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Abstract

We consider depth 2 unbounded fan-in circuits with symmetric and linear threshold gates. We present
a deterministic algorithm that, given such a circuit withn variables andm gates, counts the number of

satisfying assignments in time 2
n−Ω

((
n√

m·poly(logn)

)a)
for some constanta > 0. Our algorithm runs in

time super-polynomially faster than 2n if m= O(n2/ logbn) for some constantb> 0. Previously, such
algorithms were only known for bounded depth circuits with linear threshold gates and a slightly super-
linear number ofwires [Impagliazzo-Paturi-Schneider, FOCS 2013 and Chen-Santhanam-Srinivasan,
CCC 2016].

We also show that depth 2 circuits withO(n2/ logbn) symmetric and linear threshold gates in to-
tal cannot compute an explicit function computable by a deterministic 2O(n)-time Turing machine with
an NP oracle. Previously, even slightly super-linear lower bounds on the number of gates were not
known until recently Kane and Williams [STOC 2016] showed that depth 2 linear threshold circuits with
o(n3/2/ log3n) gates cannot compute an explicit function computable in linear time.
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1 Introduction

We are concerned with circuits that consist of unbounded fan-in symmetric and linear threshold gates. Let
x1,x2, . . . ,xn be Boolean variables andf : {0,1}n → {0,1} be a Boolean function. We sayf is symmetric
if there exists a functiong : Z → {0,1} such thatf (x) = g(∑n

i=1xi) holds. We sayf is a linear threshold
function (LTF) if there existw0,w1, . . . ,wn ∈Z such thatf (x) = sgn(w0+∑n

i=1wixi) holds, where sgn :Z→
{0,1} is the sign function defined as sgn(y) = 1 if and only ify≥ 0.

In this paper, we present satisfiability algorithms and circuit size lower bounds for depth 2 circuits
with symmetric and linear threshold gates as described in the next section. Note that each gate of such
a circuit may be of a different type, e.g.,g1(∑n

i=1xi),g2(∑n
i=1xi), . . . ,sgn(w1,0 + ∑n

i=1w1,ixi),sgn(w2,0 +

∑n
i=1w2,ixi), . . . etc.

1.1 Our contribution

Satisfiability algorithms In this paper, we present the following satisfiability algorithms.

Theorem 1.1(Main 1). There exist a constant c> 0 and a deterministic algorithm that, given a depth 2
circuit C with n variables and m gates, where each gate is either symmetric or linear threshold, runs in time

2
n−Ω

((
n√

m·poly(logn)

)c)
and counts the number of satisfying assignments for C.

Previously, Impagliazzo, Paturi and Schneider [33] showed that the satisfiability of a depth 2 linear thresh-
old circuit withn variables andm wirescan be solved in randomized time 2n−µ(m/n)n, whereµ(c) = 1/cO(c2).
Chen and Santhanam [16] improved the running time asµ(c) = 1/cO(c). Chen, Santhanam and Srini-
vasan [17] showed that the satisfiability of a depthd linear threshold circuit withn variables andn1+εd wires
can be solved in randomized time 2n−nεd , whereεd = 1/2O(d).

Note that a depth 2 linear threshold circuit withm gates may haveO(mn) wires. We are not aware of
satisfiability algorithms that beat brute force search for depth 2 circuits with symmetric and linear threshold
gates as Theorem 1.1 or even for depth 2 circuits with only symmetric gates. To summarize, our algorithm
is deterministic, can solve a counting version of the satisfiability problem and handle larger size circuits
(of depth 2) with additional gate types. Our algorithm can be generalized to handle bounded depth layered
circuits, where each layer consists of either AND/OR/XOR gates or symmetric and linear threshold gates
and the fan-in of symmetric and linear threshold gates satisfies some condition.

Circuit lower bounds As a byproduct of Theorem 1.1, we obtain the following circuit lower bounds.

Theorem 1.2(Main 2). There exist a language L∈ ENP and a constant c> 0 such that any family of depth
2 circuits with O(n2/ logcn) gates, where each gate is either symmetric or linear threshold, cannot compute
L.

Here ENP is the class of languages computable by deterministic 2O(n)-time NP-oracle Turing machines.
It has been a longstanding open question whether ENP can be computed by depth 2 circuits withn1.01

threshold gates until very recently Kane and Williams [35] showed that depth 2 circuits witho(n3/2/log3n)
linear threshold gates cannot compute an explicit function computable in linear time.

Again we are not aware of non-trivial lower bounds for depth 2 circuits with symmetric and linear thresh-
old gates as Theorem 1.2 or even for depth 2 circuits with only symmetric gates. To summarize, we show
lower bounds for larger size circuits with additional gate types computing a less explicit function.
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1.2 Background and Related Work

The motivation for studying the satisfiability problem of depth 2 linear threshold circuits is twofold: First,
the problem contains as special cases both of the maximum satisfiability problem and 0-1 integer linear
programming, which have been well studied in the area of exponential time algorithms and implementations
of practical solvers. Second, proving super-polynomial lower bounds against depth 2 linear threshold circuits
is one of the major open questions in Boolean circuit complexity. Below we elaborate on the second point.

Bounded depth linear threshold circuits have been studied extensively as a model of neural network. Such
circuits are powerful enough to implement arithmetic operations such as iterated multiplication, division and
powering, see, e.g., [41] and even candidate pseudorandom function generators [37, 42, 45]. The latter fact
explains the difficulty of proving lower bounds for bounded depth linear threshold circuits by the “Natural
Proof” barrier due to Razborov and Rudich [52, 18, 64] although it is believed that such circuits cannot
compute some functions in NP or ever in P. There has been much effort to reveal the expressive power of
linear threshold circuits, see, e.g., [26, 50, 32, 28, 27, 36, 39, 38, 20, 19, 22, 53, 47, 21, 25, 51, 40], to name
a few.

The connection between satisfiability algorithms and circuit lower bounds, developed by Williams and
subsequent authors [63, 67, 62, 64, 66, 9, 34], is a promising approach to avoid such barriers, see also
[56, 49, 65] for surveys. Since the success of using the connection to actually prove new circuit lower
bounds, i.e., super-polynomial lower bounds forACC0 circuits computing a language in NEXP [67], many
satisfiability algorithms that beat brute force search have been designed for various circuit classes [48, 66,
15, 3, 2, 44, 59]. Interestingly, some papers showed average-case circuit lower bounds directly from the
analyses of their satisfiability algorithms [55, 31, 4, 57, 14, 13, 12, 23, 54].

1.3 Techniques

The polynomial method is a powerful technique in Boolean circuit complexity [5]. In his remarkable result,
Williams [67] used the polynomial method to design satisfiability algorithms beating brute force search for
ACC0 circuits. Since then, Williams and his coauthors have developed algorithms for many interesting
problems such as the circuit satisfiability problem for restricted classes of circuits [66], all-pairs shortest
paths [11] and Hamming nearest neighbors [1], see also [68].

We follow the approach of [66] that gives satisfiability algorithms beating brute force search forACC0 ◦
THR andACC0 ◦SYM circuits. The approach is summarized as follows: (1) Given ann-variate circuit
C ∈ ACC0 ◦ THR , consider a circuitC′(y) :=

∨
a∈{0,1}n′ C(y,a) for somen′ < n. (2) RepresentC′ as a

circuit in SYM ◦SYM using simulation techniques, in particular, the simulation of Beigel and Tarui [8]
that transforms a circuit inACC0 to a circuit inSYM ◦AND. (3) Apply the “fast evaluation algorithm” for
SYM ◦SYM to obtain the truth table ofC′.

We implement the above approach, focusing on Item (2), forTHR ◦THR circuits. If we use the construc-
tion of “probabilistic polynomials” for symmetric and linear threshold functions due to Srinivasan [58], we
can representC′ as a “probabilistic circuit” inSYM ◦SYM. This implementation of Item (2) is sufficient to
obtain randomized algorithms.

In order to design deterministic algorithms, we derandomize probabilistic polynomials of [58]. It turns
out thatpseudorandom generators for space-bounded computationdue to Nisan [46] is sufficient for our
purpose. We also usemodulus-amplifying polynomials[61, 69] to complete a deterministic implementation
of Item (2) in a similar way to [8, 11].

Our circuit lower bounds follow from the connection between satisfiability algorithms and circuit lower
bounds, in particular, the one due to Ben-Sasson and Viola [9].
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2 Preliminaries

We use the following notations:Z is the set of integers,N is the set of natural numbers, i.e., non-negative
integers,Zm is the quotient ring of integers modulom, identified with{0,1, . . . ,m−1}, F2 is the finite field
of order 2, identified with{0,1}.

For a positive integern, [n] := {1,2, . . . ,n}. For real numbersa< b, (a,b) is the open interval betweena
andb. Fory∈ Z, |y| is the absolute value ofy. For a finite setS, |S| is the cardinality ofS. Forx∈ {0,1}n,
|x| is theHamming weightof x, i.e.,|x|= ∑n

i=1xi .

The logarithm ofx to base 2 is lgx and that to basee is lnx. We use random access machines as our
computation model.

2.1 Probability and derandomization

We use the following results in Section 3.1.

Lemma 2.1(The Chernoff-Hoeffding bound [29]). Let X1, . . . ,Xn be independent and identically distributeid
Bernoulli random variables withPr[Xi = 1] = 1−Pr[Xi = 0] = 1/m. Then, it holds that

Pr[|n/m−
n

∑
i=1

Xi |> t]≤ 2e−2t2/n.

Lemma 2.2(Nisan [46]). Let f : Zn
m →{0,1} be a function computable in space O(lg(nlgm)). Then, there

exists a function G: {0,1}ℓ → Zn
m with ℓ= O(lg2((nlgm)/ε)) such that

• |Pr[ f (x) = 1]−Pr[ f (G(y)) = 1]| ≤ ε, where x and y are respectively sampled fromZn
m and{0,1}ℓ

uniformly at random, and

• G is computable in timepoly(nlgm).

2.2 Boolean circuits

Let x1,x2, . . . ,xn be Boolean variables andf : {0,1}n → {0,1} be a Boolean function. We sayf is W-sum
if there exist a functiong : Z→ {0,1} andw1, . . . ,wn ∈ N with ∑n

i=1wi ≤W such thatf (x) = g(∑n
i=1wixi)

holds. Note that we can realize aW-sum function as aW-variate symmetric function by regardingwixi as a
sum ofwi variables. In what follows, we identify Boolean functions and logic gates.

We denote byAND,OR,XOR,SYM,SUMW,THR the set of AND gates, the set of OR gates, the set of
XOR gates, the set of symmetric gates, the set ofW-sum gates, the set of linear threshold gates, respectively.
Let G0,G1, . . . ,Gd−1 ∈ {AND,OR,XOR,SYM,SUMW,THR} be sets of logic gates. We denote byG0 ◦
G1◦ · · · ◦Gd−1 the set of depthd unbounded-fan-in layered Boolean circuits such that layeri contains gates
from Gi and all the gates at layeri are only fed by gates at layeri+1. Layer 0 corresponds to the output gate
and layerd consists of input variables and constants 0,1. We allow inputs and outputs of gates to be negated
unless otherwise specified.

We need the following upper bounds on the weights of linear threshold functions in Section 3.3.

Lemma 2.3 (Muroga [43]). For all w0,w1, . . . ,wn ∈ Z, there exist w′0,w
′
1, . . . ,w

′
n ∈ Z with |w′

i | = 2O(nlgn)

such thatsgn(w0 +∑n
i=1wixi) = sgn(w′

0 +∑n
i=1w′

ixi) holds. In addition, w′0,w
′
1, . . . ,w

′
n can be efficiently

obtained.

We use the following results in Section 4.
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Lemma 2.4(Maciel-Th́erien [41], see also Section 2.2 in the arXiv version of Williams [66]). There exists
a positive integer cmt such that for all n-variate f∈ THR , there exists a circuit

C∈ OR◦AND ◦XOR ◦OR◦AND ◦SYM

that is equivalent to f and consists of at most ncmt wires.

Lemma 2.5 (Beigel [6]). For all circuit C ∈ AND ◦SYM whose AND gate at layer0 has fan-in t1 and
symmetric gates at layer1 have fan-in at most t2, there exists a circuit C′ ∈ SYM that is equivalent to C and
whose fan-in is at most(t2+1)t1.

Lemma 2.6(Williams [66]). There exists a positive constant cw and an algorithm that, given an n-variate
circuit C∈ SYM ◦SYM whose symmetric gate at layer0 has fan-in at most t1 and symmetric gates at layer
1 have fan-in at most t2 such that t1t2 ≤ 2cwn, prints the truth table of C in timepoly(n)2n.

2.3 Polynomials

Let x1,x2, . . . ,xn be formal variables andK ∈ {F2,Z}. In this paper, each variable always takes the values 0
or 1, hence the identityx2

i = xi holds. Amonomialis a product of variables, i.e.,∏i∈Sxi for someS⊆ [n].
For S= /0, we regard∏i∈Sxi as 1. We can represent aK-polynomial Pas a sum of terms, of the form
P(x) = ∑S⊆[n]aS∏i∈Sxi , whereaS ∈ K. Whenever we consider aZ-polynomial, |aS| = 2O(n) is assumed
unless otherwise stated. Thedegreeof P, denoted by deg(P), is defined as

deg(P) := max{|S| | S⊆ [n],aS ̸= 0}.

Note that we can regard anF2-polynomialP as a Boolean circuit inXOR ◦AND as

P(x) =
⊕
S⊆[n]

(
aS

∧
i∈S

xi

)
.

We need the following combinatorial facts in Sections 3 and 4.

Lemma 2.7. The number of monomials of degree at most k is M(n,k) =∑k
i=0

(n
i

)
. If k ≤ n/2, M(n,k)≤ k

(n
k

)
.

Lemma 2.8 (Powering). Given an n-variate degree k polynomial P represented as a sum of terms, and a
positive integer d, we can represent Pd, the dth power of P, as a sum of terms in time

poly(n)
d−1

∑
i=1

M(n,k)M(n, ik)≤ poly(n)M(n,dk).

Lemma 2.9(Composition). Let p be a degree d1 polynomial in n1 variables and p1, p2, . . . , pn1 be degree
d2 polynomials in the same n2 variables. Then, p(p1, p2, . . . , pn1) can be represented as a sum of terms in
timepoly(n1,n2)M(n1,d1)M(n2,d1d2).

We use the following construction of polynomials approximating symmetric functions in Section 3.1.

Lemma 2.10(Corollary 2.7 in Bhatnagar-Gopalan-Lipton [10], Lemma 3.1 in Alman-Williams [1]). For
all n-variate function f∈ SYM and integers s≥ 0, t ≥ 1 with s+ t ≤ n, there exists anF2-polynomial p of
degree at most O(t) such that f(x) = p(x) holds if s≤ |x| ≤ s+ t. In addition, p can be constructed in time
poly(n)

( n
O(t)

)
.

We need the following construction ofmodulus-amplifying polynomials[61, 69] in Section 4.
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Lemma 2.11(Beigel-Tarui [8]). For every positive integerℓ, the degree(2ℓ−1) univariateZ-polynomial

Fℓ(y) := 1− (1−y)ℓ
ℓ−1

∑
j=0

(
ℓ+ j −1

j

)
y j

satisfies:

• if y = 0 mod 2, then Fℓ(y) = 0 mod 2ℓ,
• if y = 1 mod 2, then Fℓ(y) = 1 mod 2ℓ.

In addition, for0≤ i ≤ 2ℓ−1, the coefficient of yi in the polynomial Fℓ has magnitude at most2O(ℓ).

2.4 Probabilistic polynomials

For a Boolean functionf : {0,1}n → {0,1}, a probability distributionP over polynomials is anε-error
probabilistic polynomialfor f if for all x ∈ {0,1}n, Prp∼P [ f (x) ̸= p(x)] ≤ ε holds [60]. Thedegreeof a
probabilistic polynomialP is the maximum degree of polynomials in the support ofP, i.e., max{deg(p) |
Prq∼P [p= q]> 0}. A probabilistic polynomialP hasr-randomnessif we can sample a polynomial from
P with r uniformly random bits.

We need the following construction of time and randomness efficient probabilistic polynomials for AND/OR
functions in Section 4.

Lemma 2.12(Beigel-Reingold-Spielman and Tarui [7, 60]). For everyε ∈ (0,1/2), there exists anε-error
probabilistic O(lg2n · lg(1/ε))-randomness probabilisticF2-polynomialP of degree d= O(lgn · lg(1/ε))
for n-variate AND/OR functions. Furthermore, we can sample a polynomial fromP in time O(poly(n)

(n
d

)
).

3 Randomness efficient probabilistic polynomials

In this section, we present the main technical ingredients of our satisfiability algorithms, that is, a time
and randomness efficient version of probabilistic polynomials for weighted symmetric and linear threshold
functions due to Srinivasan [58].

Lemma 3.1(Randomness efficient version of Theorem 11 in [58]). For everyε ∈ (0,1/2), W ∈ N and an
n-variate f∈SUMW, f has anε-error O(lg2((nlg lgW)/ε))-randomness probabilisticF2-polynomialP of
degree d=O(lg4W

√
nlg(1/ε)). Furthermore, we can sample a polynomial fromP in time O(poly(n)

(n
d

)
).

Lemma 3.2 (Randomness efficient version of Theorem 12 in [58]). For every ε ∈ (0,1/2) and an n-
variate f ∈ THR , f has anε-error O(lg2(n/ε))-randomness probabilisticF2-polynomialP of degree
d = O(lg5n

√
nlg(1/ε)). Furthermore, we can sample a polynomial fromP in time O(poly(n)

(n
d

)
).

Lemma 3.3 below is the key result of this section. First we need some definitions. Form∈N, r ∈ Zm,w∈
Zn

m, we define functions modnm,r : {0,1}n →{0,1}, modn
m,r,w : {0,1}n →{0,1}, as follows.

• modn
m,r(x) = 1 if and only if ∑n

i=1xi ≡ r modm,

• modn
m,r,w(x) = 1 if and only if ∑n

i=1wixi ≡ r modm.

Lemma 3.3 (Randomness efficient version of Lemma 13 in [58]). For everyε ∈ (0,1/2), modn
m,r,w has

an ε-error O(lg2((nlgm)/ε))-randomness probabilisticF2-polynomialP of degree d= O(m
√

nlg(1/ε)).
Furthermore, we can sample a polynomial fromP in time O(poly(n)

(n
d

)
).
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We prove the above lemma in the next section. The proof is based on the observation that uniformly random
bits in the construction of [58] can be replaced by the outputs of the pseudorandom generators for space-
bounded computation due to Lemma 2.2.

Once we establish Lemma 3.3, we can prove Lemmas 3.1 and 3.2 following the lead of [58] with careful
calculation of parameters. The proofs are given in Sections 3.2 and 3.3 respectively.

3.1 Weighted modulo functions

In this section, we prove Lemma 3.3.
Fix integersm≥ 2 andr ∈ Zm and an integer vectorw ∈ Zn

m. Let v ∈ Zn
m. We define functionsMm,r :

Zm →{0,1}, Mn
m,r,w,v : {0,1}n →{0,1}n and a setRn

m,r,v ⊆ Zm−1
m as follows.

• Mm,r(y) = 1 if and only ify≡ r modm,

• (Mn
m,r,w,v(x))i := Mm,r(wixi +vi),

• Rn
m,r,v := {(r1, r2, . . . , rm−1) ∈ Zm−1

m | ∑m−1
i=1 ir i ≡ r +∑n

i=1vi modm}.

Note thatMm,r(wixi + vi) ∈ {0,1,xi ,1− xi} holds for fixedm, r,wi ,vi . The following lemma shows how to
reduce the evaluation of modn

m,r,w(x) to the evaluation of modnm,r ′(x
′) for many pairs(r ′,x′).

Lemma 3.4(Section 3.1 in [58]). For all v ∈ Zn
m and x∈ {0,1}n, it holds that

modn
m,r,w(x) = ∑

u∈Rm,r,v

m−1∧
i=1

modn
m,ui

(Mn
m,r,w,v(x)).

Let Pn
m,r : {0,1}n → {0,1} be anF2-polynomial of degreeO(t) such thatPn

m,r(x) = modn
m,r(x) if |x| ∈

{⌊n/m⌋− t, . . . ,⌊n/m⌋+ t}. By Lemma 2.10, the existence ofPn
m,r is guaranteed. In addition,Pn

m,r can be
constructed in time poly(n)

( n
O(t)

)
. Let us define anF2-polynomialQn

m,r,w,v : {0,1}n →{0,1} as follows.

Qn
m,r,w,v(x) := ∑

u∈Rm,r,v

m−1

∏
i=1

Pn
m,ui

(Mn
m,r,w,v(x)).

The following lemma is immediate from the property ofPn
m,r and the definition ofQn

m,r,w,v.

Lemma 3.5. If |Mn
m,r,w,v(x)| ∈ {⌊n/m⌋− t, . . . ,⌊n/m⌋+ t}, then Qn

m,r,w,v(x) = modn
m,r,w(x) holds.

We are ready to prove Lemma 3.3.

Proof of Lemma 3.3.If we selectvi ∈ Zm uniformly at random, then we havePrvi [Mm,r(wixi + vi) = 1] =
1/m. Hence, if we selectv∈ Zn

m uniformly at random, then by Lemma 2.1, we have

Pr
v
[|Mn

m,r,w,v(x)| /∈ {⌊n/m⌋− t, . . . ,⌊n/m⌋+ t}]≤ 2e−2t2/n.

Let ℓ= O(lg2((nlgm)/δ )) andG : {0,1}ℓ → Zn
m be the pseudorandom generator due to Lemma 2.2. Since

|Mn
m,r,w,v(x)| as a function ofv can be computed in spaceO(nlgm), if we selects∈ {0,1}ℓ uniformly at

random, then we have

Pr
s
[|Mn

m,r,w,G(s)(x)| /∈ {⌊n/m⌋− t, . . . ,⌊n/m⌋+ t}]≤ 2e−2t2/n+δ .

This implies
Pr
s
[Qn

m,r,w,G(s)(x) ̸= modn
m,r,w(x)]≤ 2e−2t2/n+δ .

If we sett =
√

(n/2) ln(4/ε) andδ = ε/2, then the right hand side is at mostε and the degree ofQn
m,r,w,G(s)(x)

is O(tm). This completes the proof.
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3.2 Weighted sum functions

In this section, we prove Lemma 3.1.

Fix a functiong : Z→{0,1} and natural numbersw1, . . . ,wn with ∑n
i=1wi =W. Let f (x) = g(∑n

i=1wixi),
ℓ := ⌈lgW⌉+2, p1 < · · ·< pℓ be firstℓ primes ands := ∑ℓ

i=1 pi .

Note that∏ℓ
i=1 pi > 2ℓ > 2W. By the prime number theorem,pℓ = O(lgW · lg lgW) holds and this implies

s= O(lg2W · lg lgW).

We define functionsMn
m,w : {0,1}n →{0,1}m for m∈ N andMn

w : {0,1}n →{0,1}s as follows.

• Mn
m,w(x) := (modn

m,0,w(x), . . . ,modn
m,m−1,w(x)),

• Mn
w(x) := (Mn

p1,w(x), . . . ,M
n
pℓ,w(x)).

Since we can reconstruct∑n
i=1wixi from Mn

w(x) by the Chinese remainder theorem, we have:

Lemma 3.6 (Section 3.2 in [58]). There exists a function h: {0,1}s → {0,1} such that f(x) = h(Mn
w(x))

holds.

Note thath can be written as anF2-polynomial of degree at mosts and is determined by the values
g(0),g(1), . . . ,g(W). We are ready to prove Lemma 3.1.

Proof of Lemma 3.1.For eachpi andr ∈ Zpi , there exists aδ -errorO(lg2((nlg pi)/δ ))-randomness proba-
bilistic F2-polynomialPpi ,r of degreeO(pi

√
nlg(1/δ )) by Lemma 3.3. We sample anF2-polynomialPpi ,r

from Ppi ,r , replace modnpi ,r,w by it in Mn
w and then obtain a polynomialQ for f by composingh. Note that

we use same random bits of length at mostO(lg2((nlg pℓ)/δ )) to sample everyPpi ,r .

By the union bound, we havePr[Q(x) ̸= f (x)]≤ sδ . If we setδ = ε/s, the degree ofQ isO(spℓ
√

nlg(1/δ ))=
O(lg4W

√
nlg(1/ε)) and the length of random bits isO(lg2((nlg lgW)/ε)). This completes the proof.

3.3 Linear threshold functions

In this section, we prove Lemma 3.2.

Fix integersw0,w1, . . . ,wn ∈N, letF(x) =w0+∑n
i=1wixi and consider sgn(F(x))∈ THR . Without loss of

generality,|wi | ≤ 2O(nlgn) holds due to Lemma 2.3. We assume that|F(x)| ≥ n+2. Otherwise, we consider
(n+2)(2F(x)+1) instead since for allx∈ {0,1}n, it holds that sgn(F(x)) = sgn((n+2)(2F(x)+1)) and
|(n+2)(2F(x)+1)| ≥ n+2.

Let ℓ := ⌈lg((n+1)maxi |wi |)⌉. We need the following definitions for 1≤ l ≤ ℓ.

• w(l)
i :=

{
⌊wi/2l⌋ if wi ≥ 0,

w(l)
i = ⌈wi/2l⌉ if wi < 0,

• F(l)(x) := w(l)
0 +∑n

i=1w(l)
i xi ,

• ins(l)(x) = 1 if and only ifw(l)
0 +∑n

i=1w(l)
i xi ∈ {−n−1,−n, . . . ,n,n+1},

• pos(l)(x) = 1 if and only ifw(l)
0 +∑n

i=1w(l)
i xi ∈ {0,1, . . . ,n,n+1},

• ins(l)p (x) = 1 if and only ifw(l)
0 +∑n

i=1w(l)
i xi ≡ k mod p for somek∈ {−n−1,−n, . . . ,n,n+1},

• pos(l)p (x) = 1 if and only ifw(l)
0 +∑n

i=1w(l)
i xi ≡ k mod p for somek∈ {0,1, . . . ,n,n+1},
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Hofmeister gives the following characterization of linear threshold functions.

Lemma 3.7(page 139, [30]). If F (x)≥ 0, then there exists a unique l such that¬ins(l−1)(x)∧pos(l)(x) = 1
holds. If F(x)< 0, then for all l,¬ins(l−1)(x)∧pos(l)(x) = 0 holds.

The following lemma implies Lemma 3.2 almost immediately.

Lemma 3.8. For everyε ∈ (0,1/2) and l, f ∈ {ins(l),pos(l)} has anε-error O(lg2(n/ε))-randomness prob-
abilistic F2-polynomialP of degree d= O(lg4n

√
nlg(1/ε)). Furthermore, we can sample a polynomial

fromP in time O(poly(n)
(n

d

)
).

First we prove Lemma 3.2 assuming Lemma 3.8 and then prove Lemma 3.8.

Proof of Lemma 3.2.For eachl , there existδ -errorO(lg2(n/δ ))-randomness probabilisticF2-polynomials

P
(l)
ins andP

(l)
pos of degreeO(lg4n

√
nlg(1/δ )) for ins(l) and pos(l) respectively by Lemma 3.8. We sample

anF2-polynomialP(l)
ins from P

(l)
ins and anF2-polynomialP(l)

pos from P
(l)
pos and construct anF2-polynomial

P(x) := ∑ℓ
l=1(1−P(l−1)(x)

ins )P(l)
pos(x). Note that we use same random bits of length at mostO(lg2(n/δ )) to

sample everyP(l)
ins,P

(l)
pos.

By the union bound, we havePr[P(x) ̸= f (x)]≤2ℓδ . If we setε =2ℓδ , the degree ofQ isO(lg5n
√

nlg(1/ε))
and the length of random bits isO(lg2(n/ε)).

This completes the proof of Lemma 3.2.

Proof of Lemma 3.8.We show a proof for ins(l). The proof for pos(l) is almost identical. The main idea
is that we compute ins(l)p instead of ins(l) for a random primep. Note that ins(l)p ∈ SUMW for W ≤
pn. There exists anε-errorO(lg2((nlg lgW)/δ ))-randomness probabilisticF2-polynomialP(l)

p of degree

O(lg4W
√

nlg(1/δ )) for ins(l)p by Lemma 3.1.
Let t := ⌈Cn2 lgn/δ⌉ for a sufficiently large constantC> 0 andp1 < · · ·< pt be firstt primes. Note that

pt = O(t lg t) by the prime number theorem. We rely on the following lemma.

Lemma 3.9(Section 3.3 in [58]). If ins(l)(x) = 1, thenins(l)p (x) = 1. If ins(l)(x) = 0 and i is selected from

{1,2, . . . , t} uniformly at random, thenPr i [ins(l)pi (x) = 1]≤ δ .

We construct anF2-polynomialQ for ins(l) as follows. First, selecti ∈ {1,2, . . . , t} uniformly at random.

Then, sample a polynomialP from P
(l)
pi and letQ(x) := P(x).

By the union bound, we have

Pr[Q(x) ̸= ins(l)(x)]≤ Pr[ins(l)pi (x) ̸= ins(l)(x)]+Pr[P(x) ̸= ins(l)pi (x)]≤ 2δ .

If we setε = 2δ , the degree ofQ is O(lg4n
√

nlg(1/ε)) and the length of random bits isO(lg2(n/ε)).
This completes the proof of Lemma 3.8.

4 Satisfiability Algorithms

In this section, we prove the following theorem.

Theorem 4.1. There exist a constant c> 0 and a deterministic algorithm that, given a depth 2 linear

threshold circuit C with n variables and m gates, runs in time2
n−Ω

((
n√

m·poly(lgn)

)c)
and counts the number of

satisfying assignments for C.
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Remark 4.2. The proof of Theorem 1.1 is essentially the same or even simpler and omitted, i.e., (1) we use
Lemma 3.1 instead of 3.2 if necessary and (2) we do not have to apply Lemma 2.4 if a gate at the bottom
layer is symmetric.

Let C ∈ THR ◦THR be ann-variate circuit whose gate at layer 0 has fan-in at mostm. For a positive
integern′, we define a functionK : {0,1}n−n′ → {0,1, . . . ,2n′} asK(y) := ∑a∈{0,1}n′ C(y,a). Our goal is to
construct an expressionK′ = ∑i aiGi , whereai ∈ Z, Gi ∈ SYM, such thatK ≡ K′. Thenith bit of the binary
representation ofK′(y)∈ {0,1}n′+1 can be regarded as a function inSYM ◦SYM. We can apply Lemma 2.6
to obtain all the values ofK(y) if we select the underlying parameters appropriately.

Proof of Theorem 4.1.By Lemma 2.4, there existsC′ ∈ THR ◦OR◦AND ◦XOR ◦OR◦AND ◦SYM that
is equivalent toC and has at mostt = mncmt wires. Letg1,g2, . . . ,gs be symmetric gates at the bottom layer
in C′. LetC′′ ∈ THR ◦OR◦AND ◦XOR ◦OR◦AND be ans-variate circuit with at mostt wires such that
C′′(g1, . . . ,gs)≡C′.

Lemma 4.3. Let D∈ THR ◦OR◦AND ◦XOR ◦OR◦AND be an n-variate circuit with t= poly(n) wires,
where the threshold gate at layer0 has fan-in at most m= O(n2). There exists anε-error O(lgnlg2(n/ε))-
randomness probabilisticF2-polynomialP of degree d= O(lg9nlg5(1/ε)

√
m) for D. Furthermore, we

can sample fromP in time O(poly(n)
(n

d

)
).

Proof. We replace the threshold gate at layer 0 by aδ -error probabilisticF2-polynomial from Lemma 3.2
and replace each AND/OR gate by aδ -error probabilisticF2-polynomial from Lemma 2.12, where we set
δ = ε/(t +1), and obtain a circuit

D′ ∈ (XOR ◦AND)◦ (XOR ◦AND)◦ (XOR ◦AND)◦XOR ◦ (XOR ◦AND)◦ (XOR ◦AND).

Note that we use the same random bits to sample each probabilistic polynomial. By repeatedly using
Lemma 2.9, we obtain a circuitD′′ ∈ XOR ◦AND that is equivalent toD′. By the union bound,D′ is anε-
error probabilisticF2-polynomial forD. The degree ofD′′ is d = O(lg9nlg5(1/ε)

√
m) and the randomness

of D′ is O(lgnlg2(n/ε)) by the choice ofδ . In addition, the construction ofD′′ takes timeO(poly(n)
(n

d

)
)

since we apply Lemma 2.9 at most

1. t times withd1 = d2 = O(lgnlg(1/ε)),n1 = t,n2 = n,

2. t times withd1 = O(lgnlg(1/ε)),d2 = O(lg2nlg2(1/ε)),n1 = t,n2 = n,

3. m times withd1 = O(lgnlg(1/ε)),d2 = O(lg3nlg3(1/ε)),n1 = t,n2 = n,

4. once with withd1 = O(lg5n
√

mlg(1/ε)),d2 = O(lg4nlg4(1/ε)),n1 = m,n2 = n.

This completes the proof.

Let l = O(lgnlg2(n/ε) and selectr ∈ {0,1}l to sample a polynomialPr for C′′ due to Lemma 4.3 in time
poly(n)

( s
d1

)
, whered1 = O(lg9nlg5(1/ε)

√
m). Then we construct aZ-polynomialQr := Fℓ(Pr), whereFℓ is

the degree(2ℓ−1) Z-polynomial from Lemma 2.11 and we regardPr as aZ-polynomial in the natural way.
We can representQr as

Qr = ∑
S⊆[s]:|S|≤d2

aS∏
i∈S

gi
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in time poly(n)
( s

d2

)
, whered2 = O(ℓ lg9nlg5(1/ε)

√
m) andaS = nO(d2). For each∏i∈Sgi ∈ AND ◦SYM,

we apply Lemma 2.5 and obtain a circuitgS∈ SYM with nO(d2) wires. LetQ′
r := ∑S⊆[s]:|S|≤d aSgS. Finally

we defineR : {0,1}n−n′ → Z as

R(y) := ∑
a∈{0,1}n′ ,r∈{0,1}l

Q′
r(y,a) mod 2ℓ.

Note that if 2ℓ > 2l , then by Lemma 2.11 and the error probability ofQ′
r , we have

C(x′,a) = 1 ⇒ (1− ε)2l ≤

(
∑

r∈{0,1}l

Q′
r(y,a) mod 2ℓ

)
≤ 2l ,

C(x′,a) = 0 ⇒ 0≤

(
∑

r∈{0,1}l

Q′
r(y,a) mod 2ℓ

)
≤ ε2l .

In addition, if 2ℓ > 2n′2l , then we have

R(y) ∈ (2l (1− ε)K(y),2l{(1− ε)K(y)+ ε2n′}).

If we setε < 1/2n′+1 and defineR̃(y) as the nearest integer ofR(y)/2l , thenR̃(y) = K(y) holds.
We setn′ = (n/(

√
mlgc1 n))c2 for sufficiently largec1 > 0 and smallc2 > 0, ε = 1/2n′+2 andℓ= n′+ l +1.

Then, we see that the construction ofR takes time at most 2n−n′ . Furthermore, for eachi, the ith bit of
the binary representation ofR(y) can be represented as a circuit inSYM ◦SYM so that the condition of
Lemma 2.6 is satisfied as ann−n′-variate circuit.

This completes the proof.

5 Circuit Lower Bounds

In this section, we give a proof sketch of Theorem 1.2.
We use the connection between satisfiability algorithms and circuit lower bounds due to Ben-Sasson and

Viola [9]. Let Cn be a set of functions from{0,1}n to {0,1}. Cn is closed under projectionsif for all f ∈Cn,
indicesi, j ≤ n and a bitb, it holds that

¬ f , f (x1, . . . ,xi−1,x j ⊕b,xi+1, . . . ,xn), f (x1, . . . ,xi−1,b,xi+1, . . . ,xn) ∈Cn.

Cn is efficiently closed under projectionsif it is closed under projections and give a description off ∈ Cn,
we can compute in poly(| f |), descriptions of

¬ f , f (x1, . . . ,xi−1,x j ⊕b,xi+1, . . . ,xn), f (x1, . . . ,xi−1,b,xi+1, . . . ,xn) ∈Cn.

Theorem 5.1([9]). Let Cn be efficiently closed under projections. If the satisfiability problem of the form
f1 ∧ f2 ∧ f3 for f1, f2, f3 ∈ Cn+O(lgn) can be deterministically solved in time2n−ω(lgn), then there exists a
language L∈ ENP such that Ln /∈Cn holds for infinitely many n. Here Ln denotes the indicator function of
L∩{0,1}n.

It is easy to see that we can modify the proof of Theorem 4.1 to handle a circuit of the formC1∧C2∧C3,
whereC1,C2,C3 ∈ (SYM ∪THR) ◦ (SYM ∪THR), because the degree of the “final polynomial” is larger
by a factor of at most 3. The class of depth 2 circuits withmsymmetric and linear threshold gates is clearly
efficiently closed under projections. This completes the proof of Theorem 1.2.
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