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Abstract

For a test T ⊆ {0, 1}n define k∗ to be the maximum k such that there exists a
k-wise uniform distribution over {0, 1}n whose support is a subset of T .

For T = {x ∈ {0, 1}n : |
∑

i xi − n/2| ≤ t} we prove k∗ = Θ(t2/n+ 1).
For T = {x ∈ {0, 1}n :

∑
i xi ≡ c (mod m)} we prove that k∗ = Θ(n/m2 + 1). For

some k = O(n/m) we also show that any k-wise uniform distribution puts probability
mass at most 1/m+ 1/100 over T . Finally, for any fixed odd m we show that there is
an integer k = (1− Ω(1))n such that any k-wise uniform distribution lands in T with
probability exponentially close to |T |/2n; and this result is false for any even m.
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1 Introduction and our results

A distribution on {0, 1}n is k-wise uniform, aka k-wise independent, if any k bits are uniform
in {0, 1}k. The study of k-wise uniformity has been central to theoretical computer science
since at least the seminal work [CW79] by Carter and Wegman. A specific direction has
been to show that k-wise uniformity “looks random” to several classes of tests. These
classes include combinatorial rectangles [EGL+92, CRS00] (for an exposition see e.g. Lecture
1 in [Vio17]), bounded-depth circuits, aka AC0, [Baz09, Raz09, Bra10, Tal17, HS16] (see
e.g. Lectures 2-3 in [Vio17]), and halfspaces [RS10, DGJ+10, GOWZ10, DKN10]. More
recently a series of works considers smoothed versions of the first two classes, where the input
is perturbed with noise, and gives improved bounds [AW89, GMR+12, HLV, LV17a]. These
results have in turn found many applications. For example, the recent exciting constructions
of 2-source extractors for polylogarithmic min-entropy rely on [Bra10, DGJ+10].

In this work we extend this direction by giving new bounds for two classes of tests, both
symmetric. First we consider the class of mod m tests.

Definition 1. For an input length n, and integers m and c, we define the set Sm,c := {x ∈
{0, 1}n :

∑
i xi ≡ c (mod m)}.

These tests have been intensely studied at least since circuit complexity theory “hit the
wall” of circuits with mod m gates for composite m in the 80’s. However, the effect of k-wise
uniformity on mod m tests does not seem to have been known before this paper. We study
for what values of k does there exist a k-wise uniform distribution over {0, 1}n supported on
Sm,c. Our first main result gives tight bounds on the maximum value of such a k, establishing
k = Θ(n/m2 + 1). The constants hidden in the O,Ω, and Θ notation are absolute. The
“+1” is there in case n/m2 is smaller than any constant.

Theorem 2. For all integers m ≥ 2 and c, there exists an integer k ≥ n/32m2 and a k-wise
uniform distribution on {0, 1}n that is supported on Sm,c.

Theorem 3. For all integers m ≥ 2, c, and k ≥ 140n/m2+4, no k-wise uniform distribution
on {0, 1}n can be supported on Sm,c.

Theorem 2 is trivial for m = 2, as the uniform distribution over S2,0 is (n − 1)-wise
uniform. But already for m = 3 the result is not trivial.

Theorem 3 is equivalent to saying that when k ≥ 100n/m2 + 4 then every k-wise uniform
distribution must land in Sm,c with non-zero probability.

For motivation, recall from above the line of works [Baz09, Raz09, Bra10, Tal17, HS16]
showing that k-wise uniform distributions fool AC0 circuits. Specifically, these works show
k = poly log n suffices to fool AC0 circuits on n bits of size poly(n) and depth O(1). It
is natural to ask whether the same distribution also fools AC0 circuits with mod m gates,
a “frontier” class for which we have exponential lower bounds [Raz87, Smo87] (when m
is prime) but not good pseudorandom generators. A positive answer might have looked
plausible, given that for example the parity function is hard even with mod 3 gates [Smo87].
But in fact Theorem 2 gives a strong negative answer, showing that k = Ω(n) is necessary
even for a single mod 3 gate.
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Theorem 2 proves a conjecture in [LV17b] where this question is also raised. Their
motivation was a study of the “mod 3” rank of k-wise uniform distributions, started in
[MZ09], which is the dimension of the space spanned by the support of the distribution over
F3. [LV17b] shows that achieving 100 log n-wise uniformity with dimension ≤ n0.49 would
have applications to pseudorandomness. It also exhibits a distribution with dimension n0.72

and uniformity k = 2. Theorem 2 yields a distribution with dimension n− 1 and Ω(n)-wise
uniformity.

We then prove another theorem which is in the same spirit of Theorem 3 but gives
different information. First Theorem 4 (a) shows that the largest possible value of k in
Theorem 2 is k ≤ 2(n + 1)/m + 2. Compared to Theorem 3, this result is asymptotically
inferior, but gives better constants and has a simpler proof. Theorem 4 (b) shows that when
m is odd, if k is larger than (1 − γ)n for a positive constant γ depending only on m then
k-wise uniformity fools Sm,c with exponentially small error. The proof of Theorem 4 (b)
however does not carry to the setting of k < n/2, for any m. So we establish Theorem 4 (c),
which gives a worse error bound but allows for k to become smaller for larger m, specifically,
k = O(n/m) for constant error. The error bound in Theorem 4 (c) and the density of Sm,c
are such that it only provides a meaningful upper bound on the probability that the k-wise
uniform distribution lands in Sm,c, but not a lower bound. In fact, we conjecture that no
lower bound is possible in the sense that there is a constant C > 0 such that for every m
there is a Cn-wise uniform distribution supported on the complement of Sm,c.

Theorem 4. Let m and c be two integers.

(a) For k ≥ 2n/m + 2, a k-wise uniform distribution over {0, 1}n cannot be supported on
Sm,c.

(b) If m is odd, then there is a γ > 0 depending only on m such that for any (1− γ)n-wise
uniform distribution D over {0, 1}n, we have |Pr[D ∈ Sm,c]− |Sm,c|/2n| ≤ 2−γn.

(c) There exists a universal constant C such that for every ε > 0, n ≥ Cm2 log(m/ε),
and any C(n/m)(1/ε)2-wise uniform distribution D over {0, 1}n, Pr[D ∈ Sm,c] ≤
|Sm,c|/2n + ε.

We note that Theorem 4 (b) is false when m is even because the uniform distribution on
S2,0 has uniformity k = n − 1 but puts about 2/m mass on Sm,0, a set which as we shall
see later (cf. Remark 1) has density about 1/m. The latter density bound, in combination
with Theorem 4 (b) and Theorem 4 (c) implies that for some k = min{O(n/m), (1−Ω(1))n},
every k-wise uniform distribution puts probability mass at most 1/m + 1/100 over Sm,c for
odd m and any integer c.

We then consider another class of tests which can be written as the intersection of two
halfspaces.

Definition 5. For an input length n, and an integer t, we define the set Ht := {x ∈ {0, 1}n :
|
∑

i xi − n/2| ≤ t}.

Again, we ask for what values of k does there exist a k-wise uniform distribution over
{0, 1}n supported on Ht. We obtain tight bounds for k up to a constant factor, showing that
the maximum value of such a k is Θ(t2/n+ 1).
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Theorem 6. For every integer t, there exists an integer k ≥ t2/50n and a k-wise uniform
distribution over {0, 1}n that is supported on Ht,

Theorem 7. For all integers t and k ≥ 36t2/n + 3, no k-wise uniform distribution over
{0, 1}n can be supported on Ht.

One motivation for these results is to understand for which tests the smoothed version of
the test obtained by perturbing coordinates with random noise is fooled by k-wise uniformity.
As mentioned earlier, this understanding underlies recent, state-of-the-art pseudorandom
generators [AW89, GMR+12, HLV, LV17a]. See also [LV17b]. Using Theorem 6 we prove
that independence Ω(log n) is necessary to fool read-once DNF on n bits, even with constant
noise. Note that independence O(log n) is sufficient, even without noise [EGL+92].

Theorem 8. There exists a read-once DNF d : {0, 1}n → {0, 1}, a constant α, and an
α log n-uniform distribution D such that |Pr[d(U) = 1]− Pr[d(D +Nα) = 1]| ≥ Ω(1), where
U is uniform over {0, 1}n, Nα is the distribution over {0, 1}n whose bits are independent and
are set to uniform with probability α and 0 otherwise, and ‘+’ is bit-wise XOR.

Proof. Let d be the Tribes DNF with width w = log n − log lnn + on(1), see e.g. [O’D14].
We have |Pr[d(U) = 1] − 1/2| = o(1). Partition the n bits into n/w blocks of size w.
The distribution D has i.i.d. blocks. The projection of each block is an αw-wise uniform
distribution with Hamming weight ≤ 2w/3. The probability that d(D +Nα) = 1 is at most
the probability that there exists a block where the noise vector Nα has Hamming weight
≥ w/3. This probability is at most

(n/w)2w(α/2)w/3 ≤ 1/3,

for a sufficiently small α.

1.1 Techniques

We give two related approaches to proving Theorem 2. At a high level, both approaches
are similar to the work of Alon, Goldreich, and Mansour [AGM03], which shows that one
can apply a small perturbation to the probability masses of every almost k-wise uniform
distribution on {0, 1}n to make it k-wise uniform, showing that every ε-almost k-wise uniform
distribution on {0, 1}n is nO(k)ε-close to a k-wise uniform distribution, in statistical distance.
However, in their setting there is no constraint on the support. This makes our proof
significantly more technical.

Our first approach uses the following equivalent definition for a distribution on {0, 1}n
to be k-wise uniform: the distribution is unbiased under any parity test on at most k bits.
To construct our distribution, we first start with the uniform distribution over the set Sm,c,
and show that the bias under each of these parity tests is small enough, so that they can
be made zero by a small perturbation of the probability masses of the distribution. Our
goal is then to show that the change in the probability on each weight is no more than the
probability we start with, so that it remains non-negative after the perturbation. In the
conference version of this paper [BHLV16], we use this approach to prove a slightly weaker
version of Theorem 2. We refer the interested readers to [BHLV16] for details.
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We now give an overview of the second approach, which is developed in this paper. Instead
of looking at the biases of parity tests, we consider another equivalent characterization of
k-wise uniform distributions that are symmetric. To simplify the calculations, we will switch
to {−1, 1} and consider distributions supported on S ′m,c := {y ∈ {−1, 1}n :

∑
i yi ≡ c

(mod m)}. One can then translate results for {−1, 1}n back to {0, 1}n (See Fact 12). A
symmetric distribution is k-wise uniform on {−1, 1}n if and only if the first k moments of
the sum of its n bits match the ones of the uniform bits. Similar to the first approach, we
start with the uniform distribution on S ′m,c, and show that the first k moments of the sum of
the bits are close to the ones of the uniform bits. Then, we perturb the probabilities on k+1
of the sums

∑
i yi of the distribution to match these moments exactly. Once again, our goal

is to show that the amount of correction is small enough so that the adjusted probabilities
remain non-negative. Note that in this approach we work with distributions over the integers
instead of {0, 1}n.

While the two approaches seem similar to each other, the latter allows us to perform
a more refined analysis on the tests we consider in this paper, and obtain the tight lower
bounds for both modular and threshold tests.

Organization. We begin with Theorem 4 in Section 2 because it is simpler. We use
the second approach to prove the tight lower bounds for Sm,c and Ht in Sections 3 and 4,
respectively. The proof of Theorem 2 involves a somewhat technical lemma which we defer
to Section 5. Finally, we prove our tight upper bounds for Sm,c and Ht in Sections 6 and 7,
respectively.

2 Proof of Theorem 4

In this section we prove Theorem 4. We start with the following theorem which will give
Theorem 4 (a) as a corollary.

Theorem 9. Let I ⊆ {0, 1, . . . , n} be a subset of size |I| ≤ n/2. There does not exist a 2|I|-
wise uniform distribution on {0, 1}n that is supported on S := {x ∈ {0, 1}n :

∑
i xi ∈ I}.

Proof. Suppose there exists such a distribution D. Define the n-variate nonzero real poly-
nomial p by

p(x) :=
∏
i∈I

(
−i+

n∑
j=1

xj

)
.

Note that p(x) = 0 when x ∈ S. And so E[p2(D)] = 0 in particular. However, since p2 has
degree at most 2|I|, we have E[p2(D)] = E[p2(U)] > 0, where U is the uniform distribution
over {0, 1}n, a contradiction.

Proof of Theorem 4 (a). When I corresponds to the mod m test Sm,c, |I| ≤ n/m+ 1.

We now move to Theorem 4 (b). First we prove a lemma giving a useful estimate of∑
x∈Sm,c

(−1)
∑k

i=1 xi .
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Similar bounds have been established elsewhere, cf. e.g. Theorem 2.9 in [VW08], but we do
not know of a reference with an explicit dependence on m, which will be used in the next
section. Theorem 4 (b) follows from bounding above the tail of the Fourier coefficients of the
indicator function of Sm,c.

Lemma 10. For any 1 ≤ k ≤ n− 1 and any 0 ≤ c ≤ m− 1, we have∣∣∣ ∑
x∈Sm,c

(−1)
∑k

i=1 xi

∣∣∣ ≤ 2n
(

cos
π

2m

)n
,

while for k = 0, we have∣∣∣ ∑
x∈Sm,c

(−1)
∑k

i=1 xi − 2n/m
∣∣∣ ≤ 2n

(
cos

π

2m

)n
.

For odd m the first bound also holds for k = n.

Proof. Consider an expansion of

p(y) = (1− y)k(1 + y)n−k

into 2n terms indexed by x ∈ {0, 1}n where xi = 0 indicates that we take the term 1 from the

ith factor. It is easy to see that the coefficient of yd is
∑
|x|=d(−1)

∑k
i=1 xi , where |x| denotes

the number of occurrences of 1 in x. Denote ζ := e2πi/m as the mth root of unity. Recall the
identity

1

m

m−1∑
j=0

ζj(d−c) =

{
1 if d ≡ c (mod m)

0 otherwise.

Thus the sum we want to bound is equal to

1

m

m−1∑
j=0

ζ−jcp(ζj).

Note that p(ζ0) = p(1) = 0 for k 6= 0 while for k = 0, p(ζ0) = 2n. For the other terms we
have the following bound.

Claim 11. For 1 ≤ j ≤ m− 1, |p(ζj)| ≤ 2n
(
cos π

2m

)k (
cos π

m

)n−k
.

Proof. As |1 + eiθ| = 2|cos(θ/2)| and |1− eiθ| = 2|sin(θ/2)| we have

|p(ζj)| = |1− ζj|k|1 + ζj|n−k

= 2n
(

sin
jπ

m

)k (
cos

jπ

m

)n−k
≤ 2n

(
cos

π

2m

)k (
cos

π

m

)n−k
,

where the last inequality holds for odd m because (1) sin jπ
m

is largest when j = m−1
2

or

j = m+1
2

, (2) sin(π
2
− x) = cos x, and (3) cos jπ

m
is largest when j = 1 or j = m− 1. For even

m the term with j = m/2 is 0, as in this case we are assuming that k < n, and the bounds
for odd m are valid for the other terms.
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Therefore, for k 6= 0 we have∣∣∣∣∣∣
∑
x∈Sm,c

(−1)
∑k

i=1 xi

∣∣∣∣∣∣ =
m− 1

m
· 2n

(
cos

π

2m

)k (
cos

π

m

)n−k
≤ 2n

(
cos

π

2m

)k (
cos

π

m

)n−k
,

and we complete the proof using the fact that cos(π/m) ≤ cos(π/2m). For k = 0 we also
need to include the term p(1) = 2n which divided by m gives the term 2n/m.

Remark 1. Clearly the lemma for k = 0 simply is the well-known fact that the cardinality
of Sm,c is very close to 2n/m. Equivalently, if x is uniform in {0, 1}n then the probability
that

∑
i xi ≡ c (mod m) is very close to 1/m.

Proof of Theorem 4 (b). Let f : {0, 1}n → {0, 1} be the characteristic function of Sm,c. We
first bound above the nonzero Fourier coefficients of f . By Lemma 10, we have for any β
with |β| = k > 0,

|f̂β| = 2−n
∑
x∈Sm,c

(−1)
∑k

i=1 xi ≤
(

cos
π

2m

)n
≤ 2−αn,

where α = − ln cos(π/2m) depends only on m. Thus, if D is k-wise uniform,

|E[f(D)]−E[f(U)]| ≤
∑
|β|>k

|f̂β|·
∣∣∣Ex∼D[(−1)

∑
xiβi
]∣∣∣ ≤ ∑

|β|>k

|f̂β| ≤ 2−αn
n∑

t=k+1

(
n

t

)
= 2−αn

n−k−1∑
t=0

(
n

t

)
.

For k ≥ (1 − δ)n, we have an upper bound of 2n(H(δ)−α). Pick δ small enough so that
H(δ) ≤ α/2. The result follows by setting γ := min{α/2, δ}.

Note that the above proof fails when m is even as we cannot handle the term with |β| = n.
Finally, we prove Theorem 4 (c). We use approximation theory.

Proof of Theorem 4 (c). Let f : {0, 1}n → {0, 1} be the characteristic function of Sm,c. The
proof amounts to exhibiting a real polynomial p in n variables of degree d = C(n/m)(1/ε)2

such that f(x) ≤ p(x) for every x ∈ {0, 1}n, and E[p(U)] ≤ ε for U uniform over {0, 1}n.
To see that this suffices, note that E[p(U)] = E[p(D)] for any distribution D that is d-wise
uniform. Using this and the fact that f is non-negative, we can write

0 ≤ E[f(U)] ≤ E[p(U)] ≤ ε and 0 ≤ E[f(D)] ≤ E[p(D)] ≤ ε

Hence, |E[f(U)]−E[f(D)]| ≤ ε. This is the method of sandwiching polynomials from [Baz09].
Let us write f = g(

∑
i xi/n), for g : {0, 1/n, . . . , 1} → {0, 1}. We exhibit a univariate

polynomial q of degree d such that g(x) ≤ q(x) for every x, and the expectation of q under
the binomial distribution is at most ε. The polynomial p is then q(

∑
i xi/n).

Consider the continuous, piecewise linear function s : [−1, 1] → [0, 1] defined as follows.
The function is always 0, except at intervals of radius a/n around the inputs x where g
equals 1, i.e., inputs x such that nx is congruent to c modulo m. In those intervals it goes
up and down like a ‘Λ’, reaching the value of 1 at x. We set a = εm/10.
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By Jackson’s theorem (see e.g., [Car, Theorem 7.4] or [Che66]), for d = O(nε−1a−1) =
O(nε−2m−1), there exists a univariate polynomial q′ of degree d that approximates s with
pointwise error ε/10. Our polynomial q is defined as q := q′ + ε/10.

It is clear that g(x) ≤ q(x) for every x ∈ {0, 1/n, . . . , 1}. It remains to estimate E[q(U)].
As q′ is a good approximation of s we have E[q(U)] ≤ 2ε/10 + E[s(U)]. We noted in

Remark 1 that the remainder modulo m of
∑
xi is δ-close to uniform for δ = cos(π/2m)n =

e−Ω(n/m2). Now the function s, as a function of
∑
xi, is a periodic function with period m

and if we feed the uniform distribution over {0, 1/n, . . . ,m/n} into s we have E[s] ≤ ε/10.
It follows that if n is at least a large constant times m2(log(m/ε)), we have E[s(U)] ≤ 2ε/10
and we conclude that E[q(U)] ≤ 4ε/10.

3 Tight lower bound on k-wise uniformity vs. mod m

In this section we prove Theorem 2. For convenience, from now on we will consider the space
{−1, 1}n instead of {0, 1}n. In particular, we will consider strings x ∈ {−1, 1}n that satisfy∑

i xi ≡ c (mod m). One can translate results stated for {0, 1}n to results for {−1, 1}n and
vice versa using the following fact.

Fact 12. Let x ∈ {0, 1}n and y ∈ {−1, 1}n be the string obtained by replacing each xi by
yi = 1− 2xi. Then ∑

i

yi = n− 2
∑
i

xi (mod m),

and conversely,

∑
i

xi ≡

{
2−1(n−

∑
i yi) (mod m) if m odd,

(n−
∑

i yi)/2 (mod m
2

) if m and n are even.

Let n be a positive integer. Let X1, X2, . . . , Xn be independent random variables chosen
uniformly from {−1, 1}. Let B be the sum of all the Xj. The distribution of B is a shifted
binomial distribution. Note that B has the same parity as n.

Theorem 13. Let m and n be positive integers and c be an integer. Suppose that m is odd
or n and c have the same parity. Let k be a positive integer such that k ≤ n

8m2 . Then there
is a probability distribution on the c mod m integers that matches the first k moments of B.
Furthermore, the support of the probability distribution is a subset of the support of B.

Theorem 2 follows from applying Fact 12 to Theorem 13.
Our goal is to come up with a distribution supported on c mod m so that its first k

moments match the moments of B. We first start with a measure q on the c mod m integers.
Here q may not be a probability measure — its values may not sum to 1. However, we will
show that we can turn q into a probability measure p by a small adjustment ∆ on k + 1
appropriately chosen positive values of q(x).
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3.1 Defining Cm,c(x)

Let m be a positive integer (the modulus). Let c be an integer (the residue). We will
assume that either m is odd or n and c have the same parity. We will use Iverson bracket
notation: JtrueK = 1 and JfalseK = 0. Define the comb function Cm,c on the integers by
Cm,c(x) = mJx ≡ c (mod m)K if m is odd and Cm,c(x) = m

2
Jx ≡ c (mod m)K if m is even.

3.2 Defining q(x)

Define the function q on the integers by q(x) = Cm,c(x) Pr[B = x]. Note that q is nonnegative.
Also if q(x) 6= 0, then x is c (mod m) and in the support of B.

Lemma 14. If f is a function on the integers, then∑
x

q(x)f(x) = E[Cm,c(B)f(B)].

Proof. By the definition of expected value, we have∑
x

q(x)f(x) =
∑
x

Pr[B = x]Cm,c(x)f(x) = E[Cm,c(B)f(B)].

3.3 Defining Lagrange polynomials

Let k be a positive integer. Let a0, a1, . . . , ak be k + 1 distinct integers that are c mod m,
n mod 2, and as close to 0 as possible. Because they are as close to 0 as possible, we have
|aj| ≤ (k+ 1)m ≤ 2km. In our application, 2km will be at most n. So each aj will be in the
support of B.

Given an integer v such that 0 ≤ v ≤ k, define the Lagrange polynomial Lv as follows:

Lv(x) =
∏

0≤j≤k
j 6=v

(x− aj).

Note that Lv(aw) = 0 if and only if v 6= w. It’s well known that L0, L1, . . . , Lk form a basis
(the Lagrange basis) of the vector space of polynomials of degree at most k.

3.4 Defining ∆(x)

Define the function ∆ on the integers as follows. If x equals av (for some v), then

∆(av) =
E[Cm,c(B)Lv(B)]− E[Lv(B)]

Lv(av)
.

For x 6= aw for any w, then ∆(x) = 0.

Lemma 15. If f is a polynomial of degree at most k, then∑
x

∆(x)f(x) = E[Cm,c(B)f(B)]− E[f(B)].
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Proof. We will first prove the claim when f is a Lagrange polynomial Lv. If ∆(x) 6= 0, then
x is of the form aw for some w. But if Lv(aw) 6= 0, then v = w. So the sum has at most
one nonzero term, corresponding to x = av. And the equation is true in this case by the
definition of ∆.

We have proved the claim for Lagrange polynomials. But every polynomial of degree at
most k is a linear combination of the Lagrange polynomials. This completes the proof.

3.5 Defining p(x)

Define the function p on the integers by p(x) = q(x)−∆(x). Note that if p(x) 6= 0, then x
is c mod m and (assuming 2km ≤ n) in the support of B.

Lemma 16. If f is a polynomial of degree at most k, then∑
x

p(x)f(x) = E[f(B)].

Proof. By Lemmas 14 and 15, we have∑
x

p(x)f(x) =
∑
x

q(x)f(x)−
∑
x

∆(x)f(x)

= E[Cm,c(B)f(B)]−
(
E[Cm,c(B)f(B)]− E[f(B)]

)
= E[f(B)].

To show that p is nonnegative, we will show that |∆(x)| ≤ 1
2
q(x). First we bound above

|∆(x)|. Then we bound below q(x).

Recall that ∆(x) = E[Cm,c(B)Lv(B)]−E[Lv(B)]

Lv(av)
if x equals av for some v (and 0 otherwise).

Lemmas 20 and 22 below give upper and lower bounds on the numerator and denominator,
respectively.

3.6 Bounding above |E[Lv(B)Cm,c(B)]− E[Lv(B)]|
We start this section by proving a few lemmas that will be useful to obtaining the upper
bound.

Lemma 17. If θ is a real number such that |θ| < π
2
, then |tan θ| ≥ |θ|.

Proof. By symmetry, we may assume that θ ≥ 0. Recall that secx is 1/ cosx. The derivative
of tan is sec2. Because cosx ≤ 1, it follows that sec2 x ≥ 1. Integrating both sides (from 0
to θ) gives tan θ ≥ θ.

Lemma 18. If θ is a real number such that |θ| ≤ π
2
, then cos θ ≤ e−θ

2/2.

Proof. By symmetry, we may assume that θ ≥ 0. The case θ = π/2 is trivial, so we will
assume that θ < π/2. The derivative of ln cos is − tan. By Lemma 17, we have tanx ≥ x
for 0 ≤ x < π

2
. Integrating both sides (from 0 to θ) gives − ln cos θ ≥ θ2/2. Exponentiating

gives the desired inequality.
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Lemma 19. Let r be an integer such that 0 ≤ r ≤ n
8
. Let m be an integer such that

1 ≤ m ≤
√
n. Suppose that m is odd or n and c have the same parity. Then∣∣E[BrCm,c(B)]− E[Br]

∣∣ ≤ 8(3rm)re−2n/m2

.

Proof. Let m′ be m if m is odd and m/2 if m is even. Let α be π/m′. For now, we will
assume that n and c have the same parity. At the end, we will show how to adjust the proof
when n and c have the opposite parity.

Because B and n have the same parity, B − c is even. So we have the identity

m′−1∑
j=1

eijα(B−c) = Cm,c(B)− 1.

Hence, by the triangle inequality and then Lemma 38, whose proof we defer to Section 5, we
have (Lemma 38 is the second inequality)

∣∣E[BrCm,c(B)]− E[Br]
∣∣ =

∣∣∣E[Br

m′−1∑
j=1

eijα(B−c)
]∣∣∣

=
∣∣∣m′−1∑
j=1

e−ijαc E[BreijαB]
∣∣∣

≤
m′−1∑
j=1

|E[BreijαB]|

≤
m′−1∑
j=1

2(8r|cot jα|)r|cos jα|n/2

= 2(8r)r
m′−1∑
j=1

|cot jα|r|cos jα|n/2.

The sum is symmetric: the terms corresponding to j = ` and j = m′ − ` are equal. So we
can double its first half:

∣∣E[BrCm,c(B)]− E[Br]
∣∣ ≤ 4(8r)r

bm′/2c∑
j=1

|cot jα|r|cos jα|n/2.

10



Therefore, by Lemmas 17 and 18, we have

∣∣E[BrCm,c(B)]− E[Br]
∣∣ ≤ 4(8r)r

bm′/2c∑
j=1

( 1

jα

)r
e−j

2α2n/4

≤ 4
(8r

α

)r bm′/2c∑
j=1

e−j
2α2n/4

≤ 4
(8rm

π

)r bm′/2c∑
j=1

e−j
2π2n/(4m2)

≤ 4(3rm)r
bm′/2c∑
j=1

e−2j2n/m2

≤ 4(3rm)r
bm′/2c∑
j=1

e−2jn/m2

.

The sum is a geometric series whose common ratio is less than 1
2
, so we can bound it by

twice its first term: ∣∣E[BrCm,c(B)]− E[Br]
∣∣ ≤ 8(3rm)re−2n/m2

.

The proof above assumed that n and c have the same parity. When n and c have the
opposite parity, we can adjust the proof as follows. From the parity hypothesis in the
theorem, we know that m is odd. In particular, m′ = m. Because B and n have the same
parity, B − c is odd. So we have the identity

m′−1∑
j=1

(−1)jeijα(B−c) = Cm,c(B)− 1.

It’s the same identity as before except for the factor of (−1)j. We can now continue with
the remainder of the proof. The factor of (−1)j goes away as soon as we apply the triangle
inequality. Hence we obtain the same bound.

Lemma 20. Let m be an integer such that 1 ≤ m ≤
√
n. Suppose that m is odd or n and c

have the same parity. Suppose that k ≤ n
8
. If v is an integer such that 0 ≤ v ≤ k, then∣∣E[Lv(B)Cm,c(B)]− E[Lv(B)]

∣∣ ≤ 8(5km)ke−2n/m2

.

Proof. Given a subset A of {1, 2, . . . , n}, define XA to be the product of the Xj for which j
is in A.

By expanding the product, we have

Lv(B) =
∏
j 6=v

(B − aj) =
∑
A

(−1)|A|aABk−|A|,

11



where A ranges over every subset of {0, 1, . . . , k}−{v}. Therefore, by the triangle inequality,
Lemma 19, and the binomial theorem, we have

|E[Lv(B)Cm,c(B)]− E[Lv(B)]| =
∣∣∣E[[Cm,c(B)− 1]Lv(B)

]∣∣∣
=
∣∣∣E[[Cm,c(B)− 1]

∑
A

(−1)|A|aABk−|A|
]∣∣∣

=
∣∣∣∑
A

(−1)|A|aA E
[
[Cm,c(B)− 1]Bk−|A|

]∣∣∣
≤
∑
A

∣∣∣aA E[[Cm,c(B)− 1]Bk−|A|
]∣∣∣

≤
∑
A

(2km)|A|
∣∣∣E[[Cm,c(B)− 1]Bk−|A|

]∣∣∣
≤
∑
A

(2km)|A| · 8(3(k − |A|)m)k−|A|e−2n/m2

= 8e−2n/m2
∑
A

(2km)|A|(3(k − |A|)m)k−|A|

≤ 8e−2n/m2
∑
A

(2km)|A|(3km)k−|A|

= 8e−2n/m2

(5km)k.

3.7 Bounding below |Lv(av)|
Our lower bound on |Lv(av)| follows from the following claim.

Claim 21. Let a0 < · · · < ak be k + 1 points such that for every j ∈ {1, . . . , k} we have
aj − aj−1 ≥ d. Then for any integer t such that 0 ≤ t ≤ k,∏

j 6=t

|at − aj| ≥
(kd

2e

)k
.

Proof. First observe that we have |at − aj| ≥ d|t− j|. So we have∏
j 6=t

|at − aj| ≥
∏
j 6=t

d|t− j| = dkt!(k − t)!.

We will use Stirling’s formula in the form x! ≥ ef(x), where f(x) = x ln x
e

for x > 0 and
f(0) = 0. Note that f is convex on the interval [0,∞). Hence we have∏

j 6=t

|at − aj| ≥ dkt!(k − t)! ≥ dkef(t)+f(k−t) ≥ dke2f(k/2) =
(kd

2e

)k
.

Lemma 22. If v is an integer such that 0 ≤ v ≤ k, then

|Lv(av)| ≥
(km

6

)k
.

Proof. Without loss of generality, assume that the aj are in sorted order. Then this lemma
follows from Claim 21 with d replaced by m.

12



3.8 Conclude upper bound on |∆(x)|
Lemma 23. Let m be an integer such that 1 ≤ m ≤

√
n. Suppose that m is odd or n and c

have the same parity. Suppose that k ≤ n
8
. If x is an integer, then

|∆(x)| ≤ 8(30)ke−2n/m2

.

Proof. If x is different from av for every v, then ∆(x) = 0. So we may assume that x = av
for some v. By Lemmas 20 and 22, we have

|∆(x)| = |E[Cm,c(B)Lv(B)]− E[Lv(B)]|
|Lv(av)|

≤ 8(5km)ke−2n/m2

(km/6)k

= 8(30)ke−2n/m2

.

3.9 Bounding below q(x)

Lemma 24. If a is an integer such that |a| ≤ n and a ≡ n (mod 2), then

Pr[B = a] ≥ 2−a
2/n 1

2
√
n
.

Proof. The event B = a is equivalent to n+a
2

of the Xj being 1 and the other n−a
2

being −1.
Hence

Pr[B = a] =
1

2n

(
n

(n+ a)/2

)
.

If a = n or a = −n, then the desired inequality is easy to check. So we will assume that
|a| < n. We will use Stirling’s formula in the form

xxe−x
√

2πx ≤ x! ≤ xxe−xe
√
x ,

where x is a positive integer. We have(
n

(n+ a)/2

)
=

n!
n+a

2
!n−a

2
!

≥ nn
√

2πn

(n+a
2

)(n+a)/2(n−a
2

)(n−a)/2e2
√

(n+ a)/2
√

(n− a)/2

= 2H( 1
2

+ a
2n

)n 2
√

2πn

e2
√
n2 − a2

,

where H is the binary entropy function H(x) = −x log2 x− (1− x) log2(1− x). It’s known
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that H(x) ≥ 4x(1− x). That means H(1
2

+ a
2n

) ≥ 1− a2

n2 . So we have(
n

(n+ a)/2

)
≥ 2n−a

2/n 2
√

2πn

e2
√
n2 − a2

≥ 2n−a
2/n2
√

2π

e2
√
n

≥ 2n−a
2/n 1

2
√
n
.

Dividing by 2n gives the desired inequality.

3.10 Conclude |∆(x)| ≤ q(x)

Lemma 25. Let m and n be positive integers and c be an integer. Suppose that m is odd
or n and c have the same parity. Let k be a positive integer such that k ≤ n

8m2 . If x is an
integer, then |∆(x)| ≤ 1

2
q(x).

Proof. If x is different from av for every v, then ∆(x) = 0. So we may assume that x = av
for some v. By Lemma 23, we have

|∆(x)| ≤ 8(30)ke−2n/m2 ≤ 1

4
e8ke−2n/m2 ≤ 1

4
en/m

2

e−2n/m2

=
1

4
e−n/m

2

.

By the definition of q and Lemma 24, we have

q(x) = Cm,0(x) Pr[B = x] ≥ m

2
Pr[B = x] ≥ 2−x

2/n m

4
√
n
.

We know that
|x| = |av| ≤ 2km ≤ n

4m
.

So
q(x) ≥ 2−n/(16m2) m

4
√
n
≥ e−n/(16m2) m

4
√
n
.

Applying the inequality x ≤ ex/e (to x = 4n/m2), we have

4n

m2
≤ e4n/(em2) ≤ e3n/(2m2).

Thus
m

4
√
n

=
1

2

( 4n

m2

)−1/2

≥ 1

2
e−3n/(4m2).

Hence

q(x) ≥ 1

2
e−3n/(4m2)e−n/(16m2) ≥ 1

2
e−n/m

2

.

Comparing our bounds for ∆ and q, we see that |∆(x)| ≤ 1
2
q(x).
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3.11 Conclude lower bound

Proof of Theorem 13. Recall the function p from Lemma 16. We will show that p is the
desired probability distribution. From the definition of p and Lemma 25, we get p(x) ≥ 1

2
q(x);

in particular, p is nonnegative. Applying Lemma 16 to the constant function 1 (the zeroth
moment), we see that the sum of the p(x) is 1. In other words, p is indeed a probability
distribution. Applying Lemma 16 to the other monomials (namely x, x2, . . . , xk), we see
that p matches the first k moments of B. This completes the proof.

4 Tight lower bound on k-wise uniformity vs. threshold

In this section we prove Theorem 6. Like the last section, we will work with {−1, 1}n and
translate the results back to {0, 1}n using the following fact.

Fact 26. Let x ∈ {0, 1}n and y ∈ {−1, 1}n be the string obtained by replacing each xi by
yi = 1− 2xi. Then |

∑
i xi − n/2| ≤ t if and only if |

∑
i yi| ≤ 2t.

Let n be a positive integer. Let X1, X2, . . . , Xn be independent random variables chosen
uniformly from {−1, 1}. Let B be the sum of all the Xj. The distribution of B is a shifted
binomial distribution. Note that B has the same parity as n.

Theorem 27. Let n and t be positive integers such that t ≤ n. Let k be a positive integer
such that k ≤ t2

200n
. Then there is a probability distribution on the integers with absolute

value at most t that matches the first k moments of B. Furthermore, the support of the
probability distribution is a subset of the support of B.

Theorem 6 follows from applying Fact 26 to Theorem 27.
Let m be an odd integer between n

3t
and n

t
. In Theorem 13, we constructed a probability

distribution (call it p′) on the 0 mod m integers that matches the first t2

8n
moments of B.

Furthermore, the support of p′ is a subset of the support of B. Looking at the proof, we see
that p′(x) ≥ 1

2
Cm,0(x) Pr[B = x] for all x. Let C ′(x) be p′(x)/Pr[B = x] if Pr[B = x] > 0

and Cm,0(x) otherwise. We have p′(x) = C ′(x) Pr[B = x] for all x. Because p′ matches the
first few moments of B, we have E[C ′(B)f(B)] = E[f(B)] for every polynomial f of degree
at most t2

8n
. Also, C ′(x) ≥ 1

2
Cm,0(x) for all x.

Given an integer x, let T (x) be J |x| ≤ t KC ′(x).

4.1 Defining q(x)

Given an integer x, define q(x) to be T (x) Pr[B = x]. Note that q is nonnegative. Also if
q(x) 6= 0, then |x| ≤ t and x is in the support of B.

Lemma 28. If f is a function on the integers, then∑
x

q(x)f(x) = E[T (B)f(B)].

Proof. By the definition of expected value, we have∑
x

q(x)f(x) =
∑
x

Pr[B = x]T (x)f(x) = E[T (B)f(B)].
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4.2 Defining Lagrange polynomials

Let a0, a1, . . . , ak be k + 1 distinct integers that are 0 mod m, n mod 2, and as close to 0
as possible. Because they are as close to 0 as possible, we have |aj| ≤ (k + 1)m ≤ 2km.

Because k ≤ t2

200n
and m ≤ n

t
, we have 2km ≤ t ≤ n. So |aj| ≤ t and aj is in the support

of B.
Given an integer v such that 0 ≤ v ≤ k, define the Lagrange polynomial Lv as follows:

Lv(x) =
∏

0≤j≤k
j 6=v

(x− aj).

Note that Lv(aw) = 0 if and only if v 6= w. It’s well known that L0, L1, . . . , Lk form a basis
(the Lagrange basis) of the vector space of polynomials of degree at most k.

4.3 Defining ∆(x)

Define the function ∆ on the integers as follows. If x equals av (for some v), then

∆(av) =
E[T (B)Lv(B)]− E[Lv(B)]

Lv(av)
.

For x 6= aw for any w, then ∆(x) = 0.

Lemma 29. If f is a polynomial of degree at most k, then∑
x

∆(x)f(x) = E[T (B)f(B)]− E[f(B)].

Proof. We will first prove the claim when f is a Lagrange polynomial Lv. If ∆(x) 6= 0, then
x is of the form aw for some w. But if Lv(aw) 6= 0, then v = w. So the sum has at most
one nonzero term, corresponding to x = av. And the equation is true in this case by the
definition of ∆.

We have proved the claim for Lagrange polynomials. But every polynomial of degree at
most k is a linear combination of the Lagrange polynomials. This completes the proof.

4.4 Defining p(x)

Define the function p on the integers by p(x) = q(x) − ∆(x). Note that if p(x) 6= 0, then
|x| ≤ t and x is in the support of B.

Lemma 30. If f is a polynomial of degree at most k, then∑
x

p(x)f(x) = E[f(B)].

Proof. By Lemmas 28 and 29, we have∑
x

p(x)f(x) =
∑
x

q(x)f(x)−
∑
x

∆(x)f(x)

= E[T (B)f(B)]−
(
E[T (B)f(B)]− E[f(B)]

)
= E[f(B)].
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We will show that |∆(x)| ≤ 1
2
q(x). First we bound above |∆(x)|. Then we bound below

q(x). Recall that ∆(x) = E[Lv(B)T (B)]−E[Lv(B)]
Lv(av)

if x equals av for some v and 0 otherwise.
Lemmas 34 and 35 below give upper and lower bounds on the numerator and denominator,
respectively.

4.5 Bounding above |E[Lv(B)T (B)]− E[Lv(B)]|
We start this section by proving the following lemma.

Lemma 31. Let d be a nonnegative integer. Then the (2d)th moment E[B2d] is at most
(2d)!
2dd!

nd.

Proof. The odd moments of each Xj are all 0. The even moments of Xj are all 1. Let g1,
g2, . . . , gn be independent standard Gaussians (with mean zero and unit variance). The
odd moments of gj are all 0. If c is a nonnegative integer, then the (2c)th moment of gj is

known to be (2c)!
2cc!

, the product of the positive odd integers less than 2c. In particular, the
even moments of gj are all at least 1. So the moments of Xj are at most the corresponding
moments of gj.

Let G be the sum of the gj. When we expand B2d and G2d, each gives a sum of n2d terms.
By the previous paragraph, the expectation of each term of B2d is at most the expectation
of the corresponding term of G2d. Hence the (2d)th moment of B is at most the (2d)th
moment of G. But G is a Gaussian with mean zero and variance n. In particular, G/

√
n is

a standard Gaussian. So we have

E[B2d] ≤ E[G2d] = nd E[(G/
√
n )

2d
] =

(2d)!

2dd!
nd.

Lemma 32. If d is a nonnegative integer, then E[B2d] is at most
√

2 (2dn/e)d.

Proof. The case d = 0 is trivial (interpreting 00 as 1), so we will assume that d is positive.
Lemma 31 says that

E[B2d] ≤ (2d)!

2dd!
nd.

To bound the factorials, we will use the following precise form of Stirling’s formula due to
Robbins [Rob55]: if x is a positive integer, then

xxe−x
√

2πx e1/(12x+1) < x! < xxe−x
√

2πx e1/(12x).

Hence we have

(2d)!

2dd!
<

(2d)2de−2d
√

4πd e1/(24d)

2ddde−d
√

2πd e1/(12d+1)
=
√

2
(2d

e

)d
e1/(24d)−1/(12d+1) <

√
2
(2d

e

)d
.

Lemma 33. Let n and t be positive integers such that t ≤ n and t2 ≥ 200n. Let r be an
integer such that 0 ≤ r ≤ t2

9n
. Then∣∣E[BrT (B)]− E[Br]

∣∣ ≤ 2tre−t
2/(6n).
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Proof. Let s be a nonnegative integer such that r+ s is an even number between t2

9n
and t2

8n
.

(Because t2 ≥ 200n, there is such an s.) We have

J |B| > t K ≤ t−s|B|s.

Hence, by the moment-matching property of C ′, the definition of T , the triangle inequality,
and Lemma 32, we have∣∣E[Br]− E[BrT (B)]

∣∣ =
∣∣E[BrC ′(B)]− E[BrT (B)]

∣∣
=
∣∣E[BrC ′(B)J|B| > tK

]∣∣
≤ E

[
|B|rC ′(B)J|B| > tK

]
≤ t−s E

[
|B|r+sC ′(B)

]
= t−s E

[
Br+sC ′(B)

]
= t−s E

[
Br+s

]
≤ 2t−s

((r + s)n

e

)(r+s)/2

= 2tr
((r + s)n

et2

)(r+s)/2

≤ 2tr
( 1

8e

)t2/(18n)

≤ 2tre−t
2/(6n).

Lemma 34. Let n and t be positive integers such that t ≤ n. Let k be a positive integer
such that k ≤ t2

200n
. If v is an integer such that 0 ≤ v ≤ k, then∣∣E[Lv(B)T (B)]− E[Lv(B)]

∣∣ ≤ 2(2t)ke−t
2/(6n).

Proof. Recall that for a subset A of {1, 2, . . . , n}, we define XA to be the product of the Xj

for which j is in A.
By expanding the product, we have

Lv(B) =
∏
j 6=v

(B − aj) =
∑
A

(−1)|A|aABk−|A|,

where A ranges over every subset of {0, 1, . . . , k}−{v}. Therefore, by the triangle inequality,
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Lemma 33, and the binomial theorem, we have

|E[Lv(B)T (B)]− E[Lv(B)]| =
∣∣∣E[[T (B)− 1]Lv(B)

]∣∣∣
=
∣∣∣E[[T (B)− 1]

∑
A

(−1)|A|aABk−|A|
]∣∣∣

=
∣∣∣∑
A

(−1)|A|aA E
[
[T (B)− 1]Bk−|A|

]∣∣∣
≤
∑
A

∣∣∣aA E[[T (B)− 1]Bk−|A|
]∣∣∣

≤
∑
A

t|A|
∣∣∣E[[T (B)− 1]Bk−|A|

]∣∣∣
≤
∑
A

t|A| · 2tk−|A|e−t2/(6n)

= 2e−t
2/(6n)

∑
A

tk

= 2e−t
2/(6n)(2t)k.

4.6 Bounding below |Lv(av)|
Lemma 35. If v is an integer such that 0 ≤ v ≤ k, then

|Lv(av)| ≥
(kn

9t

)k
.

Proof. Without loss of generality, assume that the aj are in sorted order. Then this lemma
follows from Claim 21 (with d replaced by 2m) and the bound m ≥ n

3t
.

4.7 Conclude upper bound on |∆(x)|
Lemma 36. Let n and t be positive integers such that t ≤ n. Let k be a positive integer
such that k ≤ t2

200n
. If x is an integer, then

|∆(x)| ≤ 1

50
e−t

2/(12n).

Proof. If x is different from av for every v, then ∆(x) = 0. So we may assume that x = av
for some v. By Lemmas 34 and 35, we have

|∆(x)| = |E[T (B)Lv(B)]− E[Lv(B)]|
|Lv(av)|

≤ 2(2t)ke−t
2/(6n)

(kn/(9t))k

= 2
(18t2

kn

)k
e−t

2/(6n)

≤ 1

50

(1800t2

kn

)k
e−t

2/(6n).
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The expression (1800t2

kn
)k is an increasing function of k on the interval (0, 1800t2

en
]. Because

k ≤ t2

200n
, we have (1800t2

kn

)k
≤ (1800 · 200)t

2/(200n) ≤ et
2/(12n).

Plugging this bound into our previous inequality for |∆(x)| completes the proof.

4.8 Conclude |∆(x)| ≤ q(x)

Lemma 37. Let n and t be positive integers such that t ≤ n. Let k be a positive integer
such that k ≤ t2

200n
. If x is an integer, then |∆(x)| ≤ 1

2
q(x).

Proof. If x is different from av for every v, then ∆(x) = 0. So we may assume that x = av for
some v. By Lemma 36, we have |∆(x)| ≤ 1

50
e−t

2/(12n). By the definition of q and Lemma 24,
we have

q(x) = C ′(x) Pr[B = x] ≥ 1

2
Cm,0(x) Pr[B = x] ≥ n

6t
Pr[B = x] ≥ 2−x

2/n

√
n

12t
.

We know that

|x| = |av| ≤ 2km ≤ 2 · t2

200n
· n
t

=
t

100
.

So

q(x) ≥ 2−t
2/(10000n)

√
n

12t
≥ e−t

2/(10000n)

√
n

12t
.

Applying the inequality x ≤ ex/e (to x = t2

4n
), we have

t2

4n
≤ et

2/(4en) ≤ et
2/(10n).

Thus √
n

12t
=

1

24

( t2
4n

)−1/2

≥ 1

24
e−t

2/(20n).

Hence

q(x) ≥ 1

24
e−t

2/(20n)e−t
2/(10000n) ≥ 1

24
e−t

2/(12n).

Comparing our bounds for ∆ and q, we see that |∆(x)| ≤ 1
2
q(x).

4.9 Conclude lower bound

Proof of Theorem 27. Recall the function p from Lemma 30. We will show that p is the
desired probability distribution. From the definition of p and Lemma 37, we get p(x) ≥ 1

2
q(x);

in particular, p is nonnegative. Applying Lemma 30 to the constant function 1 (the zeroth
moment), we see that the sum of the p(x) is 1. In other words, p is indeed a probability
distribution. Applying Lemma 30 to the other monomials (namely x, x2, . . . , xk), we see
that p matches the first k moments of B. This completes the proof.
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5 Proof of Lemma 38

In this section, we will prove the following lemma that was used in the proof of Lemma 19.
Recall thatX1, X2, . . . , Xn are independent random variables chosen uniformly from {−1, 1},
and B is the sum of all the Xj.

Lemma 38. Let r be an integer such that 0 ≤ r ≤ n
8
. Let θ be a real number such that

sin θ 6= 0. Then
|E[BreiθB]| ≤ 2(8r|cot θ|)r|cos θ|n/2.

Remark 2. By the triangle inequality and Lemma 31, we have |E[B2reiθB]| ≤ (2r)!
2rr!

nr, whether
sin θ is zero or not.

Recall that for a subset A of {1, 2, . . . , n}, we define XA to be the product of the Xj for
which j is in A.

We will need the hyperbolic functions. Recall that cosh z is (ez + e−z)/2, sinh z is (ez −
e−z)/2, tanh z is sinh z/ cosh z, coth z is cosh z/ sinh z, and sech z is 1/ cosh z.

Lemma 39. If A is a subset of {1, 2, . . . , n} and z is a complex number, then

E[XAezB] = (sinh z)|A|(cosh z)n−|A|.

Proof. Because B is the sum of the Xj, we have

E[XAezB] = E
[∏
j∈A

Xj

n∏
j=1

ezXj

]
= E

[∏
j∈A

Xje
zXj

∏
j /∈A

ezXj

]
=
∏
j∈A

E[Xje
zXj ]

∏
j /∈A

E[ezXj ]

=
∏
j∈A

sinh z
∏
j /∈A

cosh z

= (sinh z)|A|(cosh z)n−|A|.

Lemma 40. Let A be a subset of {1, 2, . . . , n}. Let θ be a real number. If |sin θ| < |cos θ|,
then |E[XAeiθB]| = (cos 2θ)n/2 E[XAeλB], where λ is 1

2
ln 1+|tan θ|

1−|tan θ| .

Proof. Because |sin θ| < |cos θ|, we have |tan θ| < 1, so λ is well defined. From our choice
of λ, we have

tanhλ =
e2λ − 1

e2λ + 1
=

(1 + |tan θ|)− (1− |tan θ|)
(1 + |tan θ|) + (1− |tan θ|)

= |tan θ|.

It follows that

coshλ =
1√

1− tanh2 λ
=

1√
1− tan2 θ

=
|cos θ|√

cos2 θ − sin2 θ
=
|cos θ|√
cos 2θ

.
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Hence

sinhλ = tanhλ coshλ = |tan θ| |cos θ|√
cos 2θ

=
|sin θ|√
cos 2θ

.

Therefore, applying Lemma 39 twice, we have

|E[XAeiθB]| = |sinh iθ||A||cosh iθ|n−|A|

= |sin θ||A||cos θ|n−|A|

= (cos 2θ)n/2(sinhλ)|A|(coshλ)n−|A|

= (cos 2θ)n/2 E[XAeλB].

Let r be a nonnegative integer. Let f be a function from {1, 2, . . . , r} to {1, 2, . . . , n}.
Define odd(f), the odd image of f , to be the set of j in {1, 2, . . . , n} such that |f−1(j)| is
odd. Note that |odd(f)| ≤ r and |odd(f)| ≤ n.

Lemma 41. If r is a nonnegative integer, then Br =
∑

f X
odd(f), where the sum is over

every function f from {1, . . . , r} to {1, . . . , n}.

Proof. By expanding Br and exploiting the constraint that each Xj is ±1, we have

Br =
∑
f

Xf(1) · · ·Xf(r)

=
∑
f

n∏
j=1

X
|f−1(j)|
j

=
∑
f

n∏
j=1

X
|f−1(j)| mod 2
j

=
∑
f

∏
j∈odd(f)

Xj

=
∑
f

Xodd(f).

Lemma 42. Let r be a nonnegative integer. Let θ be a real number.

(a) If r ≤ n, then |E[BreiθB]| ≤ nr|cos θ|n−r.
(b) If |sin θ| < |cos θ|, then |E[BreiθB]| ≤ (cos 2θ)n/2 E[BreλB], where λ is 1

2
ln 1+|tan θ|

1−|tan θ| .

Proof. By Lemma 41 and the triangle inequality, we have

|E[BreiθB]| =
∣∣∣E[∑

f

Xodd(f)eiθB
]∣∣∣ =

∣∣∣∑
f

E[Xodd(f)eiθB]
∣∣∣ ≤∑

f

|E[Xodd(f)eiθB]|.

We will use this inequality in both parts.
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(a) By Lemma 39, we have

|E[BreiθB]| ≤
∑
f

|E[Xodd(f)eiθB]|

=
∑
f

|sin θ||odd(f)||cos θ|n−|odd(f)|

= |cos θ|n−r
∑
f

|sin θ||odd(f)||cos θ|r−|odd(f)|

≤ |cos θ|n−r
∑
f

1

= nr|cos θ|n−r.

(b) By Lemmas 40 and 41, we have

|E[BreiθB]| ≤
∑
f

|E[Xodd(f)eiθB]|

=
∑
f

(cos 2θ)n/2 E[Xodd(f)eλB]

= (cos 2θ)n/2
∑
f

E[Xodd(f)eλB]

= (cos 2θ)n/2 E[BreλB].

Lemma 43. If r ≥ 0 and λ is a nonzero real number, then

E[|B|reλB] ≤ 2
( 4r

|λ|

)r(
cosh

11

10
λ
)n
.

Proof. First we will bound |B|r by an exponential. Let a be 10r
e|λ| . Let’s temporarily assume

that r 6= 0. Applying the inequality x ≤ ex/e (to x = |B|/a), we have |B| ≤ ae|B|/(ea).
Raising both sides to the rth power gives |B|r ≤ arer|B|/(ea). Plugging in the definition of a,
we have |B|r ≤ are|λB|/10. This inequality is true for r = 0 too.

Now we are ready to prove the desired inequality. By Lemma 39 (with A = ∅), we have

E[|B|reλB] ≤ E[|B|re|λB|]
≤ ar E[e|λB|/10e|λB|]

= ar E[e11|λB|/10]

≤ ar E[e11λB/10 + e−11λB/10]

= 2ar
(

cosh
11

10
λ
)n

= 2
( 10r

e|λ|

)r(
cosh

11

10
λ
)n

≤ 2
( 4r

|λ|

)r(
cosh

11

10
λ
)n
.
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Lemma 44. If λ is a real number, then |tanhλ| ≤ |λ|.

Proof. By symmetry, we may assume that λ ≥ 0. The derivative of tanh is sech2. Because
coshx ≥ 1, it follows that sech2 x ≤ 1. Integrating both sides (from 0 to λ) gives tanhλ ≤
λ.

Lemma 45. If λ is a real number and c ≥ 1, then cosh cλ ≤ (coshλ)c
2
.

Proof. We will first prove that tanh cx ≤ c tanhx for every x ≥ 0. The derivative of tanh
is sech2. Because cosh is increasing on [0,∞), it follows that sech2 ct ≤ sech2 t for every
t ≥ 0. Integrating both sides (from 0 to x) gives 1

c
tanh cx ≤ tanhx. Multiplying by c gives

tanh cx ≤ c tanhx.
Next we will prove the cosh inequality. By symmetry, we may assume that λ ≥ 0. The

derivative of ln cosh is tanh. By the previous paragraph, we have tanh cx ≤ c tanhx for every
x ≥ 0. Integrating both sides (from 0 to λ) gives 1

c
ln cosh cλ ≤ c ln coshλ. Multiplying by c

and exponentiating gives the desired inequality.

Lemma 46. If θ is a real number such that cos2 θ ≥
√

5−1
2

, then cos 2θ ≥ cos6 θ.

Proof. From the hypothesis, we have

cos2 θ + cos4 θ = cos2 θ(1 + cos2 θ) ≥
√

5− 1

2
·
√

5 + 1

2
= 1.

Therefore, we have

cos6 θ = 1− (1− cos2 θ)(1 + cos2 θ + cos4 θ)

= 1− sin2 θ(1 + cos2 θ + cos4 θ)

≤ 1− 2 sin2 θ

= cos 2θ.

5.1 Main lemma, bounding E[BreiθB]

Lemma 47 (Lemma 38 restated). Let r be an integer such that 0 ≤ r ≤ n
8
. Let θ be a real

number such that sin θ 6= 0. Then

|E[BreiθB]| ≤ 2(8r|cot θ|)r|cos θ|n/2.

Proof. We will consider two cases: cos2 θ ≤ e−1/e and cos2 θ ≥
√

5−1
2

. Because
√

5−1
2

< e−1/e,
these two cases cover all possible θ.

Case 1: cos2 θ ≤ e−1/e. Applying the inequality xx ≥ e−1/e for x ≥ 0 (to x = 8r/n), we
have

cos2 θ ≤ e−1/e ≤
(8r

n

)8r/n

.
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Hence, by Lemma 42(a), we have

|E[BreiθB]| ≤ nr|cos θ|n−r

≤ nr|cos θ|3n/4+r

= nr(cos2 θ)n/8|cos θ|n/2+r

≤ nr
(8r

n

)r
|cos θ|n/2+r

= (8r|cos θ|)r|cos θ|n/2

≤ (8r|cot θ|)r|cos θ|n/2

≤ 2(8r|cot θ|)r|cos θ|n/2.

Case 2: cos2 θ ≥
√

5−1
2

. In particular, |sin θ| < |cos θ|. Let λ be 1
2

ln 1+|tan θ|
1−|tan θ| . In the proof

of Lemma 40, we showed that tanhλ is |tan θ| and coshλ is |cos θ|/
√

cos 2θ. By Lemma 44,
we have |λ| ≥ |tanhλ| = |tan θ|. Hence, by Lemmas 42(b), 43, 45, and 46, we have

|E[BreiθB]| ≤ (cos 2θ)n/2 E[BreλB]

≤ (cos 2θ)n/2 E[|B|reλB]

≤ 2(cos 2θ)n/2
( 4r

|λ|

)r(
cosh

11

10
λ
)n

≤ 2(cos 2θ)n/2(4r|cot θ|)r
(

cosh
11

10
λ
)n

≤ 2(cos 2θ)n/2(4r|cot θ|)r(coshλ)121n/100

≤ 2(cos 2θ)n/2(4r|cot θ|)r(coshλ)5n/4

= 2(4r|cot θ|)r(cos 2θ)n/2
( |cos θ|√

cos 2θ

)5n/4

= 2(4r|cot θ|)r |cos θ|5n/4

(cos 2θ)n/8

≤ 2(4r|cot θ|)r |cos θ|5n/4

|cos θ|3n/4

= 2(4r|cot θ|)r|cos θ|n/2

≤ 2(8r|cot θ|)r|cos θ|n/2.

6 Tight upper bound on k-wise uniformity vs. mod m

In this section we prove Theorem 3. It follows from Theorem 48 below by translating the
statement for {−1, 1}n back to {0, 1}n using Fact 12. Recall that S ′m,c = {y ∈ {−1, 1}n :∑

i yi ≡ c (mod m)}.
Theorem 48. Let m be a positive integer and let c be an integer. Let k be an integer
greater than or equal to 4. Suppose there is a k-wise uniform distribution on {−1, 1}n that
is supported on S ′m,c. Then k ≤ 140n

m2 .
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We can restate the theorem using moments as follows. Let B be the sum of n independent
random bits chosen uniformly from {−1, 1}. Let Y be a random variable that is always
c mod m. Suppose the first k moments of Y match those of B. Then k ≤ 140n

m2 .
The high-level idea of the proof is as follows. We compare |E[e2πiY/m]| and |E[e2πiB/m]|.

The first is 1 because Y is always c mod m. The second we show is less than 1
2
. We then

take the Taylor approximations of the exponentials. The first k − 1 terms are equal by the
moment-matching property of Y . The error is given by the kth term, which gives us an
upper bound on k.

Proof of Theorem 48. If m < 4, then k ≤ n ≤ 16n
m2 . So we may assume that m ≥ 4. Let

α = 2π/m. Because m ≥ 4, we have 0 < α ≤ π/2. For now, we will assume that k is even.
At the end, we will handle the odd case.

Because Y is always c mod m, we have∣∣E[eiαY ]
∣∣ =

∣∣eiαc∣∣ = 1.

By Lemma 39 (with A = ∅) and Lemma 18, we have∣∣E[eiαB]
∣∣ = |cosα|n ≤ e−α

2n/2.

By Taylor’s theorem, for every real θ we have

∣∣∣eiθ − k−1∑
j=0

(iθ)j

j!

∣∣∣ ≤ θk

k!
.

Hence by the triangle inequality we have

∣∣∣E[eiαY ]−
k−1∑
j=0

(iα)j

j!
E[Y j]

∣∣∣ ≤ E
[∣∣eiαY − k−1∑

j=0

(iαY )j

j!

∣∣] ≤ αk

k!
E[Y k].

Similarly we have ∣∣∣E[eiαB]−
k−1∑
j=0

(iα)j

j!
E[Bj]

∣∣∣ ≤ αk

k!
E[Bk].

Because the first k moments of Y match those of B, we get a ton of cancellation:

∣∣E[eiαY ]− E[eiαB]
∣∣ ≤ αk

k!
E[Y k] +

αk

k!
E[Bk] = 2

αk

k!
E[Bk].

In particular, we have

1 =
∣∣E[eiαY ]

∣∣ ≤ ∣∣E[eiαB]
∣∣+ 2

αk

k!
E[Bk] ≤ e−α

2n/2 + 2
αk

k!
E[Bk].

Hence, using the moment bound of Lemma 31, we have

1 ≤ e−α
2n/2 + 2

αk

2k/2(k/2)!
nk/2 ≤ e−α

2n/2 +
2

(k/2)!

(α2n

2

)k/2
.
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Let f be the function defined by f(x) = e−x + 2
(k/2)!

xk/2. Then the inequality above

simplifies to f(α2n/2) ≥ 1. Note that f(0) = 1. Also f is convex on the interval [0,∞).
We claim that f(k

√
2/8) < 1. To prove it, we will show that the first term of f is less

than 1
2

and the second term is at most 1
2
. Because k ≥ 4, the first term indeed satisfies

e−k
√

2/8 ≤ e−
√

2/2 <
1

2
.

The second term is 2
(k/2)!

(k
√

2/8)k/2. If k = 4, then this term is exactly 1
2
. Otherwise k ≥ 6,

and so by Stirling’s formula we have

2

(k/2)!

(k√2

8

)k/2
≤ 2

(k/2)k/2e−k/2
√
πk

(k√2

8

)k/2
=

2√
πk

(e√2

4

)k/2
<

2√
πk

<
1

2
.

In either case, the second term is at most 1
2
. Hence f(k

√
2/8) < 1.

To summarize, f is convex on [0,∞), f(0) = 1, and f(k
√

2/8) < 1. It follows that f
is less than 1 on the interval (0, k

√
2/8]. Because f(α2n/2) ≥ 1, we have α2n/2 > k

√
2/8.

Solving for k gives

k < 2
√

2α2n = 2
√

2
(2π

m

)2

n <
112n

m2
.

So far, we assumed that k is even. Now suppose that k is odd. We can apply the proof
above to k − 1, which gives the bound k − 1 < 112n

m2 . Because k ≥ 5, we have

k ≤ 5

4
(k − 1) <

5

4
· 112n

m2
=

140n

m2
.

7 Tight upper bound on k-wise uniformity vs. thresh-

old

In this section we prove Theorem 6, which follows from Theorem 50 below by translating
the statement for {−1, 1}n to {0, 1}n using Fact 26.

We will show that for any k ≥ 3, any k-wise uniform distribution over {−1, 1}n must put
nonzero probability masses on strings x whose sums

∑n
i=1 xi are −Ω(

√
nk) and Ω(

√
nk) away

from 0. This result shows that the lower bound we obtain in Theorem 6 is tight. We note
that this is not true for k = 2, as when n is odd, there exists a pairwise uniform distribution
supported on the all −1 vector and vectors with (n+ 1)/2 ones.

Let X1, X2, . . . , Xn be independent random variables chosen uniformly from {−1, 1}.
Let B be the sum of all the Xj. The distribution of B is a shifted binomial distribution.

First we give a lower bound on the dth moment of B.

Claim 49. Let d be a nonnegative integer. Then E[|B|d] ≥ (n(d−1)
e2

)
d/2

.

Proof. We first prove the claim assuming d is even. Let d = 2r. Consider expanding B2r,
which gives us a sum of n2r terms. If for some index i, the variable Xi appears an odd
number of times in a term, then this term has expectation zero. So the terms with nonzero
expectation are the ones in which each Xi appears an even number of times. In particular,
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each such term has expectation 1. It suffices to consider the terms in which either each Xi

appears exactly twice or does not appear at all. There are
(
n
r

)
ways of choosing the indices

that appear twice in a term, and each term appears (2r)!/2r number of times in the n2r

terms. Hence we have

E[B2r] ≥
(
n

r

)
(2r)!

2r
.

Using the inequality
(
n
r

)
≥ (n/r)r and a crude form of Stirling’s formula, n! ≥ (n/e)n, we

have (
n

r

)
(2r)!

2r
≥
(n
r

)r(2r

e

)2r 1

2r
=
(2nr

e2

)r
,

proving the claim for even d.
For odd d, let d = 2r+1. Then by Jensen’s inequality, we have E[|B|2r+1] ≥ E[B2r]

2r+1
2r ≥

(2nr
e2

)
r+1
2 .

Theorem 50. Let t+ and t− be two positive integers. Let Y be a random variable that is
supported on {−1, 1}n so that

∑
i Yi ≥ −t− and

∑
i Yi ≤ t+. Let k be a positive integer.

Suppose that the (2k + 1)th moment of Y is equal to the (2k + 1)th moment of B. Then
min{t−, t+} ≥

√
nk/3.

Remark 3. The conclusion is false when Y only matches the first two moments of B.
When n is odd, there exists a pairwise uniform distribution supported on the all −1 vector
and vectors with (n+ 1)/2 ones.

Proof. Let p+ and p− denote Pr[Y ≥ 0] and Pr[Y < 0] respectively. Note that E[Y 2k+1] =
E[B2k+1] = 0. Together with Claim 49, we have

p+ E[|Y |2k+1 | Y ≥ 0]− p− E[|Y |2k+1 | Y < 0] = E[Y 2k+1] = 0

p+ E[|Y |2k+1 | Y ≥ 0] + p− E[|Y |2k+1 | Y < 0] = E[|Y |2k+1] ≥
(2nk

e2

)k
.

Summing the two relations, we have 2p+ E[|Y |2k+1 | Y ≥ 0] ≥ (2nk
e2

)
2k+1

2 . Hence, there must

be a point y in Y such that y2k+1 ≥ (nk/9)
2k+1
2k , and so y ≥

√
nk/3. By symmetry, there is

another point y′ in Y such that y′ ≤ −
√
nk/3.
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