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Abstract

We construct explicit two-source extractors for n bit sources, requiring nα min-entropy and
having error 2−n

β

, for some constants 0 < α, β < 1. Previously, constructions for exponentially
small error required either min-entropy 0.49n [Bou05] or three sources [Li15b]. The construc-
tion combines somewhere-random condensers based on the Incidence Theorem [Zuc06, Li11],
together with recent machinery surrounding non-malleable extractors.
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1 Introduction

A function Ext : {0, 1}n × {0, 1}n → {0, 1}m is a two-source k-extractor with ε error if for every two
independent distributions A,B over {0, 1}n with min-entropy at least k, the output’s distribution
Ext(A,B) is ε-close to uniform.

It is well known that a two-source extractor with even just one output bit and any non-trivial
error parameter ε < 1, that works for min-entropy k, implies a (bipartite) 2k-Ramsey graph. A long
line of research was devoted to the problem of explicitly constructing such a two-source extrac-
tor [Abb72, Nag75, Fra77, Chu81, FW81, Nao92, Alo98, Gro01, Bar06, BKS+10, BRSW12, Coh15b]
culminating in the work of Chattopadhyay and Zuckerman [CZ15] who used non-malleable ex-
tractors to give a two-source extractor for k = polylog(n). Several improvements on the [CZ15]
construction followed, including [Mek15, Li15a]. Currently, the best explicit construction achieves
k = log1+o(1)(n) [BADTS16].

The error parameter of an extractor should be measured with respect to its input entropy, as
it can be easily seen that the error of a k-extractor must be at least 2−O(k). The aforementioned
papers construct two-source extractors with error parameter that is either a constant or polynomi-
ally small in the input entropy. While this suffices for Ramsey graph constructions, non-explicit
constructions may have exponentially small error. Similarly, these constructions usually output
few close-to-uniform bits, while non-explicitly, almost all of the entropy can be extracted.

There are several explicit two-source constructions with exponentially-small error. The inner-
product function gives a simple solution when k > n/2 [CG88]. Bourgain [Bou05] gave a two-
source extractor construction for k = (1

2 − α)n, for some small constant α > 0. Raz [Raz05]
constructed a two-source extractor that has an unbalanced entropy requirement; the first source
should have more than n/2 min-entropy, while the second source’s min-entropy can be as low as
c · log n (for some constant c).

The main result in this paper is a low-error two-source extractor that improves Bourgain’s, and
lowers the entropy requirement from (1

2 − α)n to n1−α for some small constant α. Specifically:

Theorem 1.1. There exist constants 0 < α, β, γ < 1 such that for every large enough n and every k ≥ nα,
there exists an explicit ((n, k) × (n, k) →ε m = kγ) two-source extractor 2Ext : {0, 1}n × {0, 1}n →
{0, 1}m with ε = 2−k

β .

We mention that if three sources are allowed, better explicit constructions are known. Specif-
ically, [Li15b] constructs a three-source extractor with exponentially-small error for min-entropy
k = polylog(n). Achieving the same with only two sources, is a challenging and important open
problem.

1.1 The technique

The inner-product function over F2 maps x, y ∈ {0, 1}n to IPF2(x, y) =
∑
xiyi mod 2. It gives a

two-source extractor with exponentially small error, if each of the two sources has min-entropy
k � n/2. This entropy requirement is tight; IPF2 completely fails when X and Y are uniformly
distributed over two orthogonal subspaces of dimension n/2 each.

Bourgain’s two-source extractor applies the inner-product function on local encodings of the
input. More precisely, the inputs x and y are viewed as coming from a low-dimensional vector
space over a field F (e.g., F2). The extractor works as follows.
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1. It locally encodes the inputs x and y to C(x) and C(y), where local here means that each
source is encoded separately.

2. Then, it computes IP(C(x), C(y)) where IP is the inner product function over F.

3. Finally, it outputs some boolean function applied on IP(C(x), C(y)).

One necessary (but not sufficient) role of the encoding C is to distort vector spaces. That is,
the image C(X) of any vector space X should be far away from any vector space in order to avoid
the bad example described above. Bourgain ([Bou05], see also [Rao07]) considers several good
functions C, and they all come from additive combinatorics and rely on the property that if a set
does not expand much under addition (e.g., it is a vector space) then it must expand much under
multiplication.

In a sense, our work abstracts the intuition behind Bourgain’s construction and takes advan-
tage of the new tools developed since then – most notably non-malleable extractors and advice
correlation breakers. Abstractly, given x and y we do the following:

1. We locally encode one of the inputs. Say y ∼ Y and Y is an (n, k) source1 for some k � n/2.
We use a somewhere-random condenser that outputs a table with few rows r1, . . . , rt, with
the guarantee that one of the rows has density rate above half, i.e., it is an (`, α`)-source for
some α > 1

2 .2

The price of this step is that we get a somewhere-random source, i.e., we get t rows, one
of which is good, and the rest are arbitrarily correlated with it. Fortunately, the number of
rows can be small. In particular, [BKS+10, Zuc06] showed that for every constants α < β, a
constant number of rows suffices to improve the rate of the source from α to β.

2. We then use Raz’s extractor. For each row ri of the t rows in the local encoding of y we use
the row as a seed in Raz’s extractor applied on the other source, i.e., we output Raz(x, ri).
This step, conceptually, replaces the inner-product function in Bourgain’s extractor.

3. At this stage we have a table with t rows, and one of which is exponentially-close to uniform.
A merger now suffices in order to obtain an exponentially-close to uniform output.

We now face a problem. A merger requires a fresh seed, that can be obtained from another
source, yet we want to use only two sources. This raises the question of whether we need to
abandon the sources used so far, and the answer is a clear “No!”.

The hierarchy of independence (see Subsection 3.2 and references therein) gives sufficient condi-
tions under which sources can be reused. Using this, Cohen [Coh15a] showed how to merge a
table with t rows, one of which is uniform, using a weak random source X . We incorporate steps
2 and 3 together, and show that using Raz’s extractor, Cohen’s work extends to the case we need,
as long as the good row has entropy rate at least 1−Ω

(
1
t3

)
. Specifically, there exists a merger that

takes

• a table with t rows, one of which has rate at least 1− Ω
(

1
t3

)
, and,

• a weak (n, k) source X ,

1An (n, k)-source is a random variable over {0, 1}n with k min-entropy.
2More accurately, we are in a convex combination of such sources.
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and outputs nearly uniform bits with exponentially small error (see Section 3 for precise details).
This suggests the following construction. Suppose Y is a weak (n, k)-source. Condense Y

using a somewhere-random condenser to a somewhere-random source with t rows, where one of
the rows has rate at least 1−Ω

(
1
t3

)
. Then apply the merger on the somewhere-random source and

the weak source X .
The only question left is for which min-entropy k can we find a somewhere-random condenser

with the required parameters. A-priori, it is not clear that such condensers exist. However, when
k = αn and α is a constant, the somewhere random condensers of [Zuc06] easily achieve the above
parameters.

When α is sub-constant, t becomes super-constant, and then the required rate 1 − Ω
(

1
t3

)
be-

comes very close to 1. In this setting [Zuc06] does not guarantee anything. This stems from the fact
that [Zuc06] relies on the Incidence Theorem of [BKT04], which does not support too large sets.
Fortunately, Vinh [Vin11] extended the Incidence theorem to the high entropy regime, with a sim-
ple and elegant proof. This was used by Li [Li11] to give a somewhere-random condenser where
one of the rows in the table has rate close to 1 (see Section 4) that is sufficient for our needs. In
particular, working out the parameters and balancing the entropies of the two sources, we obtain
Theorem 1.1.

2 Preliminaries

Throughout the paper we have the convention that lowercase variables are the logarithm (in base-
2) of their corresponding uppercase variables, e.g., n = logN , d = logD, a = logA, r = logR,
r′ = logR′, etc. We denote by [t] the set {1, . . . , t}.

2.1 Random variables, min-entropy

The statistical distance between two distributions X and Y on the same domain D is defined as
|X − Y | = maxA⊆D(Pr[X ∈ A] − Pr[Y ∈ A]). If |X − Y | ≤ ε we say that X is ε-close to Y and
denote it by X ≈ε Y . We will denote by Un a random variable distributed uniformly over {0, 1}n
and which is independent of all other variables. We also say that a random variable is flat if it is
uniform over its support.

For a function f : D1 → D2 and a random variable X distributed over D1, f(X) is the random
variable distributed over D2 which is obtained by choosing x according to X and computing
f(x). For a set A ⊆ D1, we simply denote f(A) = {f(x) | x ∈ A}. It is well-known that for every
f : D1 → D2 and two random variablesX and Y , distributed overD1, it holds that |f(X)−f(Y )| ≤
|X − Y |.

The min-entropy of a random variable X is defined by

H∞(X) = min
x∈Supp(X)

log
1

Pr[X = x]
.

A random variable X distributed over {0, 1}n with min-entropy at least k is called an (n, k)-
source. Every distribution X with H∞(X) ≥ k can be expressed as a convex combination of flat
distributions, each with min-entropy at least k.

For ε ≥ 0, the smooth min-entropy Hε
∞(X) is the supremum of H∞(X ′) over all distributions X ′

such that |X −X ′| ≤ ε.
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We now define average conditional min-entropy. Let X,Y be two random variables. The
average conditional min-entropy of X given Y is

H̃∞(X|Y ) = − log
(
Ey∼Y

[
2−H∞(X|Y=y)

])
.

We need the following standard lemmas regarding the conditional min-entropy (see, e.g.,
[DORS08])

Lemma 2.1. LetX,Y, Z be random variables such that Y has support size at most 2`. Then, H̃∞(X|(Y,Z)) ≥
H̃∞(X|Z)− `.

Lemma 2.2. For any two random variables X,Y and any ε > 0, it holds that

Pr
y∼Y

[
H∞(X|Y = y) < H̃∞(X|Y )− log

1

ε

]
≤ ε.

2.2 Extractors

Definition 2.3 (extractor). A function Ext : [N ] × [D] → [M ] is a (k, ε) strong extractor if for every
(n, k)-source X , and for Y that is uniform over [D], Y ◦ Ext(X,Y ) ≈ε Y × Um.

Theorem 2.4 (The GUV extractor, [GUV09]). There exists a universal constant cGUV > 0 such that the
following holds. For all positive integers n, k and ε > 0 there exists an efficiently-computable (k, ε) strong
extractor Ext : [N ]× [D]→ [M ] having seed length d = cGUV log n

ε and m = k
2 output bits.

Definition 2.5 (two-source extractor). A function 2Ext : [N1]×[N2]→ [M ] is an ((n1, k1)×(n2, k2)→ε

m) two-source extractor if for every two independent sources X1 and X2 where X1 is an (n1, k1)-source
and X2 is an (n2, k2)-source, it holds that 2Ext(X1, X2) ≈ε Um.

Theorem 2.6 (The Raz extractor, [Raz05, Theorem 4]). There exists a universal constant cRAZ > 0 such
that the following holds. For all positive integers n and ε > 0, set d = cRAZ log n

ε . For all k ≥ cRAZ ·d, there
exists an efficiently-computable ((n, k)×(d, 0.6d)→ε k/2) two-source extractor Raz : [N ]×[D]→ [

√
K].

3 An advice correlation breaker with a dense seed

In this section we construct the mergers needed for the construction. For that we use advice
correlation breakers, first introduced in [Coh16].

Definition 3.1. An ((n, k)× (`, α`)→ε m) t-NM advice correlation breaker is a function

AdvCB : {0, 1}n × {0, 1}` × {0, 1}a → {0, 1}m

such that for every random variables
{
X(j)

}
0≤j≤t , where X(j) is distributed over {0, 1}n, and for every

random variables
{
Y (j)

}
0≤j≤t that are distributed over {0, 1}`, and for every t+1 strings adv(0), . . . , adv(t) ∈

{0, 1}a, the following holds. Denote X = X(0), Y = Y (0). If

•
{
X(j)

}
0≤j≤t are independent of

{
Y (j)

}
0≤j≤t ,

• H∞(X) ≥ k,
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• H∞(Y ) ≥ α`, and,

• adv(0) 6∈
{
adv(j)

}
j∈[t]

,

then

AdvCB
(
X,Y, adv(0)

)
◦
{
AdvCB

(
X(j), Y (j), adv(j)

)}
j∈[t]
≈ε Um×

{
AdvCB

(
X(j), Y (j), adv(j)

)}
j∈[t]

.

Notice that if

• we have a table with t rows r1, . . . , rt ∈ {0, 1}`, one of which coming from an (`, α`) source,
and,

• if X is sampled from an (n, k) distribution X ,

then AdvCB(x, r1, 1)⊕AdvCB(x, r2, 2)⊕. . .⊕AdvCB(x, rt, t) is close to uniform, since AdvCB(x, ri, i)
is close to uniform for the good row ri, and independent of all other values AdvCB(x, rj , j) for
j 6= i. Thus, in this section we focus on obtaining an advice correlation breaker where X is a weak
(n, k)-source and Y is an (`, α`)-source.

Cohen [Coh16] proved:

Theorem 3.2. There exists a constant c′ > 1 such that the following holds. For all integers n,m, a, for
any ε > 0, and for any constant integer c ≥ 1, there exists an explicit ((n, k)× (`, `)→ε m) 1-NM advice
correlation breaker

AdvCB : {0, 1}n × {0, 1}` × {0, 1}a → {0, 1}m

with

` = c′ log(an) + (c′)
√

log(log(c)(a)+log(1/ε)) ·
(

log(c)(a) + log(1ε)
)

k = 4m+ c′`.

Plugging in c = 4, we have that ` = O(log a+ log n) + (log(1/ε))1+o(1) and k = 3m+O(`).

We need a similar result, but with the following differences:

• Y is not a uniform source but rather a dense weak source.

• In our case a is small and we do not care much about the dependence on a.

• We make the dependence on t explicit (Cohen uses the theorem for a general constant t, but
does not specify the dependence on t).

Our construction roughly follows the base correlation breaker with advice of [Coh16] using the
independence-persevering mergers of [CL16]. We do not try to reduce the advice length, because
A = 2a is the same order as t, which we pay anyway. The fact that A = t also allows a simple and
explicit treatment of the t shadows. We prove:

Theorem 3.3. There exist constants c > 1, c′ > 0 such that for every n, a, t, ζ > 0, k ≥ ct3A2 log n
ζ and

α ≥ 1− c′

t2A
, there exists a ((n, k)× (`, α`)→ζ m) t-NM advice correlation breaker

AdvCB : {0, 1}n × {0, 1}` × {0, 1}a → {0, 1}m

with seed length ` = ct2A log nA
ζ and output length m ≤ k

ct2A
− cA log k

tζ .
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Plugging in A = t, we have the following corollary:

Corollary 3.4. There exist constants cadv > 1, cgap > 0 such that for every n, t ≤ n, ζ > 0, k ≥
cadvt

5 log n
ζ and α ≥ 1− cgap

t3
, there exists a ((n, k)× (`, α`)→ζ m) t-NM advice correlation breaker

AdvCB : {0, 1}n × {0, 1}` × {0, 1}log t → {0, 1}m

with seed length ` = cadvt
3 log n

ζ and output length m ≤ k
cadvt3

− cadvt log n
ζ .

For the construction we need independence-preserving mergers and the hierarchy of indepen-
dence, which we review in the next two subsections.

3.1 Independence-preserving mergers

Independence-preserving mergers were first introduced in [CS15]. We define:

Definition 3.5. An ((L×m)× (d, k2)→ε m
′) t-NM independence-preserving merger

IPM : ({0, 1}m)L × {0, 1}d → {0, 1}m
′

is a function such that for every random variables
{
X(j)

}
0≤j≤t , where every X(j) is a boolean L × m

matrix, and for every
{
Y (j)

}
0≤j≤t that are distributed over {0, 1}d the following holds. Let X = X(0),

Y = Y (0) and X(j)
i be the i-th row of X(j) (hence Xi is the i-th row of X). If

•
{
X(j)

}
0≤j≤t are independent of

{
Y (j)

}
0≤j≤t ,

• for every 0 ≤ i ≤ L− 1, Xi is uniform,

• there exists 0 ≤ i ≤ L− 1 such that
(
Xi,
{
X

(j)
i

}
j∈[t]

)
=

(
Um,

{
X

(j)
i

}
j∈[t]

)
, and,

• H∞(Y ) ≥ k2,

then
IPM(X,Y ) ◦

{
IPM

(
X(j), Y (j)

)}
j∈[t]

≈ε Um′ ×
{
IPM

(
X(j), Y (j)

)}
j∈[t]

.

Chattopadhyay and Li [CL16] proved:

Theorem 3.6. There exists a constant cIPM > 0 such that for all integers L,m, d, k2, t > 0 and all ε > 0,
if

m ≥ d ≥ k2 > cIPM(t+ 1)` log
m

ε
,

then there exists an explicit ((L×m)×(d, k2)→cIPMLε m
′) t-NM independence-preserving merger function

IPM : ({0, 1}m)L × {0, 1}d → {0, 1}m
′
,

with m′ = 0.9
t (m− cIPM(t+ 1)` log m

ε ).
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3.2 A hierarchy of independence

We state a variant of the hierarchy of independence [DP07, DW09, Li13, Li15b, Coh15a, CS15]. We
first give a short informal explanation for those unfamiliar with it. A hierarchy of independence
usually deals with two issues:

1. Suppose we start with two independent sourcesX and Y , and do some computation f(X,Y )
that involves both sources. Are the two sources independent given the computation result?

2. We do the computation on the two sources X and Y given to us. Suppose the adversary
is given access to the same computation done on a shadow input, i.e., on X ′ and Y ′ where
(X ′, Y ′) is correlated with (X,Y ) in some restricted way. Can we say that the computation
we do is independent of the computation on the shadow?

An example for a computation that correlates X and Y is the inner product function. One can
check that (X|IP(X,Y )) and (Y |IP(X,Y )) are not independent. However, there are computations
that preserve independence. One simple example is if f(X,Y ) is local. If f(X,Y ) depends on X
alone (or on Y alone), then (X|f(X,Y )) is independent of (Y |f(X,Y )). As a result, if we have
a computation W1 = f(X), W2 = f(Y,W1), W3 = f(X,W1,W2), etc., then (X|W1, . . . ,Wt) is
independent of (Y |W1, . . . ,Wt). This addresses the first issue. This kind of computation is called
in [Coh15a] an (X,Y )-history.

To address the second issue we make the following assumptions. We assume X and all its
shadows together are independent of Y and all its shadows together. We also assume some part
X1 of X is known to be uniform. We then notice that if Ext is a strong extractor, then Ext(Y,X1) is
uniform even when we fix X1 (with high probability over X1). In fact, it is an easy exercise that
Ext(Y,X1) is uniform even given the shadows of X . This phenomenon continues throughout the
hierarchy, a value Wi = Ext(Source,Wi−1) in the i-th level that depends on one source, is uniform
even given the historyW1, . . . ,Wi−1 and the other source, and furthermore, this is true even when
all these values are given for the shadows too.

In our case we assume we know a part X1 of X that has high min-entropy, rather than the
usual requirement that X1 is uniform. Formally,

Parameters: We are given:

• n, k1 and a sample x from an (n, k1) source X ,

• `, k2 and a sample y from an (`, k2) source Y ,

• m – the desired number of bits in a row,

• A – the number of levels in the hierarchy, and,

• ε – the error parameter.

Ingredients: For the protocol we use the following ingredients:

• An extractor
Raz : {0, 1}n × {0, 1}d → {0, 1}m ,

which is a (2m, ε) strong extractor with 0.6-dense seed (see Theorem 2.6), and,

Extx : {0, 1}n × {0, 1}d → {0, 1}m ,
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which is a (2m, ε) strong extractor (see Theorem 2.4), for d = max {cRAZ, cGUV} · log n
ε .

In fact, the seed length for Raz is cRAZ log n
ε and for Extx is cGUV log n

ε , but we combine
them to save a parameter.

• An extractor
Exty : {0, 1}` × {0, 1}d

′
→ {0, 1}d ,

which is a strong (2d, ε) extractor and d′ = cGUV log `
ε .

Protocol: The protocol is as follows. Given x ∈ {0, 1}n and y ∈ {0, 1}`, let y1 be a prefix of y of
length d. Compute the following (X,Y )-history:

HY0 = y1

HX0 = Raz(x,HY0)

HY1 = Exty(y,HX0|[d′])
HX1 = Extx(x,HY1)

...
HYA−1 = Exty(y,HXA−2|[d′])
HXA−1 = Extx(x,HYA−1),

and outputH(x, y) = (HX0, . . . ,HXA−1).

We claim:

Lemma 3.7 ([Li13], revised). Fix n, k1, `, k2, t, A and ε. Set d = max {cRAZ, cGUV} · log n
ε . Assume

m ≥ d. There exists a constant cH > 1 for which the following holds:

• Let X be an (n, k1)-source and Y be an (`, k2)-source independent of X , where k1 ≥ cHtAm+ log 1
ε ,

k2 ≥ cHtAd+ log 1
ε and ` ≤ k2 + 0.4d.

• Let X(1), . . . , X(t) be t random variables over n bits arbitrarily correlated with X . Let Y (1), . . . , Y (t)

be t random variables over ` bits arbitrarily correlated with Y . We denote X(0) = X and Y (0) = Y .
We assume the random variables

{
X(j)

}
0≤j≤t together are independent of

{
Y (j)

}
0≤j≤t.

Let H
(
X(j), Y (j)

)
=
(
HX

(j)
0 , . . . ,HX

(j)
A−1

)
for every 0 ≤ j ≤ t. Then, we claim that for every 0 ≤ i ≤

A − 1, HXi is uniform even conditioned on the values of the hierarchy (including those of the t shadows)
in the first i− 1 levels. Specifically,(

HXi,
{
Y (j), HX

(j)
b

}
0≤j≤t

0≤b≤i−1

)
≈cHiε

(
Um,

{
Y (j), HX

(j)
b

}
0≤j≤t

0≤b≤i−1

)
.

The proof is a standard application of (X,Y )-history reasoning (see [Coh15a]). We do not give
the full proof, but we do comment on a few things that need to be checked:

• In the application of the Raz extractor, y1 is dense enough.

• In all the extractor applications, the seed length is long enough.
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• Throughout the execution of the protocol, X and Y retain (with high probability) enough
min-entropy (i.e., at least 2m min-entropy).

For the first item, notice that by our choice of parameters, 0.4d ≥ ` − k2. Hence, H∞(Y1) ≥
k2 − H∞(Y1) ≥ k2 − (` − d) ≥ 0.6d, so H∞(Y1)

d ≥ 0.6. The second item follows because d is large
enough (and m ≥ d). For the third condition we have that k1 = Ω(tAm) and k2 = Ω(tAd).

3.3 The construction and proof

Parameters: We are given n, k1 = k, a, t and ζ > 0. Set the following parameters:

• ε = ζ
2cIPMA

.

• r is such that k1 = cHtAr + log 1
ε .

• m = 0.9
t (r − cIPM(t+ 1)A log r

cHε
).

We apply the hierarchy of independence on X and a prefix of Y of length `pref . Then, we
apply an independence-preserving merger on the table and the whole length-` string y. For
that we fix:

• d = max {cRAZ, cGUV} · log n
ε .

• `pref = cHtAd+ log 1
ε + 0.4d.

• ` = (t+ 1)(`pref + cIPMA log r
cHε

) + log 1
ε . We require k1 to be large enough so that r ≥ `.

Ingredients: For the construction we use the following ingredients:

• H : {0, 1}n×{0, 1}`pref → ({0, 1}r)A is the hierarchy of independence withA levels and
error ε.

• IPM : ({0, 1}r)A×{0, 1}` → {0, 1}m is an ((A× r)× (`, α`)→ε m) t-NM independence-
preserving merger, for a large enough α that will be determined soon.

Construction: The construction is as follows. Given x ∈ {0, 1}n, y ∈ {0, 1}` and adv ∈ [A], let
ypref be a prefix of y of length `pref and compute the following:

1. LetH(x, ypref ) = (HX0, . . . ,HXA−1).

2. Construct the table

T = (HXadv mod A, HX(adv+1) mod A, . . . ,HX(adv+A−1) mod A).

3. Output AdvCB(x, y, adv) = IPM(T , y).

We now turn to the analysis. The analysis is standard except for the way we treat the advice
(and therefore the t shadows). Usually, one works on the advice string bit by bit, and argues that
in each bit, the good source becomes independent with all the shadow sources that have in their
advice string a different bit (though one has to be careful with such claims). Here, we work on
the advice string as a whole, and we use it as a cyclic shift on the the t levels in our hierarchy of
independence. This means that the number of levels in our hierarchy of independence is A, rather
than the usual a = logA. However, we are willing to pay this price because A = t and we pay it
anyway. We claim:

9



Lemma 3.8. Suppose α ≥ 1− c′

t2A
for some constant c′ > 0. Then,

AdvCB : {0, 1}n × {0, 1}` × {0, 1}a → {0, 1}m

is an ((n, k)× (`, α`)→ζ m) t-NM advice correlation breaker.

Proof: Let X be an (n, k1)-source and let Y be an `-bit random variable such that H∞(Y ) ≥ α` ≥
`− c′`

t2A
≥ `− 0.4d, for c′ = 0.4dt2A

` . Notice that since ` ≥ cHdt2A, c′ is indeed a constant.
Now, fix shadows

{
X(j), Y (j)

}
j∈[t]

. Let adv(j) be the advice associated with shadow j, denote

adv = adv(0), and assume adv /∈
{
advj

}
j∈[t]

. Denote T (j) = H(X(j), Y (j)) and T = T (0). Recall

that for every 0 ≤ j ≤ t, T (j) is an A× r table.
By assumption, we have that H∞(X) ≥ cHtAr + log 1

ε . Also, we have H∞(Y ) ≥ ` − 0.4d, so
H∞(Ypref ) ≥ `pref − 0.4d. By Lemma 3.7,

• (All the rows in T are close to uniform) For every 0 ≤ i ≤ A− 1,(
Ti,
{
Y

(j)
pref

}
0≤j≤t

)
≈cHε

(
Ur,
{
Y

(j)
pref

}
0≤j≤t

)
.

• (There exists a row that is close to uniform even conditioned on the shadow) Since each
player shifts the rows by adv(j) ∈ {0, . . . , A− 1}, and the advice adv(0) given to the good
player is different from the advices adv(j) given to all the shadows, there exists a row b, such
that the good player outputs on that row Tb = H(X,Ypref )A−1 and the j-th shadow player

outputs on that row T (j)
b = H

(
Xj , Y

(j)
pref

)
i

for some i < A− 1. Hence, again by Lemma 3.7,(
Tb, Ypref ,

{
Y

(j)
pref , T

(j)
b

}
j∈[t]

)
≈cHε

(
Ur, Ypref ,

{
Y

(j)
pref , T

j
b

}
j∈[t]

)
.

Now, conditioned on the values
{
Y

(j)
pref

}
0≤j≤t

,

• (All the rows in T are close to uniform) For every 0 ≤ i ≤ A− 1,

Ti ≈cHε Ur.

• (There exists a row that is close to uniform even conditioned on the shadow) There exists a
row b such that (

Tb,
{
T (j)
b

}
j∈[t]

)
≈cHε

(
Ur,
{
T (j)
b

}
j∈[t]

)
.

•
{
X(j)

}
0≤j≤t and

{
Y (j)

}
0≤j≤t are independent. Also, given the conditioning,

{
T (j)

}
0≤j≤t is

a function of
{
X(j)

}
0≤j≤t alone, so

{
T (j)

}
0≤j≤t is independent of

{
Y (j)

}
0≤j≤t.

• Finally, by Lemma 2.1,

H̃∞

(
Y |
{
Y

(j)
pref

})
≥ H∞(Y )− (t+ 1)`pref ≥ cIPM(t+ 1)A log

r

cHε
+ log

1

ε
.
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By Lemma 2.2, except for error ε over the fixing of Y (j)
pref , H∞(Y ) ≥ cIPM(t+ 1)A log r

cHε
.

Let W (j) = AdvCB
(
X(j), Y (j), adv(j)

)
= IPM

(
T (j), Y (j)

)
. By Theorem 3.6,(

W,
{
W (j)

}
j∈[t]

)
≈cIPMAε+2ε

(
Um,

{
W (j)

}
j∈[t]

)
.

Note that cIPMAε+ 2ε ≤ ζ, so we are done.

Keeping track of the parameters, we can verify that Theorem 3.3 indeed follows.

4 A somewhere-random condenser with a dense output

Definition 4.1 (somewhere-random source). A source X = X1 ◦ . . .◦XA is a (k, (α, β)) somewhere-
random (s.r.) source if there is a random variable I ∈ {0, . . . , A} such that for every i ∈ [A], Hα

∞(Xi|I =
i) ≥ k and Pr[I = 0] ≤ β. The variable I is called the indicator of source. If α = β = 0 we say X is a k
s.r. source.

Claim 4.2. Let X be a (k, α, β) s.r. source. Then, X is (α+ β)-close to a k s.r. source.

Definition 4.3 (s.r. condenser). A function C : [N ] → [M ]A is a (k →ε k
′) s.r. (seedless) condenser if

for every (n, k)-source X it holds that C(X) = C(X, 1) ◦ . . . ◦ C(X,A) is ε-close to a k′- s.r. source. We
say that C is a rate-(δ →ε µ) s.r. condenser if it is a (δn→ε µm) s.r. condenser.

4.1 A basic s.r. condenser from the Incidence theorem

In [Zuc06], Zuckerman showed:

Theorem 4.4. For every constant 0 < c < 1 there exists a constant α = α(c)3 such that for every δ ≤ c
and N for which N δ = ω(1), there exists a rate-(δ →ε (1 + α/2)δ) s.r. condenser C : [q3]→ [q2]2, where
ε = N−αδ/60.

Li [Li11] gave a high density variant of this s.r. condenser. The construction uses the following
incidence theorem of [Vin11] that has the advantage that it also works when the sets are dense.

Theorem 4.5. Let Fq be a field. Let P be a set of points of F2
q and L a set of lines. Let I(P,L) =

{(p, `) | p ∈ P, ` ∈ L, p ∈ `}. Then,

|I(P,L)| ≤ |P | · |L|
q

+
√
q · |P | · |L|.

We also use we use the following lemma to convert the statistical problem of constructing a s.r
source into a counting problem.

Lemma 4.6 ([Zuc06, Lemma 8.6]). If (X,Y ) is not ε-close to a k-s.r. source, then there exist sets S ⊆
supp(X), T ⊆ supp(Y ), |S|, |T | < 2k+1/ε, such that Pr[X ∈ S ∧ Y ∈ T ] > ε/2.

3The constant α is the constant guaranteed by the Incidence Theorem (see, e.g., [BKT04, BGK06]).
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Li used the above two lemmas to give the high density version of the s.r. condensers, and we
repeat the argument using the notation introduced above.

Theorem 4.7. Let Fq be a field, and let n denote log q. For every g = g(n) and 0.6g+ 2 ≤ g′ = g′(n) < n
2

there exists a ((3n, 3n− g)→ε (2n, 2n− g′)) s.r. condenser C : F3
q → (F2

q)
2 with ε = 2−g/15.

Proof: We use Zuckerman’s condenser C : F3 → (F2)2, defined by

C(a, b, c) = ((b, ab+ c), (a, c)).

The condenser connects an incidence of point-line to the point (b, `(b)) and line `(x) = ax+ c that
defines it. The intuition is then simply that, if C is applied to a set of many incidences, then, by
the Incidence Theorem this set must intersect many lines or many points.

Formally, suppose X ⊆ F3 has entropy gap g, i.e., |X| ≥ q3

G . Assume that (C(X)1, C(X)2) is
not a ε-close to a (2n, 2n− g′) s.r source. By Lemma 4.6 there exist sets P,L of size less than 2

ε
q2

G′ of
points and lines respectively, that contain at least ε/2 of the incidences, i.e.,

|I(P,L)| ≥ |X| · ε
2

=
ε

2

q3

G
.

By Theorem 4.5,

I(P,L) ≤
(

2

ε

)2 q3

G′2
+
√
q

2

ε

q2

G′
< 2

(
2

ε

)2 q3

G′2
,

because g′ < n
2 . Combining the two bounds, we get

G′ <
4

ε1.5

√
G,

a contradiction to g′ ≥ 0.6g + 2.

Corollary 4.8. Let Fq be a field, and let n denote log q. For every δ = δ(n) ≥ 3
4 there exists a ((3n, δ)→ε

(2n, 1− δ′)) s.r. condenser C : F3
q → (F2

q)
2 with ε = 2−Ω((1−δ)n) and 1− δ′ = 0.9(1− δ).

4.2 Composing s.r. condensers

We the following result about compositions of s.r. condensers.

Lemma 4.9 ([BKS+10]). Let C1 : [N1] → [N2]`1 be a rate (δ1 →ε1 δ2) s.r. condenser. Let C2 : [N2] →
[M ]`2 be a rate (δ2 →ε2 δ3) s.r. condenser. We define C2 ◦ C1 : [N ] → [M ]`1·`2 as follows: Identify an
index i ∈ [`1 · `2] as a pair (i1, i2) ∈ [`1] × [`2] and let C2 ◦ C1(x)(i1,i2) = C2(C1(x)i1)i2 . Then, C2 ◦ C1

is a rate-(δ1 →ε1+ε2 δ3) s.r. condenser.

Composing the s.r. condenser from Theorem 4.4 with itself s times with repeated application
of Lemma 4.9, we get:

Theorem 4.10. Let α be the constant from the Incidence Theorem. Fix δ < 3/4 and N for which N δ =

ω(1). Fix any constant c ≥ c1 =
log1+α/2

3
4δ

log(1/δ) . Let s = c log 1/δ. There exists a rate-(δ → 3/4, ε) s.r.
condenser C : [N ]→ [M ]D with:

12



• D = 2s = (1/δ)c,

• m = (2
3)sn = (1/δ)−c log 3

2n, and,

• ε =
∑s

i=1 2−
α
60

( 2
3

)in(1+α
2

)iδ = 2−Ω(m).

Theorem 4.4 is sufficient when we want to achieve a constant rate s.r source. Composing the
s.r. condenser of Theorem 4.7 gives:

Theorem 4.11. There exists a constant c2 > 1 such that for every c ≥ c2 and every T > 0 the there exists
a rate-(3/4→ 1− 1

T , ε) s.r. condenser C : [N ]→ [M ]D with:

• D = T c,

• m = T−c log(3/2)n, and,

• ε =
∑c log T

i=1 2−Ω(0.9i· 3
4
·( 2

3
)in) = 2−Ω(m/T ).

Proof: We start with a rate-3/4 source, and repeatedly (somewhere) condense it. Let µi denote
the entropy gap in the i-th step (that is, µ0 = 1/4). Corollary 4.8 guarantees us that µi ≤ 0.9µi−1.
Let ` denote the number of iterations. We require that in the last step µ` = 0.9` · 3

4 ≤ 1/T , hence,
` = C log T for some constant C > 1 suffices. The length of the source in the i-th step is mi = (2

3)in
and so the second item holds. The error of the condenser is the accumulation of the errors in each
step. The error in the i-th step is 2−µimi = 20.9i· 3

4
·( 2

3
)in.

5 A two-source extractor with a small error

5.1 The construction

Given parameters: n, k1, k2 and ε.

Fixed constants: c = max {c1, c2, 2}, where c1, c2 are the constants from Theorems 4.10 and 4.11
respectively. cout = log(3/2)c. cgap, cadv are the constants from Corollary 3.4.

Input: A sample x1 from an (n, k1)-source X1 and a sample x2 from an (n, k2)-source X2.

The ingredients:

• Cond1 : [N ] → [M1](k1/n)c , a rate-(k1/n →ε
3
4) s.r. condenser from Theorem 4.10, where

m1 = ( nk1
)−cout · n.

• Cond2 : [M1]→ [L]T
c
, a rate-(3/4→ε 1− 1/T ) s.r. condenser from Theorem 4.11, where

l = T−cout ·m1, T = t3

cgap
, and t = (

cgapn
k1

)
c

3c−1 . Note that t = (k1/n)c ·T c, the multiplication
of the number of rows of Cond1 and Cond2.
• AdvCB : [N ] × [L] × [t] → [M ], a ((n, k2) × (l, αl)) t-NM advice correlation breaker for

dense seeds, where m = k2
cadvt3

− t log t
ε and α = 1− 1/T .

The construction: We construct 2Ext : [N ]× [N ]→ [M ] defined by:

2Ext(x1, x2) =

t⊕
i=1

AdvCB(x2, (Cond2 ◦ Cond1(x1))i, i).

13



5.2 The analysis

Theorem 5.1. There exists a constant 0 < cExt < 1 such that the following holds. For every large enough
n, k1 ≥ n1− 1

4
cExt and k2 ≥ ncExt there exists an explicit ((n, k1) × (n, k2) →ε m) two-source extractor,

where ε = 2−k
Ω(1)
2 and m = k

Ω(1)
2 .

Proof: Fix such sources X1 and X2. Consider the t ×M table defined by Cond1 ◦ Cond2(X1). By
our choice of Cond1 and Cond2 we have that it is 2ε close to a (1− 1/T )l s.r. source.

We now need to check that the requirements for the correlation breaker hold.

• We first need that l ≥ cadvt
3 log n

ε . Assume that 1
n ≥ ε ≥ 2−

1
2
c
1/3
gap n

1
12cout and k1 ≥ n

1− 1
4cout .

Then, it holds that log n
ε ≤ t, and one can check that indeed

l =

(
Tn

k1

)−cout
· n ≥ cadvt

4 ≥ cadvt
3 log

n

ε
.

• We also need that k2 ≥ cadvt
5 log n

ε , or, alternatively, k2 ≥ cadvt
6. This is satisfied by taking

k2 ≥ cadvc
3
gapn

3
4cout . For a large enough n, the requirement k2 ≥ n

1
cout suffices, and we can

now see that we can set cExt = 1
cout

.

As both conditions hold, we can apply the correlation breaker. By Corollary 3.4, Cond1 ◦
Cond2(X1) is 2ε-close to a (1 − 1/T )l-s.r. source Λ. The fact that Λ is a s.r. source guarantees that
it is a convex combination of sources, such that in each source, there exists a row with (1 − 1/T )l
min-entropy. It suffices to analyze each such source separately. Henceforth, we shall assume the
i-th row, Λi, has (1 − 1/T )l min-entropy. Using also the t-wise independence property of the
correlation breaker,(

AdvCB(X2,Λi, i), {AdvCB(X2,Λj , j)}j 6=i
)
≈ε
(
Um, {AdvCB(X2,Λj , j)}j 6=i

)
,

so overall the XOR of these t variables is 3ε-close to uniform. The value of m is set by Corollary
3.4, noticing that for a large enough n, k2

cadvt3
≥ n

2
3
cExt and cadvt log n

ε ≤ cadvt
2 ≤ n

1
3
cExt .
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math/0601651, 2006.

[BGK06] Jean Bourgain, AA Glibichuk, and Sergei V Konyagin. Estimates for the number of
sums and products and for exponential sums in fields of prime order. Journal of the
London Mathematical Society, 73(2):380–398, 2006.

14



[BKS+10] Boaz Barak, Guy Kindler, Ronen Shaltiel, Benny Sudakov, and Avi Wigderson. Sim-
ulating independence: New constructions of condensers, ramsey graphs, dispersers,
and extractors. Journal of the ACM (JACM), 57(4):20, 2010.

[BKT04] Jean Bourgain, Nets Katz, and Terence Tao. A sum-product estimate in finite fields,
and applications. Geometric & Functional Analysis GAFA, 14(1):27–57, 2004.

[Bou05] Jean Bourgain. More on the sum-product phenomenon in prime fields and its appli-
cations. International Journal of Number Theory, 1(01):1–32, 2005.

[BRSW12] Boaz Barak, Anup Rao, Ronen Shaltiel, and Avi Wigderson. 2-source dispersers for
no(1) entropy, and ramsey graphs beating the frankl-wilson construction. Annals of
Mathematics, 176(3):1483–1544, 2012.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness
and probabilistic communication complexity. SIAM Journal on Computing, 17(2):230–
261, 1988.

[Chu81] Fan RK Chung. A note on constructive methods for ramsey numbers. Journal of Graph
Theory, 5(1):109–113, 1981.

[CL16] Eshan Chattopadhyay and Xin Li. Explicit non-malleable extractors, multi-source
extractors and almost optimal privacy amplification protocols. ECCC, 2016.

[Coh15a] Gil Cohen. Local correlation breakers and applications to three-source extractors and
mergers. ECCC, 2015.

[Coh15b] Gil Cohen. Two-source dispersers for polylogarithmic entropy and improved ramsey
graphs. arXiv preprint arXiv:1506.04428, 2015.

[Coh16] Gil Cohen. Making the most of advice: New correlation breakers and their applica-
tions. ECCC, 2016.

[CS15] Gil Cohen and Leonard Schulman. Extractors for near logarithmic min-entropy.
ECCC, 2015.

[CZ15] Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and re-
silient functions. In Electronic Colloquium on Computational Complexity (ECCC), vol-
ume 22, page 119, 2015.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data. SIAM journal on
computing, 38(1):97–139, 2008.

[DP07] Stefan Dziembowski and Krzysztof Pietrzak. Intrusion-resilient secret sharing. In
Foundations of Computer Science, 2007. FOCS’07. 48th Annual IEEE Symposium on, pages
227–237. IEEE, 2007.

[DW09] Yevgeniy Dodis and Daniel Wichs. Non-malleable extractors and symmetric key cryp-
tography from weak secrets. In Proceedings of the forty-first annual ACM symposium on
Theory of computing, pages 601–610. ACM, 2009.

15



[Fra77] Peter Frankl. A constructive lower bound for ramsey numbers. Ars Combinatoria,
3(297-302):28, 1977.

[FW81] Peter Frankl and Richard M. Wilson. Intersection theorems with geometric conse-
quences. Combinatorica, 1(4):357–368, 1981.

[Gro01] Vince Grolmusz. Low rank co-diagonal matrices and ramsey graphs. Journal of com-
binatorics, 7(1):R15–R15, 2001.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced ex-
panders and randomness extractors from parvaresh–vardy codes. Journal of the ACM
(JACM), 56(4):20, 2009.

[Li11] Xin Li. A new approach to affine extractors and dispersers. In Computational Complex-
ity (CCC), 2011 IEEE 26th Annual Conference on, pages 137–147. IEEE, 2011.

[Li13] Xin Li. Extractors for a constant number of independent sources with polylogarith-
mic min-entropy. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual
Symposium on, pages 100–109. IEEE, 2013.

[Li15a] Xin Li. Improved constructions of two-source extractors. arXiv preprint
arXiv:1508.01115, 2015.

[Li15b] Xin Li. Three-source extractors for polylogarithmic min-entropy. In Foundations of
Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages 863–882. IEEE,
2015.

[Mek15] Raghu Meka. Explicit resilient functions matching Ajtai-Linial. CoRR,
abs/1509.00092, 2015.

[Nag75] Zs Nagy. A constructive estimation of the ramsey numbers. Mat. Lapok, 23:301–302,
1975.

[Nao92] Moni Naor. Constructing ramsey graphs from small probability spaces. IBM Research
Report RJ, 8810, 1992.

[Rao07] Anup Rao. An exposition of bourgains 2-source extractor. In Electronic Colloquium on
Computational Complexity (ECCC), volume 14, 2007.

[Raz05] Ran Raz. Extractors with weak random seeds. In Proceedings of the thirty-seventh annual
ACM symposium on Theory of computing, pages 11–20. ACM, 2005.
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