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A Satisfiability Algorithm for Depth Two Circuits with
a Sub-Quadratic Number of Symmetric and Threshold Gates
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Abstract

We consider depth 2 unbounded fan-in circuits with symmetric and linear threshold gates. We present
a deterministic algorithm that, given such a circuit witariables andn gates, counts the number of

a

satisfying assignments in timéwfé)((m-pc’&('wm) ) for some constand > 0. Our algorithm runs in
time super-polynomially faster thaf! # m= O(n?/log®n) for some constarty > 0. Previously, such
algorithms were only known for bounded depth circuits with linear threshold gates and a slightly super-
linear number ofwires [Impagliazzo-Paturi-Schneider, FOCS 2013 and Chen-Santhanam-Srinivasan,
CCC 2016].

We also show that depth 2 circuits wif:f)(nz/logID n) symmetric and linear threshold gates in to-
tal cannot compute an explicit function computable by a determini§tf¢-me Turing machine with
an NP oracle. Previously, even slightly super-linear lower bounds on the number of gates were not
known until recently Kane and Williams [STOC 2016] showed that depth 2 linear threshold circuits with
o(n%2/log®n) gates cannot compute an explicit function computable in linear time.
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1 Introduction

We are concerned with circuits that consist of unbounded fan-in symmetric and linear threshold gates. Let
X1,X2,...,X%, be Boolean variables and: {0,1}" — {0, 1} be a Boolean function. We sdyis symmetric

if there exists a functio : Z — {0,1} such thatf (x) = g(3; %) holds. We sayf is alinear threshold
function (LTF) if there existvp, wa, . .., Wy € Z such thatf (x) = sgnwo + ¥ wix;) holds, where sgnZ —

{0,1} is the sign function defined as ggn= 1 if and only ify > 0.

In this paper, we present satisfiability algorithms and circuit size lower bounds for depth 2 circuits
with symmetric and linear threshold gates as described in the next section. Note that each gate of such
a circuit may be of a different type, e.gga(3L1%),92(3{L1X),...,SgN W10 + Y1 W1iXi),SgNWa0 +
S W2iX),. .. etc.

1.1 Our contribution
Satisfiability algorithms In this paper, we present the following satisfiability algorithms.

Theorem 1.1(Main 1). There exist a constante 0 and a deterministic algorithm that, given a depth 2
circuit C with n variables and m gates, where each gate is either symmetric or linear threshold, runs in time

2”79((ﬁw-polv<logn>> ) and counts the number of satisfying assignments for C.

Previously, Impagliazzo, Paturi and Schneider [33] showed that the satisfiability of a depth 2 linear thresh-
old circuit withn variables anan wirescan be solved in randomized tim&2(M"n wherep(c) = 1/¢2(¢").

Chen and Santhanam [16] improved the running timgués = 1/c©©. Chen, Santhanam and Srini-
vasan [17] showed that the satisfiability of a degifinear threshold circuit witm variables ana* wires
can be solved in randomized tim& 2™, wheregq = 1/2°09).

Note that a depth 2 linear threshold circuit withgates may hav®(mn) wires. We are not aware of
satisfiability algorithms that beat brute force search for depth 2 circuits with symmetric and linear threshold
gates as Theorem 1.1 or even for depth 2 circuits with only symmetric gates. To summarize, our algorithm
is deterministic, can solve a counting version of the satisfiability problem and handle larger size circuits
(of depth 2) with additional gate types. Our algorithm can be generalized to handle bounded depth layered
circuits, where each layer consists of either AND/OR/XOR gates or symmetric and linear threshold gates
and the fan-in of symmetric and linear threshold gates satisfies some condition.

Circuit lower bounds As a byproduct of Theorem 1.1, we obtain the following circuit lower bounds.

Theorem 1.2(Main 2). There exist a language ¢ ENP and a constant ¢ 0 such that any family of depth
2 circuits with Qn?/log®n) gates, where each gate is either symmetric or linear threshold, cannot compute
L.

Here BYP is the class of languages computable by determini§ti®)-2ime NP-oracle Turing machines.
It has been a longstanding open question whetH€r &n be computed by depth 2 circuits with°!
threshold gates until very recently Kane and Williams [35] showed that depth 2 circuite(wit? /log®n)
linear threshold gates cannot compute an explicit function computable in linear time.

Again we are not aware of non-trivial lower bounds for depth 2 circuits with symmetric and linear thresh-
old gates as Theorem 1.2 or even for depth 2 circuits with only symmetric gates. To summarize, we show
lower bounds for larger size circuits with additional gate types computing a less explicit function.



1.2 Background and Related Work

The motivation for studying the satisfiability problem of depth 2 linear threshold circuits is twofold: First,
the problem contains as special cases both of the maximum satisfiability problem and 0-1 integer linear
programming, which have been well studied in the area of exponential time algorithms and implementations
of practical solvers. Second, proving super-polynomial lower bounds against depth 2 linear threshold circuits
is one of the major open questions in Boolean circuit complexity. Below we elaborate on the second point.

Bounded depth linear threshold circuits have been studied extensively as a model of neural network. Such
circuits are powerful enough to implement arithmetic operations such as iterated multiplication, division and
powering, see, e.g., [41] and even candidate pseudorandom function generators [37, 42, 45]. The latter fact
explains the difficulty of proving lower bounds for bounded depth linear threshold circuits by the “Natural
Proof” barrier due to Razborov and Rudich [52, 18, 64] although it is believed that such circuits cannot
compute some functions in NP or ever in P. There has been much effort to reveal the expressive power of
linear threshold circuits, see, e.g., [26, 50, 32, 28, 27, 36, 39, 38, 20, 19, 22, 53, 47, 21, 25, 51, 40], to name
a few.

The connection between satisfiability algorithms and circuit lower bounds, developed by Williams and
subsequent authors [63, 67, 62, 64, 66, 9, 34], is a promising approach to avoid such barriers, see also
[56, 49, 65] for surveys. Since the success of using the connection to actually prove new circuit lower
bounds, i.e., super-polynomial lower boundsA&C? circuits computing a language in NEXP [67], many
satisfiability algorithms that beat brute force search have been designed for various circuit classes [48, 66,
15, 3, 2, 44, 59]. Interestingly, some papers showed average-case circuit lower bounds directly from the
analyses of their satisfiability algorithms [55, 31, 4, 57, 14, 13, 12, 23, 54].

1.3 Techniques

The polynomial method is a powerful technique in Boolean circuit complexity [5]. In his remarkable result,
Williams [67] used the polynomial method to design satisfiability algorithms beating brute force search for
ACCP circuits. Since then, Williams and his coauthors have developed algorithms for many interesting
problems such as the circuit satisfiability problem for restricted classes of circuits [66], all-pairs shortest
paths [11] and Hamming nearest neighbors [1], see also [68].

We follow the approach of [66] that gives satisfiability algorithms beating brute force sear8f @t o
THR andACCP o SYM circuits. The approach is summarized as follows: (1) Givem-aariate circuit
C € ACCY0 THR, consider a circuiC'(y) := \/ae{ql}n/C(y, a) for somen’ < n. (2) Represen€’ as a
circuit in SYM o SYM using simulation techniques, in particular, the simulation of Beigel and Tarui [8]
that transforms a circuit iIACCP to a circuit inSYM o AND. (3) Apply the “fast evaluation algorithm” for
SYM o SYM to obtain the truth table d’.

We implement the above approach, focusing on Item (2)TKR o THR circuits. If we use the construc-
tion of “probabilistic polynomials” for symmetric and linear threshold functions due to Srinivasan [58], we
can represer@’ as a “probabilistic circuit” ilSYM o SYM. This implementation of Item (2) is sufficient to
obtain randomized algorithms.

In order to design deterministic algorithms, we derandomize probabilistic polynomials of [58]. It turns
out thatpseudorandom generators for space-bounded computdtiento Nisan [46] is sufficient for our
purpose. We also useodulus-amplifying polynomialé1, 69] to complete a deterministic implementation
of Item (2) in a similar way to [8, 11].

Our circuit lower bounds follow from the connection between satisfiability algorithms and circuit lower
bounds, in particular, the one due to Ben-Sasson and Viola [9].



2 Preliminaries

We use the following notation<Z is the set of integersy is the set of natural numbers, i.e., hon-negative
integers/Zn is the quotient ring of integers moduhg identified with{0,1,...,m— 1}, F, is the finite field
of order 2, identified wit{0, 1}.

For a positive integem, [n] :== {1,2,...,n}. For real numbera < b, (a,b) is the open interval between
andb. Fory € Z, |y is the absolute value of For a finite sef, |§ is the cardinality ofS. Forx € {0,1}",
x| is theHamming weighof x, i.e.,|X| = 1 X;.

The logarithm ofx to base 2 is Ig and that to base is Inx. We use random access machines as our
computation model.

2.1 Probability and derandomization
We use the following results in Section 3.1.

Lemma 2.1(The Chernoff-Hoeffding bound [29]) et X, ..., X, be independent and identically distributeid
Bernoulli random variables witRr[X; = 1] = 1— Pr[X; = 0] = 1/m. Then, it holds that

Pr[|n/m— lei] >1] < 2e72°/n,

Lemma 2.2(Nisan [46]) Let f:Z], — {0,1} be a function computable in spac€l@nlgm)). Then, there
exists a function G{0,1}¢ — Z? with ¢ = O(Ig?((nlgm)/¢)) such that

e |Pr[f(x) =1 —Pr[f(G(y)) = 1]| < &, where x and y are respectively sampled frégfpand {0, 1}/
uniformly at random, and

e G is computable in timpoly(nigm).

2.2 Boolean circuits

Let X3, X2, ...,%, be Boolean variables anid: {0,1}" — {0,1} be a Boolean function. We sdyis W-sum
if there exist a functiony : Z — {0,1} andwx,...,w, € N with 31, w; <W such thatf (x) = g(T{L; wix)
holds. Note that we can realizéM-sum function as &V-variate symmetric function by regardingx; as a
sum ofw; variables. In what follows, we identify Boolean functions and logic gates.

We denote byAND,OR,XOR,SYM, SUMw, THR the set of AND gates, the set of OR gates, the set of
XOR gates, the set of symmetric gates, the s&Vefum gates, the set of linear threshold gates, respectively.
Let %, %,...,%-1 € {AND,OR,XOR,SYM,SUMy, THR } be sets of logic gates. We denote Hyo
@ 0---0%_1 the set of deptld unbounded-fan-in layered Boolean circuits such that lagentains gates
from % and all the gates at layeare only fed by gates at laye# 1. Layer O corresponds to the output gate
and layer consists of input variables and constants.QNe allow inputs and outputs of gates to be negated
unless otherwise specified.

We need the following upper bounds on the weights of linear threshold functions in Section 3.3.

Lemma 2.3 (Muroga [43]) For all wo,ws, ..., W € Z, there exist y,w}, ..., W, € Z with |w| = 209"
such thatsgn(wo + S Wixi) = sgnwj + YL, W) holds. In addition, \,wj,...,w;, can be efficiently
obtained.

We use the following results in Section 4.



Lemma 2.4(Maciel-Therien [41], see also Section 2.2 in the arXiv version of Williams [68here exists
a positive integer g; such that for all n-variate £ THR, there exists a circuit

CcORoAND 0o XOR ocORoAND o SYM

that is equivalent to f and consists of at most nvires.

Lemma 2.5 (Beigel [6]). For all circuit C € AND o SYM whose AND gate at layed has fan-in { and
symmetric gates at laydrhave fan-in at mospf there exists a circuit G= SYM that is equivalent to C and
whose fan-in is at mogt, + 1),

Lemma 2.6 (Williams [66]). There exists a positive constant and an algorithm that, given an n-variate
circuit C € SYM o SYM whose symmetric gate at lay@has fan-in at mosttand symmetric gates at layer
1 have fan-in at mosgtsuch that it, < 2%"| prints the truth table of C in timpoly(n)2".

2.3 Polynomials

Letx1,X2,...,Xn be formal variables and € {IF»,Z}. In this paper, each variable always takes the values 0
or 1, hence the identitxi2 =¥ holds. Amonomialis a product of variables, i.e[]jcsX for someSC [n].

For S= 0, we regardicsX as 1. We can representkapolynomial Pas a sum of terms, of the form
P(X) = ¥ scin@s[TiesX,» whereas € K. Whenever we consider Z-polynomial, |as| = 20 js assumed
unless otherwise stated. THegreeof P, denoted by de@d), is defined as

degP) :=max{|§ | SC [n],as # O}.
Note that we can regard &-polynomialP as a Boolean circuit iXOR o AND as
PX) =P (as/\xi> :
scln| =
We need the following combinatorial facts in Sections 3 and 4.
Lemma 2.7. The number of monomials of degree at mostk g M) = 3 o (7). Ifk <n/2, M(n,k) <k(}).

Lemma 2.8 (Powering) Given an n-variate degree k polynomial P represented as a sum of terms, and a
positive integer d, we can represerft, Bhe dth power of P, as a sum of terms in time

poly(n) dill M(n,K)M(n,ik) < poly(n)M(n,dk).

Lemma 2.9(Composition) Let p be a degreejdpolynomial in n variables and p, p,..., pn, be degree
d> polynomials in the sameyrvariables. Then, (o1, p2,..., pn,) Can be represented as a sum of terms in
time poly(ni, nz)M(ny, di)M(nz, d1da).

We use the following construction of polynomials approximating symmetric functions in Section 3.1.

Lemma 2.10(Corollary 2.7 in Bhatnagar-Gopalan-Lipton [10], Lemma 3.1 in Alman-Williams.[Ep)r
all n-variate function f¢ SYM and integers $> 0,t > 1 with s+t < n, there exists afff,-polynomial p of
degree at most @) such that {x) = p(x) holds if s< |x| < s+t. In addition, p can be constructed in time

poly(n) (ofy)) -

We need the following construction ofodulus-amplifying polynomial61, 69] in Section 4.
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Lemma 2.11(Beigel-Tarui [8]) For every positive integef, the degred2/ — 1) univariateZ-polynomial

S+i-1\
F(y) :=1—(1-y)" < . )y’
2\
satisfies:
e ify =0 mod 2 then F(y) =0 mod Z,
e ify=1mod 2 then F(y) =1 mod 2.
In addition, for0 < i < 2¢ — 1, the coefficient ofiyin the polynomial Fhas magnitude at mogP®).

2.4 Probabilistic polynomials

For a Boolean functiorf : {0,1}" — {0,1}, a probability distribution?? over polynomials is ag-error
probabilistic polynomialor f if for all x € {0,1}", Pr,.»[f(X) # p(x)] < € holds [60]. Thedegreeof a
probabilistic polynomial?? is the maximum degree of polynomials in the supportafi.e., maXded p) |
Prq-2[p =] > 0}. A probabilistic polynomial? hasr-randomnessf we can sample a polynomial from
& with r uniformly random bits.

We need the following construction of time and randomness efficient probabilistic polynomials for AND/OR
functions in Section 4.

Lemma 2.12(Beigel-Reingold-Spielman and Tarui [7, 60For everye € (0,1/2), there exists a®|-error
probabilistic Qlg?n- Ig(1/¢))-randomness probabilistiE,-polynomial 2 of degree d= O(Ign-lg(1/¢))
for n-variate AND/OR functions. Furthermore, we can sample a polynomial foim time Q(poly(n) (Q))

3 Randomness efficient probabilistic polynomials

In this section, we present the main technical ingredients of our satisfiability algorithms, that is, a time
and randomness efficient version of probabilistic polynomials for weighted symmetric and linear threshold
functions due to Srinivasan [58].

Lemma 3.1(Randomness efficient version of Theorem 11 in [5&)r everye € (0,1/2), W € N and an
n-variate fe SUMyy, f has ans-error O(Ig?((nlglgW)/¢))-randomness probabilistig,-polynomial & of
degree d=O(Ig*W+/nlg(1/¢)). Furthermore, we can sample a polynomial frsthin time Q(poly(n) (7).

Lemma 3.2 (Randomness efficient version of Theorem 12 in [58fr everye € (0,1/2) and an n-
variate f € THR, f has ane-error O(Ig?(n/¢))-randomness probabilisti&,-polynomial & of degree
d = O(Ig°ny/nlg(1/¢)). Furthermore, we can sample a polynomial fra#hin time Q(poly(n) (3)-

Lemma 3.3 below is the key result of this section. First we need some definitions &Y, r € Zm,w €
Z, we define functions mgyg : {0,1}" — {0,1}, mody,;,, : {0,1}" — {0,1}, as follows.

e mody,(x) = lifandonly ify{; x =r modm,
e mody,(x) =1ifand only if 57 ; wix; = r modm.

Lemma 3.3 (Randomness efficient version of Lemma 13 in [S8Rr everye € (0,1/2), mody,;,, has

an g-error O(Ig?((nlgm)/€))-randomness probabilisti€,-polynomial # of degree d= O(m,/nlg(1/¢)).
Furthermore, we can sample a polynomial frazhin time Q(poly(n) () ).



We prove the above lemma in the next section. The proof is based on the observation that uniformly random
bits in the construction of [58] can be replaced by the outputs of the pseudorandom generators for space-
bounded computation due to Lemma 2.2.

Once we establish Lemma 3.3, we can prove Lemmas 3.1 and 3.2 following the lead of [58] with careful
calculation of parameters. The proofs are given in Sections 3.2 and 3.3 respectively.

3.1 Weighted modulo functions

In this section, we prove Lemma 3.3.
Fix integersm > 2 andr € Zp, and an integer vectaw € Zy,. Letv e Zj,. We define functiond/m, :
Zm—{0,1}, M}y : {0,1}" — {0,1}" and a seRy,,, C Z{~ 1 as follows.

e My, (y) =1ifand only ify=r modm,
o (Mrwy(X))i i= Mmr (WiXi + Vi),
o Rhvi={(r.r2,....tm-1) € ZN 1 | s tirp=r+ 3L, vi modm}.

Note thatMpy (wix; + Vi) € {0,1,%,1—x} holds for fixedm,r w.,vI The following lemma shows how to
reduce the evaluation of mpd,,(x) to the evaluation of mdh,,(x) for many pairg(r’,x').

Lemma 3.4(Section 3.1 in [58]) For all v € Z}, and xe {0,1}", it holds that

mocpn,r,w(x): ; /\mO(ﬂw. mrwv )

rvi=1
Let P,?M {O 1}" — {0,1} be anF2-polynomial of degreeD(t) such thatPy (x) = mody, (x) if x| €
{In/m| —t,...;[n/m| +t}. By Lemma 2.10, the existence B, is guaranteed. In addltlorﬁ’rﬂ, can be

constructed in time po(y1)( ) Let us define aiff,-polynomialQp, ., : {0,1}" — {0,1} as follows.
m—-1
Qnm,r,w,v(x) = ; |_| Pr'rrll,ui (Mr?ﬁ,r,w,v(x))-
uc rv 1=
The following lemma is immediate from the propertyRff, and the definition oQp, -
Lemma 3.5. If Mg,y (X)| € {[n/m] —t,..., [n/m| +t}, then G, ,,,(X) = modf,, ,(x) holds.

We are ready to prove Lemma 3.3.

Proof of Lemma 3.3If we selectv; € Zp, uniformly at random, then we hawry, [Mm (WX +Vi) = 1] =
1/m. Hence, if we seleat € Zj}, uniformly at random, then by Lemma 2.1, we have

PrIMyr ()] € {[n/m] =t,...., [n/m] +}] < 2 2°/n,

Let ¢ = O(Ig?((nlgm)/3)) andG : {0,1}' — Z", be the pseudorandom generator due to Lemma 2.2. Since
IMAyrwv(X)| @s a function ofv can be computed in spa€nlgm), if we selects € {0, 1}¢ uniformly at
random, then we have

PriIMR rwey )| € {n/m| —t,.. S ln/m) 1)) < 2e7 26,

This implies
Psr[ mr,w,G(s %mocﬂ\rw <2€ 2t/n_|_5

Ifwe sett = /(n/2)In(4/¢) andd = 5/2 then the right hand side is at mesind the degree (@mrwG )(x)
is O(tm). This completes the proof. O



3.2 Weighted sum functions

In this section, we prove Lemma 3.1.

Fix a functiong : Z — {0, 1} and natural numbefsy, ..., w, with 31 ;w; =W. Let f(x) = g(3 L, WiX),
C:=TIgW]+2,p1 < --- < pr be firstl primes ands:= zle pi.

Note that|‘|f:1 pi > 2 > 2W. By the prime number theorermy = O(IgW -IglgW) holds and this implies
s=O(Ig?W-IglgW).

We define functiondAg, , : {0,1}" — {0,1}™ for me N andMy; : {0,1}" — {0, 1}° as follows.

e Miw(X) = (Modhow(X); - ;MO m 1 w(X)),
o MR(X) = (MD y(X),..,MD (X))

Since we can reconstrugt! ; wix; from My (x) by the Chinese remainder theorem, we have:

Lemma 3.6 (Section 3.2 in [58]) There exists a function H{0,1}% — {0,1} such that fx) = h(My,(x))
holds.

Note thath can be written as aiff,-polynomial of degree at mostand is determined by the values
0(0),9(1),...,9(W). We are ready to prove Lemma 3.1.

Proof of Lemma 3.1For eachp; andr € Z,, there exists &-errorO(Ig?((nlg p;)/8))-randomness proba-
bilistic Fo-polynomial 2, , of degreeO(p;i/nlg(1/06)) by Lemma 3.3. We sample &@»-polynomialPy,
from &, r, replace moqi,i,nW by it in M and then obtain a polynomi@l for f by composind. Note that
we use same random bits of length at mO&g?((nlg p,)/5)) to sample ever,, .

By the union bound, we hawr [Q(x) # f(x)] < sd. If we setd = /s, the degree dQis O(sp+/nlg(1/9d)) =
O(lg*W,/nig(1/¢)) and the length of random bits @(lg((nlglgW)/¢)). This completes the proof. [J

3.3 Linear threshold functions

In this section, we prove Lemma 3.2.

Fix integersng, wy, ..., Wn € N, letF (x) =wp+ Y[ ; wix; and consider sdiff (X)) € THR. Without loss of
generality,|w;| < 2009 holds due to Lemma 2.3. We assume tifigix)| > n+ 2. Otherwise, we consider
(n+2)(2F (x) +1) instead since for akk € {0,1}", it holds that sg(F (x)) = sgn((n+2)(2F (x) +1)) and
|(n+2)(2F (x) +1)| > n+2.

Let¢:= [lg((n+ 1) max|wi|)]. We need the following definitions ford | < /.

W . Jlwi/2] if wi >0,
W= Wi(I)Z[Wi/ZW if wi <0,

o« FUO) =wp + 31w 'x,

o ins!)(x) = 1ifand only ifwy + 5", w')x € {-n—1,—n,...,n,n+1},

e pos))(x) = 1ifand only ifw)’ + 57, w'x € {0,1,...,n,n+1},

° insg)(x) =1if and only ifwg) + z{‘zlwi(')xi =k mod p for somek € {—n—1,—n,...,n,n+ 1},

o pos(p')(x) = 1if and only ifwg) + z{‘zlwi(')xi = k mod p for somek € {0,1,...,n,n+ 1},



Hofmeister gives the following characterization of linear threshold functions.

Lemma 3.7(page 139, [30]) If F (x) > 0, then there exists a unique | such thans' =Y (x) A pos) (x) = 1
holds. If F(x) < 0, then for all I, -ins! =Y (x) A pos") (x) = 0 holds.

The following lemma implies Lemma 3.2 almost immediately.

Lemma 3.8. For everye € (0,1/2) and |, f e {ins!), pos"} has ans-error O(Ig?(n/¢))-randomness prob-
abilistic F,-polynomial & of degree d= O(lg*n,/nlg(1/¢)). Furthermore, we can sample a polynomial
from 2 in time Q(poly(n) (7))

First we prove Lemma 3.2 assuming Lemma 3.8 and then prove Lemma 3.8.

Proof of Lemma 3.2For eacH, there exis®-error O(Ig?(n/))-randomness probabilistié,-polynomials
3”,% and ﬁégs of degreeO(lg* n\/nlg(l/é)) for ins!) and po&) respectively by Lemma 3.8. We sample
() U]

an [F>-polynomial P, l%g from 22, ) and anF2-polynomial Fyes from 7y and construct afif>-polynomial

P(X) == S/_ (l pl - ))PF(,O)S(X). Note that we use same random bits of length at n@f#g?(n/3)) to

Ins

sample everPns, Ppo)s,

By the union bound, we hawr [P(x) # f(x)] < 2¢6. If we sete = 2¢8, the degree ais O(Ig°ny/nlg(1/¢))
and the length of random bits &(Ig?(n/¢)).
This completes the proof of Lemma 3.2. O

Proof of Lemma 3.8We show a proof for if§. The proof for po$) is almost identical. The main idea
is that we compute ing instead of ind) for a random primep. Note that in§ € SUMy, for W <
pn. There exists ag-error O(Ig2((nlglgW)/d))-randomness probabilistig,-polynomial 32,(;,') of degree

O(Ig*W/nlg(1/8)) for insh’ by Lemma 3.1.
Lett := [Cr?Ign/d] for a sufficiently large consta@ > 0 andp; < --- < p be firstt primes. Note that
p = O(tlgt) by the prime number theorem. We rely on the following lemma.

Lemma 3.9(Section 3.3 in [58]) If ins") (x) = 1, theninsy’(x) = 1. If ins!)(x) = 0 and i is selected from
{1,2,...,t} uniformly at random, theﬁ’ri[insl(o'i) (x) =1] <9.

We construct afif>-polynomialQ for ins!) as follows. First, seledte {1,2,...,t} uniformly at random.
Then, sample a polynomi& from ng) and letQ(x) := P(x).
By the union bound, we have

Pr[Q() # ins) (x)] < Prlinsy) (x) # ins") (x)] + Pr[P(x) # insp (x)] < 28.

If we sete = 25, the degree of is O(lg*n,/nlg(1/¢)) and the length of random bits &(Ig?(n/«)).
This completes the proof of Lemma 3.8. O

4 Satisfiability Algorithms

In this section, we prove the following theorem.

Theorem 4.1. There exist a constant s 0 and a deterministic algorithm that, given a depth 2 linear

threshold circuit C with n variables and m gates, runs in tiﬁqég«ﬁ-m'w'g”)) ) and counts the number of
satisfying assignments for C.



Remark 4.2. The proof of Theorem 1.1 is essentially the same or even simpler and omitted, i.e., (1) we use
Lemma 3.1 instead of 3.2 if necessary and (2) we do not have to apply Lemma 2.4 if a gate at the bottom
layer is symmetric.

Let C € THR o THR be ann-variate circuit whose gate at layer 0 has fan-in at nrmst~or a positive
integern’, we define a functioi : {0,1}"" — {0,1,...,2"} asK(y) i= ¥ o g4y C(¥;@). Our goal is to
construct an expressidl = ¥;aG;, whereg; € Z, G; € SYM, such thaK = K'. Thenith bit of the binary
representation df’(y) € {0,1}"+1 can be regarded as a functior@YM o SYM. We can apply Lemma 2.6
to obtain all the values d{(y) if we select the underlying parameters appropriately.

Proof of Theorem 4.1By Lemma 2.4, there exis@& € THR c OR o AND o XOR o OR o AND o0 SYM that
is equivalent taC and has at most= mrfm wires. Letg;,gp,...,ds be symmetric gates at the bottom layer
inC'. LetC” € THR c ORo AND o0 XOR o OR o AND be ans-variate circuit with at most wires such that

C’(g1,...,95) =C'.

Lemma 4.3. Let D€ THR c ORoAND o XOR o OR o AND be an n-variate circuit with t poly(n) wires,
where the threshold gate at lay@has fan-in at most re- O(n?). There exists ag-error O(Ignlg?(n/¢))-
randomness probabilistif,-polynomial 2 of degree d= O(Ig°nlg®(1/¢),/m) for D. Furthermore, we
can sample fron#? in time Q(poly(n)(g)).

Proof. We replace the threshold gate at layer O by-arror probabilistidf,-polynomial from Lemma 3.2
and replace each AND/OR gate byeerror probabilistidf,-polynomial from Lemma 2.12, where we set
0 =¢/(t+1), and obtain a circuit

D’ € (XOR 0 AND) o (XOR 0 AND) o (XOR 0 AND) o XOR o (XOR o AND) o (XOR o AND).

Note that we use the same random bits to sample each probabilistic polynomial. By repeatedly using
Lemma 2.9, we obtain a circud” € XOR o AND that is equivalent t®’. By the union boundD’ is an¢-

error probabilistidf,-polynomial forD. The degree ob” is d = O(Ig°nig®(1/¢),/m) and the randomness

of D' is O(Ignig?(n/¢)) by the choice o®. In addition, the construction @’ takes timeO(poly(n) (@)

since we apply Lemma 2.9 at most

1. t times withd; = d» = O(lgnlg(1/¢€)),m =t,np =n,
2. ttimes withd; = O(Ignlg(1/¢)),d2 = O(lg?nlg?(1/¢)),m =t,np =n,
3. mtimes withd; = O(Ignlg(1/¢)),d, = O(Ig®nlg3(1/¢)),ny =t,n = n,
4. once with withd; = O(Ig°n,/mlg(1/¢)),d, = O(Ig*nig*(1/¢)),n; = mny = n.
This completes the proof. O

Letl = O(Ignig?(n/e) and select € {0,1}' to sample a polynomid® for C” due to Lemma 4.3 in time
poly(n)(g,), whered; = O(lg°nlg®(1/¢),/m). Then we construct @-polynomialQ, := F,(P), whereF; is
the degre€2/ — 1) Z-polynomial from Lemma 2.11 and we regddas aZ-polynomial in the natural way.

We can represer@; as
Q= as| | i
SQ[S}%Sdz 'IEl



in time poly(n) (g ), whered, = O(¢Ig°nlg®(1/¢)./m) andas = n%®%). For eachTicsgi € AND o SYM,
we apply Lemma 2.5 and obtain a circgi € SYM with n%%) wires. LetQ; := ¥ s-(g:5<qasgs. Finally
we defineR: {0,1}" " — Z as

R(y) = Q/(y,a) mod 2.
ac{0,1}" re{o,1}'

Note that if Z > 2, then by Lemma 2.11 and the error probabilityQ@jf we have

CX,a=1 = (1—3)2‘§< Q. (y,a) mod Z) <2,

re{0,1}!

C(X,a)=0 = 0§< Q. (y,a) mod Z) <e&2.

re{o,1}!

In addition, if Z > 272! then we have
R(Y) € (2'(1—&)K(y),2'{(1— &)K(y) +€2"}).

If we sete < 1/27+1 and defineR(y) as the nearest integer Bfy) /2, thenR(y) = K(y) holds.

We set’ = (n/(,/mlg® n)) for sufficiently largec; > 0 and smalk, > 0,6 =1/2"*2andl =/ +1 +1.
Then, we see that the constructionRtakes time at most™". Furthermore, for each theith bit of
the binary representation &{(y) can be represented as a circuit3iYM o SYM so that the condition of
Lemma 2.6 is satisfied as an- n’-variate circuit.

This completes the proof. O

5 Circuit Lower Bounds

In this section, we give a proof sketch of Theorem 1.2.

We use the connection between satisfiability algorithms and circuit lower bounds due to Ben-Sasson and
Viola [9]. Let C, be a set of functions frorfi0,1}" to {0,1}. C, is closed under projectioni§for all f € Cy,
indicesi, ] < nand a bitb, it holds that

= F (X, Xim, X B D X, - %), T (X, .o, X1, b, X401, ..., %n) € G

C, is efficiently closed under projectiotifsit is closed under projections and give a descriptiorf af C,,,
we can compute in polyf|), descriptions of

—f (X, X, X DX, %), T (X, X1, 0, X, %) € G

Theorem 5.1([9]). Let G, be efficiently closed under projections. If the satisfiability problem of the form
fu A fo A f3 for f1, fa, f3 € Crioggn) Can be deterministically solved in tin@8=«(9"  then there exists a
language L ENP such that |, ¢ C, holds for infinitely many n. Herenldenotes the indicator function of
LNn{0,1}".

It is easy to see that we can modify the proof of Theorem 4.1 to handle a circuit of th€fori@, A Cg,
whereC;,C;,C3 € (SYMUTHR ) o (SYMUTHR), because the degree of the “final polynomial” is larger
by a factor of at most 3. The class of depth 2 circuits withymmetric and linear threshold gates is clearly
efficiently closed under projections. This completes the proof of Theorem 1.2.
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