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Abstract

The function f : {−1, 1}n → {−1, 1} is a k-junta if it depends on at most k of its variables.
We consider the problem of tolerant testing of k-juntas, where the testing algorithm must accept
any function that is ε-close to some k-junta and reject any function that is ε′-far from every
k′-junta for some ε′ = O(ε) and k′ = O(k).

Our first result is an algorithm that solves this problem with query complexity polynomial
in k and 1/ε. This result is obtained via a new polynomial-time approximation algorithm for
submodular function minimization (SFM) under large cardinality constraints, which holds even
when only given an approximate oracle access to the function.

Our second result considers the case where k′ = k. We show how to obtain a smooth tradeoff
between the amount of tolerance and the query complexity in this setting. Specifically, we design
an algorithm that given ρ ∈ (0, 1/2) accepts any function that is ερ

8 -close to some k-junta and
rejects any function that is ε-far from every k-junta. The query complexity of the algorithm is
O
(

k log k
ερ(1−ρ)k

)
.

Finally, we show how to apply the second result to the problem of tolerant isomorphism
testing between two unknown Boolean functions f and g. We give an algorithm for this problem
whose query complexity only depends on the (unknown) smallest k such that either f or g is
close to being a k-junta.

∗University of Waterloo. Email: eric.blais@uwaterloo.ca.
†Columbia University. Email: ccanonne@cs.columbia.edu. Research supported by NSF CCF-1115703 and NSF

CCF-1319788.
‡School of EE, Tel Aviv University. Email: talyaa01@gmail.com. This research was partially supported by the

Israel Science Foundation grant No. 671/13 and by a grant from the Blavatnik fund.
§University of Waterloo. Email: amit.levi@uwaterloo.ca.
¶School of EE, Tel Aviv University. Email: danaron@post.tau.ac.il. This research was partially supported by

the Israel Science Foundation grant No. 671/13 and by a grant from the Blavatnik fund.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 105 (2016)

mailto:eric.blais@uwaterloo.ca
mailto:ccanonne@cs.columbia.edu
mailto:talyaa01@gmail.com
mailto:amit.levi@uwaterloo.ca
mailto:danaron@post.tau.ac.il


1 Introduction
A function f : {−1, 1}n → {−1, 1} is a k-junta if it depends on at most k of its variables. Juntas
are a central object of study in the analysis of Boolean functions, in particular since they are good
approximators for many classes of (more complex) Boolean functions. In the context of learning,
the study of juntas was introduced by Blum et al. [Blu94, BL97] to model the problem of learning
in the presence of irrelevant attributes. Since then, juntas have been extensively studied both in
computational learning theory (e.g., [MOS03, Val15]) and in applied machine learning (e.g., [JL10]).

Juntas have also been studied within the framework of property testing. Here the task is to
design a randomized algorithm that, given query access to a function f , accepts f if it is a k-junta
and rejects f if it is ε-far from every k-junta (where by ε-far we mean that f must be modified in at
least an ε-fraction of its values in order to be made a k-junta). The algorithm should succeed with
high constant probability, and should perform as few queries as possible. The problem of testing
k-juntas was first addressed by Fischer et. [FKR+04]. They designed an algorithm that queries the
function on a number of inputs polynomial in k, and independent of n. A series of subsequent works
essentially settled the optimal query complexity for this problem, establishing that Θ̃(k/ε) queries
are both necessary and sufficient for this problem [Bla08, Bla09, CG04, STW15].

The standard setting of property testing, however, is somewhat brittle, in that a testing algorithm
is only guaranteed to accept functions that exactly satisfy the property. But what if one wishes to
accept functions that are close to the desired property? To address this question, Parnas, Ron, and
Rubinfeld introduced in [PRR06] a natural generalization of property testing, where the algorithm
is required to be tolerant. Namely, a tolerant property testing algorithm is required to accept any
function that is close to the property, and, as in the standard model, to reject any function that is
far from the property.1

As observed in [PRR06], any standard testing algorithm whose queries are uniformly (but
not necessarily independently) distributed, is inherently tolerant to some extent. However, for
many problems, strengthening the tolerance requires applying different methods and devising
new algorithms (see e.g., [GR05, PRR06, FN07, ACCL07, KS09, MR09, FR10, CGR13, BMR16]).
Furthermore, there are some properties that have standard testers with sublinear query complexity,
but for which any tolerant tester must perform a linear number of queries [FF06, Tel16].

The problem of tolerant testing of juntas was previously considered by Diakonikolas et
al. [DLM+07]. They applied the aforementioned observation from [PRR06] and showed that
one of the junta testers from [FKR+04] actually accepts functions that are poly(k, 1/ε)-close to
k-juntas. Chakraborty et al. [CFGM12] observed that the analysis of the (standard) junta tester of
Blais [Bla09] implicitly implies an exp(k/ε) query complexity tolerant tester which accepts functions
that are ε/C-close to some k-junta (for some constant C > 1) and rejects functions that are ε-far
from every k-junta.

1.1 Our results

In this work, we study the question of tolerant testing of juntas from two different angles, and obtain
1Ideally, a tolerant testing algorithm should work for any given tolerance parameter ε′ < ε (that is, accept functions

that are ε′-close to having the property), and have complexity that depends on ε− ε′. However, in some cases the
relation between ε′ and ε may be more restricted (e.g., ε′ = ε/c for a constant c). A closely related notion considered
in [PRR06] is that of distance approximation where the goal is to obtain an estimate of the distance that the object
has to a property.
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two algorithms with different (and incomparable) guarantees, Further, we show how to leverage one
of these algorithms to get a tester for isomorphism between Boolean functions with “instance-by-
instance” (defined below) query complexity. The first of our results is a poly(k, 1/ε)-query algorithm
that accepts functions which are close to k-juntas and rejects functions which are far from every
4k-junta.

Theorem 1.1. There exists an algorithm that, given query access to a function f : {−1, 1}n →
{−1, 1} and parameters k ≥ 1 and ε ∈ (0, 1), satisfies the following.
• If f is ε/16-close to some k-junta, then the algorithm accepts with high constant probability.
• If f is ε-far from every 4k-junta, then the algorithm rejects with high constant probability.

The query complexity of the algorithm is poly(k, 1
ε ) .

The algorithm referred to in the theorem can be seen as a relaxed version of a tolerant testing
algorithm. Namely, the algorithm rejects functions that are ε-far from every 4k-junta rather than
ε-far from every k-junta. Similar relaxations have been considered both in the standard testing
model (e.g., [PR02, KR98, KNOW14]) and in the tolerant testing model [PR02].

We next study the question of tolerant testing without the above relaxation. That is, when the
tester is required to reject functions that are ε-far from being a k-junta. We obtain a smooth tradeoff
between the amount of tolerance and the query complexity. In particular, this tradeoff allows one
to recover, as special cases, both the results of Fischer et al. [FKR+04] and (an improvement of)
Chakraborty et al. [CFGM12].

Theorem 1.2. There exists an algorithm that, given query access to a function f : {−1, 1}n →
{−1, 1} and parameters k ≥ 1, ε ∈ (0, 1) and ρ ∈ (0, 1/2), satisfies the following.
• If f is ρε/8-close to some k-junta, then the algorithm accepts with high constant probability.
• If f is ε-far from every k-junta, then the algorithm rejects with high constant probability.

The query complexity of the algorithm is O
(

k log k
ερ(1−ρ)k

)
.

Finally, we show how the above results can be applied to the problem of isomorphism testing,
which we recall next. Given query access to two unknown Boolean functions f, g : {−1, 1}n → {−1, 1}
and a parameter ε ∈ (0, 1], one has to distinguish between (i) f is equal to g up to some relabeling of
the input variables; and (ii) dist(f, g ◦ π) > ε for every such relabeling π. The worst-case complexity
of this task is known, with Θ̃

(
2
n
2
)
queries being necessary and sufficient [AB10, ABC+13].

However, is the exponential dependence on n always necessary, or can we obtain better results
for "simple" functions? Ideally we would like our testers to improve on this worst-case behavior,
and instead have an instance-specific query complexity, depending only on some intrinsic parameter
of the functions f, g to be tested. This is the direction we pursue here. Let k∗ = k∗(f, g, γ) be
the smallest k such that either f or g is γ-close to being a k-junta. We show that it is possible
to achieve a query complexity only depending on this (unknown) parameter, namely of the form
Õ
(
2k∗(f,g,O(ε))/2).2 Moreover, our algorithm offers a much stronger guarantee: namely, it allows

tolerant isomorphism testing.

Theorem 1.3 (Tolerant isomorphism testing). There exists an algorithm that, given query access
to two functions f, g : {−1, 1}n → {−1, 1} and parameter ε ∈ (0, 1), satisfies the following, for some
absolute constant C ≥ 1.

2It is worth noting that this parameter can be much lower that the actual number of relevant variables for either
functions; for instance, there exist functions depending on all n variables, yet that are o(1)-close to O(1)-juntas.
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• If f and g are ε
C -close to isomorphic, then the algorithm accepts with high constant probability.

• If f and g are ε-far from isomorphic, then the algorithm rejects with high constant probability.

The query complexity of the algorithm is Õ
(
2
k∗
2
)
with high-probability (and Õ

(
2
n
2
)
in the worst case),

where k∗ = k∗(f, g, εC ).

The above statement is rather technical, and requires careful parsing. In particular, the parameter
k∗ is crucially not provided as input to the algorithm: instead, it is discovered adaptively by invoking
the tolerant tester of Theorem 1.2. This explains the high-probability bound on the query complexity:
with some small probability, the algorithm may fail to retrieve the right value of k∗ – in which case
it may use instead a larger value, possibly up to n.
Remark 1.4 (On the running time of our algorithms.). We note that, as in previous work on testing
juntas, the query complexity depends only on k and 1/ε but the running time depends on n (since
even querying a single point in {−1, 1}n requires specifying n bits).

1.2 Overview and techniques

The proofs of Theorems 1.1 and 1.2 both rely on the notion of the influence of a set of variables.
Given a Boolean function f : {−1, 1}n → {−1, 1} and a set S ⊆ [n], the influence of a set S (denoted
Inf f (S)) is the probability that f(x) 6= f(y) when x and y are selected uniformly subject to the
constraint that for any i ∈ S̄, xi = yi. The relation between the number of relevant variables and
the influence of a set was utilized in previous works. For the sake of the discussion, we henceforth
let Jk denote the set of all k-juntas.

Our starting point is similar to that of [FKR+04, Bla09]. We partition the n variables into
m = O(k2) parts, which allows us in a sense to remove the dependence on n. It is not hard to verify
that if f is close to Jk, then there exists k parts for which the following holds. If we denote by
S ⊆ [n] the union of variables in these k parts, then the complement set S̄ has small influence. On
the other hand, Blais [Bla09] showed that if a function is far from Jk, then a random partition
into a sufficiently large number of parts ensures the following with high constant probability. For
every union S of k parts, the complement set S̄ will have large influence. The above gives rise to
a (2(1+(o(1))k log k/ε)-query complexity algorithm that distinguishes function f that are 1

3ε-close to
Jk from functions that are ε-far from Jk. The algorithm considers all unions S ⊆ [n] of k parts,
estimates the influence of S̄, and accepts if there exists a set with sufficiently small estimated
influence. In order to obtain an algorithm with better query complexity, we consider two relaxations.

Parameterized tolerant testing through submodular minimization. In order to describe
the algorithm referred to in Theorem 1.1, it will be useful to introduce the following function. For a
Boolean function f and a partition I, we let h : 2[m] → [0, 1] be defined as h(T ) def= Inf f (

⋃
i∈T Ii).

The starting point of our approach is the observation that the exhaustive search algorithm described
previously can be seen as performing a brute-force minimization of h, under a cardinality constraint.
Indeed, it effectively goes over all sets T ⊆ [m] of size m− k, estimates h(T ), and accepts if there
exists a set T for which the estimated value is sufficiently small. With this view, it is natural to
ask whether this minimization cannot be performed more efficiently, by exploiting the structural
properties of the function h: namely that, by the properties of the influence, h is submodular. That is,
for every two sets T1 ⊆ T2 and variable i /∈ T1, it holds that h(T1∪{i})−h(T1) ≥ h(T2∪{i})−h(T2).
While it is possible to find the minimum value of a submodular function in polynomial time, if a
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cardinality constraint is introduced, then even finding an approximate minimum is hard [SF11]. In
light of the hardness of the problem, we design an algorithm for the following bi-criteria relaxation.
Given oracle access to a non-negative submodular function h : 2m → R and input parameters
ε ∈ (0, 1) and k ∈ N, the algorithm distinguishes between the following cases:
• There exists a set T such that |T | ≥ m− k and h(T ) ≤ ε;
• For every set T such that |T | ≥ m− 2k, h(T ) > 2ε.
Moreover, the algorithm can be adapted to the case where it is only granted access to an

approximate oracle for h (for a precise statement, see Theorem 4.1). This is critical in our setting,
since h(T ) = Inf f (

⋃
i∈T Ii), and we can only estimate the influence of sets of variables.

Behind Theorem 1.2: biased influence and recycling queries. The key idea behind our
second approach is the following. The exhaustive search algorithm estimates the influence of every
set S̄ separately, by performing pairs of queries specifically designed for that set. Namely, it queries
the value of the function on pairs of points that agree on the set S. If it was possible to use the same
queries for estimating the influence of different sets, then we could reduce the query complexity. We
show that this can be done if we consider a generalized notion of the influence. Given ρ ∈ (0, 1/2],
the ρ-biased influence of a set S ⊆ [n] (denoted as Infρf (S)), is the probability that f(x) 6= f(y)
where x is drawn uniformly at random and y is obtained from x in the following way. For every
i ∈ S̄, xi = yi and for every i ∈ S, yi = xi with probability 1− ρ and yi = ¬xi with probability ρ.3

Our main technical result is an algorithm which ensures that, for every ε, γ ∈ (0, 1) and ρ ∈ (0, 1
4 ],

with probability at least 1 − o(1) the following holds simultaneously for all S ⊆ [n] such that
|S| > n− k:
• if Infρf (S) > 2ρε, than the estimate ν̂S of the ρ-biased influence of S is within a multiplicative

factor of (1± γ) of its true value;
• if Infρf (S) < ρε, than the estimate ν̂S of the ρ-biased influence of S does not exceed (1 + γ)ρε.

The query complexity of the algorithm is O
(

k logn
γ2ρε(1−ρ)k

)
.

Application to isomorphism testing: tolerant testing and noisy samplers. The structure
of our tolerant isomorphism testing algorithm is quite intuitive, and consists of two phases. In
the first phase, we run a linear search on k, repeatedly invoking our tolerant tester to discover the
smallest value k satisfying min(dist(f,Jk), dist(g,Jk)) ≤ ε/C. We note that a similar approach
using a tester whose tolerance is only poly(ε/k) might return a much larger value of k, since as k
increases the allowed tolerance decreases. In the second phase, we use this value of k to tolerantly
test isomorphism between f and g. This phase, however, is not as straightforward as it seems:
indeed, to achieve the desired query complexity, we would like to test isomorphism – for which we
have known algorithms – between fk and gk, that is, the k-juntas closest to f and g respectively.

Yet here, we face two issues: (i) we do not have query access to fk and gk; (ii) even in the
completeness case fk and gk need not actually be isomorphic. Indeed, f and g are only promised to
be close to k-juntas, and close to isomorphic. Hence, the corresponding juntas are only guaranteed
to be close to isomorphic.

3We note that when applying the ρ-biased influence on the set [n], we actually get the stability of the function f at
(1− 2ρ). See Chapter 2.4 in [O’D14].
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Addressing item (ii) relies on adapting the algorithm of [ABC+13], along with a careful and
technical analysis of the distribution of the points it queries. (This analysis is also the key to
providing the tolerance guarantees of our isomorphism tester.) We address item (i) as follows. Our
algorithm builds on the ideas of Chakraborty et al. [CGM11], namely on their notion of a “noisy
sampler”. A noisy sampler is given query access to a function that is promised to be close to some
k-junta and provides (almost) uniformly distributed samples labeled (approximately) according
to this k-junta. While the [CGM11] noisy sampler works for functions that are poly(ε/k)-close to
Jk, we need a noisy sampler that works for functions that are only ε

C -close to Jk. To this end, we
replace the weakly tolerant testing algorithm of [Bla09] used in the noisy sampler of [CGM11] with
our tolerant testing algorithm. The query complexity of the resulting noisy sampler is indeed much
higher than that of [CGM11]. However, this does not increase the overall query complexity of our
tolerant isomorphism testing algorithm, as stated in Theorem 1.3.

1.3 Organization of the paper

After introducing the necessary notations and definitions in Section 2, we describe in Section 3
the common starting point of our algorithms – the reduction from n variables to O(k2) parts.
Section 4 then contains the details of the submodular minimization under cardinality constraint
underlying Theorem 1.1, which is then implemented in Section 5 with an approximate submodular
minimization primitive. We then turn in Section 6 to the proof of Theorem 1.2, before describing
in Section 7 how to leverage it to obtain our instance-by-instance tolerant isomorphism testing
result.

2 Preliminaries

2.1 Property testing, tolerance, and juntas

A property P of Boolean functions is a subset of all these functions, and we say a function f has
the property P if f ∈ P . The distance between two functions f, g : {−1, 1}n → {−1, 1} is defined as
their (normalized) Hamming distance dist(f, g) def= Prx [ f(x) 6= g(x) ], where x is drawn uniformly
at random. Accordingly, for a function f and a property P we define the distance from f to P
as dist(f,P) def= ming∈P dist(f, g). Given ε ≥ 0 and a property P, we will say a function f is ε-far
from P (resp. ε-close to P) if dist(f,P) > ε (resp. dist(f,P) ≤ ε).

We can now give a formal definition of a property testing algorithm.

Definition 2.1. A testing algorithm for a property P is a probabilistic algorithm that gets an input
parameter ε and oracle access to a function f : {−1, 1}n → {−1, 1}. The algorithm should output a
binary verdict that satisfies the following two conditions.
• If f ∈ P then the algorithm accepts f with probability at least 2/3.
• If dist(f,P) > ε, then the algorithm rejects f with probability at least 2/3.

A testing algorithm has one-sided error if it accepts every object that satisfies the property with
probability 1. Otherwise, it has two-sided error.

Next, we define the notion of tolerant testing algorithm, a testing algorithm that is also required
to accept functions merely close to the property:
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Definition 2.2. A tolerant testing algorithm for a property P is a probabilistic algorithm that gets
two input parameters ε1, ε2 ∈ [0, 1] such that ε1 < ε2, and oracle access to a function f : {−1, 1}n →
{−1, 1}. The algorithm should output a binary verdict that satisfies the following two conditions.
• If dist(f,P) ≤ ε1 then the algorithm accepts f with probability at least 2/3.
• If dist(f,P) > ε2, then the algorithm rejects f with probability at least 2/3.

In some cases one may want to consider a relaxation of the definition of tolerant testing to the
following tolerant testing of parameterized properties .

Definition 2.3 (Tolerant Testing of Parameterized Properties). Let P = (Ps)s∈N be a non-
decreasing family of properties parameterized by s ∈ N, i.e. such that Ps ⊆ Pt whenever s ≤ t; and
σ : N → N be a non-decreasing mapping. A σ-tolerant testing algorithm for P is a probabilistic
algorithm that gets three input parameters s ∈ N and ε1, ε2 ∈ [0, 1] such that ε1 < ε2, as well as
oracle access to a function f : {−1, 1}n → {−1, 1}. The algorithm should output a binary verdict
that satisfies the following two conditions.
• If dist(f,Ps) ≤ ε1 then the algorithm accepts f with probability at least 2/3.
• If dist

(
f,Pσ(s)

)
> ε2, then the algorithm rejects f with probability at least 2/3.

The main focus of this work will be the property of being a junta, that is a Boolean function
that only truly depends on a (small) subset of its variables:

Definition 2.4 (Juntas). A Boolean function f : {±1}n → {±1} is said to be a k-junta if there
exists a set J ⊆ [n] of size at most k, such that f(x) = f(y) for every two assignments x, y ∈ {±1}n
that satisfy xi = yi for every i ∈ J . We let Jk denote the set of all k-juntas (over n variables).

Notations. Hereafter, we denote by log the binary logarithm, by [n] the set of integers {1, . . . , n},
and write Sn for the set of permutations of [n]. Given two disjoint sets S, T ⊆ [n] and two partial
assignments x ∈ {±1}|S| and y ∈ {±1}|T |, we let xt y ∈ {±1}|S∪T | be the partial assignment whose
i-th coordinate is xi if i ∈ S and yi if i ∈ T . Finally, given a Boolean function f : {−1, 1}n → {−1, 1}
we write Of for an oracle providing query access to f .

2.2 Fourier analysis over the hypercube

Throughout this work, our main object of interest are functions over the discrete cube {−1, 1}n,
equipped with the uniform measure. Real-valued functions over the discrete cube can be expressed
by their Fourier decomposition in the following way.

Definition 2.5 (Characters and Fourier Coefficients). Let S ⊆ [n]. The character χS is the function
over {−1, 1}n, defined by χS(x) def=

∏
i∈S xi. Given a function f : {−1, 1}n → R, its expansion as a

linear combination of the characters

f(x) =
∑
S⊆[n]

f̂(S)χS(x) ,

is called the Fourier expansion of f , and f̂(S) is the Fourier coefficient of S.
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The set of all characters forms an orthonormal basis with respect to the following natural inner
product.

〈f, g〉 def= E
x∼{−1,1}n

[f(x)g(x)] .

A useful property of the characters is that for any S ⊆ [n] and every x, y ∈ {−1, 1}n, χS(x⊕ y) =
χS(x)χS(y).

A key notion in this work is the notion of influence of a set, which generalizes the standard
notion of influence of a variable:

Definition 2.6 (Set-influence). For a Boolean function f : {−1, 1}n → {−1, 1}, the set-influence of
a set S ⊆ [n] is defined as

Inf f (S) = 2 Pr[ f(x t u) 6= f(x t v) ]

where x ∼ {−1, 1}[n]\S , and u, v ∼ {−1, 1}S .

The following proposition establishes the Fourier representation of the set-influence.

Fact 2.7. Let f : {−1, 1}n → {−1, 1} where {−1, 1}n is equipped with the uniform measure. Then,
for any set S ⊆ [n],

Inf f (S) =
∑

T :S∩T 6=∅
f̂(T )2 .

3 From n variables to O(k2) parts
In this section we build on techniques from [FKR+04, Bla09] and describe how to reduce the problem
of testing closeness to a k-junta to testing closeness to a k-part junta (defined below). The advantage
of doing so is that while the former question is about functions on n variables, the latter does no
longer involve n as a parameter : only k and ε now have a role to play. We start with a useful
definition and two results that we shall require: that of k-part juntas, and their properties with
regard to random partitions of the domain.

Definition 3.1 (Partition juntas [Bla12, Definition 5.3], extended). Let I be a partition of [n],
and k ≥ 1. The function f : {−1, 1}n → {−1, 1} is a k-part junta with respect to I if the relevant
coordinates in f are all contained in at most k parts of I. Moreover,
(i) f is said to ε-approximate being a k-part junta with respect to I if there exists a set J formed

by taking the union of k parts in I satisfying Inf f (J̄) ≤ 2ε.
(ii) Conversely, f is said to ε-violate being a k-part junta with respect to I if for every set J formed

by taking the union of k parts in I, Inf f (J̄) > 2ε.

Lemma 3.2 ([Bla12, Lemma 5.4]). For f : {−1, 1}n → {−1, 1} and k ≥ 1, let α def= dist(f,Jk).
Also, let I be a random partition of [n] with s def= 24k2 parts obtained by uniformly and independently
assigning each coordinate to a part. With probability at least 5/6 over the choice of the partition, f
α
2 -violates being a k-part junta with respect to I.

Lemma 3.3. For f : {−1, 1}n → {−1, 1} and k ≥ 1, let α def= dist(f,Jk) and let I be any partition
of [n] into s ≥ k parts. Then f 2α-approximates being a k-part junta with respect to I.
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Proof: Let g ∈ Jk be such that dist(f, g) = dist(f,Jk) = α. Let Ii1 , . . . , Ii` be the ` ≤ k parts of I
containing the relevant variables of g. Then, for any set S ⊂ [s] of size k such that {i1, . . . , i`} ⊆ S,
we have that for J ←

⋃
i∈S Ii, when drawing x ∼ {−1, 1}J , and u, v ∼ {−1, 1}J̄ the following holds.

Inf f (J̄) = 2 Pr[ f(x t u) 6= f(x t v) ] ≤ 2 Pr[ f(x t u) 6= g(x t u) or f(x t v) 6= g(x t v) ]
≤ 2 (Pr[ f(x t u) 6= g(x t u) ] + Pr[ f(x t v) 6= g(x t v) ]) ≤ 2 (α+ α) = 4α ,

where the first inequality follows from observing that (as g does not depend on variables in J̄) one
can only have f(x t u) 6= f(x t v) if at f disagrees with g on at least one of the two points; and the
third inequality holds since both x t u and x t v are uniformly distributed.

The above two lemmas suggest the following approach. We would like to distinguish functions
that are ε′-close to some k-junta and functions that are ε-far from every k′-junta. Suppose we
select a random partition of [n] into O(k2) parts. Then with high probability over the choice of the
partition, it is sufficient to distinguish between functions that 2ε′-approximate being a k-junta and
functions that ε/2-violate being a k′-part junta. Specifically, we get the proposition below, which
we apply throughout this work:

Proposition 3.4 (Reduction to part juntas). Let T be an algorithm that is given query access to a
function f : {−1, 1}n → {−1, 1}, a partition I = (I1, . . . , Im) of [n] into m parts, and parameters
k ∈ N and ε ∈ (0, 1). Suppose that T performs q(k, ε,m) queries to f and satisfies the following
guarantees, for a pair of functions ` : (0, 1)× N→ (0, 1) and `′ : N→ N.
• If f ε′-approximates being a k-part junta with respect to I and ε′ ≤ `(ε, k), then T returns

accept with probability at least 5/6;
• If f ε-violates being a k′-part junta with respect to I and k′ ≥ `′(k), then T returns reject with
probability at least 5/6.

Then there exists an algorithm T ′, that given query access to f and parameters k ∈ N and ε ∈ (0, 1),
satisfies the following.
• If dist(f,Jk) ≤ ε′

2 and ε′ ≤ `(ε, k), then T ′ outputs accept with probability at least 2/3;
• If dist(f,Jk′) > 2ε and k′ ≥ `′(k), then T ′ outputs reject with probability at least 2/3.

Moreover, the algorithm T ′ has query complexity q(k, ε, O(24k2)).

Proof of Proposition 3.4: The algorithm T ′ first obtains a random partition I of [n] into
m

def= 24k′2 parts by uniformly and independently assigning each coordinate to a part. T ′ then
invokes T with parameters ε, k,m and the partition I. By Lemma 3.2 and the choice of m, with
probability at least 5/6 the partition I is good in the following sense. For α = dist(f,Jk′), it
holds that f α

2 -violates being a k junta with respect to I. Conditioned on I being good, and
by Lemma 3.3, we are guaranteed that the following holds.
(i) If dist(f,Jk) ≤ ε′

2 , then f ε
′-approximates being a k-part junta with respect to I;

(ii) If dist(f,Jk′) > 2ε, then f ε-violates being a k′-part junta with respect to I.
Therefore, T will then answer as specified by the proposition with probability at least 5/6, making
q(ε, k,m) queries. Overall, T ′ is thus successful with probability at least 2/3 by a union bound.

As an illustration of the above technique, and a warmup towards the (more involved) algorithms
of the next sections, we show how to obtain an algorithm T ′ as specified in Proposition 3.4 with
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query complexity 2(1+o(1))k log k/ε. Given a partition I of [n] into m parts, T considers all
(m
k

)
sets

of variables that result from taking the union of k parts. For each such set S, it obtains an estimate
Ĩnf f (S̄) of the influence of S̄, by performing O

(
logm
ε

)
queries to f . T accepts if for at least one of

the sets S, Ĩnf f (S̄) is at most 3
2ε. Performing O( logm

ε ) queries to the oracle for each set, ensures
that the following holds with high constant probability. For every set S such that Inf f (S) ≤ 4

3ε,
Ĩnf f (S) ≤ 3

2ε and for every set S such that Inf f (S) > 2ε, Ĩnf f (S) > 3
2ε. Hence, the algorithm T

fulfills the requirements stated in Proposition 3.4, and it follows that:
• If f is 1

3ε-close to some k-junta then T ′ accepts with probability at least 2/3.
• If f is ε-far from every k-junta then T ′ rejects with probability at least 2/3.

Since m = 24k2, the query complexity of the algorithm is
(m
k

)
·O( logm

ε ) = 2(1+o(1))k log k/ε.

4 Approximate submodular minimization under cardinality con-
straints

In this section we show how a certain bi-criteria approximate version of submodular minimization
with a cardinality constraint can be reduced to approximate submodular minimization with no
cardinality constraint. This reduction holds even when given approximate oracle access to the
submodular function, and is meaningful when the cardinality constraint is sufficiently large. More
precise details follows.

Definition 4.1 (Approximate oracle). Let h : 2[m] → R be a function. An approximate oracle for
h, denoted O±h , is a randomized algorithm which, for any input S ⊆ [m] and parameters τ, δ∈ (0, 1),
returns a value h̃(S) such that |h̃(S)− h(S)| ≤ τ with probability at least 1− δ

Definition 4.2 (Approximate submodular minimization algorithm). Let h : 2[m] → R be a non-
negative submodular function and let O±h denote an approximate oracle for h. An approximate
submodular function minimization algorithm (ASFM) is an algorithm that, when given access to
O±h and called with input parameters ξ and δ, returns a value ν such that |ν −minS{h(S)}| ≤ ξ
with probability at least 1− δ.

In Corollary 5.4 in Section 5 we establish the existence of such an algorithm. The running time
of the algorithm is polynomial in m, logarithmic in the maximal value of the function and linear
in the running time of the approximate oracle. We next present an algorithm for approximate
submodular minimization under cardinality constraints.

Algorithm 1 Submodular Minimization under Constraint(O±h , ε, ξ, k)
1: Let h′(S) = h(S)− ε

k |S| so that for every τ ′, δ′ O±h′(S, τ ′, δ′) = O±h (S, τ ′, δ′)− ε
k |S| .

2: Let ν be the returned value from invoking an ASFM algorithm with access to O±h′ and parameters
ξ and δ.

3: Accept if and only if ν ≤ (1− m−k
k ) · ε+ ξ.

Theorem 4.1. For a submodular function h, Algorithm 1 satisfies the following conditions:
1. If there exists a set S such that |S| ≥ m− k and h(S) ≤ ε, then the algorithm accepts with

probability at least 1− δ.
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2. If for every set S such that |S| ≥ m− 2(1 + ξ
ε )k, we have h(S) > 2(ε+ ξ), then the algorithm

rejects with probability at least 1− δ.
(Moreover, the second item can be strengthened so that it holds for functions h which satisfy the
following: (i) for every set S such that |S| ≥ m− k, h(S) > 2ε+ 2ξ and (ii) for every set S such
that |S| ≥ m− 2(1 + ξ

ε )k, h(S) > ε+ 2ξ . )

Proof: By Definition 4.2, with probability at least 1 − δ the value ν defined in Step 2 of the
algorithm satisfies

|ν −min
S
{h′(S)}| ≤ ξ . (1)

We start with proving the first item. If there exists a set S∗ such that |S∗| ≥ m− k, then by
Equation (1) and the definition of h′,

ν ≤ min
S
h′(S) + ξ ≤ h′(S∗) + ξ ≤ h(S∗)− ε

k
|S∗|+ ξ ≤ ε− m− k

k
ε+ ξ =

(
1− m− k

k

)
ε+ ξ .

Hence, the algorithm accepts.
We now prove that if the algorithm accepts (and conditioning on Equation (1) holding), then

either (i) there exists a set |S∗| such that |S∗| ≥ m−k and h(S∗) ≤ 2ε+2ξ or (ii) |S∗| ≥ m−2(1 + ξ
ε )k

and h(S∗) ≤ ε+ 2ξ. We let S∗ def= argminS{h′(S)}, and divide the analysis into two cases, depending
on |S∗|.
• If |S∗| ≥ m− k, then since minS{h′(S)} ≤ ν + ξ and ν ≤ (1− m−k

k )ε+ ξ,

h(S∗) = h′(S∗) + ε

k
|S∗| ≤ ν + ξ + ε

k
·m ≤

(
1− m− k

k

)
ε+ 2ξ + εm

k
= 2ε+ 2ξ,

as claimed in the item (i).
• If |S∗| ≤ m− k, then

h(S∗) = h′(S∗) + ε

k
|S∗| ≤ ν + ξ + ε

k
· (m− k) ≤

(
1− m− k

k

)
ε+ 2ξ + ε(m− k)

k
= ε+ 2ξ.

Also, since for every set S, h(S) ≥ 0 and h′(S∗) ≤ ν + ξ, it holds that

ε

k
|S∗| = h(S∗)− h′(S∗) ≥ (m− k

k
− 1)ε− 2ξ.

Therefore, |S∗| ≥ m− (2 + 2ξ
ε )k, and item (ii) holds.

5 Approximate submodular function minimization
In this section we use results from [LSW15] to obtain an approximate submodular minimization
algorithm, as defined in Definition 4.2. This is done in three steps: (1) We use the known fact that
the problem of finding the minimum of a submodular function g can be reduced to finding the
minimum of the Lovász extension for that function, denoted Lg. (2) We then extend the results
of [LSW15] (and specifically of Theorem 61) and provide a noisy separation oracle for Lg when only
given approximate oracle access to the function g. (3) Finally, we apply Theorem 42 from [LSW15],
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which provides an algorithm that, when given access to a separation oracle for a function, returns
an approximation to that function’s minimum value.

We start with the following definition of the Lovász extension of a submodular function.

Definition 5.1 (Lovász Extension). Given a submodular function g : 2[m] → R, the Lovász extension
of g, is a function Lg : [0, 1]m → R which is defined for all x ∈ [0, 1]m by

Lg(x) def= E
t∼[0,1]

[g({ i : xi ≥ t })] ,

where t ∼ [0, 1] denotes that t is drawn uniformly at random from [0, 1].

The following theorem is standard in combinatorial optimization (see e.g. [Bac13] and [GLS12,
Sch02]) and contains useful properties of the Lovász extension.

Theorem 5.1. The Lovász extension Lg of a submodular function g : 2[m] → R satisfies the following
properties.

1. Lg is convex and minx∈[0,1]m{Lg(x)} = minS⊆[m]{g(S)}.
2. If x1 ≥ . . . ≥ xm , then

Lg(x) =
m∑
i=1

(
g([i])− g([i− 1])

)
xi .

By the first item of Theorem 5.1, in order to approximate the minimum value of a submodular
function g, it suffices to approximate the minimum of its Lovász extension. As discussed at the start
of the section, this is done by providing a separation oracle for Lg.

Definition 5.2 (Noisy Separation Oracle [LSW15, Definition 2]). Let h be a convex function
over Rm and let Ω be a convex set in Rm. A separation oracle for h with respect to Ω is an
algorithm that for an input x ∈ Ω and parameters η, γ ≥ 0 satisfies the follows. It either asserts
that h(x) ≤ miny∈Ω{h(y)}+ η or it outputs a halfspace H def= {z : aT z ≤ aTx+ c} such that

{ y ∈ Ω : h(y) ≤ h(x) } ⊂ H ,

where a ∈ [0, 1]m, a 6= 0, and c ≤ γ‖a‖2.

In Theorem 61 in [LSW15] it is shown how to define a separation oracle for a function g when
given exact query access to g; we adapt the proof to the case where one is only granted access to an
approximate oracle for g, and the resulting procedure has small failure probability.
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Algorithm 2 Separation Oracle (O±g , x̄, η, γ, δ)
1: Assume without loss of generality that x̄1 ≥ x̄2 ≥ . . . ≥ x̄m (otherwise re-index the coordinates).
2: Let τ = min{η/4m, γ/2m}.
3: For each i, let g̃([i]) be the returned value from invoking O±g on the set [i] with parameters τ2

2
and δ

m .
4: Define ã ∈ Rm by ãi

def= g̃([i])− g̃([i− 1]) for each i ∈ [m].
5: Let L̃g(x̄) def= ãT x̄.
6: if for every i ∈ [m], |ãi| < τ then
7: return x̄, which satisfies “Lg(x̄) ≤ miny∈[0,1]m{Lg(y)}+ η”.
8: else
9: return the halfspace H = {z : ãT z ≤ L̃g(x̄) + 2τm‖a‖2} .

10: end if

Lemma 5.3. Let g : 2[m] → R be a convex function, and let Φg(·, ·) denote the running time
of the approximate oracle for g. For every x ∈ [0, 1]m, η, γ, δ ∈ (0, 1), with probability at least
1− δ, Algorithm 2 satisfies the guarantees of a separation oracle for Lg (with respect to [0, 1]m). The
algorithm makes m queries to O±g with parameters τ2/2 and δ/m, where τ = min{η/4m, γ/2m},
and its running time is m · Φg( τ

2

2 , δ/m).

In order to prove the above lemma we will use the following theorem from [LSW15].

Theorem 5.2 ([LSW15, Theorem 61], restated). Let g : 2m → R be a submodular function. For
every x ∈ [0, 1]m,

m∑
i=1

(
g([i])− g([i− 1])

)
xi ≤ Lg(x) .

Proof of Lemma 5.3: For every i ∈ [m], let ai
def= g([i])− g([i− 1]), and note that by a union

bound over all i ∈ [m], we have that with probability at least 1− δ, maxi∈[m]|g([i])− g̃([i])| ≤ τ2/2.
We henceforth condition on this, and observe that this implies that, for any y ∈ [0, 1]m,

|ãT y − aT y| ≤ 2m · τ
2

2 = mτ2 . (2)

We next consider two cases. Assume first that there exists an index i ∈ [m] such that |ãi| ≥ τ . That
is, assume that the condition in Step 6 does not hold. Then we prove that for every y ∈ [0, 1]m such
that Lg(y) ≤ Lg(x̄) it holds that y ∈ H, where H is the halfspace defined in Step 9 of the algorithm.

By Theorem 5.2, we have that for any y ∈ [0, 1]m,
∑m
i=1 ai · yi ≤ Lg(y). Since Lg(y) ≤ Lg(x̄), we

get that
ãT y ≤ aT y +mτ2 ≤ Lg(y) +mτ2 ≤ Lg(x̄) +mτ2 . (3)

By Theorem 5.1, together with the assumption that the coordinates of x̄ are sorted,

Lg(x̄) =
m∑
i=1

ai · x̄i ≤
m∑
i=1

ãi · x̄i +mτ2 = L̃g(x̄) +mτ2. (4)

Combining Equation (3) and Equation (4), and since there exists an i such that |ãi| ≥ τ ,

ãT y ≤ L̃g(x̄) + 2mτ2 ≤ L̃g(x̄) + 2mτ‖ã‖2 .
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This implies that y is in H and that for b = L̃g(x̄) and γ = 2τm, H fulfills the requirements of the
halfspace defined in Definition 5.2.

Now consider the case that |ãi| ≤ τ for all i ∈ [m]. it follows that for any y ∈ [0, 1]m,
−mτ ≤ ãT y ≤ mτ . In particular, we have that −mτ ≤ L̃g(x̄) ≤ mτ , which implies that for every
y ∈ [0, 1]m,

L̃g(x̄)− 2mτ ≤ −mτ ≤ ãT y .

Therefore, for every y ∈ [0, 1]m we get

L̃g(x̄)− 3mτ ≤ ãT y −mτ ≤ aT y ≤ Lg(y) ,

where the second inequality follows from Equation (2), and the last inequality follows from Theo-
rem 5.2. Hence, if we let x∗ = arg min{Lg(x)}, we have that

L̃g(x̄) ≤ Lg(x∗) + 3mτ .

By Equation (4), we have that Lg(x̄) ≤ L̃g(x̄) + mτ2. Hence, Lg(x̄) ≤ Lg(x∗) + 3mτ + mτ2 ≤
Lg(x∗) + 4mτ , and we get that x̄ satisfies

Lg(x̄) ≤ min
y∈[0,1]m

{Lg(y)}+ η.

Therefore with probability at least 1− δ the algorithm satisfies the conditions of a separation oracle
with parameters η and γ.

The algorithm performsm queries to the approximate oracle for g with parameters τ2/2 and δ/m,
where τ def= min{η/4m, γ/2m}. Hence, the running time of the algorithm is mΦ( τ2

2 ,
δ
m) +m logm,

as it also sorts the coordinates of x̄ (in order to re-index the coordinates).

We can now use the separation oracle for Lg and apply the following theorem to get an
approximate minimum of Lg, which is also an approximate minimum of g.

Theorem 5.3 ([LSW15, Theorem 42], restated). Let h be a convex function on Rm and let Ω be a
convex set with constant min-width4 that contains a minimizer of h. Suppose we have a separation
oracle for h and that Ω is contained inside B∞(R) def= { x : ‖x‖∞ ≤ R }, where R > 0 is a constant.
Then there is an algorithm which for any 0 < α < 1 and η outputs x ∈ Rn such that

h(x)−min
y∈Ω
{h(y)} ≤ η + α

(
max
y∈Ω
{h(y)} −min

y∈Ω
{h(y)}

)
.

In expectation, the algorithm performs O(m log
(
m
α

)
) calls to Algorithm 2, and has expected running

time of
O

(
m · SO(η, γ) log

(
m

α

)
+m3 logO(1)

(
m

α

))
,

where γ = Θ
(

α
m3/2

)
and SO(η, γ) denotes the running time of the separation oracle when invoked

with parameters η and γ.
4For a compact set K ⊆ Rm, the min-width is defined as mina∈Rm : ‖a‖2=1 maxx,y∈K 〈a, x− y〉. [LSW15, Definition

41]. In particular, it is not hard to see that the set K = [0, 1]m ⊆ B∞(1) has unit min-width.
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Corollary 5.4. Let g : 2[m] → R be a submodular function. There exists an algorithm that, when
given access to O±g , and for input parameters ξ, δ ∈ (0, 1), returns with probability at least 9/10− 2δ
a value ν ∈ R such that ν ≤ minS⊆[m]{g(S)}+ ξ.

The algorithm performs m log
(
mM
ξ

)
calls to O±g with parameters ξ2

128m5M2 and δ

Cm2 log
(
mM
ξ

) ,
where M def= max

{
2 maxS⊆[m]{|g(S)|}, ξ/2

}
and C > 0 is an absolute constant. The running time

of the algorithm is

O

(
m2 · Φg

(
ξ2

128m5M2 ,
δ

Cm2 log mM
ξ

)
log mM

ξ
+m3 logO(1) mM

ξ

)
,

where Φg is the running time of O±g .

Proof: We refer to the algorithm from Theorem 5.3 as the minimization algorithm and apply it
to Lg, with Algorithm 2 as a separation oracle. Once the minimization algorithm returns a point
x ∈ [0, 1]m, we return the value ν = O±Lg(x, ξ/4, δ).

Let M ′
def= 2 maxS⊆[m]{|g(S)|}, and recall that Lg(x) = E

t∼[0,1]
[g({ i : xi ≥ t })]. Hence,

maxx∈[0,1]m{Lg(x)} −minx∈[0,1]m{Lg(x)} ≤ 2M ′. Setting α < ξ/(2M) and η = ξ/4 ensures that
0 < α < 1 and that

η + α

(
max

x∈[0,1]m
{Lg(x)} − min

x∈[0,1]m
{Lg(x)}

)
≤ η + αM ′ ≤ 3ξ/4 . (5)

The minimization algorithm invokes the separation oracle C1 ·m log(m/α) = C1 ·m log(mM/ξ)
times in expectation, for some constant C1. If at some points the number of calls to the separation
oracle exceeds 10C1 ·m log(mM/ξ), then we halt and return fail. By Markov’s inequality this happens
with probability at most 1/10. Hence, every time the minimization algorithm calls the separation
oracle with parameters η and γ we invoke Algorithm 2 with parameters η, γ and δ′ = δ

C1m2 logm .
Therefore, with probability at least 1− 1/10− δ all the calls to Algorithm 2 satisfy the guarantee
of a separation oracle for Lg with parameters η and γ. By Theorem 5.3 and Equation (5), with
probability at least 9/10− δ the minimization algorithm returns a point x such that

Lg(x)− min
y∈[0,1]m

{Lg(y)} ≤ η + α

(
max

y∈[0,1]m
{Lg(y)} − min

y∈[0,1]m
{Lg(y)}

)
≤ 3ξ

4 ,

and with probability at least 9/10− 2δ the value ν satisfies

ν ≤ min
y∈[0,1]m

{Lg(y)}+ ξ ,

as desired.
By the above settings and by Lemma 5.3 we get that τ = ξ

8m5/2M
so the running time of each

invocation of the separation oracle is

m · Φf

(
τ2

2 ,
δ′

m

)
= m · Φg

(
ξ2

1285M2 ,
δ

C1m2 log mM
ξ

)
.
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Since the evaluation of ν in the final step is negligible in the running time of the minimization
algorithm, we get that the overall time complexity is

O

(
m2 · Φg

(
ξ2

128m5M2 ,
δ

C1m2 log mM
ξ

)
log mM

ξ
+m3 logO(1) mM

ξ

)
.

Corollary 5.5. There exists an algorithm that, when given query access to a function f : {−1, 1}n →
{−1, 1} and a partition I = (I1, . . . , Im) of [n] into m sets, as well as input parameters k ∈
N, ε, ξ ∈ (0, 1], satisfies the following. It has time and query complexity Õ

(
max

(
m12

ξ4 ,
m16ε4

k4ξ4

))
, and

distinguishes with probability at least 5/6 between the two following cases:
1. There exists a set S ⊆ [m] such that |S| ≥ m− k and h(S) ≤ ε.
2. For every set S such that |S| ≥ m− 2(1 + ξ

ε )k, h(S) > 2(ε+ ξ)

where h : 2m → R is defined as h(S) def= Inf f (∪i∈SIi).
(Moreover, the second item can be strengthened so that it holds for functions f which satisfy the
following: (i) for every set S such that |S| ≥ m− k, h(S) > 2ε+ 2ξ and (ii) for every set S such
that |S| ≥ m− 2(1 + ξ

ε )k, h(S) > ε+ 2ξ.)

Proof: We apply Corollary 5.4 to h′ : 2[m] → R, defined as in Algorithm 1 by h′(S) def= h(S)− ε
k |S|,

with ξ, M def= max
(
2 max(2, εmk ), ξ/2

)
= 4 max(1, εm2k ), and δ def= 1

30 . In order to do so, we need to
simulate a (τ ′, δ′)-noisy oracle for h. Since h(S) = Inf f (∪i∈SIi), in order to estimate h′(S) to an
additive τ ′ with probability at least 1 − δ′, it is sufficient to estimate Inf f (∪i∈SIi) ∈ [0, 2] to an
additive τ ′ with probability at least 1 − δ′ (indeed, the additional term ε

k |S| can be computed
exactly). By Chernoff bounds, this can be done with Φh(τ ′, δ′) = O( 1

τ ′2 log 1
δ′ ) queries to f .

This yields an approximate oracleO±h , and thereforeO±h′ (with success probability 9/10−2δ = 5/6)
which can be provided to the algorithm of Theorem 4.1, with query complexity

O

(
m2 · Φh

(
ξ2

m5M2 ,
1

m2 log mM
ξ

)
log mM

ξ
+m3 logO(1) mM

ξ

)

which, given the above expression for Φh, can be computed as follows.
• If ε < 2k

m , so that M = 4, this simplifies as

O

(
m12

ξ4 log2 m

ξ

)
.

• If ε ≥ 2k
m , which implies that M = 2εm

k , this becomes

O

(
m16ε4

k4ξ4 log2m

)
.

as claimed. Observing that h is indeed a non-negative submodular function (and that h′ is submodular
as the sum of a submodular and a modular functions) allows us to conclude by Theorem 4.1.
In particular, setting ξ = ε we get the following:
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Corollary 5.6. There exists an algorithm that, given query access to a function f : {−1, 1}n →
{−1, 1}, a fixed partition I of [n] into m = O(k2) parts, and parameters k ≥ 1 and ε ∈ (0, 1),
satisfies the following. The query complexity of the algorithm is Õ

(
k24

ε4 + k28
)

= poly(k, 1
ε ), and:

1. if f ε
2 -approximates being a k-part junta with respect to I, then the algorithm accepts with

probability at least 5
6 ;

2. if f 2ε-violates being a 4k-part junta with respect to I, then the algorithm rejects with probability
at least 5

6 .
(Moreover, the second item can be strengthened to “simultaneously 2ε-violates being a k-part junta
and 3

2ε-violates being a 4k-part junta.”)

Proof: Follows immediately from applying Corollary 5.5 with ξ = ε.
The tolerant junta testing theorem (Theorem 1.1) follows immediately from the above, together

with Proposition 3.4. With probability at least 5/6, a random partition of the variables in m def= 96k2

parts will have the right guarantees, reducing the problem to distinguishing between ε
2 -approximating

being a k-part junta vs. 2ε-violating being a 4k-part junta (with regard to this random partition).
Overall, the result is therefore correct with probability at least 2/3 by a union bound.

6 A tradeoff between tolerance and query complexity
In this section, we show how to obtain a smooth tradeoff between the amount of tolerance and the
query complexity. Formally, we prove Theorem 1.2, restated below.

Theorem 1.2. There exists an algorithm that, given query access to a function f : {−1, 1}n →
{−1, 1} and parameters k ≥ 1, ε ∈ (0, 1) and ρ ∈ (0, 1/2), satisfies the following.
• If f is ρε/8-close to some k-junta, then the algorithm accepts with high constant probability.
• If f is ε-far from every k-junta, then the algorithm rejects with high constant probability.

The query complexity of the algorithm is O
(

k log k
ερ(1−ρ)k

)
.

Before delving into the proof of the theorem, we discuss some of its consequences. Setting
ρ = Ω(1), we obtain a tolerant tester that distinguishes between functions O(ε)-close to Jk and
functions ε-far from Jk, with query complexity 2O(k)/ε – thus matching (and even improving)
the simple tester described in Section 3. At the other end of the spectrum, setting ρ = O(1/k)
yields a weakly tolerant tester that distinguishes O(ε/k)-close to Jk from ε-far from Jk, but with
query complexity Õ

(
k2/ε

)
– qualitatively matching the guarantees provided by the junta tester

of [FKR+04].

6.1 Biased influence of a function

For a set S ⊆ [s], we let φ(S) def= ∪i∈SIi denote the set of coordinates in parts with indices in S. For
a given string x ∈ {−1, 1}n and a set S we denote by xS ∈ {−1, 1}|S| which results by restricting x
to the set S.

Definition 6.1. For x ∈ {−1, 1}n, ρ ∈ (0, 1), and set S ⊆ [n] we denote by µρ(xS) the distribution
over all strings of length |S| which results from flipping the value of each coordinate in xS with
probability ρ. When ρ = 1

2 , we write z ∼ xS for z ∼ µ1/2(xS).
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The main definition of this section is a generalization of the definition of the influence of a set
(Definition 2.6), which corresponds to the case ρ = 1

2 :

Definition 6.2. For any ρ ∈ (0, 1) we define the ρ-biased influence of a set S ⊆ [n] as follows.

Infρf (S) def= 2 Pr
x∼{−1,1}n
z∼µρ(xS)

[ f(x) 6= f(xS̄ t z) ]

Lemma 6.3. For every ρ ∈ (0, 1) and every fixed S ⊆ [n],

Infρf (S) =
∑

U : U∩S 6=∅
f̂(U)2

(
1− (1− 2ρ)|U∩S|

)
.

Proof: Unrolling the definition of Infρf (S), we have

1
2Infρf (S) = Pr

x∼{−1,1}n
z∼µρ(xS)

[ f(x) 6= f(xS̄ t z) ] = E
x,z

[
1{f(x) 6=f(xS̄tz)}

]
= E

x,z

[1− f(x)f(xS̄ t z)
2

]

= 1
2 −

1
2 E
x,z

[f(x)f(xS̄ t z)] = 1
2 −

1
2

∑
U,T⊆[n]

f̂(T )f̂(U) E
x,z

[χT (x)χU (xS̄ t z)] .

We analyze each E
x,z

[χT (x)χU (xS̄ t z)] separately.

E
x,z

[χT (x)χU (xS̄ t z)] = E
x

E
z

[χT (x)χU∩S̄(x)χU∩S(z)] = E
x

[
χT (x)χU∩S̄(x)E

z
[χU∩S(z)]

]
= E

x

[
χT (x)χU∩S̄(x)

∏
i∈U∩S

E
zi

[zi]
]

= E
x

[
χT (x)χU∩S̄(x)

∏
i∈U∩S

((1− ρ)xi − ρxi)
]

= E
x

[
χT (x)χU∩S̄(x)

∏
i∈U∩S

(1− 2ρ)xi

]
= (1− 2ρ)|U∩S|E

x
[χT (x)χU∩S̄(x)χU∩S(x)]

= (1− 2ρ)|U∩S|E
x

[χT (x)χU (x)] = (1− 2ρ)|U∩S|E
x

[χT⊕U (x)] .

Note that if U 6= T , then E
x

[χT⊕U (x)] = 0 and if U = T , E
x

[χT⊕U (x)] = 1. Therefore,

1
2Infρf (S) = 1

2 −
1
2
∑
U⊆[n]

f̂(U)2(1− 2ρ)|U∩S| = 1
2 −

1
2

∑
U : U∩S 6=∅

f̂(U)2(1− 2ρ)|U∩S| − 1
2

∑
U : U∩S=∅

f̂(U)2

= 1
2

∑
U : U∩S 6=∅

f̂(U)2 − 1
2

∑
U : U∩S 6=∅

f̂(U)2(1− 2ρ)|U∩S|

= 1
2

∑
U : U∩S 6=∅

f̂(U)2
(
1− (1− 2ρ)|U∩S|

)
proving the lemma.

The next statement is a direct consequence of Lemma 6.3 and Fact 2.7.

Corollary 6.1. For every ρ ∈ [0, 1/2] and S ⊆ [n],

2ρ · Inf f (S) ≤ Infρf (S) ≤ Inf f (S).
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Finally, the last result of this section shows that one can view the ρ-biased influence of a set as
the expected (regular) influence of a random “ρ-biased set:”

Claim 6.2. For any J ⊆ [`] and any ρ ∈ (0, 1
2 ],

Inf
ρ
2
f (φ(J̄)) = E

S∼%ρ([n])
[Inf f (φ(S)) | S ∩ J = ∅] ,

where a set S ⊆ [`] is drawn from %ρ([`]) by including independently each i ∈ S with probability ρ.

Proof: For any fixed J ⊆ [`],

E
S∼%ρ([`])

[Inf f (φ(S)) | S ∩ J = ∅] = E
S∼%ρ([`]) | S∩J=∅

[Inf f (φ(S))]

= E
S∼%ρ([`]) | S∩J=∅

[
2 Pr
x∼{−1,1}n
z∼xφ(S)

[
f(x) 6= f(xφ(S̄) t z) | S

] ]
= 2

∑
S⊆[`]

Pr
x∼{−1,1}n
z∼xφ(S)

[
f(x) 6= f(xφ(S̄) t z) | S

]
· Pr
S∼%ρ([`])|S∩J=∅

[S ]

= 2
∑
S⊆[`]

Pr
x∼{−1,1}n

S∼%ρ([`])|S⊆J
z∼xφ(S)

[
f(x) 6= f(xφ(S̄) t z)

]

= 2 Pr
x∼{−1,1}n
z∼µ ρ

2
(xφ(J̄))

[
f(x) 6= f(xφ(J) t z)

]

= Inf
ρ
2
f (φ(J̄)) .

Where the second last equality stems from the following observation: the processes of (i) picking a
set S ∼ %ρ([`]) conditioned on S ⊆ J , and then setting z according to µ 1

2
(xφ(S)); and (ii) setting z

according to µ ρ
2
(xφ(J̄)), are equivalent.

6.2 Approximation of the biased influence

We now describe and analyze an algorithm that enables one to simultaneously get good estimates of
all ρ-biased influences of any given family of subsets, while amortizing the number of queries over
all these sets. This algorithm will be in Section 6.3 the main building block of the tolerant junta
tester of Theorem 1.2.

Lemma 6.4. Let I = (I1, . . . , I`) ⊆ [n] be any fixed collection of pairwise disjoint sets. For every
0 < ε < 1 and 0 < ρ ≤ 1/2, Algorithm 3 satisfies that with probability at least 1− o(1) the following
holds simultaneously, for all T ∈ I such that |T | > `− k:

1. if Inf
ρ
2
f (φ(T )) > ρε, then the estimate ν̂T of the ρ

2 -biased influence of φ(T ) is within a
multiplicative factor of (1± γ) of its true value;

2. if Inf
ρ
2
f (φ(T )) < ρε

2 , then the estimate ν̂T of the ρ
2 -biased influence of φ(T ) does not exceed

(1 + γ)ρε2 .
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Algorithm 3 Approximate ρ/2-biased influence (Of , ρ, ε, γ, k, `, I)
1: Set m = C·k log `

γ2ερ(1−ρ)k , where C ≥ 1 is an absolute constant, . C ≥ 256 ln 2 is sufficient.
2: for j = 1 to m do
3: Create a set Sj ⊆ [`] by including each i ∈ [`] in Sj with probability ρ.
4: Pick x ∈ {−1, 1}n uniformly at random, and let z ∼ xφ(S̄j) .
5: Set y ← xφ(Sj) t z.
6: Set ϑSj ← 1{f(x)6=f(y)} .
7: end for
8: for every J ⊆ [`] of size at most k do
9: Let LJ ⊆ [m] denote the set of indices j such that Sj ⊆ J
10: Let ν̂J̄ ← 1

|LJ |
∑
j∈LJ ϑSj . Estimate of Inf

ρ
2
f (φ(J̄))

11: end for

Proof of Lemma 6.4: We first claim that for every 0 < ε < 1, 0 < ρ ≤ 1/2, and any fixed set
J ⊆ [`] of size at most k, with probability at least 1− o(`−2k) there are at least m′ = 1

2(1− ρ)km =
Ck log `
2γ2ερ indices i1, . . . , im′ such that for every j ∈ [m′], Sij ⊆ J̄ .

To see why, fix some J ⊆ [`] of size at most k. For every i ∈ [m], let 1{Si⊆J̄} be the indicator

value which is equal to 1 if, and only if, Si ⊆ J . Then, for every i ∈ [m], Pr
[
1{Si⊆J̄} = 1

]
=

(1− ρ)|J | ≥ (1− ρ)k. By a Chernoff bound,

Pr
[

1
m

m∑
i=1

1{Si⊆J̄} <
1
2 · (1− ρ)k

]
≤ e−

m
8 (1−ρ)k = e

−C8
k log `
εργ2 < 2−4k log `

for a suitable choice of C ≥ 1. Therefore, by a union bound over all
∑k
z=0

(`
z

)
= 2(2+o(1)k log ` such

sets the claim follows.

From there, we are guaranteed that for every set J ⊆ [`] of size at most k, with probability
1− o(`−2k) there are at least m′ = Ck log `

2γ2ερ indices j1, . . . , jm′ such that for every t ∈ {j1, . . . , jm′}
it holds that Sjt ⊆ J . We hereafter condition on this holding for all such sets, which by a union
bound over

∑k
z=0

(`
z

)
≤ 22k log ` of them holds with probability at least 1− o(1). By Claim 6.2 it is

the case that for any J ⊆ [`] and any ρ ≤ 1/2

Inf
ρ
2
f (φ(J̄)) = E

S∼%ρ([`])|S∩J=∅
[Inf f (φ(S))] = E

S,x,y

[
1f(x) 6=f(y)

]
where S, x, y are chosen according to steps 3-6 of the algorithm. Fixing any such set J such that∣∣∣J ∣∣∣ > `− k and Inf

ρ
2
f (φ(J̄)) > ρε, by a Chernoff bound we get (where L ≥ m′ is as in Step 10)

Pr
[ ∣∣∣∣∣ 1L

L∑
i=1

ϑS − Inf
ρ
2
f (φ(J̄))

∣∣∣∣∣ > γInf
ρ
2
f (φ(J̄))

]
≤ 2e−

Lγ2ερ
3 ≤ 2e−

m′γ2ερ
3 = 2e−

Ck log `
64 < 2−4k log `.

again for a suitable choice of the constant C ≥ 1. By taking again a union bound we get that with
probability at least 1− o(1) all estimates of the ρ

2 -biased influence of the sets T such that |T | > `−k
and Inf

ρ
2
f (φ(T )) > ρε are within a multiplicative factor 1± γ of their true values.

20



In addition, for any set J ⊆ [`] with |J | ≤ k such that Inf f (φ(J̄)) ≤ ρε
2 , similarly by a

multiplicative Chernoff bound:

Pr
[

1
L

L∑
i=1

ϑS > (1 + γ)ρε2

]
≤ e−

γ2
3
ρε
2 L ≤ e−

γ2ρε
6 m′ = 2e−

Ck
12 log ` < 2−4k log `.

as before, and we conclude again by a union bound over all subsets of size at most k. Overall, the
conclusions above hold with probability at least 1− o(1), as claimed.

6.3 Tradeoff between tolerance and query complexity

We now describe how the algorithm from the previous section lets us easily derive the tolerant tester
of Theorem 1.2.

Algorithm 4 ρ-Tolerant Junta Tester (Of , ε, ρ, ε, k)
1: Create a random partition I of ` = 24k2 parts by uniformly and independently assigning each

coordinate to a part.
2: Run Algorithm 3 with the partition I, ` = 24k2 and γ = 1/4.
3: if there is a set J ⊆ [`] of size at most k such that ν̂J̄ ≤

3ρε
4 then

4: return accept.
5: end if
6: return reject.

Proof of Theorem 1.2: Given Proposition 3.4 it is sufficient to consider a partition I of size
` = 24k2 and show that Algorithm 4 distinguishes with probability at least 5/6 between the following
two cases.

1. f ρε
4 -approximates being a k-part junta with respect to I;

2. f ε
2 -violates being a k-part junta with respect to I

Suppose first there exists a set J ⊆ [`] with |J | ≤ k such that Inf f (φ(J̄)) ≤ ρε
2 . By Corollary 6.1,

Inf
ρ
2
f (φ(J̄)) ≤ ρε

2 and thus, from Lemma 6.4, we know that with probability at least 1− o(1) our
estimate ν̂J̄ at at most (1+1/4) ερ2 ≤

3ερ
4 . Therefore, Algorithm 4 will return accept when considering

J .
Consider now the case where every set J ⊆ [`] with |J | ≤ k is such that Inf f (φ(J̄)) > ε. Then,

by Corollary 6.1 we have that Inf
ρ
2
f (φ(J̄)) ≥ ρInf f (φ(J̄)) > ρε. The approximation guarantee then

applies: for every such J ⊆ [`],

ν̂J̄ ≥
3
4Inf

ρ
2
f (φ(J̄)) ≥ 3

4ρInf f (φ(J̄)) > 3ρε
4 .

Thus, with probability at least 1− o(1), Algorithm 4 will reject f .

7 “Instance-by-instance” tolerant isomorphism testing
In this section, we show how the machinery developed in Section 6, and more precisely the algorithm
from Theorem 1.2, can be leveraged to obtain instance-by-instance tolerant isomorphism testing
between two unknown Boolean functions f and g, as defined below.
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We begin with some notation: for f, g : {−1, 1}n → {−1, 1}, we denote by distiso(f, g) the
distance between f and the closest isomorphism of g, that is distiso(f, g) def= minπ∈Sn dist(f, g ◦ π).
Given query access to two unknown Boolean functions f, g : {−1, 1}n → {−1, 1} and a parameter
ε ∈ (0, 1], isomorphism testing then amounts to distinguishing between (i) distiso(f, g) = 0; and
(ii) distiso(f, g) > ε.5
Our result will be parameterized in terms of the junta degree of the unknown functions f and g,
formally defined below:

Definition 7.1 (Junta degree). Let f : {−1, 1}n → {−1, 1} be a Boolean function, and γ ∈ [0, 1]
a parameter. We define the γ-junta degree of f as the smallest integer k such that f is γ-close to
being a k-junta, that is

k∗(f, γ) def= min { k ∈ [n] : dist(f,Jk) ≤ γ } .

Finally, we extend this definition to two functions f, g by setting k∗(f, g, γ) = min(k∗(f, γ), k∗(g, γ)).

With this terminology in hand, we can restate Theorem 1.3:

Theorem 7.2 (Theorem 1.3, rephrased). There exist absolute constants c ∈ (0, 1), ε0 ∈ (0, 1] and a
tolerant testing algorithm for isomorphism of two unknown functions f and g with the following
guarantees. On inputs ε ∈ (0, ε0], δ ∈ (0, 1], and query access to functions f, g : {−1, 1}n → {−1, 1}:
• if distiso(f, g)≤ cε, then it outputs accept with probability at least 1− δ;
• if distiso(f, g) > ε, then it outputs reject with probability at least 1− δ.

The query complexity of the algorithm satisfies the following, where k∗ = k∗(f, g, ρcε8 ) is the cε-junta
degree of f and g:

• it is Õ
(
2
k∗
2 log 1

δ

)
with probability at least 1− δ;

• it is always at most Õ
(
2
n
2 log 1

δ

)
.

Moreover, one can take c = 1
2048 , and ε0

def= 4
5(5− 2

√
6) ' 0.08.

7.1 Proof of Theorem 7.2

As described in Section 1.2, our algorithm first performs a linear search on k, invoking at each
step the tolerant tester of Section 6 with parameter ε′, to obtain (with high probability) a value k∗
such that k∗(f, g, ε′) ≤ k∗ ≤ k∗(f, g, ρε

′

8 ). In the second stage, it calls a “noisy sampler” (defined
below) to obtain uniformly random labeled samples from the “cores” of the k∗-juntas closest to f
and g, and robustly tests isomorphism between them. We accordingly divide this section in two,
proving respectively these two statements:

Lemma 7.3. There exists an algorithm (Algorithm 5) with the following guarantees. On inputs
ε, δ ∈ (0, 1] and query access to f, g : {−1, 1}n → {−1, 1}, it returns a value 0 ≤ k ≤ n, such that:
• with probability at least 1− δ, we have that:

(i) k∗(f, g, ε′) ≤ k∗ ≤ k∗(f, g, ρε
′

8 );
5Phrased differently, this is testing the property P =

{
(f, f ◦ π) : f ∈ 22n

, π ∈ Sn
}
⊆ 22n

× 22n

.
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(ii) the algorithm performs O
(
2
k
2 +o(k) · 1

ε log 1
δ

)
queries;

• the algorithm performs at most O
(
2
n
2 +o(n) · 1

ε log 1
δ

)
queries.

Proposition 7.4. There exists an algorithm (Algorithm 6) with query complexity Õ
(

2k/2
ε

)
for

testing of isomorphism of two unknown functions f and g, under the premise that f is close to
Jk. More precisely, there exist absolute constants c > 0 and ε0 ∈ (0, 1] such that, on inputs k ∈ N,
ε ∈ (0, ε0] and query access to functions f, g : {−1, 1}n → {−1, 1}, the algorithm has the following
guarantees. Conditioned on dist(f,Jk) ≤ cε, it holds that:
• if distiso(f, g) ≤ cε, then it outputs accept with probability at least 8/15;
• if distiso(f, g) > ε, then it outputs reject with probability at least 8/15.

Moreover, one can take c = 1
2048 , and ε0

def= 4
5(5− 2

√
6) ' 0.08.

Theorem 7.2 follows by the combination of Lemma 7.3 and Proposition 7.4.

Proof of Theorem 7.2: Let ρ def= 1− 1√
2 , and ε′ = cε. The algorithm proceeds as follows: it first

invokes Algorithm 5 with inputs f, g, ε′, δ/2, and gets by Lemma 7.3, a value 1 ≤ k∗ ≤ n such that
k∗(f, g, ε′) ≤ k∗ ≤ k∗(f, g, ρ8ε

′) with probability at least 1− δ
2 . In particular, conditioning on this we

are guaranteed that either f or g is ε′-close to some k∗-junta (i.e., by our choice of c, one of the
functions is cε-close to Jk∗). It then calls Algorithm 6 with inputs f, g, k∗, ε independently O(log 1

δ )
times (for probability amplification from 8/15 to 1− δ

2), and accepts if and only if the majority of
these executions returned accept. The correctness of the algorithm follows from Proposition 7.4 and
the bound on the query complexity follows from the bounds in Lemma 7.3 and Proposition 7.4.

7.1.1 Linear search: finding k∗.

Let T denote the algorithm of Theorem 1.2, with probability of success amplified by standard
techniques to 1− δ for any δ ∈ (0, 1] (at the price of a factor O

(
log 1

δ

)
in its query complexity); and

write qT (k, ε, ρ, δ) = O
(

k log k
ερ(1−ρ)k log 1

δ

)
for its query complexity. Algorithm 5, given next, performs

the linear search for k∗: we then analyze its correctness and query complexity.

Algorithm 5 Junta Degree Finder(Of ,Og, ε′, δ)
1: Set ρ← 1− 1√

2 and let T be the algorithm of Theorem 1.2.
2: for k = 0 to n do
3: Call T on f with parameters k, ε′, ρ, and 3δ/(2π2(k + 1)2).
4: Call T on g with parameters k, ε′, ρ, and 3δ/(2π2(k + 1)2).
5: if either call to T returned accept then return k.
6: end if
7: end for
8: return n

Proof of Lemma 7.3: By a union bound, all executions of T will be correct with probability
at least 1− 2

∑∞
j=1

3δ
2π2j2 = 1− δ

2 . Conditioning on this, the tester will accept for some k between
k∗(f, g, ε′) and k∗(f, g, ρε′/8). This is true since as long as we invoke T with values k such that f
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and g are ε′-far from Jk, both invocations of T will reject. Therefore, once we accept, we have that
either f or g is at least ε′-close to Jk. Hence, k ≥ k∗(f, g, ε′). Also, T is guaranteed to accept on
some k′ whenever invoked on a function that is ρε′/8-close to Jk′ . By definition, k∗(f, g, ρε′/8) is
such a k′ for either f or g; hence, k ≤ k∗(f, g, ρε′/8).

In the case that all executions of T returned correctly, the query complexity is

q(ε, f, g) =
k∗(f,g,ε′′)∑
k=0

2qT
(
k, ε′, ρ,

3δ
2π2(k + 1)2

)
.

By the expression of qT , we get that q(ε, f, g) is upper bounded by

q(ε, f, g) ≤ O(1)
ε·ρ

k?∑
k=1

k log k log k
δ

(1− ρ)k ≤ O(1)
ε

(k? log k?)22k
? log 1

1−ρ log 1
δ

where k? def= k∗(f, g, ρ
2ε

64 ). In particular, from the choice of ρ, we get q(ε, f, g) ≤ 2
k?

2 +o(k∗)O
(

1
ε log 1

δ

)
.

(If not all executions of the tester are successful, in the worst case the algorithm considers all possible
values of k, before finally returning n. In this case, the query complexity is similarly bounded by
2
n
2 +o(n)O

(
1
ε log 1

δ

)
.)

7.1.2 Noisy samplers and core juntas.

For a Boolean function f : {−1, 1}n → {−1, 1} we denote by fk : {−1, 1}n → {−1, 1} the k-junta
closest to f . That is, the function h ∈ Jk such that dist(f, h) = dist(f,Jk) (if this function is not
unique, then we define fk to be the first according to lexicographic order). Moreover, following
Chakraborty et al. [CGM11], for a k-junta f ∈ Jk (where we assume without loss of generality
that f depends on exactly k variables) we define the core of f , as follows. The core of f , denoted
coref : {−1, 1}k → {−1, 1}, is the restriction of f to its relevant variables (where these variables are
numbered according to the natural order); so that for some i1 ≤ · · · ≤ ik ∈ [n] we have

f(x) = coref (xi1 , . . . , xik)

for every x ∈ {−1, 1}n.

Definition 7.5 ([CGM11, Definition 1]). Let g : {−1, 1}k → {−1, 1} be a function and let η, µ ∈
[0, 1). An (η, µ)-noisy sampler for g is a probabilistic algorithm g̃ that on each execution outputs a
pair (x, a) ∈ {−1, 1}k × {−1, 1} such that
(i) For all y ∈ {−1, 1}k, Pr[ x = y ] ∈

[
1−µ
2k ,

1+µ
2k
]
;

(ii) Pr[ a = g(x) ] ≥ 1− η;
(iii) the pairs output on different executions are mutually independent.
An η-noisy sampler is an (η, 0)-noisy sampler, i.e., one that on each execution selects a uniformly
random x ∈ {−1, 1}k.
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Chakraborty et al. [CGM11] show how to build an efficient O(ε)-noisy sampler for corefk , which
is guaranteed to apply as long as dist(f,Jk) = O

(
ε6/k10). In more detail, they first run a modified

version of the junta tester from [Bla09], which, whenever it accepts, also returns some preprocessing
information that enables one to build such a noisy sampler. Moreover, they show that this tester
will indeed accept any function that is O

(
ε6/k10)-close to k-junta (in addition to rejecting those

ε-far from it), giving the above guarantee. Using instead (a small modification of) our tolerant tester
from Section 6, we are able to extend their techniques to obtain the following – less efficient, but
more robust – noisy sampler.

Proposition 7.6 (Noisy sampler for close-to-junta functions). There are algorithms AP ,AS (respec-
tively preprocessor and sampler), which both require oracle access to a function f : {−1, 1}n → {−1, 1},
and satisfy the following properties.

• The preprocessor AP takes ε′ ∈ (0, 1], ρ ∈ (0, 1/2], k ∈ N as inputs, makes O
(

k log k
ε′

ε′ρ(1−ρ)k

)
queries

to f , and either returns fail or a state σ ∈ {0, 1}poly(n). The sampler AS takes as input such a
state σ ∈ {0, 1}poly(n), makes a single query to f , and outputs a pair (x, a) ∈ {−1, 1}k×{−1, 1}.
We say that a state σ is γ-good if for some permutation π ∈ Sk, AS(σ) is a γ-noisy sampler
for corefk ◦π.
• AP (ε′, ρ, k) fulfills the following conditions:

(i) If dist(f,Jk) ≤ ρ
8ε
′, then with probability at least 4/5, AP returns a state σ that is

8ε′-good.
(ii) If dist(f,Jk) > ε′, then with probability at least 4/5, AP returns fail.
(iii) If dist(f,Jk) ≤ ε′, then with probability at least 4/5, Ap either returns fail or returns a

state σ that is 8ε′-good.

The proof of Proposition 7.6 is deferred to Appendix A; indeed, it is almost identical to the
proof of Proposition 4.16 in [CGM11], with small adaptations required to comply with the use of
the tolerant tester from Section 6 instead of the tester from [AB10].

We note that the main difference between the guarantees of our noisy sampler and those of
the noisy sampler in [CGM11, Lemma 2] lies in the set of functions for which the noisy sampler is
required to return a good state. In our case, this set consists of functions that are somewhat close
to k-juntas. In comparison, the construction from [CGM11] is more query-efficient (only Õ(k/ε)
queries to f in the preprocessing stage), but only guarantees the output of a noisy sampler for
functions f that are O

(
ε6/k10)-close to Jk.

With these primitives in hand, we are almost ready to prove the main proposition of this
subsection, Proposition 7.4. To state the algorithm (Algorithm 6) and proceed with its analysis, we
will require the following definition:

Definition 7.7 (Number of violating pairs Vπ). Given two sets Q1, Q2 ⊆ {−1, 1}k × {−1, 1} and a
permutation π ∈ Sk we say that pairs (x, a1) ∈ Q1 and (y, a2) ∈ Q2 are violating with respect to π,
if y = π(x) and a1 6= a2. We denote the number of violating pairs with respect to π by Vπ.
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Algorithm 6 Tolerant isomorphism testing to an unknown f such that dist(f,Jk) ≤ cε (Of ,Og, ε, k)
1: Let AP ,AS be as in Proposition 7.6, ρ← 1− 1√

2 , ε
′ ← ε

32 , α← 4cε.
2: s← C 2k/2

ε

√
k ln k, t← (3α+ 24ε′) s22k . C > 1 is an absolute constant.

3: Run the preprocessor AP on f and g with parameters ε′ def= ε
32 , ρ, k. . Failure probability 2

5 .
4: if either invocation of AP returned fail then
5: return reject
6: end if
7: Using the 8ε′-noisy sampler AS (called with the states returned on Step 3), construct “core”

sets Qf , Qg ⊆ {−1, 1}k × {−1, 1} each of size s← C 2k/2
ε

√
k ln k.

8: if there exist π ∈ Sk such that Vπ ≤ t then
9: return accept

10: end if
11: return reject

Proof of Proposition 7.4: The query complexity is the sum of the query complexities from
Steps 3 and 7, i.e.,

O

(
k log k

ε

ερ(1− ρ)k

)
+ 2s · 1 = O

(
2k/2

ε
k log k

ε
+ 2k/2

ε

√
k ln k

)
= O

(
2k/2

ε
k log k

ε

)
.

Completeness. Assume that g is cε-close to isomorphic to f , which itself is cε-close to being a
k-junta. Therefore, by the triangle inequality and by our choice of c ≤ 1

2048 , dist(g,Jk) ≤ 2cε ≤ ρε′/8
as well, so that with probability at least 3/5 the algorithm does not output reject on Step 5 (we
thereafter analyze this case). Moreover, by the triangle inequality there exists a permutation π ∈ Sn
such that dist(fk, gk ◦ π) ≤ 2cε + 2cε = 4cε def= α. In particular, this implies that there exists a
permutation π∗ ∈ Sk such that dist(corefk , coregk ◦π∗) ≤ α. Let T ∗ ⊆ {−1, 1}k be the disagreement
set between corefk and coregk ◦π∗: by the above |T ∗| ≤ α2k.

Let Qsf , Qsg ⊆ {−1, 1}k denote the sets resulting from taking the first element in each pair in Qf
and Qg respectively. The size of the intersection Z def=

∣∣∣Qsf ∩ T ∗∣∣∣ is distributed as a hypergeometric

random variable, namely Z ∼ HyperGeom(s, 2k, |T ∗|), and conditioned on Z we have Z∗ def=∣∣∣Qsf ∩Qsg ∩ T ∗∣∣∣ ∼ HyperGeom(s, 2k, Z). In particular, we get

E[Z] = s |T ∗|
2k , E[Z∗ | Z ] = E

[ ∣∣∣Qsf ∩Qsg ∩ T ∗∣∣∣ ∣∣∣ |Qsf ∩ T ∗| ] = sZ

2k .

Let AfS denote the noisy sampler algorithm when invoked for f , and for every x ∈ Qsf
let AfS(x) denote the label given to x by AfS . Since AfS is an 8ε′-noisy sampler for corefk ,
Pr[AfS(x) 6= corefk(x)] ≤ 8ε′. An analogous statement holds for g. We let N

def= |{x ∈
Qsf ∩ Qsg : AfS(x) 6= corefk(x) or AgS(x) 6= coregk(x)}| be the number of common samples in-
correctly labelled by either noisy sampler, and observe that N is dominated by a Binomial random
variable Ñ ∼ Bin

(∣∣∣Qsf ∩Qsg∣∣∣ , 16ε′
)
.
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With this in hand, we can bound Pr[Vπ∗ > t ] as follows (recall that t = 3α+ 24ε′):

Pr
[
Vπ∗ > (3α+ 24ε′) s

2

2k

]
≤ Pr

[ ∣∣∣Qsf ∩Qsg ∩ T ∗∣∣∣ > 3αs
2

2k

]
+ Pr

[
N > 24ε′ s

2

2k

]

≤ Pr
[ ∣∣∣Qsf ∩Qsg ∩ T ∗∣∣∣ > 3αs

2

2k

]
+ Pr

[
Ñ > 24ε′ s

2

2k

]
.

Recall that Z∗ =
∣∣∣Qsf ∩Qsg ∩ T ∗∣∣∣. Since Pr

[ ∣∣∣Qsf ∩Qsg ∩ T ∗∣∣∣ > 3α s22k
]
is maximized when |T ∗| is

maximal, we assume without loss of generality that |T ∗| = α2k. We will handle each term separately.

Pr
[
Z∗ >

3
2 · α

s2

2k

]
= Pr

[
Z∗ >

3
2
s2 |T ∗|

22k

]

= Pr
[
Z∗ >

3
2
s2 |T ∗|

22k

∣∣∣∣∣ Z >
5
4
s |T ∗|

2k

]
· Pr

[
Z >

5
4
s |T ∗|

2k
]

+ Pr
[
Z∗ >

3
2
s2 |T ∗|

22k

∣∣∣∣∣ Z ≤ 5
4
s |T ∗|

2k

]
· Pr

[
Z ≤ 5

4
s |T ∗|

2k
]

≤ Pr
[
Z >

5
4
s |T ∗|

2k
]

+ Pr
[
Z∗ >

3
2
s2 |T ∗|

22k

∣∣∣∣∣ Z ≤ 5
4
s |T ∗|

2k

]
.

We again bound the two terms separately. By the assumption that |T ∗| = α2k and by the choice
of s,6

Pr
[
Z >

5
4
s |T ∗|

2k
]

= Pr
[
Z >

5
4E[Z]

]
< exp

(
−1

2 ·
(1

4

)2
· s |T

∗|
2k

)
<

1
30 .

As for the second term, since E[Z∗] = sZ
2k and by the assumption on T ∗ and the setting of s,

Pr
[
Z∗ >

3
2
s2 |T ∗|

22k

∣∣∣∣∣ Z <
5
4
s |T ∗|

2k

]
≤ Pr

[
Z∗ >

3
2
s2 |T ∗|

22k

∣∣∣∣∣ Z = 5
4
s |T ∗|

2k

]

= Pr
[
Z∗ >

6
5E[Z∗]

∣∣∣∣ Z = 5
4
s |T ∗|

2k
]

< exp
(
−1

2 ·
(1

5

)2
· s2k

s |T ∗|
2k

)
<

1
30

for a sufficiently large constant C in the definition of s.
6Where we use the fact that hypergeometric random variables enjoy the same concentration bounds as Binomial

random variables – in particular, Chernoff bounds apply (see e.g. [AD11, Theorem 1.17]).
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As for the second term, since E
[
Ñ
]

= 16ε′
∣∣∣Qsf ∩Qsg∣∣∣ we have,

Pr
[
Ñ > 24ε′ s

2

2k

]
≤ Pr

[
Ñ > 24ε′ s

2

2k

∣∣∣∣∣ ∣∣∣Qsf ∩Qsg∣∣∣ ≤ 5
4
s2

2k

]
· Pr

[ ∣∣∣Qsf ∩Qsg∣∣∣ ≤ 5
4
s2

2k

]
+ Pr

[ ∣∣∣Qsf ∩Qsg∣∣∣ > 5
4
s2

2k

]

≤ Pr
[
Ñ > 24ε′ s

2

2k

∣∣∣∣∣ ∣∣∣Qsf ∩Qsg∣∣∣ = 5
4
s2

2k

]
+ Pr

[ ∣∣∣Qsf ∩Qsg∣∣∣ > 5
4
s2

2k

]

≤ Pr
[
Ñ >

6
5E
[
Ñ
] ∣∣∣∣∣ ∣∣∣Qsf ∩Qsg∣∣∣ = 5

4
s2

2k

]
+ Pr

[ ∣∣∣Qsf ∩Qsg∣∣∣ > 5
4
s2

2k

]

< exp
(
−1

2 ·
(1

6

)2
· 16ε′ · 5s2

4 · 2k

)
+ exp

(
−1

2 ·
(1

4

)2
· s

2

2k

)
≤ 1

15 .

(Actually o(1).)

The algorithm will therefore reject with probability at most 2
5 + 1

15 + 1
15 = 7

15 .

Soundness. Assume that dist(f,Jk) ≤ cε, and that g is ε-far from being isomorphic to f . Then
one of the following must hold:

1. dist(g,Jk) > ε′.
2. for all π ∈ Sk, dist(corefk , coregk ◦π) > ε− (ε′ + cε) > ε− 2ε′.

If the first case holds, then the function will be rejected in Step 3 with probability at least 4
5 , and so

the algorithm will reject as desired. We can therefore focus on the second case.
If the second case holds, either the tester rejects in Step 5 (and we are done) or it outputs a

state which will be used to get the 8ε′-noisy sampler. Fix any π ∈ Sk. Since dist(corefk , coregk ◦π) >
(ε− 2ε′), there are m def= m(π) ≥ (ε− 2ε′)2k inputs x ∈ {−1, 1}k such that corefk(x) 6= coregk ◦π(x).
Let T = T (π) ⊆ {−1, 1}k denote the set of all such inputs (so that |T | = m).

We can make a similar argument as for the completeness case: we have that
∣∣∣Qsf ∩ T ∣∣∣ is a random

variable with hypergeometric distribution (of parameters s, 2k, and |T |). Conditioned on
∣∣∣Qsf ∩ T ∣∣∣,

we also have
∣∣∣Qsf ∩Qsg ∩ T ∣∣∣ ∼ HyperGeom(s, 2k,

∣∣∣Qsf ∩ T ∣∣∣), so that

E
[∣∣∣Qsf ∩Qsg ∩ T ∣∣∣] = E

[
E
[ ∣∣∣Qsf ∩Qsg ∩ T ∣∣∣ ∣∣∣ ∣∣∣Qsf ∩ T ∣∣∣ ]] = E

s
∣∣∣Qsf ∩ T ∣∣∣

2k

 = s2 |T |
22k ≥ (ε−2ε′) s

2

2k = 30ε′ s
2

2k .

(Recall that our threshold was set to t = (3α + 24ε′) s22k ≤ 27ε′ s22k .) Moreover, each element
x ∈ Qsf ∩Qsg ∩ T will contribute to Vπ with probability at least (1− 8ε′)2 > 24

25 (since this is a lower
bound on the probability that both AfS(x) = corefk(x) and AgS(x) = coregk(x)). As before, we can
therefore write, letting Z def=

∣∣∣Qsf ∩Qsg ∩ T ∣∣∣, and taking |T | to be minimal so that |T | = (ε− 2ε′)2k,

Pr[Vπ > t ] ≥ Pr
[
Vπ > t

∣∣∣∣ Z ≥ 13
12 t

]
Pr
[
Z ≥ 13

12 t
]

≥ (1− e−
1
2( 1

26)2· 24
25 ·

13t
12 ) Pr

[
Z ≥ 13

12 t
]

=
(
1− e−

t
1300

)
Pr
[
Z ≥ 13

12 t
]

(Chernoff bound)

so that it is sufficient to lower bound Pr
[
Z ≥ 13

12 t
]
. To do so, we will bound the probability of the

two following events:
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E1: Y def=
∣∣∣Qsf ∩ T ∣∣∣ < 99

100
s|T |
2k

E2: Z =
∣∣∣Qsf ∩Qsg ∩ T ∣∣∣ < 99

100
s

2k
∣∣∣Qsf ∩ T ∣∣∣, conditioning on

∣∣∣Qsf ∩ T ∣∣∣ ≥ 99
100

s|T |
2k .

This will be sufficient for us to conclude, as by our choice of t, we have
(

99
100

)2 s|T |2
22k > 13

12 ·27ε′ s22k >
13
12 t,

and therefore, by a Chernoff bound

Pr
[
Z <

13
12 t

]
≤ Pr

[
Z <

( 99
100

)2 s |T |2

22k

]

≤ Pr
[
Y <

99
100

s |T |
2k

]
+ Pr

[
Z <

99
100

s

2k Y
∣∣∣∣ Y ≥ 99

100
s |T |
2k

]
Pr
[
Y ≥ 99

100
s |T |
2k

]
≤ Pr

[
Y <

99
100

s |T |
2k

]
+ Pr

[
Z <

99
100

s

2k Y
∣∣∣∣ Y ≥ 99

100
s |T |
2k

]
< exp

(
−1

2 ·
( 1

100

)2
· s|T |2k

)
+ Pr

[
Z <

99
100

sY

2k

∣∣∣∣ Y = 99
100

s |T |
2k

]

≤ exp
(
−1

2 ·
( 1

100

)2
· s(ε− 2ε′) · 2k

2k

)
+ exp

(
−1

2 ·
( 2

100

)2
· s

2(ε− 2ε′) · 2k

22k

)
< exp(−τC2k ln k),

by the choice s = C 2k/2
ε

√
k ln k, and for some constant τ ∈ (0, 1). Hence setting C to a suf-

ficiently large constant, the foregoing analysis implies that Pr[Vπ ≤ t ] ≤ e−
t

1300 + e−τC
2k ln k =

e−
12c+3/4

1300 εs2/2k + e−τC
2k ln k ≤ 7

15kk . A union bound over all k! < kk permutations π ∈ Sk finally
yields Pr[ ∃π, Vπ ≤ t ] ≤ 7

15 as claimed.
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A Proof of Proposition 7.6 (construction of a noisy sampler)
We provide in this appendix the proof of Proposition 7.6, restated below:

Proposition 7.6 (Noisy sampler for close-to-junta functions). There are algorithms AP ,AS (respec-
tively preprocessor and sampler), which both require oracle access to a function f : {−1, 1}n → {−1, 1},
and satisfy the following properties.

• The preprocessor AP takes ε′ ∈ (0, 1], ρ ∈ (0, 1/2], k ∈ N as inputs, makes O
(

k log k
ε′

ε′ρ(1−ρ)k

)
queries

to f , and either returns fail or a state σ ∈ {0, 1}poly(n). The sampler AS takes as input such a
state σ ∈ {0, 1}poly(n), makes a single query to f , and outputs a pair (x, a) ∈ {−1, 1}k×{−1, 1}.
We say that a state σ is γ-good if for some permutation π ∈ Sk, AS(σ) is a γ-noisy sampler
for corefk ◦π.
• AP (ε′, ρ, k) fulfills the following conditions:

(i) If dist(f,Jk) ≤ ρ
8ε
′, then with probability at least 4/5, AP returns a state σ that is

8ε′-good.
(ii) If dist(f,Jk) > ε′, then with probability at least 4/5, AP returns fail.
(iii) If dist(f,Jk) ≤ ε′, then with probability at least 4/5, Ap either returns fail or returns a

state σ that is 8ε′-good.

We will very closely follow the argument from the full version of [CGM11] (Proposition 4.16),7
adapting the corresponding parts in order to obtain our result. For completeness, we tried to
make this appendix below self-contained, reproducing almost verbatim several parts of the proof
from [CGM11].8

Proof of Proposition 7.6: In order to use our result from Section 6 in lieu of the junta tester
from [Bla09], we first need to make a small modification to our algorithm. Specifically, in its first
step our tester will now pick a random partition I of [n] in ` def= Ck2

ε parts instead of 24k2 (for some
(small) absolute constant C > 1). It is easy to check that both Lemma 3.2 and Lemma 3.3 still hold
(e.g., from the proof of [Bla12, Lemma 5.4]), now with probability at least 19/20. Moreover, our
modified tolerant tester offers the same soundness and completeness guarantees as Theorem 1.2,
at the price of a query complexity O

(
k log(k/ε)
ερ(1−ρ)k

)
(instead of O

(
k log k

ερ(1−ρ)k
)
). Moreover, in Step 4

of Algorithm 4, i.e. when the algorithm found a suitable set J ⊆ [`] as a witness for accepting, we
make the algorithm return I and the set J def= {Ij}j∈J along with the verdict accept.

We will also require the definitions of the distribution induced by a partition I and a subset
J ⊆ I, and of such a couple (I,J ) being good for a function:

Definition A.1 ([CGM11, Definition 4.6]). For any partition I = (I1, . . . , I`) of [n], and subset of
parts J ⊆ I, we define a pair of distributions:

The distribution DI on {−1, 1}n. An element y ∼ DI is sampled by

1. picking z ∈ {−1, 1}` uniformly at random among all
( `
`/2
)
strings of weight `

2 ;

7The full version can be found at http://www.cs.technion.ac.il/~ariem/eseja.pdf.
8The reader may notice that Chakraborty et al. rely on a definition of set-influence that differs from ours by a

factor 2; we propagated the changes through the argument.
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2. setting yi = zj for all j ∈ [`] and i ∈ Ij .

The distribution DJ on {−1, 1}|J |. An element x ∼ DJ is sampled by

1. picking y ∼ DI ;
2. outputting extract(I,J )(y), where x = extract(I,J )(y) is defined as follows. For all j ∈ [`]

such that Ij ∈ J :
• if Ij 6= ∅, set xj = yi (where i ∈ Ij);
• if Ij = ∅, set xj to be a uniformly random bit.

Lemma A.2 ([CGM11, Lemma 4.7]). DI and DJ as above satisfy the following.
• For all a ∈ {−1, 1}n, PrI,y∼DI [ y = a ] = 1

2n .
• Assume ` > 4 |J |2. For every I and J ⊆ I, the total variation distance between DJ and the
uniform distribution on {−1, 1}|J | is bounded by 2 |J |2 /`. Moreover, the `∞ distance between
the two distributions is at most 4 |J |2 /(`2|J |).

Definition A.3 ([CGM11, Definition 4.8]). Given (I,J ) as above and oracle access to
f : {−1, 1}n → {−1, 1}, we define a probabilistic algorithm sampler(I,J )(f) that on each execu-
tion produces a pair 〈x, a〉 ∈ {−1, 1}|J | × {−1, 1} as follows: first it picks a random y ∼ DI , then it
queries f on y, computes x = extract(I,J )(y) and outputs the pair 〈x, f(y)〉.

Definition A.4 ([CGM11, Definition 4.9]). Given α > 0, a function f : {−1, 1}n → {−1, 1}, a
partition I = (I1, . . . , I`) of [n] and a subset J ⊆ I of k parts, we call the pair (I,J ) α-good (with
respect to f) if there exists a k-junta h ∈ Jk such that the following conditions are satisfied:

1. Conditions on h:
(a) Every relevant variable of h is also a relevant variable of fk;
(b) dist(h, fk) ≤ α.

2. Conditions on I:
(a) For all j ∈ [`], Ij contains at most one variable of corefk ;
(b) Pry∼DI [ f(y) 6= fk(y) ] ≤ 10 · dist(f, fk).

3. Condition on J : the set S def=
⋃
I∈J I contains all relevant variables of h.

Lemma A.5 ([CGM11, Lemma 4.10]). Let α, f, I,J be as in the preceding definition. If the pair
(I,J ) is α-good (with respect to f), then sampler(I,J )(f) (as per Definition A.3) is an (η, µ)-noisy
sampler for some permutation of corefk , with η ≤ 2α+ 4k2

` + 10 · dist(f, fk) and µ ≤ 4k2

` .

The last piece we shall need is the ability to convert an (η, µ)-noisy sampler to a (η′, 0)-noisy
sampler – that is, one whose samples are exactly uniformly distributed.

Lemma A.6 ([CGM11, Lemma 4.4]). Let g̃ be an (η, µ)-noisy sampler for g : {−1, 1}k → {−1, 1},
that on each execution picks x according to some fixed (and fully known) distribution D. Then g̃
can be turned into an (η + µ)-noisy sampler g̃unif for g.

With this in hand, we are ready to prove the main lemma:
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Lemma A.7 (Analogue of [CGM11, Proposition 4.16]). The tester from Theorem 1.2, modified
as above, as the following guarantees. It has query complexity O

(
k log(k/ε)
ερ(1−ρ)k

)
and outputs, in case of

acceptance, a partition I of [n] in `
def= O

(
k2/ε

)
parts along with a subset J ⊆ I of k parts such

that for any f the following conditions hold:
• if dist(f,Jk) ≤ ρ

8ε, the algorithm accepts with probability at least 9/10;
• if dist(f,Jk) > ε, the algorithm rejects with probability at least 9/10;
• for any f , with probability at least 4/5 either the algorithm rejects, or it outputs J such that
the pair (I,J ) is (1 + 3

2ρ)ε-good (as per Definition A.4).
In particular, if dist(f,Jk) ≤ ρ

8ε, then with probability at least 4/5 the algorithm outputs a set J
such that (I,J ) is (1 + 3

2ρ)ε-good.

Proof of Lemma A.7: The first two items follow from the analysis of the tester (Theorem 1.2)
and the foregoing discussion; we thus turn to establishing the third item.

Called with parameters k, ρ, ε, our algorithm, with probability at least 19/20, either rejects or
outputs a partition I of [n] into ` = O

(
k2) parts and set J ⊆ I satisfying Inf f (∪I∈J I)) ≤ ε

2 . Let
R ⊆ [n] (with |R| ≤ k) denote the set of relevant variables of fk, and V ⊇ R (with |V | = k) the set
of relevant variables of corefk . Assume that dist(f,Jk) ≤ ρε

2 .
9 We then have:

• by the above, with probability at least 19/20 the algorithm outputs a set J ⊆ I (or more
precisely J , possibly extended with “dummy parts” to amount to k parts) which satisfies

Inf f (∪I∈J I)) ≤ ε

2;

• since ` � k2, with probability at least 19/20 all elements of V fall in different parts of the
partition I;
• by Lemma A.2 and by Markov’s inequality, with probability at least 9/10 the partition I

satisfies Pry∼DI [ f(y) 6= fk(y) ] ≤ 10 · dist(f, fk).
So by a union bound, with probability at least 4/5 all three of these events occur. Now we show
that conditioned on them, the pair (I,J ) is (1 + 3

2ρ)ε-good. Let U def= R ∩
(⋃

I∈J I
)
(informally, U

is the subset of the relevant variables of fk that were successfully “discovered” by the tester). Since
dist(f,Jk) ≤ ρε

2 , we have Inf f (V̄ ) ≤ 2 dist(f,Jk) ≤ ρε. By the subadditivity and monotonicity of
influence we get

Inf f (Ū) ≤ Inf f (V̄ ) + Inf f (V \ U) ≤ Inf f (V̄ ) + Inf f (∪I∈J I)) ≤ ρε+ ε

2 .

where the second inequality follows from V \ U ⊆ ∪I∈J I. This means (see e.g. [Bla12, Lemma
2.21]) that there is a k-junta h on U such that dist(f, h) ≤ 2(ρε+ ε

2), and by the triangle inequality
dist(fk, h) ≤ 2(ρε + ε

2) + ρε
2 = (1 + 3

2ρ)ε. Based on this h, we can verify that the pair (I,J ) is
(1 + 3

2ρ)ε-good by going over the conditions in Definition A.4.

Concluding the proof of Proposition 7.6. We conclude as in Section 4.6 of [CGM11], and
start by describing how AP and AS operate. The preprocessor AP starts by calling the tester T
of Lemma A.7. Then, in case T accepted, AP encodes in the state σ the partition I and the subset

9For other f ’s, the third item follows from the second item.

35



J ⊆ I output by T (see Lemma A.7), along with the values of k and ε. The sampler AS , given σ,
obtains a pair 〈x, a〉 ∈ {−1, 1}k × {−1, 1} by executing sampler(I,J )(f) (from Definition A.3) once.
Now we show how Proposition 7.6 follows from Lemma A.7. The first two items are immediate.
As for the third item, notice that we only have to analyze the case where dist(f, fk) ≤ ρε

2 and T
accepted; all other cases are taken care of by the first two items. By the third item in Lemma A.7,
with probability at least 4/5 the pair (I,J ) is (1 + 3

2ρ)ε-good. If so, by Lemma A.5 sampler(I,J )(f)
is an (η, µ)-noisy sampler for some permutation of corefk , where

η ≤ 2(1 + 3
2ρ)ε+ 4k2

`
+ 10 · dist(f,Jk) ≤ 2(1 + 4ρ)ε+ 4k2

`

and µ ≤ 4k2

` . This in turn implies by Lemma A.6 an η′-noisy sampler, for

η′ = η + µ ≤ 2(1 + 4ρ)ε+ 8k2

`
≤ 4(1 + 2ρ)ε ≤ 8ε

as claimed. (Where we used that 8k2

` ≤ ε by our choice of `.)
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