
formulas. We first state some well-known facts about multilinear polynomials.

Fact 3.12. For any two multilinear polynomials f,g € F[x1,...,z,], f = g as polynomials iff they
agree on the boolean cube {0,1}". That is, f = g iff fl{o,13» = gl{o,137-
Further, there is a multilinearization map ml : F[Z] — F[z] such that for any f,g € F[z],

1. ml(f) is multilinear.

2. f and ml(f) agree on the boolean cube, that is, f|io1y» = ml(f)]10,1}n-
3. degml(f) < deg f.

4. ml(fg) = ml(ml(f) ml(g)).

5. ml is linear, so that for any o, € F, ml(af + Bg) = aml(f) + Sml(g).
6. ml(aft - ag) = [y,

7. If f is the sum of at most s monomials (s-sparse) then so is ml(f).

Also, if f is a function {0,1}" — T that only depends on the coordinates in S C [n], then the unique
multilinear polynomial f agreeing with f on {0,1}" is a polynomial only in {xz;}ics.

One can also extend the multilinearization map ml : F[z] — F[z] to matrices ml : F[z]"*" —
F[Z|"*" by applying the map entry-wise, and the above properties still hold. O

Throughout the rest of this paper ‘ml’ will denote the multilinearization operator. Raz [Raz09,
Raz06] gave lower bounds for multilinear formulas using the above notion of coefficient dimension,
and Raz-Yehudayoff [RY08,RY09] gave simplifications and extensions to constant-depth multilinear
formulas.

Theorem 3.13 (Raz-Yehudayoff [Raz09,RY09]). Let f € Fxy,...,zan,Z] be a multilinear polyno-
mial in the set of variables T and auziliary variables Z. Let fz denote the polynomial f in the ring
F[z][z]. Suppose that for any partition T = (u,v) with [u| = [v| = n that

dlmF(E) COeﬁ:ﬂﬁfE > 2"

Then f requires > nt1°8™) _size to be computed as a multilinear formula, and for d = o(logn/1oglogn),

Q((nf10gn) /4 /d2

f requires n )_size to be computed as a multilinear formula of product-depth-d. O
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3.5 Depth-3 Powering Formulas

In this section we review facts about depth-3 powering formulas. We begin with the duality trick of
Saxena [Sax08], which shows that one can convert a power of a linear form to a sum of products of
univariate polynomials.

Theorem 3.14 (Saxena’s Duality Trick [SW01,Sax08,FGS13]). Letn > 1, andd > 0. If |F| > nd+1,
then there are poly(n, d)-explicit univariates f; ; € Fla;] such that

(X1 +---+ :Un)d = Z fia(z1) -+ fin(wn) ,
i=1

where deg f; j < d and s = (nd +1)(d + 1). O

The original proof of Saxena [Sax(08] only worked over fields of large enough characteristic, and
gave s = nd + 1. A similar version of this trick also appeared in Shpilka-Wigderson [SWO01]. The
parameters we use here are from the proof of Forbes, Gupta, and Shpilka [FGS13], which has the
advantage of working over any large enough field.

Noting that the product f; 1(x1)--- fin(xy) trivially has a width-1 roABP (in any variable order),
it follows that (21 4 - - - + x,)? has a poly(n, d)-width rtoABP over a large enough field. Thus, size-s
> A > formulas have poly(s)-size roABPs over large enough fields by appealing to closure properties
of roABPs (Fact 3.8). As it turns out, this result also holds over any field as Forbes-Shpilka [F'S13b]
adapted Saxena’s [Sax08] duality to work over any field. Their version works over any field, but
loses the above clean form (sum of product of univariates).

Theorem 3.15 (Forbes-Shpilka [F'S13b]). Let f € F[z] be expressed as f(T) = > i (o0 + 12 +
oo+ Qipwn)%. Then f is computable by a poly(r, n)-explicit width-r roABP of degree max;{d;}, in
any variable order, where r =>,(d; + 1). O

One way to see this claim is to observe that for any variable partition, a linear function can
be expressed as the sum of two variable-disjoint linear functions ¢(Z1,Z2) = ¢1(T1) + ¢2(Z2). By
the binomial theorem, the d-th power of this expression is a summation of d 4+ 1 variable-disjoint
products, which implies a coefficient dimension upper bound of d + 1 (Lemma 3.5) and thus also an
roABP-width upper bound (Lemma 3.7). One can then sum over the linear forms.

While this simulation suffices for obtaining roABP upper bounds, we will also want the clean
form obtained via duality for application to multilinear-formula IPS proofs of the subset-sum axiom
(Proposition 4.19).

3.6 Monomial Orders

We recall here the definition and properties of a monomial order, following Cox, Little and

O’Shea [CLOO07]. We first fix the definition of a monomial in our context.

Definition 3.16. A monomial in Flz1,...,z,] is a polynomial of the form T® = z{* -+ o for

ae N, O
We will sometimes abuse notation and associate a monomial % with its exponent vector @, so

that we can extend this order to the exponent vectors. Note that in this definition “1” is a monomial,

and that scalar multiples of monomials such as 2z are not considered monomials. We now define a
monomial order, which will be total order on monomials with certain natural properties.

Definition 3.17. A monomial ordering is a total order < on the monomials in F[Z] such that

e Forallae N\ {0}, 1 < 7%
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e For alla,b,c € N*, 7% < 7 implies T°T¢ < TF°,

For nonzero f € F[z], the leading monomial of f (with respect to a monomial order
<), denoted LM(f), is the largest monomial in Supp(f) := {z% : Coeff_z(f) # 0} with respect to
the monomial order <. The trailing monomial of f, denoted TM(f), is defined analogously to be
the smallest monomial in Supp(f). The zero polynomial has neither leading nor trailing monomial.

For nonzero f € F[z], the leading (resp. trailing) coefficient of f, denoted LC(f) (resp.
TC(f)), is Coeff_a(f) where T = LM(f) (resp. T® = TM(f)). O

Henceforth in this paper we will assume F[Z] is equipped with some monomial order <. The
results in this paper will hold for any monomial order. However, for concreteness, one can consider
the lexicographic ordering on monomials, which is easily seen to be a monomial ordering (see also
Cox, Little and O’Shea [CLOO0T]).

We begin with a simple lemma about how taking leading or trailing monomials (or coefficients)
is homomorphic with respect to multiplication.

Lemma 3.18. Let f,g € F[z] be nonzero polynomials. Then the leading monomial and trailing
monomials and coefficients are homomorphic with respect to multiplication, that is, LM(fg) =
LM(f)LM(g) and TM(fg) = TM(f) TM(g), as well as LC(fg) = LC(f)LC(g) and TC(fg) =
TC(f) TC(g).

Proof: We do the proof for leading monomials and coefficients, the claim for trailing monomials and
coefficients is symmetric. ~
Let f(T) = Yz 0az" and g(T) = Y5 Bgfb. Isolating the leading monomials,

f@ =LC()-LM(f)+ > agzz, 9@ =LC(g) - LM(g) + Y B2,
T <LM(f) 7P <LM(g)

with LC(f) = apm(y) and LC(g) = Bram(g) being nonzero. Thus,

f(@)g(z) = LC(f) LC(g) - LM(f) LM(g) + LC(/)LM(f) [ Y. p°

TP <LM(g)

FLCWIM(g) | Y aam |+ | Y aaE” S s

@ <LM(f) TA<LM(f) F°<LM(g)

Using that 07" < LM(f)LM(g) whenever 7 < LM(f) or T < LM(g) due to the definition of a
monomial order, we have that LM(f) LM(g) is indeed the maximal monomial in the above expression
with nonzero coefficient, and as its coefficient is LC(f) LC(g). O

We now recall the well-known fact that for any set of polynomials the dimension of their span in
F[z] is equal to the number of distinct leading or trailing monomials in their span.

Lemma 3.19. Let S C [F[z] be a set of polynomials. Then dimspanS = |LM(spanS)| =
|TM(span S)|. In particular, dimspan S > |[LM(S)|, |TM(S)|. O

4 Upper Bounds for Linear-IPS

While the primary focus of this work is on lower bounds for restricted classes of the IPS proof system,
we begin by discussing upper bounds to demonstrate that these restricted classes can prove the
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unsatisfiability of non-trivial systems of polynomials equations. In particular we go beyond existing
work on upper bounds ([GHO03, RT08a, RT08b, GP14, LTW15]) and place interesting refutations
in IPS subsystems where we will also prove lower bounds, as such upper bounds demonstrate the
non-triviality of our lower bounds.

We begin by discussing the power of the linear-IPS proof system. While one of the most novel
features of IPS proofs is their consideration of non-linear certificates, we show that in powerful
enough models of algebraic computation, linear-IPS proofs can efficiently simulate general IPS
proofs, essentially answering an open question of Grochow and Pitassi [GP14]. A special case of this
result was obtained by Grochow and Pitassi [GP14], where they showed that IPSy N can simulate
> TI-IPS. We then consider the subset-sum axioms, previously considered by Impagliazzo, Pudlék,
and Sgall [IPS99], and show that they can be refuted in polynomial size by the C-IPSpn proof
system where C is either the class of roABPs, or the class of multilinear formulas.

4.1 Simulating IPS Proofs with Linear-IPS

We show here that general IPS proofs can be efficiently simulated by linear-IPS, assuming that
the axioms to be refuted are described by small algebraic circuits. Grochow and Pitassi [GP14]
showed that whenever the IPS proof computes sparse polynomials, one can simulate it by linear-IPS
using (possibly non-sparse) algebraic circuits. We give here a simulation of IPS when the proofs use
general algebraic circuits.

To give our simulation, we will need to show that if a small circuit f(z,y) is divisible by y, then
the quotient f(Zy)/y also has a small circuit. Such a result clearly follows from Strassen’s [Str73]
elimination of divisions in general, but we give two constructions for the quotient which tailor
Strassen’s [Str73] technique to optimize certain parameters.

The first construction assumes that f has degree bounded by d, and produces a circuit for the
quotient whose size depends polynomially on d. This construction is efficient when f is computed
by a formula or branching program (so that d is bounded by the size of f). In particular, this
construction will preserve the depth of f in computing the quotient, and as such we only present it
for formulas. The construction proceeds via interpolation to decompose f(Z,y) = Y, f;(Z)y* into
its constituent parts {f;(Z)}; and then directly constructs f@v)/y = 3, fi(T)y' L.

Lemma 4.1. Let F be a field with |[F| > d+ 1. Let f(z,y) € Flx1,...,zy,y] be a degree < d
polynomial expressible as f(T,y) = Y og<ica [i(@)y" for f; € F[T]. Assume f is computable by a size-s
depth-D formula. Then for a > 1 one can compute

d
> i@y

by a poly(s,a,d)-size depth-(D + 2) formula. Further, given d and the formula for f, the resulting
formula is poly(s, a,d)-explicit. In particular, if y*|f(Z,y) then the quotient f(@v)/ye has a formula
of these parameters.

Proof: Express f(%,y) € F[Z][y] by f(T,y) = Yo<ica [i(T)y". As |[F| > 1+ deg, f, by interpolation
there are poly(d)-explicit constants o j, 5; € IF such that

d
fi@®) = i f (T, B) .
j=0
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It then follows that

d . d [ d ' d d '
Z i@y e=>" ( a; i f(z, 53‘)) Y=Y i f(® By

i=a \j=0 i=a j=0

which is clearly a formula of the appropriate size, depth, and explicitness. The claim about
the quotient f(@y)/ye follows from seeing that if the quotient is a polynomial then f(@v)/ys =

Zg:a f’t (j)yi_a- ]

The above construction suffices in the typical regime of algebraic complexity where the circuits
compute polynomials whose degree is polynomially-related to their circuit size. However, the
simulation of Extended Frege by general IPS proved by Grochow-Pitassi [GP14] (Theorem 1.2)
yields IPS refutations with circuits of possibly exponential degree (see also Remark 1.3). As such,
this motivates the search for an efficient division lemma in this regime. We now provide such a
lemma, which is a variant of Strassen’s [Str73] homogenization technique for efficiently computing
the low-degree homogeneous components of an unbounded degree circuit. As weaker models of
computation (such as formulas and branching programs) cannot compute polynomials of degree
exponential in their size, we only present this lemma for circuits.

Lemma 4.2. Let f(Z,y) € Flx1,...,Zn,y] be a polynomial expressible as f(T,y) = >.; fi(@)y" for
fi € Fz], and assume f is computable by a size-s circuit. Then for a > 1 there is an O(a?s)-size
circust with outputs gates computing

fo(@), ..., fa—1(T), Z fi(f)yi_a .

i>a

Further, given a and the circuit for f, the resulting circuit is poly(s,a)-explicit. In particular, if
Y| f(z,y) then the quotient f(@y)/y* has a circuit of these parameters.

Proof: The proof proceeds by viewing the computation in the ring F[Z|[y], and splitting each gate in
the circuit for f into its coefficients in terms of y. However, to avoid a dependence on the degree, we
only split out the coefficients of ¢°, 3", ...,y*" !, and then group together the rest of the coefficients
together. That is, for a polynomial g(Z,y) = 3;~( ¢i(Z)y’, we can split this into g = 3" <, 9i(T)y' +
(Eiza gi (T)yi*“) y® to obtain the constituent parts go(%), . .., ga—1(T), Y i>q 9i(T)y"~*. We can then
locally update this split by appropriately keeping track of how addition and multiplication affects
this grouping of coefficients. We note that we can assume without loss of generality that the circuit
for f has fan-in 2, as this only increases the size of the circuit by a constant factor (measuring the
size of the circuit in number of edges) and simplifies the construction.

construction: Let ® denote the circuit for f. For a gate v in @, denote ®,, to be the configuration
of v in ® and let f, to be the polynomial computed by the gate v. We will define the new circuit
U, which will be defined by the gates {(v,7) : v € ®,0 <14 < a} and the wiring between them, as
follows.

o &, € F: U, ) =Py, V() :=0fori > 1.
o &, =i Vi) i=xi, Y(py) :=0fori>1.
® (I)U =Y \Il(v,l) = 1, \Ij(v,i) :=0 for ¢ 75 1.

e &, =0, +d,: qj(v,i) = \IJ(u,z) + \Il(w,i)a all 4.
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e o, =0, xP,,0< 1< a:

Vi) = 2 Yius) X Pwiy) -

0<5<s
e &, =%, xd,, i =a:
2(a—1)
Va = 2 47" D Yy X Yy + D Yy X Ywa) X ¢’
t=a i+j=( 0<i<a
0<,5<a
+ D Yiway X Vg X ¥+ ey X Ywa) X Y*
0<j<a

complexity: Split the gates in ¥ into two types, those gates (v,i) where i = a and v is a
multiplication gate in ®, and then the rest. For the former type, ¥, ,) is computable by a size-O(a?)
circuit in its children, and there are at most s such gates. For the latter type, ¥, ;) is computable
by a size-O(a) circuit in its children, and there are at most O(as) such gates. As such, the total
size is O(a?s).

correctness: We now establish correctness as a subclaim. For a gate (v,7) in W, let 9(v,i) denote
the polynomial that it computes.

Subclaim 4.3. For each gate v in ®, for 0 < i < a we have that g, ;) = Coeffz,i(f,) and fori=a

we have that g, q) = > i>q Coeffﬂyi(fv)yi_a. In particular, fu, =370 9(v,i)y"

Sub-Proof: Note that the second part of the claim follows from the first. We now establish the first
part by induction on the gates of the circuit.

e &, € F: By construction, g, 0) = f» = Coeflz,0(fy), and for i > 1, g, ;) = 0 = Coeflz,i (fu).
e &, = x;: By construction, g(,0) = fo = Coeflz,0(fy), and for i > 1, g, ;) = 0 = Coeflz,: (fo).

e &, =y: By construction, g, 1) = 1 = Coeflz,1(fy), and for i # 1, g, ;) = 0 = Coeftz,: (fv).

D, =Dy + Dy

9(w,i) = Y(ui) T 9(w,i)
= Coeftz,:i (fu) + Coeftzi (fuw)
= Coeﬂ?ﬂyi(fu + fw) = Coeﬁﬂyi(fv) :

By = By x By, 0 < i < a:
Iwi) = D Iuyg)  Iwi—j)
0<5<s

= Z Coeffﬂyj (fu) : Coeﬁj‘yi—j(fw)

0<j<i
= Coeﬁf|yi(fu : fw) = COGH§|yi(fv) :
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e &, =0, xP,, 1 =a:

2(a—1)
_ l—a 7
Joa)= D YT D i) Iwi) D i) Iwa) Y
l=a i+j=0 0<i<a
0<1,5<a
+ D Gwa) Iwi) Y+ Jwa)  Yw.a) Y°
0<j<a
2(a—1) ‘ ‘
= Z y—a Z Coeﬁf\yi(fu)yl’Coeﬁj|yj(fw)yj
l=a itj=0
0<,5<a
+ > Coeffz,i(fu) - | Y Coeffzi (fu)y’ | - ¢
0<i<a j>a

0<j<a \i>a

+ > (Z Coeﬂ"ﬂyi(fu)yi“) - Coeftz,; (fu) oyl

+ (Z Coeffw'(fu)y”) : (Z Coeﬂ"xyj(fw)yja) -y

>a j>a

= D Coeftzy:(fu)Coeflzys (fu)y™ ™" + 3 Coeffzy:(fu)Coeftzy, (fu)y™ ™
i+j>a 0<i<a
0<i,j<a jza

+ D Coeffzyy: (fu)Coeftzys (fu)y™ ™ + > Coeffzy:(fu) Coefty (fu)y™ ™
055%a Liza

= Z Coeff5|yi (fu)Coeffﬂyj (fw) . yi+j—a
i+j=a
- Z Coeﬁ‘f\yf (fu ) fw) : yg_“

>a

= Z Coeftz),e (fv) - ye. o

>a

The correctness then follows by examining vey,¢, the output gate of ®, so that f, , = f. The
gates (vout,0), ..., (Vout,a) are then outputs of ¥ and by the above subclaim have the desired
functionality.

quotient: The claim about the quotient f(Z:y)/y* follows from seeing that if the quotient is a
polynomial then f@w)/ys = Y.< fi(F)y*~@ which is one of the outputs of the constructed circuit. [

We now give our simulation of general IPS by linear-IPS. In the below set of axioms we do not
separate out the boolean axioms from the rest, as this simplifies notation.

Proposition 4.4. Let fi,..., fm € Flz1,...,x,] be unsatisfiable polynomials with an IPS refutation
CeF[Z,y1,...,ym].- Then f1,..., fm have a linear-IPS refutation C' € F[Z,y| under the following
conditions.

1. Suppose fi,..., fm,C are computed by size-s formulas, have degree at most d, and |F| > d+ 1.

Then C' is computable by a poly(s,d,m)-size formula of depth-O(D), and C' is poly(s,d, m)-
explicit given d and the formulas for fi,..., fm,C.
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2. Suppose f1,..., fm,C are computed by size-s circuits. Then C' is computable by a poly(s, m)-
size circuit, and C" is poly(s,m)-explicit given the circuits for f1,..., fm,C

Proof: Express C(Z,y) as a polynomial in F[z][y], so that C(z,7) = Y_;.5 Ca(®)y®, where we use
that C'(z,0) = 0 to see that we can restrict @ to @ > 0. Partitioning the @ € N™ based on the index
of their first nonzero value, and denoting @.; for the first ¢ — 1 coordinates of @, we obtain

7,7) = Y _ Ca(@)y

a>0

n
=2 ) Ga@y°
=1 g:a;=0,
a; >0

Now define C;(7,9) == >z4_, . Cz(T)y? %, where €; is the i-th standard basis vector. Note that
a; >0 _
this is a valid polynomial as in this summation we assume a; > 0 so that @ —e; > 0. Thus,

We now define C'(Z,7) := Y74 Ci(Z, f(T))y; an