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Abstract

A Boolean functionf : {0,1}n→{0,1} is weighted symmetricif there exist a functiong :Z→{0,1}
and integersw0,w1, . . . ,wn such thatf (x1, . . . ,xn) = g(w0+∑n

i=1wixi) holds.
In this paper, we present algorithms for the circuit satisfiability problem of bounded depth circuits

with AND, OR, NOT gates and a limited number of weighted symmetric gates. Our algorithms run
in time super-polynomially faster than 2n even when the number of gates is super-polynomial and the
maximum weight of symmetric gates is nearly exponential. With an additional trick, we give an algo-

rithm for the maximum satisfiability problem that runs in time poly(nt) ·2n−n1/O(t)
for instances withn

variables,O(nt) clauses andarbitrary weights. To the best of our knowledge, this is the first moderately
exponential time algorithm even for Max 2SAT instances with arbitrary weights.

Through the analysis of our algorithms, we obtain average-case lower bounds and compression al-
gorithms for such circuits and worst-case lower bounds for majority votes of such circuits, where all the
lower bounds are against the generalized Andreev function. Our average-case lower bounds might be of
independent interest in the sense that previous ones for similar circuits with arbitrary symmetric gates
rely on communication complexity lower bounds while ours are based on the restriction method.

1 Introduction

We are concerned with bounded depth circuits with AND, OR, NOT and (weighted) symmetric gates.
Let Z be the set of integers andx1,x2. . . . ,xn be Boolean variables. A Boolean functionf : {0,1}n →
{0,1} is weighted symmetricif there exist a functiong : Z→ {0,1} and integersw0,w1, . . . ,wn such that
f (x1, . . . ,xn) = g(w0+∑n

i=1wixi) holds. Ifw1 = w2 = · · ·= wn = 1 holds, thenf is symmetric.
For example, if we setg(z) = sgn(z), where sgn(z) = 1 if and only ifz≥ 0, we obtainmajority functions as

symmetric functions andlinear thresholdfunctions as weighted symmetric functions. If we defineg(z) = 1
if and only if z≡ 0 modm for an integerm≥ 2, then we obtainmodulo mfunctions as symmetric functions.

A (weighted) symmetric gate is a logic gate that computes a (weighted) symmetric function. We denote by
SYMw the set of weighted symmetric gates such that maxi |wi | ≤ w holds. When we consider satisfiability
and compression algorithms, we assume thatg(z) can be evaluated in time polynomial in log2 |z|, where|z|
denotes the absolute value ofz. When we consider circuit lower bounds, we assume thatg is computable,
i.e., there exists a Turing machine that computesg.
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1.1 Our contribution

Satisfiability Algorithms: In thecircuit satisfiability problem(Circuit SAT), our task is, given a Boolean
circuit C, to decide whether there exists a 0/1 assignment to the input variables such thatC evaluates 1.
If input instances are restricted to a class of Boolean circuitsC , the problem is calledC -SAT. A näıve
algorithm can solve Circuit SAT in timeO(poly(|C|) ·2n), where we denote by|C| the size ofC and byn
the number of input variables ofC respectively. We say an algorithm forC -SAT is moderately exponential
timeif it checks the satisfiability of everyC∈C in time poly(|C|) ·2n−ω(logn), i.e., super-polynomially faster
than 2n. We are interested in for which classC moderately exponential time satisfiability algorithms exist.

Let SYMw◦AND(n,m) be the set ofn-variate depth 2 circuits with a weighted symmetric gate inSYMw

at the top and at mostm AND gates at the bottom. LetSYMw ◦AC0
d(n,m) be the set ofn-variate un-

bounded fan-in depthd+1 layered circuits with AND, OR, NOT gates and a weighted symmetric gate in
SYMw such that the top gate is the weighted symmetric gate and each layer contains at mostm gates. Let
AC0

d[SYMw](n,m, t) be the set ofn-variate unbounded fan-in depthd layered circuits with AND, OR, NOT
gates and at mostt weighted symmetric gates inSYMw such that each layer contains at mostmgates.

In this paper, we show moderately exponential time algorithms for the counting version ofC -SAT, where
C ∈ {SYMw◦AND(n,m),SYMw◦AC0

d(n,m),AC0
d[SYMw](n,m, t)}, as follows.

Theorem 1.1(depth 2, weighted symmetric gate at the top, AND gates at the bottom). We can count the
number of satisfying assignments for C∈ SYMw◦AND(n,m) deterministically in time

poly(n,m, logw) ·2n−Ω((n/ log(mw))logn/4log(nm))

and exponential space.

The running time is super-polynomially faster than 2n when, e.g.,m= no(logn/ log logn) andw= 2n0.99
. Note

thatSYM2n contains all Boolean functions (if we ignore the assumption thatg(z) can be evaluated in time
polynomial in log2 |z|). The heart of our algorithms is a (seemingly new)bottom fan-in reductiontechnique
inspired by recent developments on the analysis of “greedy restriction” by “concentrated shrinkage” [52,
55, 17, 50]. With an additional trick, we give an algorithm for the maximum satisfiability problem that runs
in time poly(nt) ·2n−n1/O(t)

for instances withn variables,O(nt) clauses andarbitrary weights. To the best
of our knowledge, this is the first moderately exponential time algorithm even for Max 2SAT instances with
arbitrary weights.

We extend the above algorithm with the help of the depth reduction algorithm due to Beame, Impagliazzo
and Srinivasan [7].

Theorem 1.2(depthd, weighted symmetric gate only at the top). We can count the number of satisfying
assignments for C∈ SYMw◦AC0

d(n,m) deterministically in time

poly(n,m, logw) ·2n−Ω
(
(n/22d(logm)4/5

log(mw))logn/9logm
)

and exponential space.

The running time is super-polynomially faster than 2n when, e.g.,m= 2(logn/4d)5/4
andw= 2n0.49

.
We further extend the above algorithm relying on the circuit transformation techniques due to Beigel,

Reingold and Spielman [9] and Beigel [8].

Theorem 1.3(depthd, t(n) weighted symmetric gates). We can count the number of satisfying assignments
for C∈ AC0

d[SYMw](n,m, t) deterministically in time

poly(n,m,d, t, logw) ·2
n+O(t logmw)−Ω

(
(n/24d(logm)4/5

t log(mw))
logn

18logm

)

and exponential space.
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The running time is super-polynomially faster than 2n when, e.g.,m= nc, w= 2n
1

40c andt = n
1

40c , where

c≤ log1/4 n
2(4d)5/4 .

Although our algorithms run in time super-polynomially faster than 2n instead of exponentially faster
than 2n (2(1−ε)n for a universal constantε > 0), this seems unavoidable due to the Strong Exponential
Time Hypothesis (SETH) [12, 32, 34]: The hypothesis states that for allk, there existsεk > 0 such that
the satisfiability problem ofk-CNF formulas cannot be solved in time 2(1−εk)n. SETH has been used in
proving conditional time lower bounds for several exponential time and polynomial time algorithms, see,
e.g., [21, 38, 41].
Circuit Lower Bounds: Through the analysis of our satisfiability algorithms, we obtain the following
average-case lower bounds.

Theorem 1.4 (depth 2, weighted symmetric gate at the top, AND gates at the bottom). There exists a
constantα > 0 such that for every m,w and sufficiently large n, there exists a polynomial time computable
function fn,m,w such that for every C∈ SYMw◦AND(n,m), it holds that

Pr
x∈{0,1}n

[ f (x) =C(x)]≤ 1
2
+2−Ω((n/ log(mw))α logn/ log(nm)).

We also obtain similar average-case lower bounds forSYMw ◦AC0
d(n,m) andAC0

d[SYMw](n,m, t), see
Theorems 5.2 and 5.3 in Section 5.

Our average-case lower bounds might be interesting in the sense that (1) previous ones for similar circuits
with arbitrary symmetric gates rely on communication complexity lower bounds while ours are based on
the restriction method and (2) we are not aware of (even worst-case) lower bounds forSYMw ◦AND with
w= nω(logn).

Let C be a set of Boolean circuits andMAJ ◦C be the set of Boolean circuits, whereC ∈MAJ ◦C is a
majority vote ofC circuits, i.e.,C(x) = sgn(C1(x)+ · · ·+Cs(x)+w0) holds for someC1, . . . ,Cs∈ C and an
integerw0.

Combining the above average-case lower bounds and the discriminator lemma due to Hajnal, Maass,
Pudĺak, Szegedy and Turán [27], we obtain the following worst-case lower bounds.

Theorem 1.5(majority vote of depth 2, weighted symmetric gate at the top, AND gates at the bottom).
There exists a constantα > 0 such that for every m,w and sufficiently large n, there exists a polynomial
time computable function fn,m,w such that any C∈MAJ ◦SYMw◦AND(n,m) cannot compute fn,m,w if the

majority gate at the top of C has fan-in at most2o((n/ log(mw))α logn/ log(nm)).

We also obtain similar worst-case lower bounds forMAJ ◦SYMw◦AC0
d(n,m), MAJ ◦AC0

d[SYMw](n,m, t)
(andAC0

d[SYMw](n,m, t) with different parameters), see Theorems 6.2, 6.3 and 6.4 in Section 6.
Compression Algorithms: In thecircuit compression problem(Circuit CMP), our task is, given the truth
table of ans-sized Boolean circuitC and an integers′ ≥ s, to construct a Boolean circuitC′ that is at most
s′-sized and computes the same function asC. If input instances are restricted to a class of Boolean circuits
C , the problem is calledC -CMP. InC -CMP, we do not have to constructC′ as a circuit inC . Since every
n-variate Boolean function can be represented as a(1+o(1))2n

n -sized circuit [40]1, the problem is interesting
if s′≪ 2n/n and in particular we consider the cases′ = 2n−ω(logn).

A compression algorithm isefficientif it runs in time 2O(n) given the truth table of ann-variate Boolean
function. Note that input length is 2n and an efficient algorithm runs in polynomial time. The running
time analyses of our satisfiability algorithms imply efficient compression algorithms. LetC ∈ {SYMw ◦
AND(n,m),SYMw◦AC0

d(n,m),AC0
d[SYMw](n,m, t)}. We obtain deterministic efficient algorithms forC -

CMP if parametersn,m,w,d, t are such that the corresponding algorithms forC -SAT run in time 2n−ω(logn).
1Such a representation can be obtained in time 2O(n).
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1.2 Background

Bounded Depth Circuits with (Weighted) Symmetric Gates:Let AC0 be the set of bounded depth circuits
with AND, OR and NOT gates,AC0[m] be the set ofAC0 circuits with modulom gates,AC0[MAJ ] be the
set ofAC0 circuits with majority gates (also known asTC0), AC0[THR ] be the set ofAC0 circuits with
linear threshold gates andAC0[SYMw] be the set ofAC0 circuits with gates inSYMw. Note that for every
linear threshold gate, there exists a polynomial size depth 2 majority circuit that computes it [24].

In their seminal work, Razborov [47] and Smolensky [56] showed exponential lower bounds on the size
of AC0[m] circuits computing majority or modq functions whenm,q are prime powers and relatively prime.
Since then, people have been trying to obtain super-polynomial size lower bounds against stronger cir-
cuit classes such asAC0[m] with arbitrary m or AC0[MAJ ]. Despite much effort of researchers, super-
polynomial size lower bounds have been only shown for such circuit classes with some restriction, see,
e.g., [4, 9, 14, 22, 23, 26, 27, 28] (here we consider circuits computing “explicit” Boolean functions, i.e.,
functions in NP).

One of the best studied restriction is limiting the number of (weighted) symmetric gates. The following
lower bounds are known:

• (Worst-case lower bounds) Exponential lower bounds forAC0[MAJ ] circuits with no(1) majority
gates [6, 8] andAC0[THR ] circuits witho(logn) linear threshold gates [45].

• (Average-case lower bounds) super-polynomial lower bounds forAC0[SYM1] circuits witho(log2n)
symmetric gates [59]; arbitrary large polynomial lower bounds forAC0[SYM1] circuits withn1−o(1)

symmetric gates andAC0[THR ] circuits withn1/2−o(1) linear threshold gates [39].

The above average-case lower bounds are based on the results of Håstad and Goldmann [29] and Razborov
and Wigderson [49] that show average-case lower bounds forSYM1◦AND circuits from the communication
complexity lower bounds due to Babai, Nisan and Szegedy [5] and also show worst-case lower bounds for
MAJ ◦SYM1◦AND circuits using the discriminator lemma.

Circuit Satisfiability: Studying moderately exponential time algorithms for Circuit SAT is motivated by not
only the importance in practice, e.g., logic circuit design and constraint satisfaction but also the viewpoint of
Boolean circuit complexity. As pointed out by several papers such as [61, 66], there are strong connections
between proving circuit lower bounds forC and designing moderately exponential time algorithms forC -
SAT; see also excellent surveys [53, 44, 63]. Typical such connections are:

(1) Some proof techniques such as deterministic/random restriction (shrinkage analysis/switching lemma)
simultaneously prove circuit lower bounds forC and providesC -SAT algorithms [52, 31, 7, 55, 17, 16, 15,
20, 25].

(2) Williams [61, 65] showed that if we obtain a moderately exponential time algorithm forC -SAT and
C satisfies some closure property, then we also have a separation of complexity classes such as ENP ⊈ C
or NE⊈ C , where ENP is the set of languages decidable by exponential time Turing machines with NP
oracles and NE is the set of languages decidable by non-deterministic exponential time Turing machines;
see also [60, 62, 64, 10, 35] for the improvement of such connections. Since then, people have developed
moderately exponential time satisfiability algorithms for various circuit classes [33, 18, 30, 1, 3, 2, 43, 19,
58]. In particular, one of the current best lower bounds, NE⊈ ACC0 ◦THR (also NE⊈ ACC0 ◦SYM1),
was obtained through satisfiability algorithms [64], whereACC0 :=

∪
mAC0[m].

Circuit Compression: Circuit CMP is a relaxed version of the circuit minimization problem. Chen, Ka-
banets, Kolokolova, Shaltiel and Zuckerman [17] established a connection between compression algorithms
and circuit lower bounds as follows: If there exists a deterministic efficient algorithm forC -CMP, then
NEXP ⊈ C . They also gave efficient compression algorithms forAC0 circuits, Boolean formulas and
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branching programs of certain size range. Srinivasan [57] showed an efficient compression algorithm for
AC0[m] with a prime powerm. Carmosino, Impagliazzo, Kabanets and Kolokolova [13] established in-
teresting connections between the tasks of compression/learning and “natural properties” in the sense of
Razborov and Rudich [48].

2 Preliminaries

We use random access machines as our computation model. For a setS, we denote by|S| the cardinality of
S.

A literal is either a Boolean variable or its negation. Aterm is a conjunction of literals. ABoolean circuit
is a directed acyclic graph whose source nodes are labeled by literals or constants and internal and sink
nodes are labeled by logic gates such as AND, OR, NOT, or weighted symmetric gates. A Boolean circuit
with a single sink node computes a Boolean function in a natural way. We call source nodes and a sink node
input nodesandoutput noderespectively. Thedepthof a node is defined as the length of the longest path
from it to the output node. Thedepthof a Boolean circuit is the maximum value of the depth over all nodes.
A Boolean circuit islayeredif for every edge(u,v), u andv have depthd andd+1 for somed.

A Boolean circuitC : {0,1}n→ {0,1} is satisfiableif there exists asatisfying assignmentfor C, i.e., an
assignmenta∈ {0,1}n such thatC(a) = 1 holds. For two Boolean functions (or circuits)f ,g in the same
variables, we writef ≡ g if f (a) = g(a) holds for alla∈ {0,1}n. A Boolean functionf : {0,1}n→ {0,1}
is k-junta if it depends on at mostk variables, i.e., there existg : {0,1}k→ {0,1} and 1≤ i1 < · · ·< ik ≤ n
such thatf (x1, . . . ,xn) = g(xi1, . . . ,xik) holds.

Let V = {x1, . . . ,xn}. A restriction is a mappingρ : V → {0,1,∗}. The meaning ofρ is that if ρ(xi) ∈
{0,1}, then we assign the valueρ(xi) to xi , and ifρ(xi) = ∗, then we leavexi as it is. Thus, when weapplya
restrictionρ to a Boolean functionf , we obtain the Boolean functionf |ρ defined over the variablesρ−1(∗).
We also apply a restrictionρ to a Boolean circuitC and obtain a Boolean circuitC|ρ . When we apply a
restrictionρ to a Boolean circuitC, wesimplifya Boolean circuitC using the identities 0∧ f ≡ 0, 1∧ f ≡ f
repeatedly (each appearance of L.H.S. is replaced by R.H.S.).

A restriction decision tree Toverx1, . . . ,xn is an ordinary decision tree except that leaves are not neces-
sarily labeled by 0 or 1. Theheightof T is defined as the number of nodes on the longest path from the root
to a leaf and thesizeof T is defined as the number of nodes inT. We identify a path from the root to a leaf
with a restriction. Arandom root-to-leaf pathis sampled by repeatedly selecting a child of the current node
uniformly at random from the root. Note that a path of lengthℓ is chosen with probability 2−ℓ.

3 A Dynamic Programming Algorithm for SYM w◦ANDk

We denote byg◦ANDk(n,m,w) the set ofn-variate Boolean circuits of the formg(w0+∑s
i=1witi), where

g : Z→ {0,1}, s≤ m, w0,w1, . . . ,ws ∈ Z,max0≤i≤s|wi | ≤ w, andt1, . . . , ts are terms that contain at most
k-literals such thatti ̸= t j holds fori ̸= j. We define

SYMw◦ANDk(n,m) :=
∪

g:Z→{0,1}
g◦ANDk(n,m,w).

We specify an elementC in SYMw◦ANDk(n,m) asC= {g,w0,(t1,w1), . . . ,(ts,ws)} and callsand max0≤i≤s|wi |
thesizeand themaximum weightof C respectively.

For a restrictionρ, we simplifyC|ρ = {g,w0,(t1|ρ ,w1), . . . ,(ts|ρ ,ws)} repeatedly if there exists a pair(i, j),
1≤ i < j ≤ s such thatti |ρ ≡ t j |ρ holds. That is, we delete(t j |ρ ,w j) and replace(ti |ρ ,wi) by (ti |ρ ,wi +w j).
If there are multiple such pairs, we may handle them in arbitrary order.
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Our first satisfiability algorithm forSYMw ◦ANDk(n,m) is described in Fig. 1. The algorithm involves
two parametersn′,m′ that are specified in the proof of Theorem 3.1. The basic idea is as follows:
(Step 1) We construct a tableT that contains pairs of the form(C,#sat(C)) for every circuitC in g◦
ANDk(n′,m′,w′), where #sat(C) denotes the number of satisfying assignments forC andn′,m′,w′ are ap-
propriately chosen parameters. Furthermore, pairs are sorted in the lexicographical order with respect to the
first coordinateC so that we can use binary search. To do so, we check the number of satisfying assignments
for every circuit ing◦ANDk(n′,m′,w′) one by one in the lexicographical order using brute force search.
(Step 2) LetC be an input instance ing◦ANDk(n,m,w). For each restrictionρ that assigns∗ to the firstn′

variables ofC, we check the number of satisfying assignments forC|ρ using binary search inT and output
the sum of them.

Algorithm1(C= {g,w0,(t1,w1), . . . ,(ts,ws)}: instance,n,m,k,w: integer)
01: if C /∈ SYMw◦ANDk(n,m), return ⊥.
02: T← /0. /∗ table for dynamic programming∗/
03: for eachC∈ g◦ANDk(n′,m′,(s+1) ·w), /∗ lexicographical order∗/
04: T← T ∪{(C,#sat(C))}. /∗ brute force search∗/
05: N← 0.
06: for each ρ : V→{0,1,∗} such thatρ−1(∗) = {x1, . . . ,xn′},
07: N← N+#sat(C|ρ). /∗ binary search inT ∗/
08: return N.

Figure 1: A Dynamic Programming Algorithm forSYMw◦ANDk

We will show the following theorem.

Theorem 3.1. We can count the number of satisfying assignments for C∈ SYMw ◦ANDk(n,m) determin-
istically in time

poly(n,m, logw) ·2n−Ω((n/ log(mw))1/k))

and exponential space.

Proof. We denote by|g◦ANDk(n,m,w)| the cardinality ofg◦ANDk(n,m,w). To evaluate the running time
of (Step 1), we upper bound the size of the tableT using the following fact.

Fact 3.2. For all m, we have

|g◦ANDk(n,m,w)| ≤ (2w+1)∑k
i=0 2i(n

i) ≤ 2(k+1)(2n)k log(2w+1).

Proof. Note that∑k
i=02i

(n
i

)
is the number of different terms that consist of at mostk-literals (including

a constant function 1). Each term has a weight in{−w,−w+ 1, . . . ,w− 1,w}. Thus, we have the first
inequality. The second inequality follows from an elementary calculation.

Thus, we can bound the running time of Lines 03-04 from above by

2(k+1)(2n′)k log(2(m+1)w+1)×poly(m′, log(mw)) ·2n′ ,

where we setm′ = ∑k
i=02i

(n′

i

)
≤ (k+1)(2n′)k.

Next we evaluate the running time of (Step 2). Note that the following guarantees that everyC|ρ in Line
06 belongs tog◦ANDk(n′,m′,(m+1) ·w).
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Fact 3.3. Let C= {g,w0,(t1,w1), . . . ,(tm,wm)}. If C ∈ g◦ANDk(n,m,w) holds, then for all restrictionρ
with |ρ−1(∗)|= n′, we have C|ρ ∈ g◦ANDk(n′,m′,(m+1) ·w).

Proof. By the definition ofSYMw◦ANDk(n,m), we have∑s
i=0 |wi | ≤ (m+1)w. This implies the maximum

weight ofC|ρ is at most(m+1)w.

For eachC|ρ , binary search in Line 07 takes time at most

log2 |g◦ANDk(n
′,m′,(m+1) ·w)|×poly(m′, log(mw)) = poly(m′, log(mw)).

Thus, we can bound the running time of Lines 06-07 above by

poly(m,m′, log(mw)) ·2n−n′ .

If we setn′ =
(

n
(k+1)2k+1 log(2(m+1)w+1)

)1/k
= Θ((n/ log(mw))1/k), the total running time ofAlgorithm1

is bounded from above by poly(n,m, logw) ·2n−Ω((n/ log(mw))1/k). This completes the proof.

Remark 3.4. In the case when g(z) = sgn(z), we can reduce the weight of the top gate of C|ρ from(m+1)w

to 2n′O(k)
efficiently by Theorem 16 in [42]. With this trick, we can handle Max SAT instances with arbitrary

weights.

4 A Greedy Restriction Algorithm for SYM w◦ANDk

For a termt, we denote by|t| the width oft, i.e., the number of literals int and by var(t) the set of variables
that appear int (possibly negated). LetC ∈ SYMw ◦ANDk(n,m) be a circuit{g,w0,(t1,w1), . . . ,(ts,ws)}.
We define varℓ(C) := ∪i:|ti |≥ℓvar(ti), freqℓ(C,x) := |{ti ∈C | x∈ var(ti), |ti | ≥ ℓ}|, andLℓ(C) := ∑i:|ti |≥ℓ |ti |.

Our second satisfiability algorithm forSYMw ◦ANDk(n,m) is described in Fig. 2. The basic idea is as
follows:
(Step 1) Choose a positive integerℓ according to the input. We seek for a variable, sayx, that occurs most
frequently in terms of width at leastℓ. We recursively run the algorithm forC|x=0 andC|x=1. HereC|x=a

denotes the circuit obtained fromC by applying a restrictionρ such thatρ(x) = a∈ {0,1} andρ(x′) = ∗ for
x′ ̸= x.
(Step 2) If there is no term of width at leastℓ, we callAlgorithm1 .

We will show the following theorem which implies Theorem 1.1 by settingk= n.

Theorem 4.1. We can count the number of satisfying assignments for C∈ SYMw ◦ANDk(n,m) determin-
istically in time

poly(n,m, logw) ·2n−Ω((n/ log(mw))logn/4log(km))

and exponential space.

Proof. Let us define a sequence of random variables{Ci} inductively asC0 :=C andCi+1 :=Ci |x=a, where
x= argmaxx∈var(Ci) freqℓ(Ci ,x) anda is a uniform random bit.

We can think of the computation ofAlgorithm2 as a rooted binary tree. That is, the root node is labeled
with C0, the left and right children of the root are labeled withC0|x=0 andC0|x=1, and so on. Then, if we
pick a node of depthn−n′ uniformly at random, the distribution of its label is identical to that of the random
variableCn−n′ .

We would like to bound the running time ofAlgorithm2 (Cn−n′ ,n′,n′, ℓ). It is obviously bounded from
above by poly(n,m, logw) ·2n′ . Furthermore, ifLℓ(Cn−n′) <

n′
2 holds, the running time can be bounded by
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Algorithm2(C= {g,w0,(t1,w1), . . . ,(ts,ws)}: instance,n,n′, ℓ: integer)
01: if n> n′,
02: x= argmaxx∈var(C) freqℓ(C,x).
03: N0← Algorithm2(C|x=0,n−1,n′, ℓ).
04: N1← Algorithm2(C|x=1,n−1,n′, ℓ).
05: return N0+N1.
06: else
07: N← 0.
08: for each ρ : var(C)→{0,1,∗} such thatρ−1({0,1}) = varℓ(C),
09: w′← the maximum weight ofC|ρ .
10: N← N+ Algorithm1(C|ρ ,n−|varℓ(C)|,m′, ℓ−1,w′).
11: return N.

Figure 2: A Greedy Restriction Algorithm forSYMw◦ANDk

2n′/2× (the running time ofAlgorithm1 (C′,n′/2,m′, ℓ− 1,w′)) for C′ ∈ SYMw′ ◦ANDℓ−1(n′/2,m′) with
m′ = ℓ · (n′)ℓ−1 andw′ = (m+1)w. We need the following lemma that is proven in Appendix D.

Lemma 4.2(Greedy bottom fan-in reduction). Let C∈ SYMw◦ANDk(n,m). For all n′ ≥ 4, we have

Pr

[
Lℓ(Cn−n′)≥ 2ℓ ·Lℓ(C) ·

(
n′

n

) ℓ+2
2

]
< 2−n′ .

SinceLℓ(C)≤ km, if we setn′ = 1
16

(
n

km

)2/ℓ ·n in the above lemma, we have

2ℓ ·Lℓ(C) ·
(

n′

n

) ℓ+2
2

≤ n′

2
,

that is, we haveLℓ(Cn−n′) < n′/2 with probability at least 1− 2−n′ . If we setℓ = 4log(km)
logn , then the total

running time ofAlgorithm2 is bounded from above by the sum of

poly(n,m, logw) ·2n−n′ ·2−n′ ·2n′

and
poly(n,m, logw) ·2n−n′ · (1−2−n′) ·2n′/2 ·2n′/2−Ω((n′/(log(m′w′))1/ℓ)

according to whetherLℓ(Cn−n′)≥ n′/2 holds or not. An elementary calculation completes the proof.

Remark 4.3. The novelty of our algorithm and its analysis is a new way of reducing the bottom fan-in
of circuits in a greedy manner. Intuitively, given aSYMw ◦ANDk circuit with m gates, greedy restriction
produces a collection ofSYMw′ ◦ANDk′ circuits with k′ = O(log(km)/ logn) such that at least one of the
circuits in the collection is satisfiable if and only if so is the original circuit. Note that previous techniques
such as Schuler’s width reduction [54, 11] or the standard random restriction achieve k′ = O(log(m/n))
and this bound is not sufficient for our purpose.

5 Average-Case Circuit Lower Bounds

Through the analysis of our satisfiability algorithms, we obtain the following average-case lower bounds.
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Theorem 5.1 (depth 2, weighted symmetric gate at the top, AND gates at the bottom). There exists a
constantα > 0 such that for every m,w and sufficiently large n, there exists a polynomial time computable
function fn,m,w such that for every C∈ SYMw◦AND(n,m), it holds that

Pr
x∈{0,1}n

[ fn,m,w(x) =C(x)]≤ 1
2
+2−Ω((n/ log(mw))α logn/ log(nm)).

Theorem 5.2(depthd, weighted symmetric gate only at the top). There exists a constantα > 0 such that
for every m,w,d and sufficiently large n, there exists a polynomial time computable function fn,m,w,d such
that for every C∈ SYMw◦AC0

d(n,m), it holds that

Pr
x∈{0,1}n

[ fn,m,w,d(x) =C(x)]≤ 1
2
+2
−Ω
(
(n/22d(logm)4/5

log(mw))α logn/ logm
)
.

Theorem 5.3(depthd, t(n) weighted symmetric gates). There exists a constantα > 0 such that for every
m,w and sufficiently large n, there exists a polynomial time computable function fn,m,w,d,t such that for every
C∈ AC0

d[SYMw](n,m, t), it holds that

Pr
x∈{0,1}n

[ fn,m,w,d,t(x) =C(x)]≤ 1
2
+2
−Ω
(
(n/22d(logm′)4/5

log(m′w′))α logn/ logm′
)
,

where m′ = m2t+1 and w′ = (mw)2t+1
.

In the rest of this section, we give a proof of Theorem 5.1. The proof of Theorem 5.2 is similar and we
omit it. Theorem 5.3 immediately follows from Theorem 5.2 with Lemma B.3 in Section B.

5.1 Generalized Andreev function

In this section, we review the construction of average-case hard Boolean functions due to [17, 37]. We begin
with some definitions.

Definition 5.4 (Statistical distance). Two distributions X,Y over a set E areε-closeif |Pr[X ∈ A]−Pr[Y ∈
A]| ≤ ε holds for every A⊆ E.

Definition 5.5. A set A⊆ {0,1}n is a subcube of dimensionk if there exist1 ≤ i1 < · · · < ik ≤ n and
ai1, . . . ,aik ∈ {0,1} such that A= {x∈ {0,1}n | xi1 = ai1, . . . ,xik = aik}.

Definition 5.6 (Bit-fixing extractor). A function f : {0,1}n→ {0,1}m is an (n,k,m,ε)-bit-fixing extractor
if f (X) and the uniform distribution over{0,1}m are ε-close for every distribution X that is uniform over a
subcube of{0,1}n of dimension at least k.

We need the following explicit construction due to Rao.

Lemma 5.7 (Efficient bit-fixing extractor [46]). There exist constantsα,β > 0 such that for every k≥
(logn)α , there exists a polynomial time computableExtn,k : {0,1}n→{0,1}m that is an(n,k,m,ε)-bit-fixing

extractor with m= 0.9k andε ≤ 2−kβ
.

We also need an efficient and explicit construction of list decodable codes.

Definition 5.8 (List-Decodable Code). A function f : {0,1}k → {0,1}n is (p,L)-list-decodable if|{y ∈
{0,1}k | ∆( f (x), f (y))≤ pn}| ≤ L holds for every x∈ {0,1}k, where∆(a,b) denotes the Hamming distance
between a and b.

9



Lemma 5.9 (Efficient List-Decodable Code (Folklore), see Theorem 6.4 in [17]). There exists a function
Encn,r : {0,1}4n→{0,1}2r

that is(p,L)-list-decodable with p= 1/2−O(2−r/4) and L= O(2r/2). Further-
more, there exists an algorithm that, given x∈ {0,1}4n and z∈ {0,1}2r

, computes(Encn,r(x))z in polynomial
time.

We are ready to define the average-case hard Boolean functions: The generalized Andreev functionAn,k :
{0,1}4n×{0,1}n→{0,1} is defined asAn,k(x,y) := (Encn,0.9k(x))Extn,k(y). Let K(x) denote theKolmogorov
complexityof a stringx∈ {0,1}∗. The following lemma plays an important role in the proofs of our average-
case lower bounds.

Lemma 5.10 (Theorem 6.5 in [17]). There exist constantsα,γ > 0 such that the following holds. Let
k ≥ (logn)α and C be a k-variate circuit whose binary description length is at most n in a some fixed
encoding scheme. Letρ : {x1, . . . ,xn} → {0,1,∗} be a restriction with|ρ−1(∗)| = k. Fix a∈ {0,1}4n with
K(a)≥ 3n and define f(y) := An,k(a,y). Then, we have

Pr
y′∈{0,1}k

[C(y′) = f |ρ(y′)]≤
1
2
+

1
2kγ .

The following fact can be shown by a counting argument.

Fact 5.11. For every0< p< 1, Prx∈{0,1}n[K(x)≤ (1− p)n]≤ 2−pn+1.

5.2 Proof of Theorem 5.1

Fix n,m,w and letn′ = (n/ log(mw))logn/4log(nm). Select anya∈ {0,1}4n with K(a) ≥ 3n and let f (y) :=
An,n′(a,y). We show the following lemma.

Lemma 5.12. For every C∈ SYMw◦AND(n,m), it holds that

Pr
y∈{0,1}n

[C(y) = f (y)]≤ 1
2
+2−Ω(n′γ ),

whereγ > 0 is a universal constant from Lemma 5.10.

Assuming this, the proof of Theorem 5.1 is complete since by Fact 5.11, we have

Pr
x,y
[An,n′(x,y) =C(x,y)] ≤ Pr

x
[K(x)< 3n]+Pr

x
[K(x)≥ 3n]Pr

x,y
[An,n′(x,y) =C(x,y) | K(x)≥ 3n]

≤ 2−Ω(n)+ max
x:K(x)≥3n

Pr
y
[An,n′(x,y) =C(x,y)]

≤ 2−Ω(n)+
1
2
+2−Ω(n′γ ).

.

Proof of Lemma 5.12.We can see that from the proofs of Theorems 3.1 and 4.1,C can be computed by
a restriction decision treeT of height n− n′ such that (1) each leaf is labeled by a circuit inSYMw′ ◦
ANDk′(n′,m′) for somem′,k′,w′ and (2) except for a 2−nΩ(1)

fraction of leaves, such a circuit can be described
by using at mostn bits. Letσ(C) denote the description length of a circuitC in a fixed encoding scheme.
Let ρ be a random restriction sampled by selecting a leaf ofT uniformly at random andyρ be a uniform

random element of{0,1}ρ−1(∗). Then, we have

Pr
y
[C(y) = f (y)] ≤ Pr

ρ
[σ(C|ρ)> n]+Pr

ρ
[σ(C|ρ)≤ n] Pr

ρ ,yρ
[C|ρ(yρ) = f |ρ(yρ) | σ(C|ρ)≤ n]

≤ 2−nΩ(1)
+

1
2
+2−Ω(n′γ ),

where the last inequality is by Item (2) above and Lemma 5.10. This completes the proof.

10



6 Worst-Case Lower Bounds

From the average-case lower bounds in Section 5, we obtain the following worst-case lower bounds.

Theorem 6.1(majority vote of depth 2, weighted symmetric gate at the top, AND gates at the bottom).
There exists a constantα > 0 such that for every m,w and sufficiently large n, there exists a polynomial time
computable function fn,m,w such that C∈MAJ ◦SYMw ◦AND(n,m) cannot compute fn,m,w if the majority

gate at the top of C has fan-in at most2o((n/ log(mw))α logn/ log(nm)).

Theorem 6.2(majority vote of depthd, weighted symmetric gate only at the top). There exists a constant
α > 0 such that for every m,w,d and sufficiently large n, there exists a polynomial time computable function
fn,m,w,d such that any C∈MAJ ◦SYMw◦AC0

d(n,m) cannot compute fn,m,w,d if the majority gate at the top

of C has fan-in at most2
o
(
(n/22d(logm)4/5

log(mw))α logn/ logm
)
.

Theorem 6.3(majority vote of depthd, t(n) weighted symmetric gates). There exists a constantα > 0 such
that for every m,w,d, t and sufficiently large n, there exists a polynomial time computable function fn,m,w,d,t

such that any C∈MAJ ◦AC0
d[SYMw](n,m, t) cannot compute fn,m,w,d,t if the majority gate at the top of C

has fan-in at most2
o
(
(n/22d(logm′)4/5

log(m′w′))α logn/ logm′
)
, where m′ = m2t+1 and w′ = (mw)2t+1

.

Theorem 6.4(depthd, t(n) weighted symmetric gates). There exists a constantα > 0 such that for every
m,w,d, t and sufficiently large n, there exists a polynomial time computable function fn,m,w,d,t such that any
C∈ AC0

d[SYMw](n,m, t) cannot compute fn,m,w,d,t if

t = o
(
(n/22d(logm′)4/5

log(m′w′))α logn/ logm′
)

holds, where m′ = m(t +1) and w′ = mtwt+1.

We need a corollary of the discriminator lemma that is proven in Section E.

Lemma 6.5(Discriminator Lemma [27]). If a circuit C∈MAJ ◦C is a majority vote of k circuits C1, . . . ,Ck∈
C , then for some1≤ i ≤ k, we have

|Pr
x
[Ci(x) = 1 |C(x) = 1]−Pr

x
[Ci(x) = 1 |C(x) = 0]| ≥ 1

k
.

For f ,g : {0,1}n→{0,1}, let Corr( f ,g) := |Prx[ f (x) = g(x)]−Prx[ f (x) ̸= g(x)]|.

Corollary 6.6. For ε ≥ 0, if C in Lemma 6.5 also satisfies that

|Pr
x
[C(x) = 0]−Pr

x
[C(x) = 1]|= 2ε,

then we haveCorr( f ,g)≥ 1
k −2ε.

Theorems 6.1, 6.2 and 6.3 immediately follow from Theorems 5.1, 5.2 and 5.3 with Corollary 6.6. Theo-
rem 6.4 can be shown by combining Lemma B.2 in Section B, Theorem 5.2 and Corollary 6.6.
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Appendix

A A Depth Reduction Algorithm for SYM w◦AC0
d

In this section, we prove the following following theorem:

Theorem A.1. We can count the number of satisfying assignments for C∈ SYMw ◦AC0
d(n,m) when m≤

2(logn/4d)5/4
deterministically in time

poly(n,m, logw) ·2n−Ω(n/22d(logm)4/5
log(mw))logn/9logm

and exponential space.

We representC∈ SYMw◦AC0
d(n,m) asC = {g,w0,(C1,w1), . . . ,(Cs,ws)}, whereg : Z→ {0,1}, s≤m,

w0,w1, . . . ,ws∈ Z, max0≤i≤s|wi | ≤ w, andC1, . . . ,Cs are unbounded fan-in circuits of depth at mostd with
AND, OR and NOT gates.

The following fact is useful for the design and analysis of our algorithm.

Fact A.2. Let aSYMw ◦AC0
d(n,m) circuit C = {g,w0,(C1,w1), . . . ,(Cs,ws)}, where some Ci is a DNF of

the form t1∨ t2∨·· ·∨ tℓ. If for every x∈C−1
i (1), x satisfies exactly one term of Ci , then it holds that

C≡ {g,w0,(C1,w1), . . . ,(Ci−1,wi−1),(Ci+1,wi+1), . . . ,(Cs,ws),(t1,wi), . . . ,(tℓ,wi)}.

The outline of our algorithm is as follows. First, given a circuitC = {g,w0,(C1,w1), . . . ,(Cs,ws)}, we
construct a restriction decision tree of depthn−n/m2d/k whose almost all leaves define restrictionsρ such
that eachCi |ρ is a k-junta by using the depth reduction technique due to [7]. Note that ak-junta can be
represented as ak-DNF satisfying the condition of Fact A.2. Hence, we can remove the OR gate of each
k-DNF and obtain aSYMw ◦ANDk circuit. UsingAlgorithm2 in Section 4, we can count the number of
satisfying assignments for such aSYMw◦ANDk circuit. If someCi |ρ is not ak-junta, we check all possible
0/1 assignments to the remaining variables. The fraction of such leaves is exponentially small.

The main ingredient of our algorithm is the following depth reduction algorithm due to [7].

Lemma A.3 ([7]). LetF be a set of k-DNF formulas over{0,1}n with |F | ≤m and suppose that k≤ k′ ≤
(log2m)1/5. Then there is a restriction decision tree TF over{0,1}n of height n−m−2/k′n such that forρ
chosen according to a random root-leaf path in TF , the probability that for some formula F∈F , F|ρ is not
a k′-junta is at most4k log2mexp(−2−2k−5k−3n/ log2m). Moreover, there is an algorithm with the running

time2n−m−2/k′nnO(k′)||F ||O(1) that constructs TF givenF as input.

We say a leaf of a restriction decision treeTi (or a restriction defined by that leaf) isgoodif all OR gates
at level-i reduce tok-juntas after the restriction. Otherwise, it is calledbad. Now we are ready to prove
Theorem A.1.

Proof of Theorem A.1.Without loss of generality, we assume each circuitCi consists of alternating NOT
gates and unbounded fan-in OR gates (and the layer of NOT gates do not contribute to the depth of the
circuit).
[depth d+1 to d] Clearly, each OR gate at the bottom level is represented as a 1-DNF formula. Setting
k = 1 andk′ = (log2m)1/5 in Lemma A.3, there exists a restriction decision treeT1 of heightn−n/m2/k′

such that for almost all root-to-leaf pathsρ of T1, after restriction byρ, the functions computed by all OR
gates at level-1 of the circuit depend only onk variables. Their negations also depend only onk variables
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and hence, after restriction byρ, each OR gate at level-2 ofC is ak-DNF formula. Thus, we can reduce the
depth ofC from d+1 tod. The probabilityp1 that a leaf ofT1 is bad satisfies

p1≤ 4log2mexp(−n/128log2m).

[depth ℓ to ℓ−1 (3≤ ℓ≤ d)] Let k= k′ = (log2m)1/5 andn1 = n/m2d/k. Since all good leaves inT1 creates
k-DNF formulas, we can apply Lemma A.3 to the set of OR gates at level-2 and construct a new restriction
decision treeT2 obtained by appending a restriction decision tree to each good leaf. The probabilityp2 that
a leaf ofT2 is bad satisfies

p2≤ (1− p1) ·4k log2mexp(−2−2k−5k−3n1/ log2m)).

We repeat the similar argument for each of the remaining levels up until we have built the treeTd. Note that
at each good leaf ofTd, all OR gates at level-d reduce tok-juntas and these can be represented ask-DNF
formulas. Letni = ni−1/m2/k for i ≤ d andpi be the probability that a leaf ofTi is bad, then we have

pi ≤ 4k log2mexp(−2−2k−5k−3ni−1/ log2m))
i−1

∏
j=1

(1− p j).

Now the circuitC ∈ SYMw ◦AC0
d(n,m) can be reduced to some circuitC′ ∈ SYMw ◦AC0

2(nd,m) at good
leaves.
[SYMw ◦AC0

2 to SYMw ◦ANDk] After the above operations, each good leaf ofTd is corresponded to a
collection ofk-DNFs. In addition, suchk-DNFs satisfy the condition of Fact A.2 since they are constructed
from k-juntas. Note that the size may increase by a factor of at most 2k. Hence, for good leaves, we can
eliminate OR gates of allk-DNFs andC′ can be reduced toC′′ ∈ SYMw◦ANDk(nd,2km).

For all good leaves ofTd, usingAlgorithm2 , we can count the number of satisfying assignments forC′′.
For all bad leaves ofT1, . . . ,Td, we check all 0/1 assignment to the remaining variables. Now we estimate
the probabilityp that some leaves ofTi (1≤ i ≤ d) is bad, wherep= p1+ p2+ · · ·+ pd. Sinceni decreases
rapidly, the probabilities that some leaf is bad are bounded by a quickly increasing geometric series whose
largest term is associated with the constructionTd.

p ≤ d · pd = d ·4k logmexp(−22k−5k−3nd−1/ logm)
d−1

∏
j=1

(1− p j)

≤ 4dklogmexp(−22k−5k−3nd−1/ logm) = 4dklogmexp(−22k−5k−3n/m2(d−1)/k logm)

≤ exp(−n/m2d/k) for sufficiently largen andm.

It remains to estimate the running time of our algorithm. Let the height ofTi be n− ni . Thenn0 = n,
ni = ni−1/m2/k for i ≤ d, andnd = n/m2d/k. The number of leaves ofTd is at most 2n−nd . We denote the
running time ofAlgorithm2 for SYMw◦ANDk(n,m) by T ′(n,m,k,w) and the running time of our algorithm
by T(n,m,d,w), then

T(n,m,d,w) ≤ (1− p) ·2n−nd ·

(
d

∏
i=1

nO(k)

)
·T ′(nd,2

km,k,w) ·mO(d)+ p·2n

≤ (1− p) ·2n−nd ·nO(dk) ·T ′(nd,2
km,k,w) ·mO(d)+ p·2n

≤ nO(dk) ·mO(d) ·2n−nd ·T ′(nd,2
km,k,w)+ p·2n.

The second term on the right hand is:

p·2n = exp(−n/m2d/k) ·2n = 2n−nloge/22d(logm)4/5

≤ 2n−n/22d(logm)4/5

.
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The first term on the right hand is:

nO(dk) ·mO(d) ·2n−nd ·poly(nd,2
km, logw) ·2nd−Ω(nd/ log(2kmw))lognd/4log(k2km)

= poly(nd,2
km, logw) ·nO(dk) ·mO(d) ·2n−Ω(nd/ log(2kmw))lognd/4log(k2km)

.

For sufficiently largemand small constantε > 0, log(k2km) = k+ logk+ logm< (1+ε) logm. Suppose that
m≤ 2(logn/4d)5/4

, thennd = n/m2d/k≥ n1/2. Thus, lognd/4log(k2km)≥ logn/8(1+ε) logm≥ logn/9logm,
then

poly(nd,2
km, logw) ·nO(dk) ·mO(d) ·2n−Ω(nd/ log(2kmw))lognd/4log(k2km)

≤ poly(n,m, logw) ·nO(dk) ·mO(d) ·2n−Ω(nd/ log(m2w))logn/9logm

≤ poly(n,m, logw) ·nO(dk) ·mO(d) ·2n−Ω(n/2m2d/k log(mw))logn/9logm

≤ poly(n,m, logw) ·nO(d(logm)1/5) ·mO(d) ·2n−Ω(n/22d(logm)4/5
log(mw))logn/9logm

.

Whenm= 2poly(logn) andd = O(logn), the terms ofnO(d(logm)1/5) andmO(d) are absorbed in the last term,
then we have

poly(n,m, logw) ·2n−Ω(n/22d(logm)4/5
log(mw))logn/9logm

.

Thus,

T(n,m,d,w) = poly(n,m, logw) ·2n−Ω(n/22d(logm)4/5
log(mw))logn/9logm

+2n−n/22d(logm)4/5

.

The first term dominates the second term, hence the proof is completed.

Remark A.4. We use the depth reduction algorithm due to [7] instead of [31] because we have to keep the
bottom fan-in of circuits much smaller thanlogn/ log logn.

B A Transformation Algorithm for AC 0
d[SYMw]

In this section, we give an algorithm that counts the number of satisfying assignments for anAC0
d[SYMw]

circuit.

Theorem B.1. When m(t + 1) ≤ 2(logn/4d)5/4
, there is an algorithm that counts the number of satisfying

assignments for C∈ AC0
d[SYMw](n,m, t) in time

poly(n,m,d, t, logw) ·2
n+O(t logmw)−Ω

(
(n/24d(logm)4/5

t log(mw))
logn

18logm

)
.

When a weighted symmetric gates∈SYMw computes a weighted symmetric functionf : {0,1}n→{0,1}
such thatf (x1, . . . ,xn) = g(w0 +∑n

i=1wixi) holds, we represent the gates as s := ⟨g,w0, . . . ,wn⟩. For a
functiong : Z→{0,1}, we denote byg the negation ofg, i.e.,g(x) := ¬g(x) for all x∈ Z.

The outline of our algorithm is as follows. The proof of Lemma 29 in [9] gives the procedure of
transformation from a circuit inAC0

d[SYMw](n,m, t) to the equivalent circuit inOR2t ◦ANDt+1 ◦SYMw ◦
AC0

d(n,m). It is enough to count the number of satisfying assignments for each circuit inANDt+1◦SYMw◦
AC0

d(n,m) due to the property of the transformation. By the idea of the proof of Theorem 5.1 in [8], we
transform a circuit inANDt+1 ◦SYMw to an equivalent gate inSYMw′ wherew′ = w′(m,w, t). Now, we
obtain a circuit inSYMw′ ◦AC0

d(n,m(t + 1)) and, count the number of satisfying assignments for it by
Theorem A.1.
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Proof of Theorem B.1.Let s1,s2, . . . ,st ∈ SYMw be weighted symmetric gates of a givenC, such that there
is no path from the output ofsi to an inputsj if i < j. For eachi ∈ [t], let si represent a weighted symmetric
function fi : {0,1}mi → {0,1}. Let si := ⟨gi ,wi,0, . . . ,wi,mi ⟩, where a functiongi : Z→ {0,1} and integers
wi,0, . . . ,wi,mi ∈ [w] are such thatfi(x1, . . . ,xni ) = gi(w0+∑ni

ℓ=1wℓxℓ) holds.
A subcircuit for son C is a circuit with the top gates such that it consists of all gates on the path from

inputs tos on C. Let Ci be a subcircuit forsi on C. For i ∈ [t] anda ∈ {0,1}t , let Ci(a) be a circuit by
replacingsj with the constanta j for all j < i onCi . The output ofCi(a) is equivalent to the output ofsi on
C when the output ofsj is a j for all j < i. Similarly, letC(a) be theAC0

d(n,m) circuit obtained by replacing
all si with ai on C. Note that allCi(a) andC(a) are inSYMw ◦AC0

d(n,m) and can be constructed in time
O(mdt).

For eacha ∈ {0,1}t , we denote the circuitC′(a) := C(a)∧
∧

i C
′
i (a), whereC′i (a) = Ci(a) if ai = 1 and

C′i (a) = ¬Ci(a) otherwise. Note that¬Ci(a) is also aSYMw ◦AC0
d(n,m) circuit obtained by replacing the

functiongi of the gatesi with gi . Thus,C′(a) ∈ ANDt+1 ◦SYMw ◦AC0
d(n,m). Note that the constructing

time ofC′(a) is at mostO(mdt). An assignment satisfiesC′(a) for somea∈ {0,1}t if and only if it satisfies
C. Moreover, a satisfying assignment ofC satisfiesC′(a) for only onea ∈ {0,1}t . This means that the
number of satisfying assignments ofC is equal to the sum of ones ofC′(a) for all a∈ {0,1}t . Therefore, it
is enough to count satisfiability assignments ofC′(a) for all a∈ {0,1}t .

Now, we construct the circuitC′′ ∈ SYMw′ ◦AC0
d(n,m(t +1)) such thatC′′ ≡C′(a) ∈ ANDt+1◦SYMw◦

AC0
d(n,m) wherew′ is an integer. Fori ∈ [t], let Wi be the sum of wights of the inputs ofsi , i.e., Wi :=

∑mi
j=0wi, j . We denote byW0 the output ofC(a). LetWmaxi=0,1,...,t Wi , thenW is at mostmw. Using baseW,

t +1 integers{Wi}i=0,...,t can be denoted into a single numberN = ∑t
i=0WiWi . Now, we set the symmetric

function g′ as follows. We setg′(N) := 1 whenN = ∑t
i=0WiWi holds such thatgi(Wi) = ai for all i and

W0 = 1. For other valuesN, we setg′(N) := 0. Note that the time of setting ofg′ is O(tWt+1poly(logW)) =
O(tmt+1wt+1poly(log(mw))). Using this functiong′, we replace the top gate and symmetric gates of second
layer ofC′(a) with a new symmetric gates′ := ⟨g′,(w′i,ℓ)i∈{0,1,...,t},ℓ∈[mi ]⟩, wherew′i,ℓ = wi,ℓ ·Wi . We call
this circuit C′′, thenC′′ is equivalent toC′(a). By the above argument, the size of each layer inC′′ is
at mostm(t + 1) and the maximum weight ofs′ is at mostwWt ≤ mtwt+1. Then,C′′ is a SYMmtwt+1 ◦
AC0

d(n,m(t +1)) circuit. The time of constructingC′′ ∈ SYMmtwt+1 ◦AC0
d(n,m(t +1)) is at mostO(mdt)+

O(tpoly(log(mw)) ·mt+1wt+1) = O(dtpoly(log(mw)) ·mt+1wt+1).

Whenm(t+1)≤ 2(logn/4d)5/4
, we can apply Theorem A.1 and count the number of satisfying assignments

for C′′ i.e.,C′(a). We know the number of satisfying assignments forC by summing the numbers of satisfy-
ing assignments forC′(a) over alla∈ {0,1}t . Recall thatT(n,m,d,w) is the running time of Theorem A.1.
Combining the above argument and Theorem A.1, the running time onC∈ AC0

d[SYMw](n,m, t) is at most

2t ·O(dtpoly(log(mw)) ·mt+1wt+1) ·T(n,m(t +1),d,wt+1mt)

= 2t ·O(dtpoly(log(mw)) ·mt+1wt+1) ·poly(n,m(t +1), log(wt+1mt))

×2
n−Ω

(
(n/22d(log(m(t+1)))4/5

log(mt+1wt+1t))
logn

9log(m(t+1))

)

= poly(n,m,d, t, logw) ·2tmt+1wt+1 ·2
n−Ω

(
(n/24d(logm)4/5

t log(mw))
logn

18logm

)
(∵ t < m)

= poly(n,m,d, t, logw) ·2
n+O(t logmw)−Ω

(
(n/24d(logm)4/5

t log(mw))
logn

18logm

)
.

In the above proof, we have the following lemma.

Lemma B.2. The circuit classAC0
d[SYMw](n,m, t) is contained in the circuit classOR2t ◦SYMw′ ◦AC0

d(n,m(t+
1)), where w′ = mtwt+1.
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By the idea of the proof of Theorem 5.1 in [8], we also have the following lemma.

Lemma B.3. The circuit classAC0
d[SYMw](n,m, t) is contained in the circuit classSYMw′ ◦AC0

d(n,m2t+1),
where w′ = (mw)2t+1

.

We use these lemmas in the proofs of our circuit lower bounds.

C Compression Algorithms

In this section, we describe the proof sketch of the following theorems.

Theorem C.1 (depth 2, weighted symmetric gate at the top, AND gates at the bottom). There exists a
deterministic efficient and exponential space compression algorithm for C∈ SYMw◦AND(n,m) if

(n/ log(mw))logn/4log(nm) = ω(logn)

holds.

Theorem C.2(depthd, weighted symmetric gate only at the top). There exists a deterministic efficient and
exponential space compression algorithm for C∈ SYMw◦AC0

d(n,m) if

(n/22d(logm)4/5
log(mw))logn/9logm = ω(logn)

holds.

Theorem C.3(depthd, t(n) weighted symmetric gates). There exists a deterministic efficient and exponen-
tial space compression algorithm for C∈ AC0

d[SYMw](n,m, t) if

(n/22d(logm′)4/5
log(m′w′))logn/9logm′ = ω(logn)

holds, where m′ = m2t+1 and w′ = (mw)2t+1
.

We formulate Circuit CMP as the set cover problem (SC) and apply the polynomial time approximation
algorithm for SC. First we need some definitions. An(n′,m,k,w)-term is a conjunction of literals and a
circuit in SYMw◦ANDk(n′′,m), wheren′′ ≤ n′. An (n′,m,k,w)-DNF is a disjunction of(n′,m,k,w)-terms.
Let S (n′,m,k,w) be the set of(n′,m,k,w)-terms. Note that

|S (n′,m,k,w)| ≤ 2O(n)|SYMw◦ANDk(n
′,m)|.

Given a truth tableT of length 2n, we consider an SC instance(U,S ), where the universeU = {x ∈
{0,1}n | T(x) = 1} and the familyS = {t ∈S (n′,m,k,w) | t−1(1) ⊆U}. ThenS ′ ⊆S is set coverif
U = ∪t∈S ′t−1(1) holds.

It is easy to prove the following lemma using the greedy approximation algorithm for SC due to John-
son [36].

Lemma C.4. Let (U,S ) be the SC instance defined as above and assume the instance has a set cover of
cardinality s. If |SYMw ◦ANDk(n′,m)| = 2O(n) holds, then we can construct a set cover of cardinality at
most O(ns) deterministically in time2O(n).

We see the following holds from the proofs of Theorems 1.1, 1.2 and Lemma B.3.

Lemma C.5. Let C ∈ {SYMw ◦AND(n,m),SYMw ◦AC0
d(n,m),AC0

d[SYMw](n,m, t)} such that parame-
ters n,m,w,d, t satisfy the corresponding condition of Theorems C.1, C.2 and C.3, respectively. Then C∈ C
can be represented as a2n−ω(logn)-sized(n′,m′,k,w′)-DNF, where|SYMw′ ◦ANDk(n′,m′)|= 2O(n) holds.

Combining these lemmas, we complete the proofs of Theorems C.1, C.2 and C.3.
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D Proof of Lemma 4.2

The proof given here is essentially due to Chen, Kabanets, Kolokolova, Shaltiel and Zuckerman, see the
proof of Lemma 4.3 in [17], except that we introduceLℓ(·) and modify some parameters to measure the
effect of bottom fan-in reduction rather than the shrinkage of De Morgan formulas.

Lemma D.1 (Restatement of Lemma 4.2). Let C∈ SYMw◦ANDk(n,m). For all n′ ≥ 4, we have

Pr

[
Lℓ(Cn−n′)≥ 2ℓ ·Lℓ(C) ·

(
n′

n

) ℓ+2
2

]
< 2−n′ .

We need the notion of super-martingales and a variant of Azuma’s inequality for them.

Definition D.2. A sequence of random variables X0,X1, . . . ,Xn is a super-martingalewith respect to a se-
quence of random variables Y0,Y1, . . . ,Yn if it satisfiesE[Xi |Y0,Y1, . . . ,Yi−1]≤ Xi−1 for 1≤ i ≤ n.

Lemma D.3 (Lemma 4.2 in [17]). Let {Xi}ni=0 be a super-martingale with respect to{Yi}ni=0. Define Zi :=
Xi −Xi−1 for 1≤ i ≤ n. If, for 1≤ i ≤ n, the random variable Zi (conditioned on Y0,Y1, . . . ,Yi−1) takes two
values with equal probability, and there exists a constant ci ≥ 0 such that Zi ≤ ci holds, then, for all positive
real λ , we have

Pr[Xn−X0≥ λ ]≤ exp

(
− λ 2

2∑n
i=1c2

i

)
.

We begin with a lemma that estimates the effect of greedy restriction.

Lemma D.4. Let C∈ SYMw◦ANDk(n,m) and x= argmaxx∈var(C) freqℓ(C,x). Then, we have

max{Lℓ(C|x=0),Lℓ(C|x=1)} ≤ Lℓ(C) ·
(

1− 1
n

)
and

E
a∈{0,1}

[Lℓ (C|x=a)]≤ Lℓ(C) ·
(

1− 1
n

) ℓ+2
2

.

Proof. Pick anyti such that|ti | ≥ ℓ andx ∈ var(ti). If |ti | = ℓ, we have|ti |x=a| < ℓ for all a ∈ {0,1}. If
|ti | > ℓ, we haveti |x=a ≡ 0 and|ti |x=¬a| = |ti | −1 for somea ∈ {0,1}. Since freqℓ(C,x) ≥

Lℓ(C)
n , we have

max{Lℓ(C|x=0),Lℓ(C|x=1)} ≤ Lℓ(C) ·
(
1− 1

n

)
and

E
a∈{0,1}

[Lℓ (C|x=a)] ≤ Lℓ(C)−
Lℓ(C)

n
min

{
ℓ,

(
1
2
· (ℓ+1)+

1
2
·1
)}

= Lℓ(C)

(
1− ℓ+2

2n

)
≤ Lℓ(C) ·

(
1− 1

n

) ℓ+2
2

.

Recall that we define a sequence of random variables{Ci} inductively asC0 := C andCi+1 := Ci |x=a,
wherex= argmaxx∈var(Ci) freqℓ(Ci ,x) anda is a uniform random bit. We denote byYi the random bit assigned
to the selected variables in stepi for 1≤ i ≤ n and defineY0 := 0. We define sequences of random variables
{Li}ni=0,{l i}ni=0,{Zi}ni=1 as follows:Li := Lℓ(Ci), l i := lnLi and

Zi := l i− l i−1−
ℓ+2

2
ln

(
1− 1

n− i+1

)
.

Note that, givenY0,Y1, . . . ,Yi−1, the random variableZi takes two values with equal probability.
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Lemma D.5. Define X0 := 0 and Xi := ∑i
j=1Z j . Then, the sequence of random variables{Xi}ni=0 is a

super-martingale with respect to{Yi}ni=0 and for each Zi , we have Zi ≤ ci :=− ℓ
2 ln(1− 1

n−i+1).

Proof. By the first inequality of Lemma D.4, we havel i ≤ l i−1 + ln
(
1− 1

n−i+1

)
. This impliesZi = l i −

l i−1− ℓ+2
2 ln

(
1− 1

n−i+1

)
≤ − ℓ

2 ln
(
1− 1

n−i+1

)
= ci . By Jensen’s inequality, we haveE[l i |Y0,Y1, . . . ,Yi−1] ≤

lnE[Li |Y0,Y1, . . . ,Yi−1]. By the second inequality of Lemma D.4, the right hand side is at most ln

(
Li−1 ·

(
1− 1

n−i+1

) ℓ+2
2

)
=

l i−1+
ℓ+2

2 ln
(
1− 1

n−i+1

)
. This impliesE[Zi |Y0,Y1, . . . ,Yi−1]≤0, that is,E[Xi |Y0,Y1, . . . ,Yi−1]≤E[Xi−1|Y0,Y1, . . . ,Yi−1] =

Xi−1. Thus,{Xi}ni=1 is a super-martingale.

Now we are ready to prove Lemma D.1.

Proof of Lemma D.1.Let λ be arbitrary positive real andci ’s be as defined in Lemma D.5. By Lemma D.3
and Lemma D.5, we obtain

Pr

[
i

∑
j=1

Z j ≥ λ

]
≤ exp

(
− λ 2

2∑i
j=1c2

j

)
.

It is easy to show that∑i
j=1Z j = l i− l0− ℓ+2

2 ln n−i
n by the definition ofZ j . Thus, we have

Pr

[
i

∑
j=1

Z j ≥ λ

]
= Pr

[
l i− l0−

ℓ+2
2

ln

(
n− i

n

)
≥ λ

]

= Pr

[
Li ≥ eλ L0

(
n− i

n

) ℓ+2
2

]
.

For 1≤ j ≤ n−n′, we havec j =− ℓ
2 ln
(

1− 1
n− j+1

)
≤ ℓ

2 ·
√

2ln2
n− j+1, using the inequality− ln(1−x)≤

√
2ln2·x

for 0< x≤ 1/4. Thus, for 1≤ i ≤ n−n′, ∑i
j=1c2

j is at most

ℓ2 ln2
2

i

∑
j=1

(
1

n− j +1

)2

≤ ℓ2 ln2
2

i

∑
j=1

(
1

n− j
− 1

n− j +1

)
=

ℓ2 ln2
2

(
1

n− i
− 1

n

)
≤ ℓ2 ln2

2
· 1
n− i

.

Settingi = n−n′, we obtain

Pr

[
Ln−n′ ≥ eλ L0

(
n′

n

) ℓ+2
2

]
≤ exp

(
− λ 2

2∑n−n′
j=1 c2

j

)
≤ e−

1
ℓ2 ln2

λ 2n′ .

Choosingλ = ℓ ln2 completes the proof.

E Proof of Corollary 6.6

Proof. Let us denote Prx[g(x) = a, f (x) = b] by Pr[a,b] and Prx[g(x) = a | f (x) = b] by Pr[a|b]. The values
p0 and p1 denotes Pr[ f = 0] and Pr[ f = 1], respectively. Without loss of generality, we can suppose that
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p0≥ p1, i.e., p0 =
1
2 + ε andp1 =

1
2− ε .

Corr( f ,g) = |Pr[0,0]+Pr[1,1]−Pr[1,0]−Pr[0,1]|
= |2(Pr[0,0]+Pr[1,1])−1|
= |2(Pr[0|0]p0+Pr[1|1]p1)−1|
= |Pr[0|0](1+2ε)+Pr[1|1](1−2ε)−1|
= |(1−Pr[1|0])(1+2ε)+Pr[1|1](1−2ε)−1|
= |2ε− (1+2ε)Pr[1|0]+Pr[1|1](1−2ε)|
= |Pr[1|1]−Pr[1|0]+2ε{1−Pr[1|0]−Pr[1|1]}|

≥ 1
k
−2ε |{1−Pr[1|0]−Pr[1|1]}| ≥ 1

k
−2ε
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