
Algebraic Proof Complexity: Progress, Frontiers and Challenges∗

Toniann Pitassi
†

Iddo Tzameret
‡

Abstract

We survey recent progress in the proof complexity of strong proof systems and its connection
to algebraic circuit complexity, showing how the synergy between the two gives rise to new
approaches to fundamental open questions, solutions to old problems, and new directions of
research. In particular, we focus on tight connections between proof complexity lower bounds
(namely, lower bounds on the size of proofs of certain tautologies), algebraic circuit lower bounds,
and the Polynomial Identity Testing problem from derandomization theory.

Contents

1 Introduction 2

2 Basic Concepts 2
2.1 Propositional Proof Systems . 3

2.1.1 Frege Proof Systems . 3
2.2 Comparing Proof Systems . 4
2.3 Algebraic Circuits, Formulas, and Algebraic Complexity Classes 4
2.4 Algebraic Proof Systems . 5

3 IPS 8
3.1 Lower Bounds on IPS Imply Algebraic Circuit Lower Bounds 8
3.2 IPS Polynomially Simulates Extended Frege . 10
3.3 PIT as a Bridge Between Circuit Complexity and Proof Complexity 11
3.4 Axioms for Circuits for Polynomial Identity Testing . 12

4 Non-Commutative IPS 13
4.1 Frege Quasi-Polynomially Simulates the Non-Commutative IPS 15

5 Lower Bounds on Fragments of IPS 16

6 PIT and Proof Complexity 17
6.1 Proof Systems for Polynomial Identities . 18

7 Conclusion and Open Problems 20

8 Acknowledgements 21

References 22

∗A version of this paper appears in the Complexity Column of the ACM SIGLOG News, ACM New York, NY,
USA, July 2016.

†Email: toni@cs.toronto.edu. Department of Computer Science, University of Toronto, Toronto, Canada.
‡Email: iddo.tzameret@rhul.ac.uk. Department of Computer Science, Royal Holloway, University of London,

Egham, UK.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 101 (2016)

1 Introduction

Propositional proof complexity aims to understand and analyze the computational resources re-
quired to prove propositional tautologies, in the same way that circuit complexity studies the
resources required to compute boolean functions. A central question in the area asks whether
every boolean tautology has a short propositional proof. Here, a propositional proof system can
take many forms. One such proof system is the resolution refutation system whose proof-search
algorithm constitutes the basis of current state of the art industrial-level SAT solvers (this thread
of research was recently covered in Nordström [Nordström, 2015]). For resolution and its weak
extensions, strong lower bounds are known since Haken [Haken, 1985]. But the major open ques-
tions in proof complexity, those originating from boolean circuit complexity and complexity class
separations, such as P vs. NP, are about the length of much stronger proof systems than resolution,
and these stronger systems will be the focus of this survey.

The prototypical strong proof system is the standard Hilbert-style propositional proof system,
called Frege proof system, in which a proof starts from a fixed finite set of axioms and derives
new propositional formulas using a fixed set of sound derivation rules. Establishing any super-
polynomial size lower bound on such proofs (in terms of the size of the formula proved) is a major
open problem in proof complexity, and a fundamental question in complexity theory.

The seminal work of Cook and Reckhow [Cook and Reckhow, 1979] showed that in its strongest
form, proof-size lower bound questions relate directly to fundamental hardness questions in com-
putational complexity: establishing super-polynomial lower bounds for every propositional proof
system would separate NP from coNP (and thus also P from NP).

The aim of this survey is to outline a new research direction, connecting algebraic circuit com-
plexity to proof complexity. The prominent goal of this approach is the quest for lower bounds on
strong proof systems; other important aspects are connections to derandomization theory and appli-
cation to feasible mathematics. The survey is meant to give some basic background in propositional
proof complexity and describe the algebraic approach to proof complexity.

In what follows, Section 2 gives the basic definitions of algebraic circuits, propositional proof
systems and algebraic proof systems, and a quick survey of the background results. Section 3 is
devoted to the Ideal Proof System (IPS). In this section we show that IPS is closely connected
to the Extended Frege proof system, and show that superpolynomial lower bounds for IPS proofs
imply algebraic circuit lower bounds. Section 4 is devoted to the study of the non-commutative IPS.
In this section we show that non-commutative IPS is equivalent (up to quasi-polynomial factors) to
the Frege system and discuss the ramifications of this equivalence. Section 5 is dedicated to lower
bounds for restricted subsystems of IPS. Section 6 discusses connections between algebraic proof
complexity and the polynomial identity testing (PIT) problem and the use of structural results on
algebraic circuits in proof complexity, as well as application to feasible mathematics. Finally we
conclude with a discussion and open problems in Section 7.

2 Basic Concepts

For a natural number we let [n] = {1, . . . , n}. Let F be a field. Denote by F[x1, . . . , xn] the ring
of (commutative) polynomials with coefficients from F and variables x1, . . . , xn. In this survey,
unless otherwise stated, we treat polynomials as formal linear combination of monomials, where a
monomial is a product of variables. Hence, when we talk about the zero polynomial we mean the
polynomial in which the coefficients of all monomials are zero (it can happen that over, say, GF (2),
x2 + x computes the zero function, but it is not the zero polynomial, because it has two nonzero

2

monomial coefficients). Similarly, two polynomials are said to be identical if they have precisely
the same monomial coefficients. The degree of a polynomial (or total degree) is the maximal sum
of variable powers in a monomial with a nonzero coefficient in the polynomial. If the power of
each variable in every monomial is at most 1 we say that the polynomial is multilinear. We write
poly(n) to denote a polynomial growth in n, namely a function that is upper bounded by nO(1),

and qpoly(n) to denote a quasi-polynomial growth in n, that is, nlogO(1)n.

2.1 Propositional Proof Systems

Cook and Reckhow [Cook and Reckhow, 1979] defined a general concept of a propositional proof
system from the perspective of computational complexity theory: a propositional proof system is
a polynomial-time function f from a set of finite strings over some given alphabet onto the set of
propositional tautologies (reasonably encoded). Thus, f(x) = y means that the string x is a proof
of the tautology y. Note that since f is onto, all tautologies and only tautologies have proofs (and
thus the proof system is complete and sound).

The idea behind the Cook-Reckhow definition is that a purported proof x may be much longer
than the tautology y it proves, but given a proof it should be possible to efficiently check (efficient
with respect to the proof length) that it is indeed a correct proof of the tautology. We say that a
propositional proof system is polynomially bounded if there exists a polynomial p that bounds the
minimal proof size |x| for every tautology y; namely, for every tautology y its minimal proof x is
such that |x| ≤ poly(|y|). Under the general Cook-Reckhow definition we have:

Theorem 2.1 (Cook-Reckhow [Cook and Reckhow, 1979]). NP=coNP if and only if there is a
polynomially bounded propositional proof system.

Therefore, proving lower bounds against stronger and stronger propositional proof systems is
clearly a formidable problem, as it can be considered as partial progress towards proving NP 6=coNP

(and thus P6=NP).
The definition of a propositional Cook-Reckhow proof system encompasses most standard proof

systems for propositional tautologies, such as resolution and usual textbook proof system for propo-
sitional logic. In this survey we discuss specific propositional proof systems, that are at least as
strong as the Frege or the Extended Frege system (see below). Though proving lower bounds on
(Extended) Frege proof sizes for some families of tautologies would not amount to NP 6=coNP, it
would still constitute a breakthrough in complexity theory.

2.1.1 Frege Proof Systems

One of the most investigated and central propositional proof systems comes from the tradition
of logic and is called the Frege proof system. A Frege proof system is any system that has a
fixed number of axiom schemes and sound derivation rules, that is also implicationally complete1,
and in which proof lines are written as propositional formulas. It is known since Reckhow’s work
[Reckhow, 1976] that all Frege proof systems are polynomially equivalent to each other, and hence
it does not matter precisely which rules, axioms, and logical-connectives we use in the system. For
concreteness, the reader can think of the Frege proof system as the following simple one (known
as Schoenfield’s system), consisting of only three axiom schemes (where A → B is an abbreviation
of ¬A ∨ B; and A, B, C are any propositional formulas):

A → (B → A)

1Meaning that if a set of formulas Γ logically implies a formula ϕ, then there is a proof of ϕ in the system with
formulas in Γ added to the axioms.

3

(¬A → ¬B) → ((¬A → B) → A)

(A → (B → C)) → ((A → B) → (A → C)),

and a single inference rule (known as modus ponens):

from A and A → B, infer B .

Frege systems are considered strong for several reasons. First, no super-polynomial lower bounds
are known for Frege proofs, and moreover proving such lower bounds seems to be out of reach of cur-
rent techniques, and believed by some to be even harder than proving explicit circuit lower bounds
[Razborov, 2015]. Secondly, hard candidates for Frege systems are hard to find; common tautologies
such as the pigeonhole principle that are known to be hard for weaker proof systems have polynomial-
size Frege proofs. (See [Bonet et al., 1995, Razborov, 2015, Kraj́ıček, 2011, Li and Tzameret, 2013]
for further discussions on hard proof complexity candidates.)

An Extended Frege proof system is obtained by augmenting Frege with the axiom:

Extension Axiom: z ↔ ϕ ,

where z is any new variable (namely, a variable that does not occur before in the proof) and ϕ is
any formula (that does not contain z), and where the new variables z appearing in the extension
axiom does not occur in the final formula in the proof. The point of the extension axiom is to
allow the use of new variables to represent intermediate subformulas in a proof; with this new
axiom scheme, polynomial-size Extended Frege proofs can reason about propositions computable
by polynomial-size circuits (rather than just propositions computable by polynomial-size formulas,
as is the case for polynomial-size Frege proofs).

For comprehensive texts on proof complexity and strong proof systems see e.g., the monograph
by Kraj́ıček [Kraj́ıček, 1995] and [Clote and Kranakis, 2002, Chapter 5].

2.2 Comparing Proof Systems

To compare the relative strength of two proof systems we define the notion of a simulation. We
say that a propositional proof system P polynomially simulates another propositional proof
system Q if there is a polynomial-time computable function f that maps Q-proofs to P -proofs of
the same tautologies (if P and Q use different representations for tautologies, we fix a (polynomial)
translation from one representation to the other). In case f is computable in time t(n) (for n the
input-size), we say that P t(n)-simulates Q. We say that P and Q are polynomially equivalent in
case P polynomially simulates Q and Q polynomially simulates P . If P polynomially simulates Q
but Q does not polynomially simulate P we say that P is strictly stronger than Q (equivalently,
that Q is strictly weaker than P).

2.3 Algebraic Circuits, Formulas, and Algebraic Complexity Classes

Algebraic circuits and formulas (over some fixed chosen field or ring) compute polynomials via
addition and multiplication gates, starting from the input variables and constants from the field.
More precisely, an algebraic circuit F is a finite directed acyclic graph with input nodes (i.e., nodes
of in-degree zero) and a single output node (i.e., a node of out-degree zero). Input nodes are labeled
with either a variable or a field element in F. All the other nodes have in-degree two (unless
otherwise stated) and are labeled by either + or ×. An input node is said to compute the variable
or scalar that labels itself. A + (or ×) gate is said to compute the addition (product, resp.) of

4

the polynomials computed by its incoming nodes. An algebraic circuit is called a formula, if the
underlying directed acyclic graph is a tree (that is, every node has at most one outgoing edge). The
size of a circuit is the number of nodes in it, and the depth of a circuit is the length of the longest
directed path in it.

Algebraic Complexity Classes We now recall some basic notions from algebraic complexity
(for more details see [Shpilka and Yehudayoff, 2010, Sec. 1.2]). Over a ring R, VPR (for “Valiant’s
P”) is the class of families f = (fn)∞

n=1 of formal polynomials fn such that fn has poly(n) input
variables, is of poly(n) degree, and can be computed by algebraic circuits over R of poly(n) size.
VNPR (for “Valiant’s NP”) is the class of families g of polynomials gn such that gn has poly(n) input
variables and is of poly(n) degree, and can be written as

gn(x1, . . . , xpoly(n)) =
∑

e∈{0,1}poly(n)

fn(e, x)

for some family (fn) ∈ VPR.
A polynomial f(x) is a projection of a polynomial g(y) if f(x) = g(L(x)) identically as poly-

nomials in x, for some map L that assigns to each yi either a variable or a constant. A family
of polynomials (fn) is a polynomial projection or p-projection of another family (gn) if there is a
function t(n) = nΘ(1) such that fn is a projection of gt(n) for all (sufficiently large) n. The per-
manent polynomial

∑

σ∈Sn

∏n
i=1 xi,σ(i) (for Sn the permutation group on n elements) is complete

under p-projections for VNP. The determinant polynomial on the other hand is known to be in VP

but is not known to be complete for VP under p-projections.
Two central questions in algebraic complexity theory are whether the permanent is a p-

projection of the determinant (a stronger variant speaks about quasi-polynomial projections); and
whether VP equals VNP [Valiant, 1979a, Valiant, 1979b, Valiant, 1982]. Since the permanent is
complete for VNP (under p-projections), showing VP6=VNP amounts to proving that the permanent
cannot be computed by polynomial-size algebraic circuits.

2.4 Algebraic Proof Systems

Let us now describe several algebraic proof systems for propositional logic (i.e. for boolean tautolo-
gies). Assume we start from a set of initial polynomials (called axioms) f1, . . . , fm ∈ F[x1, . . . , xn]
over some field F, then (the weak version of) Hilbert’s Nullstellensatz shows that f1(x) = · · · =
fm(x) = 0 is unsatisfiable (over the algebraic closure of F) if and only if there are polynomials
g1, . . . , gm ∈ F[x] such that

∑

j gj(x)fj(x) = 1 (as a formal identity), or equivalently, that 1 is in
the ideal generated by the {fj}j .

Beame, Impagliazzo, Kraj́ıček, Pitassi, and Pudlák [Beame et al., 1996] suggested to treat these
{gj}j as a proof of the unsatisfiability of these axioms, called a Nullstellensatz refutation. This is
particularly relevant for complexity theory as one can restrict attention to boolean solutions to these
axioms by adding the boolean axioms, that is, adding the polynomials {x2

i − xi}
n
i=1 to the axioms.

As such, one can then naturally encode NP-complete problems such as the satisfiability of 3CNF
formulas as the satisfiability of a collection of constant-degree polynomials, and a Nullstellensatz
refutation is then an equation of the form

m
∑

j=1

gj(x)fj(x) +
n

∑

i=1

hi(x)(x2
i − xi) = 1

for gj , hi ∈ F[x]. This proof system is sound and complete for refuting unsatisfiable axioms over
{0, 1}n. Given that the above proof system is sound and complete, it is then natural to ask what

5

is its power to refute unsatisfiable collections of polynomial equations over {0, 1}n. To understand
this question one must define the notion of the size of the above refutations. Two popular notions
are that of the degree, and the sparsity (number of monomials).

Strong (linear) lower bounds on Nullstellensatz degrees as well as strong (ex-
ponential) lower bounds on the sparsity of Nullstellensatz refutations are known
(cf. [Beame et al., 1996, Buss et al., 1996, Razborov, 1998, Grigoriev, 1998, Impagliazzo et al., 1999,
Buss et al., 2001, Alekhnovich and Razborov, 2001] and references therein). Unfortunately, the
hard examples used for these lower bounds do admit polynomial-size proofs in stronger proof
systems like Frege.

Therefore, to correspond more accurately to Frege, strong algebraic proof systems must use a
more economical representation of polynomials in proofs than sum of monomials (similarly to the
way a boolean formula is a much more succinct representation of a boolean function than a mere
CNF). The natural way is to measure the size of a polynomial by the size of the minimal algebraic
circuit or formula that computes it.

The idea to consider algebraic circuit size of algebraic proofs was raised initially
by Pitassi [Pitassi, 1997] for Nullstellensatz written as algebraic circuits, and was investi-
gated further in [Grigoriev and Hirsch, 2003, Raz and Tzameret, 2008b, Raz and Tzameret, 2008a,
Tzameret, 2011] in the context of the polynomial calculus proof system.

Recently, Grochow and Pitassi [Grochow and Pitassi, 2014] have suggested the following al-
gebraic proof system that resembles the Nullstellensatz, but with a variant that proved to have
important consequences. A proof in the Ideal Proof System is given as a single polynomial, lend-
ing itself quite directly to algebraic circuit complexity techniques. In what follows we follow the
notation in [Forbes et al., 2016b]:

Definition 2.1 (Ideal Proof System (IPS), Grochow-Pitassi [Grochow and Pitassi, 2014]). Let
f1(x), . . . , fm(x) ∈ F[x1, . . . , xn] be a collection of polynomials. An IPS refutation for showing
that the polynomials {fj}j have no common solution in {0, 1}n is an algebraic circuit C(x, y, z) ∈
F[x, y1, . . . , ym, z1, . . . , zn], such that

1. C(x, 0, 0) = 0.

2. C(x, f1(x), . . . , fm(x), x2
1 − x1, . . . , x2

n − xn) = 1.

The size of the IPS refutation is the size of the circuit C. If C is of individual degree ≤ 1 in
each yj and zi, then this is a linear IPS refutation (called basically Hilbert IPS by Grochow-
Pitassi [Grochow and Pitassi, 2014]), which is abbreviated as IPSLIN. If C comes from a restricted
class of algebraic circuits C, then this is called a C-IPS refutation, and further called a C-IPSLIN

refutation if C is linear in y, z. The variables y, z are sometimes called the placeholder variables
since they use as a placeholder for the axioms.

Notice that the definition above adds the equations {x2
i − xi}i to the system {fj}j . It is not

necessary (for the sake of completeness) to add the equations x2 − x to the system in general,
but this is the most interesting regime for proof complexity and thus we adopt it as part of our
definition. Also, note that the first equality in the definition of IPS means that the polynomial
computed by C is in the ideal generated by y, z, which in turn, following the second equality, means
that C witnesses the fact that 1 is in the ideal generated by f1(x), . . . , fm(x), x2

1 − x1, . . . , x2
n − xn

(the existence of this witness, for unsatisfiable set of polynomials, stems from the Nullstellensatz
theorem as discussed above).

It is not hard to show that IPSLIN is polynomially equivalent to the Nullstellensatz system,
when both are measured by their circuit size. For if we have an IPSLIN refutation C(x, y, z) we can

6

turn it into a Nullstellensatz refutation by writing it as a sum of products of the (linear) variables
y, z, with only a quadratic increase in size. For instance, if we write z′ to denote z without zn,
we have C(x, y, z) = C(x, y, z′, zn) = C(x, y, z′, 0) + (C(x, y, z′, 1) − C(x, y, z′, 0)) · zn. Now, since
C(x, y, z′, 0) does not contain the variable zn we can continue in a similar way to “take out” the
rest of the variables in y, z, one by one, reaching a Nullstellensatz refutation (when substituting
the fi’s and the boolean axioms for the y, z, respectively).

Furthermore, Forbes, Shpilka, Tzameret and Wigderson [Forbes et al., 2016b] showed that
IPSLIN refutations written as (general) algebraic circuits is polynomially equivalent to IPS (though
for restricted classes C, C-IPS may differ from C-IPSLIN).

Considering both the Nullstellensatz and the IPS we can see that the main innovation in the
IPS is the introduction of the placeholder variables y, z. This idea enables considering a refutation
as a single polynomial instead of considering a collection of polynomials (that is, those polynomial
coefficients of the initial axioms, as is the case of the Nullstellensatz).

Grochow-Pitassi [Grochow and Pitassi, 2014] showed that the IPS system is very powerful and
can simulate Extended Frege (this follows from the fact that IPS is a generalization of the Null-
stellensatz written as algebraic circuits and already [Pitassi, 1997] showed that the latter system
simulates Extended Frege).

The fact that C-IPS refutations are efficiently checkable (with randomness) follows from the
fact that we only need to verify the polynomial identities stipulated by the definition. That is, it
suffices to solve an instance of the polynomial identity testing (PIT) problem for the class C:
given a circuit from the class C decide whether it computes the identically zero polynomial. This
problem is solvable in probabilistic polynomial time (BPP) for general algebraic circuits, and there
are various restricted classes for which deterministic algorithms are known (see Section 6).

The Polynomial Calculus The Polynomial Calculus is an algebraic proof system introduced
by [Clegg et al., 1996]. It can be considered as a “dynamic” version of the Nullstellensatz; namely,
instead of providing a single certificate that 1 is in the ideal of the initial (unsatisfiable) polynomials,
in PC we are allowed to derive the polynomial 1 step by step, by working in the ideal generated by
the initial polynomials.

Definition 2.2 (Polynomial Calculus (PC)). Let F be a field and let F = {f1, . . . , fm} be a
collection of multivariate polynomials from F[x1, . . . , xn]. A PC proof from Q of a polynomial g is
a finite sequence π = (p1, . . . , pℓ) of multivariate polynomials from F[x1, . . . , xn], where pℓ = g and
for every 1 ≤ i ≤ ℓ, either pi = fj for some j ∈ [m], or pi is a boolean axiom xi · (1 − xi) for some
i ∈ [n], or pi was derived from pj , pk , for j, k < i, by one of the following inference rules:

(i) Product rule: from p, derive xi · p, for i ∈ [n];

(ii) Addition rule: from p, q, derive ap + bq, for a, b ∈ F.

A PC refutation of F is a proof of 1 (which is interpreted as 1 = 0, that is the unsatisfiable equation
standing for false) from F .

Similar to the Nullstellensatz, the standard complexity measures for PC are the degree of a
PC proof, which is the maximal (total) degree of a polynomial in the proof and the size of a PC
proof which is the total number of monomials (with nonzero coefficients) in all the PC proof lines.
However, it is also possible to consider the total algebraic circuit size of all the PC proofs lines as
a complexity measure.

7

Non-commutative Algebraic Proof Systems Motivated by the fact that the class
of non-commutative formulas admits a deterministic PIT algorithm by Raz and Shpilka
[Raz and Shpilka, 2005a], and even more importantly admits exponential-size lower bounds by
Nisan [Nisan, 1991], Li, Tzameret and Wang [Li et al., 2015] considered a variant of the IPS over
non-commutative polynomials written as non-commutative formulas. Their non-commutative IPS
was shown to constitute a tighter characterization of Frege proofs than the original (commutative)
IPS: first, proofs in this system are checkable in deterministic polynomial-time; and second, Frege
can simulate (with a quasi-polynomial increase in size) non-commutative IPS refutations (over the
field of two elements). But perhaps most importantly, the fact that we do have lower bounds
on non-commutative formulas together with the characterization of any Frege proof as a single
non-commutative formula, gives some hope to progress on the problem of Frege lower bounds. We
discuss the non-commutative IPS in more details in Section 4.

3 IPS

In this section we show that lower bounds for IPS imply algebraic circuit lower bounds, namely
that the permanent does not have polynomial-size algebraic circuits. This implication is interesting
because it is a unique case in proof complexity where a lower bound on a specific proof system (on
any tautology) is shown to imply explicit circuit lower bounds. We then compare the strength of
IPS to Extended Frege. We show that IPS, in its full generality polynomially simulates Extended
Frege, and on the other hand, show that Extended Frege polynomially simulates IPS if PIT has
feasible correctness proofs in Extended Frege.2

3.1 Lower Bounds on IPS Imply Algebraic Circuit Lower Bounds

Theorem 3.1 (Grochow-Pitassi [Grochow and Pitassi, 2014]). For any ring R, a super-polynomial
lower bound on IPS proofs over R of any family of tautologies implies VNPR 6= VPR. A super-
polynomial lower bound on the number of proof-lines in polynomial calculus proofs implies that the
permanent is not a p-projection of the determinant.

We will sketch the proof for the first half of the theorem which gives the main idea. The proof
of the second half can be found in [Grochow and Pitassi, 2014].

Lemma 3.2. Every family of unsatisfiable CNF formulas (ϕn) has a family of IPS certificates (Cn)
in VNPR.

Proof of Theorem 3.1, assuming Lemma 3.2. Our proof is taken from [Grochow and Pitassi, 2014].
For a given set F of unsatisfiable polynomial equations F1 = · · · = Fm = 0, a lower bound on IPS
refutations of F is equivalent to giving the same circuit lower bound on all IPS certificates for F .
A super-polynomial lower bound on IPS implies that some function in VNP—namely, the VNP-IPS
certificate guaranteed by Lemma 3.2—cannot be computed by polynomial-size algebraic circuits,
and hence that VNP 6= VP.

Proof sketch of Lemma 3.2. We mimic one of the proofs of completeness for linear IPS [Pitassi, 1997,
Theorem 1] and then show that this proof can in fact be carried out in VNP. We omit any mention
of the ground ring, as it will not be relevant.

2Namely, that Extended Frege has polynomial-size proofs of the statement expressing that the PIT for algebraic
circuits is decidable by polynomial-size Boolean circuits.

8

Let ϕn(x) = κ1(x)∧· · ·∧κm(x) be an unsatisfiable CNF formula, where each κi is a disjunction
of literals. Let Ci(x) denote the (negated) polynomial translation of κi via ¬x 7→ x, x 7→ 1 − x
and f ∨ g 7→ fg; in particular, Ci(x) = 0 if and only if κi(x) = 1, and thus ϕn is unsatisfiable
if and only if the system of equations C1(x) = · · · = Cm(x) = x2

1 − x1 = · · · = x2
n − xn = 0 is

unsatisfiable. In fact, as we will see in the course of the proof, we will not need the equations
x2

i − xi = 0. It will be convenient to introduce the function b(e, x) = ex + (1 − e)(1 − x), i.e.,
b(1, x) = x and b(0, x) = 1 − x. For example, the clause κi(x) = (x1 ∨ ¬x17 ∨ x42) gets translated
into Ci(x) = (1 − x1)x17(1 − x42) = b(0, x1)b(1, x17)b(0, x42), and therefore an assignment falsifies
κi if and only if (x1, x17, x42) 7→ (0, 1, 0).

Just as 1 = x1x2 + x1(1 − x2) + (1 − x2)x1 + (1 − x2)(1 − x1), an easy induction shows that

1 =
∑

e∈{0,1}n

n
∏

i=1

b(ei, xi). (1)

We will show how to turn this expression into a VNP certificate refuting ϕn. Let ci be the placeholder
variable corresponding to Ci(x).

The idea is to partition the assignments {0, 1}n into m parts A1, . . . , Am, where all assignments
in the i-th part Ai falsify clause i. This will then allow us to rewrite equation (1) as

1 =
m

∑

i=1

Ci(x)





∑

e∈Ai

∏

j:xj /∈κi

b(ej , xj)



 , (2)

where “xj /∈ κi” means that neither xj nor its negation appears in κi. Equation (2) then becomes
the IPS-certificate

∑m
i=1 ci · (

∑

e∈Ai

∏

j:xj /∈κi
b(ej , xj)). What remains is to show that the sum can

indeed be rewritten this way, and that there is some partition (A1, . . . , Am) as above such that the
resulting certificate is in fact in VNP.

First, let us see why such a partition allows us to rewrite (1) as (2). The key fact here is that
the clause polynomial Ci(x) divides the term te(x) :=

∏n
i=1 b(ei, xi) if and only if Ci(e) = 1, if and

only if e falsifies κi. Let Ci(x) =
∏

i∈I b(fi, xi), where I ⊆ [n] is the set of indices of the variables
appearing in clause i. By the properties of b discussed above, 1 = Ci(e) =

∏

i∈I b(fi, ei) if and
only if b(fi, ei) = 1 for all i ∈ I, if and only if fi = ei for all i ∈ I. In other words, if 1 = Ci(e)
then Ci =

∏

i∈I b(ei, xi), which clearly divides te. Conversely, suppose Ci(x) divides te(x). Since
te(e) = 1 and every factor of te only takes on boolean values on boolean inputs, it follows that
every factor of te evaluates to 1 at e, in particular Ci(e) = 1.

Let A1, . . . , Am be a partition of {0, 1}n such that every assignment in Ai falsifies κi. Since Ci

divides every term te such that e falsifies clause i, Ci divides every term te with e ∈ Ai, and thus
we can indeed rewrite (1) as (2).

Next, we show how to construct a partition A1, . . . , Am as above so that the resulting certificate
is in VNP. The partition we will use is a greedy one. A1 will consist of all assignments that falsify
κ1. A2 will consist of all remaining assignments that falsify κ2. And so on. In particular, Ai

consists of all assignments that falsify κi and satisfy all Aj with j < i. (If at some clause κi before
we reach the end, we have used up all the assignments—which happens if and only if the first i
clauses on their own are unsatisfiable—that’s okay: nothing we’ve done so far nor anything we do
below assumes that all Ai are nonempty.)

Equivalently, Ai = {e ∈ {0, 1}n | Ci(e) = 1 and Cj(e) = 0 for all j < i}. For any property
Π, we write JΠ(e)K for the indicator function of Π: JΠ(e)K = 1 if and only if Π(e) holds, and 0

9

otherwise. We thus get the certificate:

m
∑

i=1

ci ·





∑

e∈{0,1}n

Je falsifies κi and satisfies κj for all j < iK
∏

j:xj /∈κi

b(ej , xj)





=
m

∑

i=1

ci ·





∑

e∈{0,1}n

JCi(e) = 1 and Cj(e) = 0 for all j < iK
∏

j:xj /∈κi

b(ej , xj)





=
m

∑

i=1

ci ·





∑

e∈{0,1}n



Ci(e)
∏

j<i

(1 − Cj(e))





∏

j:xj /∈κi

b(ej , xj)





=
∑

e∈{0,1}n

m
∑

i=1

ciCi(e)





∏

j<i

(1 − Cj(e))









∏

j:xj /∈κi

b(ej , xj)





Finally, it is readily visible that the polynomial function of c, e, and x that is the summand of
the outermost sum

∑

e∈{0,1}n is computed by a polynomial-size circuit of polynomial degree, and
thus the entire certificate is in VNP.

3.2 IPS Polynomially Simulates Extended Frege

In this section we show that IPS polynomially simulates Extended Frege. For simplicity, we ex-
emplify this simulation by showing how IPS written as algebraic formulas polynomially simulates
the Frege proof system, but the proof for Extended Frege is quite similar. It was further shown
by [Grochow and Pitassi, 2014] that restricted subsystems of IPS can polynomially simulate the
corresponding restricted subsystem of Extended Frege, and specifically this holds for IPS written
as constant-depth algebraic circuits and constant-depth Frege systems with modulo counting gates
(AC0[p]-Frege).

Theorem 3.3 (Grochow-Pitassi [Grochow and Pitassi, 2014]). Let ϕ be a 3CNF formula. If there
is an Extended Frege proof (Frege proof) that ϕ is unsatisfiable in size-s, then there is an IPS
refutation of circuit (formula, resp.) size poly(|ϕ|, s).

Proof sketch. One way of thinking of this simulation (and similar simulations of propositional
systems by IPS-variants) is to consider a two-step conversion of propositional proofs into IPS
refutations as follows. First, turn the Frege refutation into a tree-like Frege refutation and convert
each proof-line in the tree-like Frege refutation into an equivalent algebraic formula, obtaining
a tree-like PC refutation. Secondly, convert the tree-like PC proof into a single formula, whose
underlying formula-tree is precisely the underlying tree of the PC proof.

Note that a Frege proof can be converted into a tree-like proof with only a polynomial increase
in size, that is, a proof in which every proof-line can be used at most once in modus ponens
(cf. [Kraj́ıček, 1995]). Therefore, we start from a tree-like Frege refutation of the unsatisfiable
3CNF formula (namely, a proof of false from the clauses of the 3CNF formula as assumptions), and
show how to obtain from this an IPS refutation of the arithmetic version (see below) of the same
3CNF formula. Thus, a Frege proof of false from a given CNF ϕ is translated into an IPS proof of
1 from the initial (arithmetic version of) ϕ, yielding an IPS refutation of ϕ.

Step 1: This step involves the arithmetization of Frege proofs, namely, converting each Frege
proof-line to an algebraic formula. The transformation converts a boolean formula into a corre-
sponding algebraic formula (over the rationals, or Fq, for a prime q; the simulation uses only the
fact that the field has 1, 0 and −1) that evaluates to 0 for all 0-1 assignments. This is done in the

10

same way as in the proof of Lemma 3.2: true becomes 0, false becomes 1, a variable xi becomes
1−xi, ¬A becomes 1− tr(A), where tr(A) denotes the translation of A, A∨B becomes the product
of the corresponding translations tr(A) · tr(B), and A ∧ B becomes 1 − (1 − tr(A)) · (1 − tr(B))
(Schoenfield’s system uses the → logical connective, but we can simply treat A → B as an ab-
breviation of ¬A ∨ B). It is easy to check that for any 0-1 assignment, A evaluates to true iff
tr(A) = 0.

Once we converted every Frege proof-line into its corresponding algebraic formula, we get some-
thing that resembles a sequential algebraic proof, namely a PC proof. However, it is not precisely
a legitimate PC proof because, e.g., every application of modus ponens (from A and A → B derive
B) is translated into the purported rule “from tr(A) and (1 − tr(A)) · tr(B) derive tr(B)”, which is
not a formal rule in PC. Nevertheless, we can make this arithmetized Frege proof into a legitimate
PC proof, except that our PC proof will have a generalized product rule: instead of being able to
multiply a proof-line only by a single variable we will enable a product by a polynomial, namely,
from f derive g · f , for some polynomial g ∈ F[x1, . . . , xn].

To form our (generalized) PC proof we simply simulate Schoenfield’s system rules and axioms.
Considering the example above, we need to construct a short PC proof of tr(B) from tr(A) and
(1− tr(A)) · tr(B): first derive tr(A) · tr(B) by the generalized PC product rule and then add this to
(1 − tr(A)) · tr(B), to obtain tr(B). Similarly, Frege axioms are translated into algebraic formulas,
that we then need to derive in PC, and this is possible to do efficiently.

Step 2 : Here we transform the (generalized) PC refutation from step 1, whose underlying proof-
graph is a tree (since we assumed without loss of generality that our initial Frege proof is a tree-like
proof), into a single formula whose underlying graph is essentially the same tree. This formula
constitutes the IPS refutation of the arithmetic translation of ϕ. The transformation from a PC
proof to a formula is quite straightforward. For example, assume that in the PC proof we derived g·f
from f . And suppose that we already built the IPS proof of f , namely C(x, f1(x), . . . , fm(x), x2

1 −
x1, . . . , x2

n − xn) = f . Then, g · C(x, f1(x), . . . , fm(x), x2
1 − x1, . . . , x2

n − xn) = g · f is the IPS proof
of g · f . Simulating the addition rule of PC is done in a similar manner. (Formally, the fi(x)’s
should be substituted by the placeholder variables y, and the boolean axioms by the placeholder
variables z.)

It is easy to see that the resulted IPS is of size polynomial in the size of the PC refutation,
which in turn is of size polynomial in the size of the original Frege refutation .

3.3 PIT as a Bridge Between Circuit Complexity and Proof Complexity

In this section we sketch the argument that Extended Frege (EF) is polynomially equivalent to
IPS if there are polynomial-size circuits for PIT whose correctness—suitably formulated—can be
efficiently proved in EF. More precisely, we identify a small set of natural axioms for PIT and show
that if these axioms can be proven efficiently in EF, then EF is p-equivalent to IPS.

The high-level idea is to formalize soundness of IPS as a sequence of propositional statements
and then to show:

(1) if EF has efficient proofs of IPS soundness then EF can polynomially simulate IPS;

(2) Show that EF has efficient proofs of IPS soundness if a small set of natural axioms for PIT
are efficiently provable in EF.

The idea behind (1) is not new and traces back to Hilbert; its counterpart for propositional
proof systems was first formalized by Cook [Cook, 1975]. We explain the idea for propositional
refutation systems here. Soundness of a propositional proof system states that any formula that

11

has a proof (in the system) is a tautology. Formalizing soundness propositionally involves studying
partial soundness, where we have a different propositional formula for each proof length. In more
detail, for a propositional proof system Q, SoundnessQ,n, n > 0 will be a family of propositional
statements. The underlying variables of SoundnessQ,n are x, y and z, where we think of x as an
encoding of some Q-proof of length n, y as an encoding of a k-DNF formula with n′ ≤ n underlying
variables, and z as a boolean assignment to the n′ underlying variables. SoundnessQ,n(x, y, z) is
of the form ProofQ,n(x, y) → Truth(y, z) where ProofQ,n(x, y) expresses that x is an encoding
of a Q-proof of the formula encoded by y, and Truth(y, z) expresses that z satisfies the formula
encoded by y (i.e., the formula encoded by y is a tautology).

For sufficiently strong propositional proof systems P and Q, it is well-known that P polynomially
simulates Q if and only if there are polynomial-sized P -proofs of SoundnessQ,n for all n > 0. The
intuitive argument is as follows: Suppose that Q has a short proof of some formula g; let α(g) be the
encoding of g, and let β(g) be the encoding of the short Q-proof of g. Then since P has short proofs
of SoundnessQ,n, we instantiate this with g to give a short P -proof of SoundnessQ,n(β(g), α(g), z).
Since ProofQ,n(β(g), α(g)) is a tautology and involves no propositional variables, it has a short
P -proof and thus by modus ponens, there is a short P -proof of Truth(α(g), z). The last step is to
demonstrate short P -proofs of Truth(α(g), z) → g.

We will take P to be EF and Q to be IPS. Then EF can polynomially simulate Q if and only
if EF can efficiently prove the soundness tautologies for IPS. Proving the soundness tautologies for
IPS amounts to stating and proving (in Extended Frege) that if C is an algebraic circuit such that:
(1) C(x, 0, 0) = 0 and (2) C(x, f1(x), . . . , fm(x)) = 1, then f1, . . . , fm is unsatisfiable. In order to
state (1) and (2) efficiently, we need polynomial-sized circuits for polynomial identity testing. Then
in order to prove that (1) and (2) imply that f1, . . . , fm is unsatisfiable, we will need to use basic
properties of our PIT circuits. We omit the proof here, but will informally state the axioms that
will be required in order to carry out the above plan.

3.4 Axioms for Circuits for Polynomial Identity Testing

Fix some standard boolean encoding of algebraic circuits, so that the encoding of any size-m
algebraic circuit has size poly(m). We use “[C]” to denote the encoding of the algebraic circuit C.
Let K = (Km,n) denote a family of boolean circuits for solving polynomial identity testing. That
is, Km,n is a boolean function that takes as input the encoding of a size m algebraic circuit, C, over
variables x1, . . . , xn, and if C has polynomial degree, then K outputs 1 if and only if the polynomial
computed by C is the 0 polynomial.

The first axiom states that if C is a circuit over variables x computing the identically 0 polyno-
mial, then the circuit C where we plug in a particular boolean input p, still computes the identically
0 polynomial:

K([C(x)]) → K([C(p)]).

The second axiom states that if C is a circuit over variables x computing the zero polynomial, then
the circuit 1 − C does not compute the zero polynomial:

K([C(x)]) → ¬K([1 − C(x)]).

The third axiom states that if the polynomial computed by circuit G is 0, then G can be substituted
for the constant 0:

K([G(x)]) ∧ K([C(x, 0)]) → K([C(x, G(x))]).

Finally, the last axiom states that PIT is closed under permutations of the variables. More specifi-
cally if C(x) is identically 0, then so is C(π(x)) for all permutations π:

12

Note that the issue is not the existence of small circuits for PIT since we would be happy with
nonuniform polynomial-size PIT circuits, which do exist. Unfortunately the known constructions
are highly nonuniform—they involve picking random points—and we do not see how to prove the
above axioms for these constructions. On the other hand, it is widely conjectured that there exist
uniform polynomial-sized circuits for PIT, and it is therefore a very intriguing question whether or
not the proofs of correctness of such uniform algorithms (assuming that they exist) can be carried
out in a feasible (polynomial-time) proof system.

4 Non-Commutative IPS

In this section we discuss the non-commutative IPS, introduced by Li, Tzameret and Wang
[Li et al., 2015], which is a variant of the IPS over non-commutative polynomials. The main result
is that the non-commutative IPS completely captures (up to quasi-polynomial factors) the Frege
proof system when the non-commutative IPS refutations are written as non-commutative formulas.

Since the class of non-commutative formulas are well understood, namely, it admits exponential-
size lower bounds by Nisan [Nisan, 1991], and deterministic PIT algorithm by Raz-Shpilka
[Raz and Shpilka, 2005a], this characterization of a Frege proof by a single non-commutative for-
mula gives some hope for better understanding of specific Frege proofs and specifically for the
eventual possibility of providing lower bounds on Frege proofs.

We need to describe first the basic setup before giving the precise definition. A non-

commutative polynomial is a polynomial in which products are non-commuting, namely, xixj is
not the same polynomial as xjxi, whenever i 6= j. In other words, xixj − xjxi is not the zero poly-
nomial. Thus, we can treat a non-commutative polynomial as a formal sum of non-commutative
monomials. We denote by F〈x1, . . . , xn〉 the ring of non-commutative polynomials over the variables
x1, . . . , xn. A non-commutative formula is the same as a (commutative) algebraic formula only
that the children of product gates have order, so that we can record the order of multiplication.
Therefore, the polynomial that a non-commutative formula computes is the polynomial achieved
by first multiplying out brackets whereby we get a sum of monomials in which the order of multi-
plication matters (without performing still any cancelations of monomials), and then performing
monomial cancelation (and grouping) only when two monomials have the same variables with the
same powers and the same order of multiplication.

It helps to think of non-commutative polynomials (and formulas) as a means to compute func-
tions over non-commutative domains such as matrix algebras (in which matrix product is non-
commuting in general).

Definition 4.1 (Non-commutative IPS, Li-Tzameret-Wang [Li et al., 2015]). Let F be a field. Let
f1(x), . . . , fm(x) ∈ F〈x〉 be a system of non-commutative polynomials. A non-commutative-IPS

refutation that the polynomials {fj}j have no common solution in {0, 1}n,3 is a non-commutative
formula F(x, y, z, w) ∈ F〈x, y1, . . . , ym, z1, . . . , zn, w1, . . . , w(n

2)
〉, such that

1. F(x, 0, 0, 0) = 0.

2. F(x, f1(x), . . . , fm(x), x2 − x, x1x2 − x2x1, . . . , xn−1xn − xnxn−1) = 1.

The x2 − x denotes the boolean axioms x2
i − xi, for all i ∈ [n], and xixj − xjxi, for all i < j ∈ [n],

are called the commutator axioms. The size of a non-commutative IPS refutation is the minimal
size of a non-commutative formula computing the non-commutative-IPS refutation.

3One can check that the fi(x)’s have no common 0-1 solutions in F iff they do not have a common 0-1 solution in
every F-algebra.

13

The novelty in the non-commutative IPS in comparison to the original (commutative) IPS is
simply that a single refutation is a non-commutative polynomial instead of a commutative one.

One way of thinking about a non-commutative IPS refutation is as a commutative IPS formula
augmented with additional proofs for demonstrating that all the monomials computed along the
way in this formula are indeed commuting. More precisely, consider a commutative IPS refutation
written as a formula F (x, y, z), such that F (x, f1(x), . . . , fm(x), x2 − x) = 1 as a commutative
formula but F (x, f1(x), . . . , fm(x), x2 − x) 6= 1 as a non-commutative formula. In the commutative
version of F (x, f1(x), . . . , fm(x), x2 − x), two monomials computed by this refutation, say x1x2x3

and x2x1x3, will be considered the same monomial. However, in the non-commutative version these
two monomials are considered distinct, so we need to add an explicit proof that x1x2x3 is equal
to x2x1x3—in this case the proof added is simply (x1x2 − x2x1) · x3 which is a right product of a
commutator axiom.

Note that to achieve the completeness of the system we must add the commutator axioms.
Indeed, the non-commutative polynomial 1 + xixj − xjxi, for example, is unsatisfiable over 0-1
solutions, but it cannot be proven unsatisfiable without using the commutator axioms, because it
is satisfiable over some non-commutative matrix algebra (and by soundness of the non-commutative
IPS there cannot be a proof of its unsatisfiability).

The gist of Li-Tzameret-Wang’s simulation of Frege by the non-commutative IPS is that even
when we add the commutator axioms, and by that force each refutation to explicitly witness any
cancelation between (commuting) monomials, we are still not weakening the system too much,
namely, we still keep the system as strong as the Frege system. The reason for this is that in Frege
we consider propositional formulas as purely syntactic terms. For example, if F [z] is a propositional
formula, then F [(A ∧ B)/z] and F [(B ∧ A)/z] (which are the results of substituting A ∧ B and
B ∧ A for z in F , resp.) are two different formulas and the tautology F [(A ∧ B)/z] ≡ F [(B ∧ A)/z]
requires an explicit Frege proof.

Non-commutative IPS polynomially simulates Frege, and conversely, Frege quasi-polynomially
simulates non-commutative IPS over GF (2) (for the latter see next section):

Theorem 4.1 (Li-Tzameret-Wang [Li et al., 2015]). Let ϕ be an unsatisfiable propositional formula.
If Frege can prove that ϕ is unsatisfiable in size-s, then there is a non-commutative IPS refutation
of formula size poly(|ϕ|, s) computing a polynomial of degree poly(|ϕ|, s). Further, this refutation is
checkable in deterministic poly(|ϕ|, s) time.

The idea to consider non-commutative formulas in algebraic proofs as well as adding the com-
mutator axioms was considered originally by Tzameret [Tzameret, 2011], though in that work the
proof system was built on the polynomial calculus and not the IPS, and therefore did not obtain
the characterization of a Frege proof as a single non-commutative formula.

Let us sketch the proof of 4.1. We begin with the simulation of Frege by non-commutative IPS.
The idea here is quite similar to the simulation of Frege by (formula) IPS (Theorem 3.3).

Non-commutative IPS polynomially simulates Frege (proof sketch). Let us consider, as in the proof
of Theorem 3.3, a two-step simulation of Frege by non-commutative IPS. We start from a Frege
proof of false from the formula ϕ serving as an assumption in the proof, that we assume without
loss of generality is a tree-like proof.

Step 1 : Here we convert each proof-line into an algebraic formula in the same way we did in
the proof of Theorem 3.3, using the same translation function tr(·), only now let tr(·) return a non-
commutative formula. So, for instance, assuming A and B are unequal, tr(A ∨ B) = tr(A) · tr(B) 6=
tr(B) · tr(A) = tr(B ∨ A) (note that any algebraic formula can represent either a commutative or
a non-commutative polynomial; namely, a non-commutative formula computes a non-commutative

14

polynomial by taking into account the order in which children of product gates appear in the
formula).

Now, as before, we get a purported refutation of tr(ϕ) that only resembles a PC refutation, and
in addition the polynomials are non-commutative. We wish to complement this purported proof
into a legitimate algebraic proof operating with non-commutative polynomials; this will be in fact
the non-commutative PC system defined by Tzameret [Tzameret, 2011]: it is similar to the PC
proof system, only that polynomials are considered as non-commutative polynomials, the addition
rule is the same as in PC, and the generalized product rule can be applied either from the right
or from the left, namely, from f derive either g · f or f · g, for some g; further, in addition to the
boolean axioms, we add the commutator axioms xixi − xjxi, for every pair of variables, to the
system.

We consider the case of simulating the first axiom of Schoenfield’s system A → (B → A) in
this non-commutative PC system. This will exemplify why we need to use the commutator axioms.
Thus, consider the translation of this axiom under tr(·). Recall that → is just an abbreviation.
Then, tr(A → (B → A)) = tr(¬A ∨ (¬B ∨ A)) = (1 − tr(A)) · ((1 − tr(B)) · tr(A)). Our goal is to
construct a non-commutative PC proof of the following non-commutative polynomial:

(1 − tr(A)) · ((1 − tr(B)) · tr(A)) . (3)

For this purpose, we first derive the polynomial tr(A) − tr(A)2 = (1 − tr(A)) · tr(A). This is doable
efficiently using only the boolean axioms xi − x2

i (by induction on the size of A). Then, we wish
to derive (3) from (1 − tr(A)) · tr(A). We can multiply the latter by (1 − tr(B)) from the right,
to get (1 − tr(A)) · tr(A) · (1 − tr(B)). Now we must use the commutator axioms to commute the
rightmost product in order to derive (3).

Indeed, given the product of two formulas f · g, it is possible to show by induction on the size
of f, g, that using the commutator axioms one can derive with a size |f + g| non-commutative PC
proof the formula g · f .

Step 2 : Here we repeat almost precisely the same idea as in Step 2 of the proof of Theorem 3.3.
We have a tree-like non-commutative PC refutation of tr(ϕ) (that possibly uses the commutator
axioms) and we wish to turn it into a non-commutative formula that constitutes an IPS refutation
of tr(ϕ). We do this by constructing a non-commutative formula whose underlying graph is the
same underlying proof-graph, as we did before.

4.1 Frege Quasi-Polynomially Simulates the Non-Commutative IPS

Theorem 4.2 (Li-Tzameret-Wang [Li et al., 2015]). Let ϕ be an unsatisfiable CNF formula and
f1, . . . , fm be the non-commutative formulas corresponding to its clauses via tr(·). If there is a
non-commutative IPS refutation of size s of f1, . . . , fm over GF (2), then there is a Frege proof of
size sO(log s) of the tautology ¬ϕ.

For low-degree non-commutative IPS refutations, the proof of Theorem 4.2 achieves in fact a
slightly stronger simulation than stated. Specifically, when the degree of the non-commutative IPS
refutation is logarithmic in s, the Frege proof is of polynomial-size in s (see [Li et al., 2015] for
details).

The higher-level argument is a short Frege proof of the correctness of the Raz-Shpilka
[Raz and Shpilka, 2005a] deterministic PIT algorithm. This resembles the discussion in Section
3.3 about PIT for (commutative) circuits. Indeed, the argument can be viewed as a realization—
for the non-commutative case—of Grochow-Pitassi [Grochow and Pitassi, 2014] PIT-axioms frame-
work (Section 3.4). The actual proof of Theorem 4.2 is rather technical and long because one needs

15

to prove properties of the Raz-Shpilka PIT algorithm for non-commutative formulas within the
restrictive framework of propositional (Frege) proofs. Let us sketch the main ideas in the proof.

Our goal is to prove ¬ϕ in Frege, given a non-commutative IPS refutation π of ϕ. The proof
uses the following five steps. First, we balance the non-commutative IPS π, so that its depth is loga-
rithmic in its size. This follows more or less Hrubeš and Wigderson’s [Hrubeš and Wigderson, 2014]
construction. Second, consider the balanced π, which is a non-commutative polynomial identity
over GF (2), as a boolean tautology, by replacing plus gates with XORs and product gates with
ANDs. Third, we use the so-called reflection principle to reduce the task of efficiently proving ¬ϕ
in Frege to the following task: show that any non-commutative formula identity over GF (2), consid-
ered as a boolean tautology, has a short Frege proof (this part was discussed—for the commutative
case—in Section 3.3). Fourth, for technical reasons we turn our non-commutative polynomial iden-
tities over GF (2) (considered as boolean tautological formulas) into a sum of homogenous identities.
This is the only step that is responsible for the quasi-polynomial size increase in Theorem 4.2. For
this step we use an efficient Frege simulation of a result by Raz [Raz, 2013] who showed how to
transform an algebraic formula into (a sum of) homogenous formulas in an efficient manner.

The fifth and final step is to actually construct short Frege proofs for homogenous non-
commutative identities over GF (2) translated into propositional tautologies. To this end we
construct an efficient Frege proof of the correctness of the Raz-Shpilka PIT algorithm for non-
commutative formulas [Raz and Shpilka, 2005b].

In conclusion, the fact that IPS written as a non-commutative formula (with the additional
commutator axioms) characterizes Frege proofs, naturally motivates studying C-IPS for various
restricted classes C of algebraic circuits. Lower bounds for such proofs intuitively correspond to
lower bounds for restrictions of the Extended Frege proof system. This is the content of the next
section.

5 Lower Bounds on Fragments of IPS

In Section 3.1 we have seen that proving super-polynomial lower bounds on the size of IPS cer-
tificates (written as algebraic circuits) would imply a separation of VP from VNP. On the other
hand, in Section 4 we have seen that already proving lower bounds on IPS certificates when they
are written as non-commutative formulas and augmented with the commutator axioms would im-
ply Frege lower bounds. It is then natural to attempt to obtain lower bounds on IPS refutations
where the certificates are written as an algebraic circuit from a restricted circuit class C. Recall
the notation C-IPS from Definition 2.1, denoting that the IPS certificate C(x, y, z) is taken from
the class C.4 If the “placeholder” variables y, z in C are linear we call the certificate a C-IPSLIN

certificate. Super-polynomial lower bounds on the size of C-IPSLIN refutations were recently shown
by Forbes, Shpilka, Tzameret and Wigderson [Forbes et al., 2016b] when C is the class of read once
(oblivious) algebraic branching programs (roABPs), multilinear formulas and diagonal circuits. We
now survey some of these lower bounds.

Let us describe the main strategy behind the proofs, which is new, and exemplifies the potential
of the algebraic complexity-based approach in proof complexity. One feature of these proof-size
lower bounds is that they stem almost directly from circuit-size lower bounds.

4Note that there is a slight technical difference between requiring that C(x, y, z) is taken from C and requiring
that C(x, F (x), x2

1 − x1, . . . , x2
n − xn) is taken from C. In C-IPS we require the former.

16

Assume that f(x) = 0 has no 0-1 solutions over some field F, and let

g(x) · f(x) +
n

∑

i=1

hi(x) · (x2
i − xi) = 1 , (4)

be the Nullstellensatz (equivalently, IPSLIN) refutation of f(x) = 0. We are going to lower bound
the size of circuits computing g(x). If we restrict our attention in (4) to only 0-1 assignments, then
the boolean axioms vanish, and we have

g(x) · f(x) = 1 , for x ∈ {0, 1}n, (5)

where (5) is now a functional identity (in contrast to a formal identity between polynomials). That
is, we consider g(x) · f(x) as a function from {0, 1}n to F, and conclude that this is the constant 1
function. Hence

g(x) =
1

f(x)
, for x ∈ {0, 1}n .

Therefore, to lower bound the algebraic circuit size of Nullstellensatz refutations of f(x) it suffices to
lower bound the algebraic circuit size of every polynomial that computes the function 1/f(x) over 0-
1 assignments. Since we wish to prove a lower bound for a family of polynomials computing a certain
function over 0-1, instead of a lower bound for a specific formal polynomial, this kind of lower bound
is called a functional lower bound (see also [Grigoriev and Razborov, 2000, Forbes et al., 2016a]).
Forbes et al. [Forbes et al., 2016b] showed that for f(x) being a variant of the subset-sum principle
∑n

i=1 αixi − m, for αi ∈ F and m 6∈ {
∑n

i=1 αixi : x ∈ {0, 1}n}, one can obtain strong functional
lower bounds on the algebraic circuit-size of 1/f(x), for certain circuit classes, and thus concluded
IPS refutation lower bounds for these circuit classes.

The lower bounds obtained in [Forbes et al., 2016b], stated below, are for IPS over multilinear
formulas and read once (oblivious) algebraic branching programs (roABP). A multilinear formula
is simply an algebraic formula (Section 2.3) in which every node computes a multilinear polyno-
mial. For the definition of roABPs and the proof of the lower bounds we refer the reader to
[Forbes et al., 2016b].

Theorem 5.1 (Forbes-Shpilka-Tzameret-Wigderson [Forbes et al., 2016b]). Let n ≥ 1 and F be
a field with characteristic bigger than

(2n
n

)

. Suppose that f(x, z) =
∑

i<j∈[2n] zi,jxixj − m is a
polynomial over F that has no 0-1 roots. Then, any C-IPSLIN refutation of f(x, z) requires:

1. nΩ(log n)-size when C is the class of multilinear formulas;

2. 2nΩ(1)
-size when C is the class of constant-depth multilinear formulas; and

3. 2Ω(n)-size when C is the class of roABPs (in every variable order).

Forbes et al. [Forbes et al., 2016b] also obtained nontrivial upper bounds on C-IPSLIN for C the
class of multilinear formulas and roABPs. In particular they showed that both of these C-IPSLIN

proof systems are strictly stronger than Nullstellensatz (measured by total number of monomials)
and admit polynomial-size refutations of the subset-sum variant

∑n
i=1 αixi − m, for αi, m ∈ F and

m 6∈ {
∑n

i=1 αixi : x ∈ {0, 1}n}. For more details see [Forbes et al., 2016b].

6 PIT and Proof Complexity

We already discussed the polynomial identity testing (PIT) problem in the context of both IPS and
the non-commutative IPS. There, we were interested in the following question:

17

Can propositional proofs efficiently prove the correctness of a PIT algorithm for a given
circuit class?

We have seen in Section 3.4 that the PIT axioms capture the statements that express the correctness
of a PIT algorithm (formally, a circuit for PIT). In other words, providing short Extended Frege
proofs for the PIT axioms would de facto mean that Extended Frege efficiently proves the correctness
of (some) polynomial-size circuits for PIT; from which it follows that Extended Frege polynomially
simulates IPS. Subsequently, in Section 4.2, we showed that Frege does admit efficient (quasi-
polynomial) proofs of the correctness of the Raz-Shpilka deterministic PIT algorithm for non-
commutative formulas. This, in turn, implies that Frege quasi-polynomially simulates the non-
commutative IPS (over GF (2)).

6.1 Proof Systems for Polynomial Identities

Hrubeš and Tzameret [Hrubeš and Tzameret, 2009] asked the following question concerning the
connection between proof complexity and the PIT problem:

Can we efficiently prove polynomial identities? And specifically, is there a sequential
proof system admitting polynomial-size proofs for all polynomial identities?

In other words, this question asks whether the PIT problem admits short proofs, and specifically,
whether there is a simple sequential proof system to witness that PIT has short proofs.

We know that an efficient probabilistic algorithm for PIT exists, due to Schwartz and Zippel
[Schwartz, 1980, Zippel, 1979]: when the field is sufficiently large, with high probability, two dif-
ferent polynomials will differ on a randomly chosen field assignment. However, whether the PIT
problem is in P, namely is solvable in deterministic polynomial-time, is of course a major open
problem in complexity and derandomization theory. In fact, it is not even known whether there are
sub-exponential-size witnesses that two algebraic formulas compute the same polynomial; namely,
whether there is a non-deterministic sub-exponential-time algorithm for PIT, and in yet other
words, whether PIT is in NP (note that PIT is known to be in coRP⊆coNP).

Hrubeš-Tzameret’s work [Hrubeš and Tzameret, 2009] investigated the PIT∈?NP question from
the proof-complexity perspective: assuming that PIT does posses short witnesses, is it the case that
a proof system using only symbolic manipulation (resembling a Frege proof) is enough to provide
these short witnesses? And if not, can we prove lower bounds on such proofs? Such lower bounds
would at least delineate the methods that will work for efficiently proving polynomial identities and
those that will not.

The work in [Hrubeš and Tzameret, 2009], as well as the subsequent work
[Hrubeš and Tzameret, 2015], set out to define the analogs of Frege and Extended Frege for
the PIT problem that we shall call PI proofs (for Polynomial Identity Proofs; originally these
systems were called arithmetic proofs): just as Frege and Extended Frege prove boolean tautologies
by deriving new tautological formulas (and circuits, resp.), PI proofs prove polynomial identities
by deriving new identities between algebraic formulas (and circuits, resp.).

Let us first describe the analog of Frege for PIT, namely the PI proof operating with algebraic
formulas, denoted Pf (where f stands for “formulas”). Pf is a sequential proof system whose axioms
are the polynomial-ring axioms and whose derivation rules express the properties of the equality
symbol. Each proof-line in the system is an equation between two algebraic formulas (or circuits;
see below) F, G computing polynomials over a given field F written as F = G. The proof system is
sound and complete for true polynomial identities:

18

Theorem 6.1 ([Hrubeš and Tzameret, 2009]). Let F be a field. For any pair F, G of algebraic
formulas, there is a PI proof in the system Pf of F = G iff F and G compute the same polynomial.

The specific description of the rules and axioms of the PI proof system Pf are quite natural.
The inference rules of Pf are (with F, G, H formulas; where an equation below a line can be inferred
from the one above the line):

F = G

G = F

F = G G = H

F = H

F1 = G1 F2 = G2

F1 ◦ F2 = G1 ◦ G2
for ◦ ∈ {+, ·} .

And the axioms of Pc express reflexivity of equality (F = F), commutativity and associativity of
addition and product (F ◦ G = G ◦ F , and F ◦ (G ◦ H) = (F ◦ G) ◦ H, for ◦ ∈ {+, ·}), distributivity
(F · (G + H) = F · G + F · H), zero element (F + 0 = F , F · 0 = 0), unit element (F · 1 = F) and
true identities in the field (a ◦ b = c, for ◦ ∈ {+, ·} and a, b, c ∈ F).

A PI proof Pf is thus a sequence of equations F1 = G1, F2 = G2, . . . , Fk = Gk, with Fi, Gi

formulas, such that every equation is either an axiom or was obtained from previous equations by
one of the inference rules. The size of a proof is the total size of all formulas appearing in the
proof. It is easy to see that, just like a Frege proof, a PI proof can be verified for correctness in
polynomial-time (assuming the field has efficient representation; e.g., the field of rational numbers).

It is important to notice the distinction between PI proofs and propositional proofs: PI proofs
prove polynomial identities (a language in coRP) while propositional proofs prove boolean tautolo-
gies (a language in coNP). See more on this in Section 6.1 below.

The analog of Extended Frege for PIT, denoted Pc, is identical to Pf , except that it operates
with equations between algebraic circuits instead of algebraic formulas (similar to Jeřabek’s Circuit
Frege [Jeřábek, 2004], formally, one needs to add another rule to such a system to be able to
symbolically manipulate circuits, namely to merge two separate but identical sub-circuits into a
single sub-circuit; see [Hrubeš and Tzameret, 2015] for the details.)

It turns out that PI proofs are in fact quite strong. First, [Hrubeš and Tzameret, 2009] only
demonstrated lower bounds on very restricted fragments of PI proofs, and apparently it is quite
hard to go beyond these restricted fragments of PI proof systems (assuming any nontrivial lower
bound even exists). Furthermore, PI proofs were found to admit short proofs for many non-trivial
polynomial identities (like identities based on symmetric polynomials). Moreover, PI proofs are
able to “simulate” PIT algorithms for restricted algebraic circuit classes; specifically, Dvir and
Shpilka’s PIT algorithm for restricted depth-3 algebraic circuits [Dvir and Shpilka, 2006]. But
more importantly, PI proofs were shown in [Hrubeš and Tzameret, 2015] to efficiently simulate
many of the classical structural results on algebraic circuits.

In particular, PI proofs Pc operating with equations between algebraic circuits, efficiently
simulate the following constructions: (i) homogenization of algebraic circuits (implicit in
[Strassen, 1973]); (ii) Strassen’s technique for eliminating division gates over large enough fields
(also in [Strassen, 1973]); (iii) eliminating division gates over small fields—this is done by simulat-
ing large fields in small ones; and (iv) balancing algebraic circuits (Valiant et al. [Valiant et al., 1983];
see also [Hyafil, 1979]). Most notably, the latter result gives a strong depth reduction for polynomial-
size Pc proofs to polynomial-size O(log2 n)-depth Pc proofs and a quasi-polynomial simulation of
Pc by Pf . This is one important point where the PI proof systems differ from Frege and Extended
Frege, for which no such simulation is known.

Since depth reduction is the most important of these results, let us state this more formally:

19

Theorem 6.2 (Depth reduction for PI proofs [Hrubeš and Tzameret, 2015]). Assume that F, G
are circuits of (syntactic5) degree ≤ d and depth ≤ t. If F = G has a Pc proof of size s then it has
a Pc proof of size poly(s, d) and depth O(t + log s · log d + log2 d).

Intuitively, one can think of this theorem as showing that VNC2-PI proofs are equal in strength
to VP-PI proofs, similar to the strong depth collapse manifested for algebraic circuits by Valiant et
al. [Valiant et al., 1983] who showed that VNC2 = VP (where VNC2 is defined similar to VP except
that the depth of the circuits computing fn is required to be O(log2 n)).

As we now discuss, this also had implications for understanding propositional proofs.

Algebraic Fragments of Propositional Proofs Recall the Frege proof system described in
Section 2.1. Each Frege proof-line is a propositional tautological formula, which is either a (sub-
stitution instance of an) axiom or was derived by the modus ponens rule. As mentioned before,
Reckhow [Reckhow, 1976] proved that it does not matter which derivation rules and axioms we use,
nor even the specific logical connectives (gates) used: as long as we use a finite number of rules
and axioms6 and the rules and axioms are (implicationally) complete, every two Frege systems are
polynomially equivalent.

Now, consider the PI proof system Pf , and assume the underlying field is GF (2). In this
case, every PI proof-line becomes a boolean tautology, where “+” becomes the logical gate XOR,
“·” becomes AND and “=” becomes the logical equivalence gate ≡ (indeed, note that over GF (2)
the axioms become propositional tautologies). This then means that PI proofs over GF (2) are by
themselves propositional Frege proofs. The converse, on the other hand, is not true: not all Frege
proofs are arithmetic proofs over GF (2), because PI proofs over GF (2) are not complete for the set
of tautologies. For instance, x2

i + xi = 0 is, over GF (2) the boolean tautology (xi ∧ xi) ⊕ xi ≡ false

over GF (2), but it is not a true identity between (formal) polynomials and thus cannot be proved
by a PI proof. In fact, Frege system is equivalent to the PI-system Pf over GF (2) augmented with
the boolean axioms x2

i + xi; and similarly for Extended Frege and Pc over GF (2).
Considering PI proofs as the “algebraic fragment” of propositional proofs gives us a new under-

standing of propositional proofs, and should hopefully shed more light on the complexity of Frege
proofs. As mentioned above, it shows for instance a strong depth collapse, namely, that additional
depth (beyond O(log2 n)) does not help to decrease the complexity of proofs. It is specifically
useful for upper bounds questions on propositional proofs: if we can efficiently prove an algebraic
identity over GF (2) with a PI proof we can do the same for propositional proofs. This observation
was used in [Hrubeš and Tzameret, 2015] to give a polynomial-size and depth-O(log2 n) Extended
Frege proof of the determinant identities Det(A) · Det(B) = Det(AB) and other linear-algebraic
statements such as the matrix inverse principle AB = In → BA = In. By, essentially, unwinding
depth-O(log2 n) circuits into quasi-polynomial-size formulas, one can obtain quasi-polynomial-size
Frege proofs of the same statements. These results give presumably tight upper bounds for the
proof complexity of linear algebra, because, for example, Bonet, Buss and Pitassi conjectured that
Frege does not admit polynomial-size proofs of these identities [Bonet et al., 1995].

7 Conclusion and Open Problems

In this survey we demonstrated the emerging algebraic complexity approach to proof complex-
ity. It is natural to expect that this close interaction between algebraic and proof complexity will

5The syntactic degree of an algebraic circuit is the maximal total degree of a monomial computed after multiplying
out all brackets in the circuit (without cancelations of monomials).

6The number of axioms and rules is finite, but they obviously induce infinite many substitution instances of axioms
and rules, since the axioms and rules are closed under substitution of the variables in the axioms and rules by formulas

20

continue to contribute new insights to proof complexity. Already now very interesting and some-
times surprising new ideas came out from this interaction. In particular, we have seen that proof
complexity lower bounds (for IPS restricted subsystems) are drawn almost directly from algebraic
circuit lower bounds; new connections between computation and proofs, showing that some proof
complexity lower bounds (IPS) imply computational lower bounds and complexity class separa-
tions (VP6=VNP); and conversely, proving that certain lower bounds on weak computational models
(non-commutative formulas) would imply strong Frege lower bounds; characterizing the “algebraic
fragments” of Frege and Extended Frege systems and using structural properties of algebraic cir-
cuits yield a better understanding of the power of these systems through (apparently) tight short
proofs for basic statements in linear algebra. All of these results have been achieved using methods
from algebraic complexity.

The big challenge ahead is of course to find out whether the algebraic approach can eventu-
ally lead to lower bounds on Frege and Extended Frege, or conversely help to at least establish a
formal (unconditional) so-called ‘barrier’ against proving such lower bounds (e.g., by showing that
Extended Frege lower bounds imply strong explicit circuit lower bounds). But before this seem-
ingly formidable challenge, there are many important intermediate problems which seem relatively
feasible at the moment, and whose solution will advance the frontiers of our understanding. We
end by listing some of these problems.

• Can we obtain size lower bounds on constant-depth Frege with modular gates proofs (AC0[p]-
Frege proofs)? This problem has been open for decades, despite the known AC0[p]-circuits
lower bounds. It is quite conceivable that algebraic techniques may be of help on this
(cf. [Maciel and Pitassi, 1997,Buss et al., 2015]).

• Can we establish size lower bounds on C-IPS (linear or not) refutations for natural encodings
of CNFs, for restricted circuit classes C? The lower bounds from [Forbes et al., 2016b] hold
only for a single hard axiom, and not CNFs.

• Can we extend the C-IPS lower bounds to “dynamic” versions of C-IPS? For instance, can we
prove lower bounds on PC refutations operating with multilinear formulas or roABPs as in
[Raz and Tzameret, 2008b,Tzameret, 2011]?

• Lower bounds on PI proofs of polynomial identities? Almost no lower bound is known for
these “algebraic fragments” of Frege and Extended Frege.

• Just like PI proofs are proofs for the (algebraic) language of polynomial identities, it is very
interesting to study the complexity of proof systems for other algebraic languages. Two
examples of such proof systems are the proof systems for matrix identities investigated in
[Li and Tzameret, 2013], and the proof system for non-commutative rational identities de-
fined in [Garg et al., 2015]. Can we prove strong proof-size lower bounds on these systems?
Can we connect these systems further to propositional proof complexity or algebraic circuit
complexity?

8 Acknowledgements

We thank Stephen Cook, Kaveh Ghasemloo, Amir Shpilka and Avi Wigderson for very helpful
discussions and clarifications, and Michael Forbes for very useful discussions and comments on
a preliminary draft. We would also like to thank Neil Immerman for his careful reading and
useful comments on this survey. Finally we are especially grateful to Joshua Grochow for many
conversations and for answering our many questions that greatly improved this survey.

21

References

[Alekhnovich and Razborov, 2001] Alekhnovich, M. and Razborov, A. A. (2001). Lower bounds for polynomial
calculus: Non-binomial case. In Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2001), pages 190–199.

[Beame et al., 1996] Beame, P., Impagliazzo, R., Kraj́ıček, J., Pitassi, T., and Pudlák, P. (1996). Lower bounds on
Hilbert’s Nullstellensatz and propositional proofs. Proc. London Math. Soc. (3), 73(1):1–26. Preliminary version
in the 35th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1994).

[Bonet et al., 1995] Bonet, M. L., Buss, S. R., and Pitassi, T. (1995). Are there hard examples for Frege systems? In
Feasible mathematics, II (Ithaca, NY, 1992), volume 13 of Progr. Comput. Sci. Appl. Logic, pages 30–56. Birkhäuser
Boston, Boston, MA.

[Buss et al., 2001] Buss, S. R., Grigoriev, D., Impagliazzo, R., and Pitassi, T. (2001). Linear gaps between degrees
for the polynomial calculus modulo distinct primes. JCSS, 62(2):267–289. Preliminary version in the 14th Annual
IEEE Conference on Computational Complexity (CCC 1999).

[Buss et al., 1996] Buss, S. R., Impagliazzo, R., Kraj́ıček, J., Pudlák, P., Razborov, A. A., and Sgall, J. (1996).
Proof complexity in algebraic systems and bounded depth Frege systems with modular counting. Computational
Complexity, 6(3):256–298.

[Buss et al., 2015] Buss, S. R., Kolodziejczyk, L. A., and Zdanowski, K. (2015). Collapsing modular counting in
bounded arithmetic and constant depth propositional proofs. Transactions of the AMS, (367):7517–7563.

[Clegg et al., 1996] Clegg, M., Edmonds, J., and Impagliazzo, R. (1996). Using the Groebner basis algorithm to find
proofs of unsatisfiability. In Proceedings of the 28th Annual ACM Symposium on Theory of Computing (STOC
1996), pages 174–183.

[Clote and Kranakis, 2002] Clote, P. and Kranakis, E. (2002). Boolean functions and computation models. Texts in
Theoretical Computer Science. An EATCS Series. Springer-Verlag, Berlin.

[Cook, 1975] Cook, S. A. (1975). Feasibly constructive proofs and the propositional calculus (preliminary version).
In STOC, pages 83–97.

[Cook and Reckhow, 1974a] Cook, S. A. and Reckhow, R. A. (1974a). On the lengths of proofs in the propositional
calculus (preliminary version). In Proceedings of the 6th Annual ACM Symposium on Theory of Computing (STOC
1974), pages 135–148. For corrections see Cook-Reckhow [Cook and Reckhow, 1974b].

[Cook and Reckhow, 1974b] Cook, S. A. and Reckhow, R. A. (1974b). Corrections for “On the lengths of proofs in
the propositional calculus (preliminary version)”. SIGACT News, 6(3):15–22.

[Cook and Reckhow, 1979] Cook, S. A. and Reckhow, R. A. (1979). The relative efficiency of propositional proof
systems. J. Symb. Log., 44(1):36–50. This is a journal-version of Cook-Reckhow [Cook and Reckhow, 1974a] and
Reckhow [Reckhow, 1976].

[Dvir and Shpilka, 2006] Dvir, Z. and Shpilka, A. (2006). Locally decodable codes with 2 queries and polynomial
identity testing for depth 3 circuits. SIAM J. on Computing, 36(5):1404–1434.

[Forbes et al., 2016a] Forbes, M. A., Kumar, M., and Saptharishi, R. (2016a). Functional lower bounds for arithmetic
circuits and boolean circuit complexity. In 31st Conference on Computational Complexity, (CCC).

[Forbes et al., 2016b] Forbes, M. A., Shpilka, A., Tzameret, I., and Wigderson, A. (2016b). Proof complexity lower
bounds from algebraic circuit complexity. In 31st Conference on Computational Complexity, CCC 2016, May 29
to June 1, 2016, Tokyo, Japan, pages 32:1–32:17.

[Garg et al., 2015] Garg, A., Gurvits, L., Oliveira, R., and Wigderson, A. (2015). A deterministic polynomial time
algorithm for non-commutative rational identity testing. CoRR, abs/1511.03730.

[Grigoriev, 1998] Grigoriev, D. (1998). Tseitin’s tautologies and lower bounds for Nullstellensatz proofs. In Proceed-
ings of the 39th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1998), pages 648–652.

[Grigoriev and Hirsch, 2003] Grigoriev, D. and Hirsch, E. A. (2003). Algebraic proof systems over formulas. Theoret.
Comput. Sci., 303(1):83–102. Logic and complexity in computer science (Créteil, 2001).

[Grigoriev and Razborov, 2000] Grigoriev, D. and Razborov, A. A. (2000). Exponential lower bounds for depth 3
arithmetic circuits in algebras of functions over finite fields. Appl. Algebra Engrg. Comm. Comput., 10(6):465–487.

[Grochow and Pitassi, 2014] Grochow, J. A. and Pitassi, T. (2014). Circuit complexity, proof complexity, and poly-
nomial identity testing. In Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2014), pages 110–119. Full version at arXiv:abs/1404.3820.

22

http://arxiv.org/abs/abs/1404.3820

[Haken, 1985] Haken, A. (1985). The intractability of resolution. Theoret. Comput. Sci., 39(2-3):297–308.

[Hrubeš and Wigderson, 2014] Hrubeš, P. and Wigderson, A. (2014). Non-commutative arithmetic circuits with
division. In Innovations in Theoretical Computer Science, ITCS’14, Princeton, NJ, USA, January 12-14, 2014,
pages 49–66.

[Hrubeš and Tzameret, 2009] Hrubeš, P. and Tzameret, I. (2009). The proof complexity of polynomial identities. In
Proceedings of the 24th Annual IEEE Conference on Computational Complexity, CCC 2009, Paris, France, 15-18
July 2009, pages 41–51.

[Hrubeš and Tzameret, 2015] Hrubeš, P. and Tzameret, I. (2015). Short proofs for the determinant identities. SIAM
J. Comput., 44(2):340–383. (A preliminary version appeared in Proceedings of the 44th Annual ACM Symposium
on the Theory of Computing (STOC)).

[Hyafil, 1979] Hyafil, L. (1979). On the parallel evaluation of multivariate polynomials. SIAM J. Comput., 8(2):120–
123.

[Impagliazzo et al., 1999] Impagliazzo, R., Pudlák, P., and Sgall, J. (1999). Lower bounds for the polynomial calculus
and the gröbner basis algorithm. Computational Complexity, 8(2):127–144.

[Jeřábek, 2004] Jeřábek, E. (2004). Dual weak pigeonhole principle, Boolean complexity, and derandomization. Ann.
Pure Appl. Logic, 129(1-3):1–37.

[Kraj́ıček, 1995] Kraj́ıček, J. (1995). Bounded arithmetic, propositional logic, and complexity theory, volume 60 of
Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge.

[Kraj́ıček, 2011] Kraj́ıček, J. (2011). Forcing with random variables and proof complexity. London Mathematical
Society Lecture Note Series, No.382. Cambridge University Press.

[Li and Tzameret, 2013] Li, F. and Tzameret, I. (2013). Generating matrix identities and proof complexity. Electronic
Colloquium on Computational Complexity, TR13-185. arXiv:1312.6242 [cs.CC] http://arxiv.org/abs/1312.6242.

[Li et al., 2015] Li, F., Tzameret, I., and Wang, Z. (2015). Non-commutative formulas and frege lower bounds: a
new characterization of propositional proofs. In 30th Conference on Computational Complexity, CCC 2015, June
17-19, 2015, Portland, Oregon, USA, pages 412–432. Full Version: http://arxiv.org/abs/1412.8746.

[Maciel and Pitassi, 1997] Maciel, A. and Pitassi, T. (1997). On ACC0[pk] Frege proofs. In Proceedings of the Annual
ACM Symposium on the Theory of Computing 1997 (El Paso, TX), pages 720–729 (electronic). ACM, New York.

[Nisan, 1991] Nisan, N. (1991). Lower bounds for non-commutative computation. In Proceedings of the 23rd Annual
ACM Symposium on Theory of Computing (STOC 1991), pages 410–418.

[Nordström, 2015] Nordström, J. (2015). On the interplay between proof complexity and sat solving. ACM SIGLOG
News, 2(3):19–44.

[Pitassi, 1997] Pitassi, T. (1997). Algebraic propositional proof systems. In Descriptive complexity and finite models
(Princeton, NJ, 1996), volume 31 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 215–244. Amer.
Math. Soc., Providence, RI.

[Raz, 2013] Raz, R. (2013). Tensor-rank and lower bounds for arithmetic formulas. J. ACM, 60(6):40.

[Raz and Shpilka, 2005a] Raz, R. and Shpilka, A. (2005a). Deterministic polynomial identity testing in non-
commutative models. Comput. Complex., 14(1):1–19. Preliminary version in the 19th Annual IEEE Conference on
Computational Complexity (CCC 2004).

[Raz and Shpilka, 2005b] Raz, R. and Shpilka, A. (2005b). Deterministic polynomial identity testing in non commu-
tative models. Computational Complexity, 14(1):1–19.

[Raz and Tzameret, 2008a] Raz, R. and Tzameret, I. (2008a). Resolution over linear equations and multilinear proofs.
Ann. Pure Appl. Logic, 155(3):194–224.

[Raz and Tzameret, 2008b] Raz, R. and Tzameret, I. (2008b). The strength of multilinear proofs. Computational
Complexity, 17(3):407–457.

[Razborov, 1998] Razborov, A. A. (1998). Lower bounds for the polynomial calculus. Computational Complexity,
7(4):291–324.

[Razborov, 2015] Razborov, A. A. (2015). Pseudorandom generators hard for k-DNF resolution and polynomial
calculus resolution. Annals of Mathematics, 181:415–472.

[Reckhow, 1976] Reckhow, R. A. (1976). On the lengths of proofs in the propositional calculus. PhD thesis, University
of Toronto.

23

http://arxiv.org/abs/1312.6242
http://arxiv.org/abs/1412.8746

[Schwartz, 1980] Schwartz, J. T. (1980). Fast probabilistic algorithms for verification of polynomial identities. J.
ACM, 27(4):701–717. Preliminary version in the International Symposium on Symbolic and Algebraic Computation
(EUROSAM 1979).

[Shpilka and Yehudayoff, 2010] Shpilka, A. and Yehudayoff, A. (2010). Arithmetic circuits: A survey of recent results
and open questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388.

[Strassen, 1973] Strassen, V. (1973). Vermeidung von divisionen. J. Reine Angew. Math., 264:182–202. (in German).

[Tzameret, 2011] Tzameret, I. (2011). Algebraic proofs over noncommutative formulas. Inf. Comput., 209(10):1269–
1292.

[Valiant, 1979a] Valiant, L. G. (1979a). Completeness classes in algebra. In Proceedings of the 11th Annual ACM
Symposium on the Theory of Computing, pages 249–261. ACM.

[Valiant, 1979b] Valiant, L. G. (1979b). The complexity of computing the permanent. Theor. Comput. Sci., 8:189–
201.

[Valiant, 1982] Valiant, L. G. (1982). Reducibility by algebraic projections. Logic and Algorithmic: International
Symposium in honour of Ernst Specker, 30:365–380.

[Valiant et al., 1983] Valiant, L. G., Skyum, S., Berkowitz, S., and Rackoff, C. (1983). Fast parallel computation of
polynomials using few processors. SIAM J. Comput., 12(4):641–644.

[Zippel, 1979] Zippel, R. (1979). Probabilistic algorithms for sparse polynomials. In Proceedings of the International
Symposium on Symbolic and Algebraic Computation (EUROSAM 1979), pages 216–226. Springer-Verlag.

24

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

