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Bounded Depth Circuits with Weighted Symmetric Gates:
Satisfiability, Lower Bounds and Compression
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Abstract

A Boolean functionf : {0,1}" — {0,1} is weighted symmetri€ there exist a functiony: Z — {0, 1}
and integersvo, Wi, . .., Wy such thatf (xq,..., %) = g(Wo + Si_; Wix;) holds.

In this paper, we present algorithms for the circuit satisfiability problem of bounded depth circuits
with AND, OR, NOT gates and a limited number of weighted symmetric gates. Our algorithms run
in time super-polynomially faster thai! 2ven when the number of gates is super-polynomial and the
maximum weight of symmetric gates is nearly exponential. With an additional trick, we give an algo-

rithm for the maximum satisfiability problem that runs in time doly - 21" for instances witm
variablesO(n') clauses andrbitrary weights. To the best of our knowledge, this is the first moderately
exponential time algorithm even for Max 2SAT instances with arbitrary weights.

Through the analysis of our algorithms, we obtain average-case lower bounds and compression al-
gorithms for such circuits and worst-case lower bounds for majority votes of such circuits, where all the
lower bounds are against the generalized Andreev function. Our average-case lower bounds might be of
independent interest in the sense that previous ones for similar circuits with arbitrary symmetric gates
rely on communication complexity lower bounds while ours are based on the restriction method.

1 Introduction

We are concerned with bounded depth circuits with AND, OR, NOT and (weighted) symmetric gates.
Let Z be the set of integers and,x,....,x, be Boolean variables. A Boolean functidn: {0,1}" —
{0,1} is weighted symmetriif there exist a functiorg: Z — {0,1} and integersvg, ws, ..., W, such that
f(X1,..., %) = g(Wo+ ¥, Wix) holds. Ifw; =wy = --- = w, = 1 holds, therf is symmetric

For example, if we sej(z) = sgn(z), where sgfz) = 1 if and only ifz> 0, we obtairmajority functions as
symmetric functions antinear thresholdfunctions as weighted symmetric functions. If we defiie) = 1
if and only ifz= 0 modmfor an integem > 2, then we obtaimodulo nfunctions as symmetric functions.

A (weighted) symmetric gate is a logic gate that computes a (weighted) symmetric function. We denote by
SYM,, the set of weighted symmetric gates such that;mak< w holds. When we consider satisfiability
and compression algorithms, we assume ¢tat can be evaluated in time polynomial in ldg|, where|z|
denotes the absolute value ofWhen we consider circuit lower bounds, we assumedghatcomputable,
i.e., there exists a Turing machine that compuges
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1.1 Our contribution

Satisfiability Algorithms: In the circuit satisfiability problem(Circuit SAT), our task is, given a Boolean
circuit C, to decide whether there exists a 0/1 assignment to the input variables suchavauates 1.
If input instances are restricted to a class of Boolean circglitdhe problem is called’-SAT. A nave
algorithm can solve Circuit SAT in tim&®(poly(|C|) - 2"), where we denote biC| the size ofC and byn
the number of input variables @frespectively. We say an algorithm f@t-SAT is moderately exponential
timeif it checks the satisfiability of ever@ € ¢ in time poly(|C|) - 2"~ (09" j e, super-polynomially faster
than 2'. We are interested in for which clagsmoderately exponential time satisfiability algorithms exist.

Let SYM,yo AND(n,m) be the set of-variate depth 2 circuits with a weighted symmetric gat&¥M,,
at the top and at mosh AND gates at the bottom. L@YMWoAcg(n,m) be the set oh-variate un-
bounded fan-in deptd + 1 layered circuits with AND, OR, NOT gates and a weighted symmetric gate in
SYM,, such that the top gate is the weighted symmetric gate and each layer contains at gatss. Let
ACS[SYMy](n,m,t) be the set oh-variate unbounded fan-in depthayered circuits with AND, OR, NOT
gates and at mostweighted symmetric gates BiYM,, such that each layer contains at moggates.

In this paper, we show moderately exponential time algorithms for the counting versiisai, where
% € {SYMy 0 AND(n,m), SYM,,0 ACY(n,m), AC[SYM,](n,mt)}, as follows.

Theorem 1.1(depth 2, weighted symmetric gate at the top, AND gates at the bottdm)can count the
number of satisfying assignments foeCGSYM,y o AND (n,m) deterministically in time

poly(n, m logu) 270/ losmuy 7450

and exponential space.

The running time is super-polynomially faster thdhwhen, e.g.m= n°(°gn/logloan) angy = 20" Note

that SYM2n contains all Boolean functions (if we ignore the assumptiondgf@tcan be evaluated in time
polynomial in log |z]). The heart of our algorithms is a (seemingly ndejtom fan-in reductiotechnique
inspired by recent developments on the analysis of “greedy restriction” by “concentrated shrinkage” [52,
55, 17, 50]. With an additional trick, we give an algorithm for the maximum satisfiability problem that runs
in time poly(n') - 207" for instances with variables,O(n') clauses anarbitrary weights. To the best
of our knowledge, this is the first moderately exponential time algorithm even for Max 2SAT instances with
arbitrary weights.

We extend the above algorithm with the help of the depth reduction algorithm due to Beame, Impagliazzo
and Srinivasan [7].

Theorem 1.2(depthd, weighted symmetric gate only at the top)e can count the number of satisfying
assignments for @ SYMWoACS(n, m) deterministically in time

)4/5 |0g(mW))|Ogn/9|OQm>

_ d(logm
poly(n, m,logw) - N Q((n/22 g
and exponential space.

The running time is super-polynomially faster thdrwehen, e.g.m = 2(091/4d)** gy = 2,

We further extend the above algorithm relying on the circuit transformation techniques due to Beigel,
Reingold and Spielman [9] and Beigel [8].

Theorem 1.3(depthd, t(n) weighted symmetric gatesyVe can count the number of satisfying assignments
forC e ACﬁ[SYMW](n, m,t) deterministically in time

O(tl -Q 24d(|ogm)4/5t| TLﬂogng
poly(n,m.d,t, logw) - 2" 0™ (v ogtrm) 54en )

and exponential space.



The r/unning time is super-polynomially faster thdhwhen, e.g.m=n¢, w= 2”111z andt = nax, where
1/4

<

Although our algorithms run in time super-polynomially faster thérirgtead of exponentially faster
than 2 (2179 for a universal constart > 0), this seems unavoidable due to the Strong Exponential
Time Hypothesis (SETH) [12, 32, 34]: The hypothesis states that fdg, dflere existssg > 0 such that
the satisfiability problem ok-CNF formulas cannot be solved in timé2%)". SETH has been used in
proving conditional time lower bounds for several exponential time and polynomial time algorithms, see,
e.g., [21, 38, 41].
Circuit Lower Bounds: Through the analysis of our satisfiability algorithms, we obtain the following
average-case lower bounds.

Theorem 1.4 (depth 2, weighted symmetric gate at the top, AND gates at the bottdbhere exists a
constanta > 0 such that for every mv and sufficiently large n, there exists a polynomial time computable
function f, mw such that for every @ SYM,,o AND (n,m), it holds that

— 1 - ((n/10g(mw)eiesn/testom
xef()),rl}”[f()() —Cl=3+2 ( ).

We also obtain similar average-case lower boundsSfoM,, o AC3(n,m) andAC3[SYM](n,mt), see
Theorems 5.2 and 5.3 in Section 5.

Our average-case lower bounds might be interesting in the sense that (1) previous ones for similar circuits
with arbitrary symmetric gates rely on communication complexity lower bounds while ours are based on
the restriction method and (2) we are not aware of (even worst-case) lower bour¥Mgro AND with
w = nw(ogn)

Let ¥ be a set of Boolean circuits allAJ o % be the set of Boolean circuits, whees MAJ 0%’ is a
majority vote of%¢’ circuits, i.e.,C(X) = sgn(Cy(x) + - - - +Cs(X) +Wp) holds for someCy,...,Cs € ¢ and an
integerwp.

Combining the above average-case lower bounds and the discriminator lemma due to Hajnal, Maass,
PudBk, Szegedy and Tan [27], we obtain the following worst-case lower bounds.

Theorem 1.5(majority vote of depth 2, weighted symmetric gate at the top, AND gates at the bottom)
There exists a constamt > 0 such that for every mv and sufficiently large n, there exists a polynomial
time computable functiom f,w such that any G- MAJ o SYM,, o AND (n,m) cannot computenfy, if the

majority gate at the top of C has fan-in at m@af("/ log(mw)en/iesm),

We also obtain similar worst-case lower bounds\igx o SYM,,0 AC(n, m), MAJ 0o AC3[SYM,,](n,m,t)
(andAC3[SYM,](n, m t) with different parameters), see Theorems 6.2, 6.3 and 6.4 in Section 6.
Compression Algorithms: In the circuit compression problertCircuit CMP), our task is, given the truth
table of ans-sized Boolean circui€ and an integes > s, to construct a Boolean circu@’ that is at most
s-sized and computes the same functioilCa#f input instances are restricted to a class of Boolean circuits
¢, the problem is calle&-CMP. In4-CMP, we do not have to construct as a circuit in&’. Since every
n-variate Boolean function can be represented éﬂs‘%m-sized circuit [40}, the problem is interesting
if § < 2"/nand in particular we consider the cage- 2"~ (09"

A compression algorithm isfficientif it runs in time (" given the truth table of an-variate Boolean
function. Note that input length is"2and an efficient algorithm runs in polynomial time. The running
time analyses of our satisfiability algorithms imply efficient compression algorithms#’le{ SYM,, o
AND (n,m), SYM, 0 AC§(n,m),AC3[SYM,](n,m t)}. We obtain deterministic efficient algorithms fei-
CMP if parameters, m,w, d, t are such that the corresponding algorithms#e8AT run in time 2—®(ogm)

1Such a representation can be obtained in tif@2



1.2 Background

Bounded Depth Circuits with (Weighted) Symmetric Gates:Let AC° be the set of bounded depth circuits
with AND, OR and NOT gatesAC°[m] be the set oAC? circuits with modulom gates AC°[MAJ ] be the
set of AC circuits with majority gates (also known €%, AC°[THR] be the set oAC? circuits with
linear threshold gates amiC°[SYM,,] be the set oACP circuits with gates irSYM,,. Note that for every
linear threshold gate, there exists a polynomial size depth 2 majority circuit that computes it [24].

In their seminal work, Razborov [47] and Smolensky [56] showed exponential lower bounds on the size
of ACO[m] circuits computing majority or mod functions whemm, g are prime powers and relatively prime.
Since then, people have been trying to obtain super-polynomial size lower bounds against stronger cir-
cuit classes such aC°[m] with arbitrarym or AC°]MAJ]. Despite much effort of researchers, super-
polynomial size lower bounds have been only shown for such circuit classes with some restriction, see,
e.g. [4, 9, 14, 22, 23, 26, 27, 28] (here we consider circuits computing “explicit” Boolean functions, i.e.,
functions in NP).

One of the best studied restriction is limiting the number of (weighted) symmetric gates. The following
lower bounds are known:

e (Worst-case lower bounds) Exponential lower boundsA@o[MAJ] circuits with n°® majority
gates [6, 8] andA\C°[THR] circuits witho(logn) linear threshold gates [45].

o (Average-case lower bounds) super-polynomial lower bounda@3fSYM,;] circuits witho(log?n)
symmetric gates [59]; arbitrary large polynomial lower boundsN@P[SYM 1] circuits with nt—°()
symmetric gates aniC°[THR] circuits withn'/2-°() linear threshold gates [39].

The above average-case lower bounds are based on the resudtstatitdnd Goldmann [29] and Razborov
and Wigderson [49] that show average-case lower boun@\bt, o AND circuits from the communication
complexity lower bounds due to Babai, Nisan and Szegedy [5] and also show worst-case lower bounds for
MAJ o SYM1 0 AND circuits using the discriminator lemma.
Circuit Satisfiability: Studying moderately exponential time algorithms for Circuit SAT is motivated by not
only the importance in practice, e.g., logic circuit design and constraint satisfaction but also the viewpoint of
Boolean circuit complexity. As pointed out by several papers such as [61, 66], there are strong connections
between proving circuit lower bounds f@f and designing moderately exponential time algorithmséfer
SAT,; see also excellent surveys [53, 44, 63]. Typical such connections are:

(1) Some proof techniques such as deterministic/random restriction (shrinkage analysis/switching lemma)
simultaneously prove circuit lower bounds férand providess-SAT algorithms [52, 31, 7, 55, 17, 16, 15,
20, 25].

(2) Williams [61, 65] showed that if we obtain a moderately exponential time algorithregf8AT and
¢ satisfies some closure property, then we also have a separation of complexity classes Sicii & E
or NEZ ¢, where B is the set of languages decidable by exponential time Turing machines with NP
oracles and NE is the set of languages decidable by non-deterministic exponential time Turing machines;
see also [60, 62, 64, 10, 35] for the improvement of such connections. Since then, people have developed
moderately exponential time satisfiability algorithms for various circuit classes [33, 18, 30, 1, 3, 2, 43, 19,
58]. In particular, one of the current best lower bounds,g\IECCOoTHR (also NEZ ACCC%0 SYMy),
was obtained through satisfiability algorithms [64], wha@C? := | J,,AC°[m].
Circuit Compression: Circuit CMP is a relaxed version of the circuit minimization problem. Chen, Ka-
banets, Kolokolova, Shaltiel and Zuckerman [17] established a connection between compression algorithms
and circuit lower bounds as follows: If there exists a deterministic efficient algorithr@$@MP, then
NEXP ¢ ¥. They also gave efficient compression algorithms A@® circuits, Boolean formulas and



branching programs of certain size range. Srinivasan [57] showed an efficient compression algorithm for
ACO[m} with a prime powem. Carmosino, Impagliazzo, Kabanets and Kolokolova [13] established in-
teresting connections between the tasks of compression/learning and “natural properties” in the sense of
Razborov and Rudich [48].

2 Preliminaries

We use random access machines as our computation model. Fd8 aveetlenote byS| the cardinality of
S

A literal is either a Boolean variable or its negationtelimis a conjunction of literals. Boolean circuit
is a directed acyclic graph whose source nodes are labeled by literals or constants and internal and sink
nodes are labeled by logic gates such as AND, OR, NOT, or weighted symmetric gates. A Boolean circuit
with a single sink node computes a Boolean function in a natural way. We call source nodes and a sink node
input nodesandoutput noderespectively. Thalepthof a node is defined as the length of the longest path
from it to the output node. Theepthof a Boolean circuit is the maximum value of the depth over all nodes.

A Boolean circuit idayeredif for every edgg(u,v), u andv have depthd andd + 1 for somed.

A Boolean circuitC : {0,1}" — {0,1} is satisfiableif there exists aatisfying assignmerfor C, i.e., an
assignmena € {0,1}" such thaC(a) = 1 holds. For two Boolean functions (or circuits)g in the same
variables, we writef = gif f(a) = g(a) holds for alla € {0,1}". A Boolean functionf : {0,1}" — {0,1}
is k-juntaif it depends on at mostvariables, i.e., there exigt: {0,1}K — {0,1} and 1<i; < --- <ix <n
such thatf (xq,...,%n) = g(X, .. .,%) holds.

LetV = {xi,...,Xn}. A restrictionis a mappingo : V — {0,1,x}. The meaning op is that if p(x) €
{0,1}, then we assign the valyeX;) to x;, and if p(x;) = *, then we leave; as itis. Thus, when wapplya
restrictionp to a Boolean functiorf, we obtain the Boolean functiofi, defined over the variablgs ().

We also apply a restrictiop to a Boolean circuiC and obtain a Boolean circul[,. When we apply a
restrictionp to a Boolean circui€, we simplifya Boolean circuiC using the identities 8 f =0, IAf = f
repeatedly (each appearance of L.H.S. is replaced by R.H.S.).

A restriction decision tree Toverx, ..., Xy iS an ordinary decision tree except that leaves are not neces-
sarily labeled by 0 or 1. Thieightof T is defined as the number of nodes on the longest path from the root
to a leaf and thaizeof T is defined as the number of nodeslinWe identify a path from the root to a leaf
with a restriction. Arandom root-to-leaf patlis sampled by repeatedly selecting a child of the current node
uniformly at random from the root. Note that a path of lengjit chosen with probability 2.

3 A Dynamic Programming Algorithm for SYM ,y 0o ANDy

We denote bygo AND(n,m,w) the set ofn-variate Boolean circuits of the forg(wo + 37, wit;), where
g:Z — {0,1}, s<m, wo,W,...,Ws € Z, Max<i<s|Wi| < w, andty,...,ts are terms that contain at most
k-literals such that; # t; holds fori # j. We define

SYMyoANDy(n,m):= [ J goANDy(n,mw).
9:Z—{0,1}

We specify an eleme@in SYM,,o AND(n,m) asC = {g, Wo, (t1,w1),..., (ts,Ws) } and callsand max<j<s ||
thesizeand themaximum weightf C respectively.

For arestrictiorp, we simplifyC|, = {g,Wo, (t1|p,W1),..., (s|p, Ws) } repeatedly if there exists a pair j),
1<i< j <ssuchthat|, =tj|, holds. Thatis, we deletg;|,,w;) and replacét;|,,w;) by (ti|p, W +w;).
If there are multiple such pairs, we may handle them in arbitrary order.
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Our first satisfiability algorithm foSYM,, o AND(n,m) is described in Fig. 1. The algorithm involves
two parameters’, m' that are specified in the proof of Theorem 3.1. The basic idea is as follows:
(Step 1) We construct a tabl that contains pairs of the forrfC,#safC)) for every circuitC in go
ANDy(n',m’,w'), where #sdC) denotes the number of satisfying assignment<fandrn’,m’,w are ap-
propriately chosen parameters. Furthermore, pairs are sorted in the lexicographical order with respect to the
first coordinateC so that we can use binary search. To do so, we check the number of satisfying assignments
for every circuit ingo AND (', m',w/) one by one in the lexicographical order using brute force search.
(Step 2) LelC be an input instance igo ANDy(n,m,w). For each restrictiop that assigns to the firstn’
variables ofC, we check the number of satisfying assignmentsJigrusing binary search il and output
the sum of them.

Algorithm1(C = {g,wo, (t1,w1), ..., (ts,Ws) }: instance,n,m k, w: integer)
01:if C ¢ SYMyoANDg(n,m), return L.

02: T < 0. /« table for dynamic programming/

03: for eachC € go AND(n',n7, (s+1) - w), /x lexicographical ordex/
04: T+ TU{(C,#satC))}. /« brute force searchk/

05: N+ 0.

06: for eachp :V — {0,1, %} such thap=(x) = {x1,..., Xv },

07: N+« N+#satC|p). /+ binary search i x/

08:return N.

Figure 1: A Dynamic Programming Algorithm f&YM,, o AND

We will show the following theorem.

Theorem 3.1. We can count the number of satisfying assignments #1SY¥M,, o AND(n, m) determin-
istically in time
p0|y(n, m, |0gw) . 2”‘9((n/|09(mv"))1/k))

and exponential space.

Proof. We denote bygo ANDy(n,m,w)| the cardinality oigo ANDy(n,m,w). To evaluate the running time
of (Step 1), we upper bound the size of the tablasing the following fact.

Fact 3.2. For all m, we have
|go ANDg(n,mw)| < (2w+ 1)2%;02(?) < o(k+-1)(2n)<log(2w+1)

Proof. Note thatyF 2 () is the number of different terms that consist of at miositerals (including
a constant function 1). Each term has a weigh{iw,—w+1,...,.w— 1 w}. Thus, we have the first
inequality. The second inequality follows from an elementary calculation. O

Thus, we can bound the running time of Lines 03-04 from above by

2(k+1)(2n’)kIog(2(m+1)w+1) % poly(rﬁ, log(mw)) _2n”
where we setn = 3% 121 (") < (k4 1)(2n')k.

Next we evaluate the running time of (Step 2). Note that the following guarantees thaGgyémiine
06 belongs t@o ANDy(n',m’, (m+1) - w).



Fact 3.3. Let C= {g,wo, (t1,W1), ..., (tm,Wm)}. If C € go ANDy(n,m,w) holds, then for all restrictiorp
with [p~1(x)| = ', we have G, € go AND(,n7,(m+1) - w).

Proof. By the definition ofSYM,,o ANDy(n,m), we havey; o|wi| < (m+1)w. This implies the maximum
weight ofC|, is at most(m+ 1)w. O

For eaclC|,, binary search in Line 07 takes time at most
log, |go AND (N, m; (m+ 1) -w)| x poly(n,log(mw)) = poly(n7,log(mw)).
Thus, we can bound the running time of Lines 06-07 above by

poly(m,nt, log(mw)) - 2"

1/k L .
If we setn’ = ((kﬂ)zkﬂlog’gz(mﬂ)wﬂ)) = O((n/log(mw))¥/¥), the total running time oAlgorithm1
is bounded from above by pdly, m, logw) - 2"~2((0/logmw)*) Thjs completes the proof. O

Remark 3.4. In the case when(g) = sgn(z), we can reduce the weight of the top gate of tom (m+ 1)w

to 27 efficiently by Theorem 16 in [42]. With this trick, we can handle Max SAT instances with arbitrary
weights.

4 A Greedy Restriction Algorithm for SYM \, o AND

For a termt, we denote byt| the width oft, i.e., the number of literals inand by vaft) the set of variables
that appear in (possibly negated). L&k € SYM,, o ANDy(n,m) be a circuit{g, wo, (t1,w1), ..., (ts,Ws) }.
We define var(C) := Uy, >¢var(t ), freq,(C,x) := [{ti € C | x € var(ti), [ti| > £}, andL(C) = Ji. ¢ Itil-
Our second satisfiability algorithm f@YM,, o ANDy(n,m) is described in Fig. 2. The basic idea is as
follows:
(Step 1) Choose a positive integeaccording to the input. We seek for a variable, gathat occurs most
frequently in terms of width at leagt We recursively run the algorithm f@|y_o andC|x—1. HereC|x—a
denotes the circuit obtained fro@hby applying a restrictiop such thap(x) = a < {0,1} andp(x') = x for
X # X
(Step 2) If there is no term of width at leastwe call Algorithm1 .
We will show the following theorem which implies Theorem 1.1 by setkrgn.

Theorem 4.1. We can count the number of satisfying assignments #1SYM,, o AND(n, m) determin-
istically in time
poly(n, m logw) . 21~ @((n log(mw)jeonaosien)

and exponential space.

Proof. Let us define a sequence of random varial@s inductively asCo := C andCi, 1 := Ci|x—a, Where
X = arg MaXcvarc,) freq,(Ci,x) andais a uniform random bit.

We can think of the computation éflgorithm2 as a rooted binary tree. That is, the root node is labeled
with Co, the left and right children of the root are labeled Wijx—o andCy|x—1, and so on. Then, if we
pick a node of depth—n" uniformly at random, the distribution of its label is identical to that of the random
variableC,_,y.

We would like to bound the running time #fgorithm2 (C,_y,n’,n’,¢). It is obviously bounded from
above by polyn,m,logw) - 2. Furthermore, ilL;(Cy_y) < %’ holds, the running time can be bounded by
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Algorithm2(C = {g,wo, (t1,w1), ..., (ts,Ws) }: instance,n,n’, ¢: integer)
0l:if n>n,

02  x=argmaXeyarc)freq,(C,x).

03:  Np «+ Algorithm2(C|y—o,n— 1,1 ¢).

04: N; « Algorithm2(C|y=1,n—1,n',¢).

05: return Np+ N;j.

06: else

07: N<«O.

08: foreachp :var(C) — {0,1,} such thap~1({0,1}) = var(C),
09: W < the maximum weight o€|,.

10: N <— N+ Algorithm1(C|,,n— |var,(C)|,m, £ — 1, w).

11: return N.

Figure 2: A Greedy Restriction Algorithm f&YM,, o AND

27/2% (the running time ofAlgorithm1 (C',n'/2,m ¢ — 1,w)) for C' € SYMy o AND,_y(n'/2,m) with
m = ¢- ()=t andw = (m-+ 1)w. We need the following lemma that is proven in Appendix D.

Lemma 4.2(Greedy bottom fan-in reduction).et Ce SYM,, 0 ANDy(n,m). For all n’ > 4, we have

42
ny 2z ,
Pr Lg(cn,n/) > 2L. Lg(C) . <n> <2 ",

SincelL,(C) < km, if we setn’ = 1—16 (i)w -nin the above lemma, we have

km
42
n\z n
L0 (=) <=
that is, we have,(C,_y) < I'/2 with probability at least +- 27", If we setl = 4'?39(]';@, then the total

running time ofAlgorithm2 is bounded from above by the sum of
poly(n,m, logw) - 2" .2~ . 2"

and
poly(n,m,logw) - 2" . (1—27").2"/2. on' /2-Q((n / (log(m'w/))1/*)
according to whethdr,(C,_y) > n’/2 holds or not. An elementary calculation completes the proof.C]

Remark 4.3. The novelty of our algorithm and its analysis is a new way of reducing the bottom fan-in
of circuits in a greedy manner. Intuitively, givenS¥M,, o ANDy circuit with m gates, greedy restriction
produces a collection d8YM,, o ANDy circuits with K = O(log(km)/logn) such that at least one of the
circuits in the collection is satisfiable if and only if so is the original circuit. Note that previous techniques
such as Schuler’s width reduction [54, 11] or the standard random restriction achiexeXXlog(m/n))

and this bound is not sufficient for our purpose.

5 Average-Case Circuit Lower Bounds

Through the analysis of our satisfiability algorithms, we obtain the following average-case lower bounds.

8



Theorem 5.1 (depth 2, weighted symmetric gate at the top, AND gates at the bottdhere exists a
constanta > 0 such that for every mv and sufficiently large n, there exists a polynomial time computable
function f, mw such that for every @ SYM,,o AND (n,m), it holds that

1 _ alogn/log(nm)
Pr [f = C(X)] < = + 2~ ((n/log(mw)eiean/ieatm)
xe{O,rl}”[ nmw(X) =C(x)] < 5T

Theorem 5.2(depthd, weighted symmetric gate only at the tod)here exists a constant > 0 such that

for every mw,d and sufficiently large n, there exists a polynomial time computable fungtigq,of such
that for every G SYM, 0 ACY(n,m), it holds that

ogm)*/® alogn/logm
PI’ [fn,m,w,d (X) — C(X)] S +2*Q<(n/22d(| gm) |Og(mvv)) logn/ log )
xe{0,1}"

NI =

Theorem 5.3(depthd, t(n) weighted symmetric gatesYhere exists a constant > 0 such that for every
m,w and sufficiently large n, there exists a polynomial time computable functipnf: such that for every
C € AC[SYM](n,m,t), it holds that

n Z_Q ((n/zzd(logn()4/5 Iog(n,{v\/))alogn/ Iogn{)

NI =

= <
- «F())rl}" [ fn,m,w,d,t (x) C(X)] =

where M= m2"*2 and w = (mw)? .

In the rest of this section, we give a proof of Theorem 5.1. The proof of Theorem 5.2 is similar and we
omit it. Theorem 5.3 immediately follows from Theorem 5.2 with Lemma B.3 in Section B.
5.1 Generalized Andreev function

In this section, we review the construction of average-case hard Boolean functions due to [17, 37]. We begin
with some definitions.

Definition 5.4 (Statistical distance)Two distributions XY over a set E are-closeif |Pr[X € A —Pr[Y €
Al| < € holds for every AC E.

Definition 5.5. A set AC {0,1}" is a subcube of dimensiok if there existl <i; < --- <ix < n and
ai,,...,a, € {0,1} such that A= {x € {0,1}" | X, = &, ..., X, = &}

Definition 5.6 (Bit-fixing extractor) A function f: {0,1}" — {0,1}™ is an (n,k,m, €)-bit-fixing extractor
if f(X) and the uniform distribution ovef0, 1}™ are e-close for every distribution X that is uniform over a
subcube 0f0,1}" of dimension at least k.

We need the following explicit construction due to Rao.

Lemma 5.7 (Efficient bit-fixing extractor [46]) There exist constants, 3 > O such that for every k-
(logn)@, there exists a polynomial time computaBbe,  : {0,1}" — {0,1}™ that is an(n, k, m, £)-bit-fixing
extractor with m= 0.9k ands < 2.

We also need an efficient and explicit construction of list decodable codes.

Definition 5.8 (List-Decodable Code)A function f: {0,1}% — {0,1}" is (p,L)-list-decodable ifl{y €
{0, 13| A(f(x), f(y)) < pn}| < L holds for every x {0, 1}, whereA(a, b) denotes the Hamming distance
between a and b.



Lemma 5.9 (Efficient List-Decodable Code (Folklore), see Theorem 6.4 in [1ThHere exists a function
EnG, : {0,1}*" — {0,1}? thatis(p,L)-list-decodable with p= 1/2—O(2~"/4) and L= O(2/?). Further-
more, there exists an algorithm that, givea X0, 1}*" and z€ {0,1}?, compute$Ena, (X)), in polynomial
time.

We are ready to define the average-case hard Boolean functions: The generalized AndreevAgRction
{0,1}*"x {0,1}" — {0, 1} is defined ag\k(x,y) := (ENGy0.9k(X))Exty(y)- LEtK(X) denote theolmogorov
complexityof a stringx € {0,1}*. The following lemma plays an important role in the proofs of our average-
case lower bounds.

Lemma 5.10(Theorem 6.5 in [17]) There exist constants,y > 0 such that the following holds. Let

k > (logn)? and C be a k-variate circuit whose binary description length is at most n in a some fixed
encoding scheme. Lgt: {x1,...,X} — {0,1,*} be a restriction withp~(x)| = k. Fix ac {0,1}*" with

K(a) > 3n and define fy) := Ank(a,y). Then, we have

1 1
) = flo)] < 5+ 0
The following fact can be shown by a counting argument.
Fact 5.11. For every0 < p < 1, Pryc(g 1jn[K(x) < (1—p)n] < 2P,

Pr
y'e{0,1}k

5.2 Proof of Theorem 5.1

Fix n,m,w and letn’ = (n/log(mwj))'°9"/4lodnm - Select anya € {0,1}*" with K(a) > 3n and letf(y) :=
An(a,y). We show the following lemma.

Lemma 5.12. For every Ce SYM,, o AND(n,m), it holds that
1 /
Pr [C(y)=f(y)] < = +279M)
yehoCO =T = 5+ :
wherey > 0is a universal constant from Lemma 5.10.
Assuming this, the proof of Theorem 5.1 is complete since by Fact 5.11, we have
Pridam(x.y) =Cxy)] < PrlK(x) <3n+PriK(x) > 30 PriAyy(xy) = C(xy) | K() > 30

< 279m P , =C
< +X:Krpx?§<3n yr[An,n (x,y) =C(x,y)]

< 27QMm 4 % 42,

Proof of Lemma 5.12We can see that from the proofs of Theorems 3.1 and@.dan be computed by

a restriction decision tre& of heightn —n’ such that (1) each leaf is labeled by a circuitS3¥M,, o
ANDy (n', ) for somem’ k', w’ and (2) except for a2 fraction of leaves, such a circuit can be described
by using at mosh bits. Letg(C) denote the description length of a circGitin a fixed encoding scheme.
Let p be a random restriction sampled by selecting a leaF ohiformly at random ang, be a uniform

random element of0,1}? (). Then, we have

PriCly) =t(y)] < Pr{a(Clp)>nl+Prla(Clp) <n| PrClp(yp) = flp(yp) | 0(Clp) <

Pr

payp
< P % 4o,

where the last inequality is by Item (2) above and Lemma 5.10. This completes the proof. O
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6 Worst-Case Lower Bounds

From the average-case lower bounds in Section 5, we obtain the following worst-case lower bounds.

Theorem 6.1 (majority vote of depth 2, weighted symmetric gate at the top, AND gates at the bottom)
There exists a constant> 0 such that for every mv and sufficiently large n, there exists a polynomial time

computable function,fnw such that Ce MAJ o SYM,, o AND (n,m) cannot computenfnw if the majority
alogn/log(n ))

gate at the top of C has fan-in at m@3{ ("/leg(mw) .
Theorem 6.2(majority vote of depthd, weighted symmetric gate only at the tod)here exists a constant
a > 0 such that for every mv, d and sufficiently large n, there exists a polynomial time computable function
famwd such that any G: MAJ o SYMWoACS(n, m) cannot computeninwd if the majority gate at the top
. 0((n/22d(logm)4/5 |og(mw))alogn/logm)
of C has fan-in at mos2 .
Theorem 6.3(majority vote of depthd, t(n) weighted symmetric gatesY here exists a constant > 0 such
that for every mw, d,t and sufficiently large n, there exists a polynomial time computable functiq@, 4t

such that any & MAJ oACS[SYMW](n, m,t) cannot computeninwd; if the majority gate at the top of C
2d(lognf )4/5 alogn/logn!
has fan-in at mogg®((V2*™" log(miw))etoan/s ) where M= m2*1 and w = (mw)2""

Theorem 6.4(depthd, t(n) weighted symmetric gatesYhere exists a constant > 0 such that for every
m,w,d,t and sufficiently large n, there exists a polynomial time computable functigq,d: such that any
Ce ACS[SYMW](n, m,t) cannot computenfnwdy if

t=o0 ((n/ZZd(IognY)4/5 Iog(mw))alogn/logn’{>
holds, where m= m(t 4 1) and W = mfwt*L,

We need a corollary of the discriminator lemma that is proven in Section E.

Lemma 6.5(Discriminator Lemma [27])If a circuit C € MAJ o % is a majority vote of k circuits €. .. ,Cx €
%, then for somd. < i <k, we have

PG () = 1| C(x) = 1] PG (x) = 1| C(x) = 0] >

=

For f,g:{0,1}" — {0,1}, let Corr(f,qg) := | Pry[f (X) = g(X)] — Prx[f(X) # 9(X)]|.
Corollary 6.6. For € > 0, if C in Lemma 6.5 also satisfies that

IPC(x) = 0] — PrC(x) = 1]| = 22,

1
then we hav&orr(f,g) > ¢ — 2¢.

Theorems 6.1, 6.2 and 6.3 immediately follow from Theorems 5.1, 5.2 and 5.3 with Corollary 6.6. Theo-
rem 6.4 can be shown by combining Lemma B.2 in Section B, Theorem 5.2 and Corollary 6.6.
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Appendix

A A Depth Reduction Algorithm for SYM 0 ACY

In this section, we prove the following following theorem:

Theorem A.1. We can count the number of satisfying assignments f@r&YMWoAcg(n, m) when m<
2(logn/4d)”* Jeterministically in time

)4/5

) ‘zn—Q(n/22d(logm log(mwj)'egn/Slogm

poly(n,m, logw
and exponential space.

We represent € SYMWoACg(n, m) asC = {g,Wo, (C1,W1),...,(Cs,Ws) }, Whereg: Z — {0,1}, s<m,
Wo, W1, ..., Ws € Z, MaX<i<s|Wi| < w, andCy,...,Cs are unbounded fan-in circuits of depth at mdstith
AND, OR and NOT gates.

The following fact is useful for the design and analysis of our algorithm.

Fact A.2. Let aSYM, 0 ACJ(n,m) circuit C = {g,wo, (C1,W1), ..., (Cs,Ws)}, where some ds a DNF of
the form g vty v --- Vi, If for every xe Cfl(l), x satisfies exactly one term of @en it holds that

C= {g>W07 (Clvwl)u ceey (Ci717Wi71), (Ci+lvwi+1)7 ceey (C87WS)7 (tlvwi)v‘ . ')(tZ7Wi)}'

The outline of our algorithm is as follows. First, given a cirddit= {g,wo, (C1,w1),...,(Cs,Ws)}, we
construct a restriction decision tree of depth n/m?9/k whose almost all leaves define restrictignsuch
that eachC;|, is ak-junta by using the depth reduction technique due to [7]. Note thajuata can be
represented aslaDNF satisfying the condition of Fact A.2. Hence, we can remove the OR gate of each
k-DNF and obtain &YM,, o AND circuit. UsingAlgorithm2 in Section 4, we can count the number of
satisfying assignments for suclsaM,, o ANDy circuit. If someC;|, is not ak-junta, we check all possible
0/1 assignments to the remaining variables. The fraction of such leaves is exponentially small.

The main ingredient of our algorithm is the following depth reduction algorithm due to [7].

Lemma A.3([7]). Let.# be a set of k-DNF formulas ovéb, 1}" with |.7 | < m and suppose thatk k' <
(log,m)¥/>. Then there is a restriction decision treg-Bver {0, 1}" of height n— m~2/¥n such that forp
chosen according to a random root-leaf path in, the probability that for some formula & .7, F|, is not
a K-junta is at mostklog, mexp(—2-%~5k~3n/log, m). Moreover, there is an algorithm with the running

time20-m ?¥nnO(K) || 72| |°W) that constructs F given.Z as input.

We say a leaf of a restriction decision trggor a restriction defined by that leaf) goodif all OR gates
at leveli reduce tok-juntas after the restriction. Otherwise, it is callead Now we are ready to prove
Theorem A.1.

Proof of Theorem A.1Without loss of generality, we assume each cir@jitonsists of alternating NOT

gates and unbounded fan-in OR gates (and the layer of NOT gates do not contribute to the depth of the
circuit).

[depth d + 1 to d] Clearly, each OR gate at the bottom level is represented as a 1-DNF formula. Setting
k=1 andk = (log,m)%® in Lemma A.3, there exists a restriction decision tfe®f heightn — n/m?/¥

such that for almost all root-to-leaf patpsof Ty, after restriction byp, the functions computed by all OR

gates at level-1 of the circuit depend only lbrariables. Their negations also depend onlykorariables
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and hence, after restriction Ipy each OR gate at level-2 &fis ak-DNF formula. Thus, we can reduce the
depth ofC from d + 1 tod. The probabilityp; that a leaf ofT; is bad satisfies

p1 < 4log, mexp(—n/128log, m).

[depth £to £ —1(3< ¢ < d)] Letk=K = (log, m)'/®> andn; = n/m?9/, Since all good leaves ify creates
k-DNF formulas, we can apply Lemma A.3 to the set of OR gates at level-2 and construct a new restriction
decision tredl, obtained by appending a restriction decision tree to each good leaf. The probpbitityt

a leaf of T, is bad satisfies

p2 < (1— p1) - 4klog, mexp(—2~2%k3n; /log, m)).

We repeat the similar argument for each of the remaining levels up until we have built tfig.tNete that
at each good leaf ofy, all OR gates at levedl reduce tdk-juntas and these can be representel-BHNF
formulas. Letn; = ni_l/mz/k fori < d andp; be the probability that a leaf df is bad, then we have

i1
pi < 4klog, mexp(—2-%%k—3n;_; /log,m)) ]1(1 —Pj)-
=

Now the circuitC € SYM,, o AC§(n,m) can be reduced to some circ@te SYM,, 0 AC9(ng,m) at good
leaves.
[SYM,, 0 ACY to SYM,, o AND,] After the above operations, each good leafTgfis corresponded to a
collection ofk-DNFs. In addition, suck-DNFs satisfy the condition of Fact A.2 since they are constructed
from k-juntas. Note that the size may increase by a factor of at mfosti&nce, for good leaves, we can
eliminate OR gates of ak-DNFs andC’ can be reduced ©” € SYM,, 0o AND(ng, 2m).

For all good leaves ofy, usingAlgorithm2 , we can count the number of satisfying assignment€for
For all bad leaves ofy,..., Ty, we check all 0/1 assignment to the remaining variables. Now we estimate
the probabilityp that some leaves df (1 <i < d) is bad, wherg@ = p;+ p2+ - - + pq. Sincen; decreases
rapidly, the probabilities that some leaf is bad are bounded by a quickly increasing geometric series whose
largest term is associated with the construcfign

d-1
d- pg = d- 4klogmexp(—2%k3ny_1 /logm) rl,(l_ p;)
J:

©
IN

Adklogmexp(—2%~5k—3ny_1/logm) = 4dklogmexp(—2%~5k—3n/mP4-D/k|ogm)

<
< exp(—n/mP/k) for sufficiently largen andm.

It remains to estimate the running time of our algorithm. Let the heigh &e n—n;. Thenng = n,

n = ni_1/m?% fori < d, andng = n/m?%X, The number of leaves & is at most 2-™. We denote the
running time ofAlgorithm?2 for SYM,, 0o AND(n,m) by T’(n,m,k, w) and the running time of our algorithm
by T(n,m,d,w), then

d
T(nmd,w) < (1—p)-2" . <|‘ln°(k)> -T'(ng, 2m, k,w) - m°@ 4 p. 2"
=

(1—p)- 2" nO . T/ (ny, 2%m k,w) - mP@ 4 p. 2"

<
< O O 20N T (g, 2m, k,w) + p- 2"

The second term on the right hand is:

4/5 4/5
p-2" = exp(—n/mAdK).2n — gn-nloge/Ztoam ™ onnyzzstean”
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The first term on the right hand is:

ROW@K . O(d) . 211 . nolying, 2Xm, logw) - 21—/ log(2mu) 9/ ostm

dK) . 10(d) . on-Q(ng/ log(2kmw)) o9/ 409k

= poly(ng,2“m,logw) - n"%@¥ . m

For sufficiently largenand small constart> 0, log(k2¥m) = k+logk+logm < (1+ &) logm. Suppose that
m< 2009407 thenng = n/m?4/k > n1/2. Thus, logg /4 log(k2km) > logn/8(1+€) logm > logn/9logm,
then

poly(ng, 2¢m, logw) - nO(dK) . mO(d) . on—Q(na/ log(2mw))12on4logm

poly w) - nPAK . pO(d) . pn-Q(ng /log(mPw))legn/Slogm

poly

poly(n,m,logw) - n

IN

n,m, log

O(dK) . 10(d) . on—Q(n/2mP/¥log(mw))'o9m/9logm

m

IN

n,m,logw)-n

(
(
(
(

O(d(logm)*/%) _ 10(d) . on—Q(n/ 22310 og(muy losn/9legm

IN

Whenm = 2Po¥(290) andd = O(logn), the terms onC@(°9M**) andm®@ are absorbed in the last term,
then we have

n/22d(logm)4/5 |Og(mv\o)|ogn/9|ogm.

poly(n, m, logw) - 2"~
Thus,

T(n, m. d’W) _ poly(n, m, IOgW) ) 2n_Q(n/22d(Iogm)4/5 |og(mw))|°gn/9|°gm 1 2n_n/22d(|ogm)4/5 .

The first term dominates the second term, hence the proof is completed. O

Remark A.4. We use the depth reduction algorithm due to [7] instead of [31] because we have to keep the
bottom fan-in of circuits much smaller théwgn/loglogn.

B A Transformation Algorithm for AC {[SYMy]

In this section, we give an algorithm that counts the number of satisfying assignmentséfﬁrg@YMW]
circuit.

Theorem B.1. When nft + 1) < 2(097/4d)** there is an algorithm that counts the number of satisfying
assignments for @ AC3[SYMy](n,mt) in time

ot —Q( (ny2%logm*/5y Eogn
poly(n, m,d,t,logw)-zn+ (tlogmyy <(n/ camw) )

When a weighted symmetric gage SYM,, computes a weighted symmetric functibn{0,1}" — {0,1}
such thatf(xi,...,x,) = g(Wo + i, wWiX) holds, we represent the gageass:= (g,wo,...,Wn). For a
functiong: Z — {0, 1}, we denote by the negation 0§, i.e.,g(x) := —g(x) for all x € Z.

The outline of our algorithm is as follows. The proof of Lemma 29 in [9] gives the procedure of
transformation from a circuit irA\CS[SYMW](n,m,t) to the equivalent circuit iOR o AND¢, 1 0 SYMy, 0
AC§(n,m). Itis enough to count the number of satisfying assignments for each cir@MIy ;0 SYMy,0
Acg(n, m) due to the property of the transformation. By the idea of the proof of Theorem 5.1 in [8], we
transform a circuit inANDy 1 0 SYM,, to an equivalent gate iBYM,y wherew = w/(m,w,t). Now, we
obtain a circuit inSYM,, o ACY(n,m(t + 1)) and, count the number of satisfying assignments for it by
Theorem A.1.
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Proof of Theorem B.1Let s, s, ...,& € SYMy, be weighted symmetric gates of a givensuch that there
is no path from the output of to an inputs; if i < j. For each € [t], lets represent a weighted symmetric
function f; : {0,1}™ — {0,1}. Lets = (Gi,Wi0,...,Wim), Where a functiorny; : Z — {0,1} and integers
Wio,...,Wim € [W] are such thafi(xy,...,Xy) = Gi(Wo+ 3" ; Wyx,) holds.

A subcircuit for son C is a circuit with the top gate such that it consists of all gates on the path from
inputs toson C. LetC; be a subcircuit fols onC. Fori € [t] anda € {0,1}, let Ci(a) be a circuit by
replacings; with the constang; for all j <i onGC;. The output ofCi(a) is equivalent to the output &f on
C when the output of; is a; for all j <i. Similarly, letC(a) be theACS(n,m) circuit obtained by replacing
all s with a onC. Note that aliCi(a) andC(a) are inSYM,, 0 ACY(n,m) and can be constructed in time
O(mdt).

For eacha € {0,1}!, we denote the circu®’(a) := C(a) A A\;C/(a), whereC/(a) = Ci(a) if & = 1 and
C/(a) = —Ci(a) otherwise. Note thatC;(a) is also aSYM,, o AC3(n, m) circuit obtained by replacing the
functiong; of the gates with gi. Thus,C'(a) € ANDt+1oSYMWoAC8(n, m). Note that the constructing
time of C'(a) is at mostO(mdt). An assignment satisfi€Z(a) for somea € {0,1}! if and only if it satisfies
C. Moreover, a satisfying assignment ©fsatisfiesC’(a) for only onea € {0,1}!. This means that the
number of satisfying assignments@fs equal to the sum of ones Gf(a) for all a € {0,1}'. Therefore, it
is enough to count satisfiability assignment€tf) for all a € {0,1}".

Now, we construct the circu” € SYM,, o ACY(n,m(t + 1)) such thaC” = C'(a) € AND¢,10SYMyo0
ACS(n, m) wherew is an integer. For € [t], let W be the sum of wights of the inputs &f, i.e., W :=
Z?’LOV\/”'. We denote by\p the output ofC(a). LetWmax_g 1. W, thenW is at mostmw. Using bas&V,

t + 1 integers{W }i—o_..t can be denoted into a single numiber= z}:OV\AWi. Now, we set the symmetric
functiond’ as follows. We set/(N) := 1 whenN = z}ZOW{Wi holds such thag; (W) = & for all i and

Wp = 1. For other valuebl, we sety'(N) := 0. Note that the time of setting af is O(tW'**poly(logW)) =
O(tm+1wt*1poly(log (mw))). Using this functiory’, we replace the top gate and symmetric gates of second
layer of C'(a) with a new symmetric gat€ := (g, (W ,)ic(0.1....t} cc[m]), Wherew, , = wi, ‘W', We call

this circuitC”, thenC” is equivalent toC’(a). By the above argument, the size of each laye€fnis

at mostm(t + 1) and the maximum weight of is at mostwW! < mfwt™t, Then,C” is a SYM 1 ©
ACY(n,m(t +1)) circuit. The time of constructing” € SYM -1 0 ACY(n,m(t + 1)) is at mostO(mdt) +
O(tpoly(log (mw)) - m+1wt*1) = O(dtpoly(log (mw)) - mi+1wt+1).

Whenm(t + 1) < 2009/4)%* \ye can apply Theorem A.1 and count the number of satisfying assignments
forC” i.e.,C'(a). We know the number of satisfying assignmentsGdry summing the numbers of satisfy-
ing assignments fa€’(a) over alla € {0,1}. Recall thafl (n,m,d,w) is the running time of Theorem A.1.
Combining the above argument and Theorem A.1, the running tin@®AC[SYM,,](n,m,t) is at most

2'. O(dtpoly(log (mw)) - M w1 . T (n,m(t + 1), d, w )
= 2'.0(dtpoly(log(mw)) - m* 1w 1) . poly(n, m(t + 1), log (W 1nt))

logn

n—o ((n/ZZd(Iog(m(t+l)))4/5 log(mi*+1wi+1t)) 9I0g(m(t+l)))
X2

logn
n—-Q ((n/24d('°9"‘)4/5t log(mwj)) T8Togm

= poly(n,m,d,t,logw) - 2'mftwt+1.2 >('.'t <m)
logn

O(tl o) 24d(|ogm)4/5tI 819G
= poly(n,m,d,t,logw).zm (tlogmw) <(n/ og(mw)) )

In the above proof, we have the following lemma.

Lemma B.2. The circuit clasACJ[SYM,,] (n, m,t) is contained in the circuit clag®Rx 0 SYM,y o ACJ(n, m(t +
1)), where = mfwt*1,
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By the idea of the proof of Theorem 5.1 in [8], we also have the following lemma.
Lemma B.3. The circuit classAC3[SYM,,](n, m,t) is contained in the circuit clasSYM,, 0 AC(n, m2+1),
where W= (mw)2 ",

We use these lemmas in the proofs of our circuit lower bounds.

C Compression Algorithms

In this section, we describe the proof sketch of the following theorems.

Theorem C.1 (depth 2, weighted symmetric gate at the top, AND gates at the bottdhere exists a
deterministic efficient and exponential space compression algorithm §08€M,, o AND (n, m) if

(n/log(mw))'°9"/#1°80m — ¢o(logn)
holds.
Theorem C.2(depthd, weighted symmetric gate only at the tofd)here exists a deterministic efficient and
exponential space compression algorithm fosE(SYMWoACg(n, m) if

(ﬂ/22d(|ogm)4/5 Iog(mw))logn/glogm = w(logn)
holds.
Theorem C.3(depthd, t(n) weighted symmetric gatesYhere exists a deterministic efficient and exponen-
tial space compression algorithm for€ACS[SYMy](n,m,t) if
(n/22d(|ogn‘()4/5 |og(n,{v\/))|ogn/glogr’r’( _ w(logn)

holds, where f= m2t*1 and W = (mw)2"".

We formulate Circuit CMP as the set cover problem (SC) and apply the polynomial time approximation
algorithm for SC. First we need some definitions. @&\ m,k,w)-termis a conjunction of literals and a
circuit in SYMy, 0o AND(n”,;m), wheren” < n’. An (n’,m k,w)-DNF is a disjunction of n’, m k, w)-terms.
Let.(n’,m,k,w) be the set ofn’,m k,w)-terms. Note that

|.7 (0, m k,w)| < 2°0V|SYM,, 0 AND (1, m)|.

Given a truth tableT of length 2, we consider an SC instan¢e,.”), where the universtl = {x €
{0,1}" | T(x) = 1} and the family. = {t € .7 (n',mk,w) | t~%(1) CU}. Then”’ C .7 is set coverif
U= Utey/tfl(l) holds.

It is easy to prove the following lemma using the greedy approximation algorithm for SC due to John-
son [36].
Lemma C.4. Let (U,.”) be the SC instance defined as above and assume the instance has a set cover of
cardinality s. If|SYM,, o ANDy(n’,m)| = 2°" holds, then we can construct a set cover of cardinality at
most Gns) deterministically in time°™,

We see the following holds from the proofs of Theorems 1.1, 1.2 and Lemma B.3.

Lemma C.5. Let% € {SYMyo0AND(n,m), SYM,,0 AC3(n,m), ACS[SYM,](n,mt)} such that parame-
ters nm,w, d,t satisfy the corresponding condition of Theorems C.1, C.2 and C.3, respectively. Bfenh C
can be represented as2d~©(°9" sized(r’,n, k,w')-DNF, where|SYM,, o AND (1, )| = 2°(" holds.

Combining these lemmas, we complete the proofs of Theorems C.1, C.2 and C.3.
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D Proof of Lemma 4.2

The proof given here is essentially due to Chen, Kabanets, Kolokolova, Shaltiel and Zuckerman, see the
proof of Lemma 4.3 in [17], except that we introduicg-) and modify some parameters to measure the
effect of bottom fan-in reduction rather than the shrinkage of De Morgan formulas.

Lemma D.1(Restatement of Lemma 4.2)et Ce SYM,,o AND(n,m). For all n’ > 4, we have

42

ny 2
PriL/(Chn)> 2. L/(C)- <n>

/

<27,

We need the notion of super-martingales and a variant of Azuma’s inequality for them.

Definition D.2. A sequence of random variableg, Xy, ..., X, is a super-martingalavith respect to a se-
quence of random variableg ¥, ..., Yy if it satisfiesE[X;|Yo, Y1,...,Yi—1] < X1 for1 <i<n.

Lemma D.3(Lemma 4.2 in [17]) Let {X}]! ;, be a super-martingale with respect{%¥}! ,. Define Z:=
Xi—X_1for1<i<n. If for1<i<n,the random variable;Zconditioned ony,Y1,...,Yi_1) takes two
values with equal probability, and there exists a constamt 8 such that Z< ¢; holds, then, for all positive
real A, we have

)\2
PiXn—Xo>A] < exp<—> :
2y, ¢
We begin with a lemma that estimates the effect of greedy restriction.
Lemma D.4. Let Ce SYMy 0 AND(n,m) and x= arg maxeyarc) freq,(C,x). Then, we have
1
max{L/g(C|X:0), L[(C|X:1)} < Lp(C) . (1— n)

and

42

1\ 2
L, LCheal<t©-(1-1)

Proof. Pick anyt; such thattj| > ¢ andx € var(ti). If |ti| = ¢, we havelti|x=a| < ¢ for all a € {0,1}. If

ti| > ¢, we haveti|x—a = 0 and|tij|x=—a| = [ti| — 1 for somea € {0,1}. Since freq(C,x) > @ we have
max{L(Clx—0),L¢(Clx=1)} < L¢(C)- (1—%) and
Ly(C) . { (1 1 )}
E [L/(Clx= < Ly(C)— min< /| =-(¢+1)+=-1
ae{o,l}[ ¢ (Clx a)] < L(C) n 2 ( ) 2
(42 1\ %
= - )< (1-= )
L/(C) (1 o )_Lg(C) (1 n)
O

Recall that we define a sequence of random variafB} inductively asCp := C andCi;1 := Ci|x=a,
wherex = arg maxcvarc) freq,(Ci, x) andais a uniform random bit. We denote lythe random bit assigned
to the selected variables in stefor 1 < i < n and definery := 0. We define sequences of random variables
{Z o {li} o, {2}, as follows: % :=L,(Ci), li :=In.4 and

(+2 1
V4 ::Ii—li,1—7ln (1_n—i+1)'

Note that, givenyy, Y1, ...,Y;_1, the random variablg; takes two values with equal probability.
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Lemma D.5. Define X% := 0 and X := zij 1Zj. Then, the sequence of random variab{es}' , is a
super-martingale with respect i}, and for each Z we have Z< ¢ .= —5 Lin(1— ).

noi+1
Proof. By the first inequality of Lemma D.4, we have< li_1 +In(1— ﬁlﬂ) This impliesz; = |; —
liii—52In(1— -5+) < —5In(1- =7) = c. By Jensen’s inequality, we hawli|Yo, Y1,...,Yi_1] <
INE[Z|Yo,Y1,...,Yi_1]. By the second inequality of Lemma D.4, the right hand side is at mt{sﬁ’{nl- (1- n_i1+1)H22> =
Ii_1+%ln (1—-— IJrl) ThisimpliesE[Zi|Yo,Y1,...,Y,_1] <0, thatisE[X|Yo,Y1,...,Yi 1] <E[X_1|Yo,Y1,..., Y, 1] =
Xi—1. Thus,{X}[, is a super-martingale. O

Now we are ready to prove Lemma D.1.

Proof of Lemma D.1Let A be arbitrary positive real angl's be as defined in Lemma D.5. By Lemma D.3
and Lemma D.5, we obtain

i A2
Priy Zj>A| <exp| —=—= _
[gl J ] ( 22'11‘312)

Itis easy to show thaf'_; Z; =I; —lo — “52In "= by the definition ofz;. Thus, we have

Pr[izjz)\] = Pr[l. |0—”?2| (”n_')z)\]

=1
42

- Pr[ﬁz@,%(”n") N ]

For1< j <n-r', we havec; = —51In (1— WIH) <5 nvfj'ﬁ, using the inequality- In(1—x) < v/2In2-x

for 0 < x < 1/4. Thus, for I<i<n—n', ¥\_; ¢? is at most

2In2 | ° _ 2] 1\ An2/1 1
2 Z —J+1 -2 Z n—j+1/ 2 \n—i n

2n2 1
- 2 n-—i

Settingi = n—n’, we obtain

2
2

/

| I
IN
®
X
©
|
3 N
M
TT
Po| N
Q
Y
N——

ChoosingA = /In2 completes the proof. O

E Proof of Corollary 6.6

Proof. Let us denote Rfg(x) = a, f(x) = b] by Pija,b] and Pg[g(x) = a| f(x) = b] by Palb]. The values
po and p; denotes Hif = 0] and Pff = 1], respectively. Without loss of generality, we can suppose that
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Po> Py, i, po=3+eandpr=1—¢.

Corr(f,g)

v

|Pr{0,0] + Pr{1,1] — Pr{1,0] — Pr{0, 1]|
|2(Pr0,0] + Pr{1,1]) — 1

12(Pr0]|0] po + Pr{1/1]p1) — 1]

|PrO|0](1+ 2¢) + Pr{1]1](1—2¢) — 1]
|(1—Pr[1]0])(1+4 2¢) + Pr{1|1](1—2¢) — 1
|26 — (14 2¢) P{1|0] + Pr{1]1](1 — 2¢)|
|Pr{1|1] — Pr{1|0] + 2e{1— Pr{1|0] — Pr{1|1] }|

% —2e|{1—Pr1|0] —Pr{1]1]}| > % —2¢
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