
Lower Bounds for Alternating Online State Complexity?

Nathanaël Fijalkow

University of Oxford, United Kingdom

Abstract. The notion of Online State Complexity, introduced by Karp in 1967,
quantifies the amount of states required to solve a given problem using an online
algorithm, which is represented by a deterministic machine scanning the input
from left to right in one pass.
In this paper, we extend the setting to alternating machines as introduced by
Chandra, Kozen and Stockmeyer in 1976: such machines run independent passes
scanning the input from left to right and gather their answers through boolean
combinations.
We devise a lower bound technique relying on boundedly generated lattices of
languages, and give two applications of this technique. The first is a hierarchy the-
orem, stating that the polynomial hierarchy of alternating online state complexity
is infinite, and the second is a linear lower bound on the alternating online state
complexity of the prime numbers written in binary. This second result strength-
ens a result of Hartmanis and Shank from 1968, which implies an exponentially
worse lower bound for the same model.

Keywords: Online State Complexity, Lower Bounds, Alternating Machines, Hi-
erarchy Theorem, Prime Numbers

1 Online State Complexity

An online algorithm has a restricted access to its input: it scans it exactly once
from left to right. The notion of online computing has been identified as a funda-
mental research question in the 80s, and has since then blossomed into several
directions with various approaches. In this work we are concerned with com-
plexity questions, and in particular about the use of space for online algorithms,
harkening back to a series of works initiated by Karp [Kar67]. An impressive
result in this line of work is a tight bound on the complexity of checking the
primality of a number written in binary for deterministic online algorithms by
Hartmanis and Shank [HS69].

The class of deterministic online algorithms being rather weak, two natural
extensions are commonly studied: adding randomisation or allowing the algo-
rithm to make several passes over the input. The latter idea is popular in the
? This work was done in part while the author was visiting the Simons Institute for the Theory

of Computing.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 107 (2016)

field of streaming algorithms, introduced by Munro and Paterson [MP80], Fla-
jolet and Martin [FM85], and Alon, Matias and Szegedy [AMS96].

We initiate in this paper the study of alternating machines for representing
online algorithms, as an expressive class of online algorithms making several
passes over the input. Alternating (Turing) machines have been introduced by
Chandra, Kozen and Stockmeyer [CS76,Koz76,CKS81], and generalise non-
deterministic models where along the computation, the machine makes guesses
about the input, and the computation is successful if there exists a sequence of
correct guesses. In other words, these guesses are disjunctive choices; the alter-
nating model restores the symmetry by introducing disjunctive and conjunctive
choices, resolved by two competing agents, a Prover and a Verifier. Intuitively,
the Prover argues that the input is valid and the Verifier challenges this claim.

Alternating machines are very expressive: the seminal results of Chandra,
Kozen and Stockmeyer state that alternating Turing machines are exponen-
tially more expressive than deterministic ones, which materialises by complex-
ity classes equalities such as APTIME = PSPACE and ALOGSPACE = PTIME.

Contributions and organisation of the paper. We study alternating online
state complexity, i.e. the amount of states required to solve a given problem
using an alternating machine. We devise a generic lower bound technique based
on boundedly generated lattices of languages.

We give the basic definitions and show some examples in the remainder of
this section. We describe our lower bound technique in Section 2, and give two
applications:

– Hierarchy theorem: in Section 3, we show a hierarchy theorem: for each
natural number ` greater than or equal to 2, there exists a language having
alternating online state complexity n` but not n`−ε for any ε > 0.

– Prime numbers: in Section 4, we look at the language of prime numbers
written in binary. The works of Hartmanis and Shank culminated in show-
ing that it does not have subexponential deterministic online state com-
plexity [HS69]. We consider the stronger model of alternating online al-
gorithms, and first observe that Hartmanis and Shank’s techniques imply
a logarithmic lower bound on the alternating online state complexity. Our
contribution is to strengthen this result by showing a linear lower bound,
which is thus an exponential improvement.

1.1 Definitions

We fix an input alphabet A, which is a finite set of letters. A word is a finite
sequence of letters, often denoted w = w(0)w(1) · · ·w(n − 1), where w(i)’s

are letters from the alphabet A, i.e. w(i) ∈ A. We say that w has length n, and
denote it |w|. The empty word is denoted ε. We denote A∗ the set of all words
and A≤n the set of words of length at most n.

For a set E, we denote B+(E) the set of positive boolean formulae over E.
For instance, if E = {p, q, r}, an element of B+(E) is p ∧ (q ∨ r).

Our aim is to prove lower bounds on the state complexity of online algo-
rithms. Following Karp [Kar67], we do not work with Turing machines but with
a more general model that we simply call machines; since we are interested in
lower bounds, this makes our results stronger. We define alternating machines
following Chandra, Kozen and Stockmeyer [CS76,Koz76,CKS81].

Definition 1 (Alternating Machines). An alternating machine is given by a
(potentially infinite) setQ of states, an initial state q0 ∈ Q, a transition function
δ : Q×A→ B+(Q) and a set of accepting states F ⊆ Q.

To define the semantics of alternating machines, we use acceptance games.
Consider an alternating machine A and an input word w, we define the accep-
tance game GA,w as follows: it has two players, Prover and Verifier. The Prover
claims that the input word w should be accepted, and the Verifier challenges this
claim.

The game starts from the initial state q0, and with each letter of w read from
left to right, a state is chosen through the interaction of the two players. If in a
state q and reading a letter a, the new state is obtained using the boolean formula
δ(q, a); Prover chooses which formula is satisfied in a disjunction, and Verifier
does the same for conjunctions. A play is won by Prover if it ends up in an
accepting state.

The input word w is accepted by A if Prover has a winning strategy in the
acceptance game GA,w. The language recognised by A is the set of input words
accepted by A.

As special cases, a machine is:

– non-deterministic if for all q in Q, a in A, δ(q, a) is a disjunctive formula,
– universal if for all q in Q, a in A, δ(q, a) is a conjunctive formula,
– deterministic if for all q in Q, a in A, δ(q, a) is an atomic formula, i.e. if
δ : Q×A→ Q.

Definition 2 (Online State Complexity Classes). Let f : N → N. The lan-
guage L is in Alt (f) if there exists an alternating machine recognising L and
a constant C such that for all n in N:∣∣{q ∈ Q | ∃w ∈ A≤n, q appears in the game GA,w

}∣∣ ≤ C · f(n).

Such a machine is said to use f many states.
Similarly, we define NonDet (f) for non-deterministic machines and Det (f)

for deterministic machines.

For the sake of succinctness, the acronym OSC will be used in lieu of online
state complexity.

We denote the function f : n 7→ f(n) by f(n), so for instance Alt (log(n))
denotes the languages having logarithmic OSC.

We say that L has sublogarithmic (respectively sublinear) alternating OSC if
it is recognised by an alternating machine using f states, where f = o(log(n))
(respectively f = o(n)).

1.2 Applications to One-way Realtime Turing Machines

A Turing machine is:

– one-way if its input head never moves to the left,
– realtime if there exists a bound K such that its input head can stay at the

same place for at most K steps.

It has been observed [Vol99] that one-way alternating Turing machines using at
least logarithmic space can simulate unrestricted alternating Turing machines.
This idea does not work for one-way realtime Turing machines.

Given an alternating one-way realtime Turing machine, one can construct
an alternating machine simulating it as follows: a state of the machine is a con-
figuration of the Turing machine, i.e. a tuple describing the control state, the
content of the working tapes, and the positions of the input and working heads.
This leads to the following well-known result.

Theorem 1. An alternating one-way realtime Turing machine using space f
can be simulated by an alternating machine using 2f states.

Recall that in the definition of OSC, we count the number of states, whereas
when measuring space for Turing machines, we count how many bits are re-
quired to describe the configurations. It is well known that these two quantities
are exponentially related: k bits allow to describe 2k states, and n states require
log(n) bits to be described.

It follows that all lower bounds for OSC imply lower bounds for one-way
realtime Turing machines.

1.3 Related Works

The definition of online state complexity is due to Karp [Kar67], and the first
result proved in this paper is that non-regular languages have at least linear de-
terministic OSC. Hartmanis and Shank considered the language of prime num-
bers written in binary, and showed in [HS69] that it does not have subexponen-
tial deterministic OSC. We pursue this question in this paper by consider the
alternating OSC of the prime numbers. Recently, we investigated the OSC of
probabilistic automata; we substantiated a claim by Rabin [Rab63], by exhibit-
ing a probabilistic automaton which does not have subexponential deterministic
OSC [Fij16].

Three models of computations share some features with alternating OSC.
The first is boolean circuits; as explained in [Fij16], the resemblance is only
superficial as circuits do not process the input in an online fashion. For instance,
one can observe that the language Parity, which is hard to compute with a circuit
(not in AC0 for instance), is actually a regular language, so trivial with respect
to OSC.

The second model gives rise to the notion of automaticity; it has been in-
troduced and studied by Shallit and Breitbart [SB96]. The automaticity of a
language L is the function N → N which associates to n the size of the small-
est automaton which agrees with L on all words of length at most n. The
essential difference is that automaticity is a non-uniform notion, as there is
a different automaton for each n, whereas OSC is uniform, as it considers
one machine. For this reason, the two measures behave completely differently.
As an argument, consider a language L, and define its exponential padding:
Pad(L) =

{
u]2

|u| | u ∈ L
}

. It is easy to see that for every language L, its ex-
ponential padding Pad(L) has exponential deterministic automaticity. On the
other hand, the OSC of L and of Pad(L) are essentially the same.

The third model is alternating communication complexity, developed by
Babai, Frankl and Simon in 1986 [BFS86]. In this setting, Alice has an input
x in A, Bob an input y in B, and they want to determine h(x, y) for a given
boolean function h : A×B → {0, 1} known by all. Alice and Bob are referees
in a game involving two players, Prover and Verifier, who both know the two
inputs. Prover and Verifier exchange messages, whose conformity to the inputs
is checked by Alice and Bob. The cost of the protocol is the number of bits
exchanged.

One can obtain strong lower bounds by a classical reduction from deter-
ministic OSC to deterministic communication complexity; it it thus tempting to
extend this to the alternating setting. However, as we argue in the following ex-

ample, this gives very loose lower bounds, and our lower bound technique will
be much stronger than this approach.

Consider the language L studied in Subsection 2.3, consisting of words of
the form u]u1] · · ·]uk such that u is equal to uj for some j in {1, . . . , k}. This
induces an alternating communication complexity problem where Alice has a
word u of length n as input, Bob has a word v = u1] · · ·]uk, and they want to
determine whether u]v is in L. One can show that if L is in Alt (f), then the al-
ternating communication complexity problem above can be solved by exchang-
ing at most f(n) log(f(n)) bits. Here is a protocol: Prover first produces the
number j in {1, . . . , k}, then Verifier enquires about a position i in {1, . . . , n},
and Prover replies by the letter in this position for both u and uj . At the end of
this interaction, Alice and Bob each check that the declared letter is correct. This
protocol uses roughly log(k) + log(n) bits, and since k is at most 2n this gives
roughly n + log(n) bits. This reasoning implies a lower bound on f , namely
f(n) log(f(n)) ≥ n + log(n), from which we deduce that f(n) ≥ n. This is
exponentially worse than the lower bound we will obtain using our technique,
which states that f(n) ≥ 2n.

1.4 Complexity Classes and Examples

Denote Reg the class of regular languages, i.e. those recognised by finite au-
tomata. Then Det (1) = NonDet (1) = Alt (1) = Reg, i.e. a language has
constant OSC if, and only if, it is regular. Indeed, a machine which uses a con-
stant number of states is essentially a finite automaton, and deterministic, non-
deterministic and alternating finite automata are known to be equivalent.

We remark that Det (|A|n) is the class of all languages. Indeed, consider a
language L, we construct a deterministic machine recognising L using exponen-
tially many states. Its set of states is A∗, the initial state is ε and the transition
function is defined by δ(w, a) = wa. The set of accepting states is simply L
itself. The number of different states reachable by all words of length at most n
is the number of words of length at most n, i.e. |A|

n+1−1
|A|−1 .

It follows that the maximal OSC of a language is exponential, and the online
state complexity classes are relevant for functions smaller than exponential. In
particular, the class of languages of polynomial OSC is central.

We now give three examples.

Denote COUNTEQ3 = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c}. The notation
|w|a stands for the number of occurrences of the letter a inw. We construct a de-
terministic machine recognising this language using quadratically many states.

It has two counters that take integers values, initialised to 0 each, which main-
tain the value (|w|a−|w|b, |w|a−|w|c). To this end, the letter a acts as (+1,+1),
the letter b as (−1, 0), the letter c as (0,−1).

Formally, the set of states is Z2 and the initial and only accepting state is
(0, 0). The transitions are:

δ((p, q), a) = (p+ 1, q + 1)
δ((p, q), b) = (p− 1, q)
δ((p, q), c) = (p, q − 1)

After reading the word w, the machine is in the state (|w|a− |w|b, |w|a− |w|c).
This means for a word of length at most n, there are at most (2n+1)2 different
states, implying that COUNTEQ3 is in Det

(
n2
)
.

Denote NOTEQ = {u]v | u, v ∈ {0, 1}∗ , u 6= v}. Note that there are three
ways to have u 6= v: either v is longer than u, or v is shorter than u, or there
exists a position for which they do not carry the same letter. We construct a non-
deterministic machine recognising this language using linearly many states.

We focus on the third possibility for the informal explanation. The machine
guesses a position in the first word, stores its position p and its letter a, and
checks whether the corresponding position in the second word indeed carries a
different letter. To this end, after reading the letter], it decrements the position
until reaching 1, and checks whether the letter is indeed different from the letter
he carries in his state.

Formally, the set of states is N × (A ∪ {⊥}) × {<,>} ∪ {>}. The first
component carries a position, the second component a letter or ⊥, meaning yet
undeclared, and the third component states whether the separator] has been
read (>) or not (<). The initial state is (0,⊥, <). The set of accepting states is
{>} ∪ {(p,⊥, >) | p 6= 0}. The transitions are:

δ((p,⊥, <), a) = (p+ 1, a,<) ∨ (p+ 1,⊥, <)
δ((p, a,<), b) = (p, a,<)
δ((p, a,<),]) = (p, a,>)
δ((p,⊥, <),]) = (p,⊥, >)
δ((p, a,>), b) = (p− 1, a,>) if p 6= 0
δ((1, a,>), b) = > if a 6= b
δ((p,⊥, >), a) = (p− 1,⊥, >)
δ((0,⊥, >), a) = >
δ(>, a) = >

If v is longer than u, the state > will be reached using the second to last transi-
tion. If v is shorter than u, a state (p,⊥, >) will be reached with p 6= 0. If u and

v have the same length and differ on some positions, the state> will be reached
by guessing one such position.

After reading a word of length at most n, the machine can be in one of
(n+ 1) · (|A|+ 1) · 2 + 1 states, thus NOTEQ is in NonDet (n).

Denote LEXICOGRAPHIC = {u]v | u, v ∈ {0, 1}∗ , u ≤lex v}. We construct
an alternating machine recognising this language using linearly many states by
unravelling the inductive definition of the lexicographic order: u ≤lex v if, and
only if,

(u0 = 0 ∧ v0 = 1) ∨ (u0 = v0 ∧ u|≥1 ≤lex v|≥1).

The set of states is

(lex×N)∪(check-eq×N×{0, 1}×{<,>})∪(check-sm×N×{<,>})∪{>} .

The initial state is (lex, 0), the final state is >. The transitions are:

δ((lex), p), 0) = (check-sm, p,<)
∨ ((check-eq, p, 0, <) ∧ (lex, p+ 1))

δ((lex), p), 1) = (check-eq, p, 1, <) ∧ (lex, p+ 1)
δ((lex), p),]) = >
δ((check-eq), p, a,<), b) = (check-eq, p, a,<)
δ((check-eq), p, a,<),]) = (check-eq, p, a,>)
δ((check-eq), p, a,>), b) = (check-eq, p− 1, a,>) for p 6= 0
δ((check-eq), 0, a,>), b) = > if a = b
δ((check-sm), p,<), b) = (check-sm, p,<)
δ((check-sm), p,<),]) = (check-eq, p,>)
δ((check-sm), p,>), b) = (check-sm, p− 1, >) for p 6= 0
δ((check-sm), 0, >), 1) = >
δ(>, a) = >

After reading a word of length at most n, the machine can be in 8n different
states, thus LEXICOGRAPHIC is in Alt (n).

2 A Lower Bound Technique

In this section, we develop a generic lower bound technique for alternating on-
line state complexity. It is based on the size of generating families for some
lattices of languages; we describe it in Subsection 2.1, and a concrete approach
to use it, based on query tables, is developed in Subsection 2.2. We apply it on
an example in Subsection 2.3.

2.1 Boundedly Generated Lattices of Languages

Let L be a language and u a word. The left quotient of L with respect to u is

u−1L = {v | uv ∈ L} .

If u has length at most n, then we say that u−1L is a left quotient of L of order
n.

A lattice of languages is a set of languages closed under union and intersec-
tion. Given a family of languages, the lattice it generates is the smallest lattice
containing this family.

Theorem 2. Let L in Alt (f). There exists a constant C such that for all n ∈ N,
there exists a family of C · f(n) languages whose generated lattice contains all
the left quotients of L of order n.

Proof. Let A be an alternating machine using recognising L witnessing that L
is in Alt (f).

Fix n. Denote Qn the set of states reachable by some word of length at most
n; by assumption |Qn| is at most C · f(n) for some constant C. For q in Qn,
denote L(q) the language recognised by A taking q as initial state, and Ln the
family of these languages.

We prove by induction over n that all left quotients of L or order n can be
obtained as boolean combinations of languages in Ln.

The case n = 0 is clear, as ε−1L = L = L(q0).
Consider a word w of length n + 1, denote w = ua. We are interested in

w−1L = a−1(u−1L), so let us start by considering u−1L. By induction hy-
pothesis, u−1L can be obtained as a boolean combination of languages in Ln:
denote u−1L = φ(Ln), meaning that φ is a boolean formula whose atoms are
languages in Ln.

Now consider a−1φ(Ln). Observe that the left quotient operation respects
both unions and intersections, i.e. a−1(L1∪L2) = a−1L1∪a−1L2 and a−1(L1∩
L2) = a−1L1 ∩ a−1L2. It follows that w−1L = a−1(φ(Ln)) = φ(a−1Ln); this
notation means that the atoms are languages of the form a−1M for M in Ln,
i.e. a−1L(q) for q in Sn.

To conclude, we remark that a−1L(q) can be obtained as a boolean com-
bination of the languages L(p), where p are the states that appear in δ(q, a).
To be more precise, we introduce the notation ψ(L(·)), on an example: if ψ =
p∧(r∨s), then ψ(L(·)) = L(p)∧(L(r)∨L(s)). With this notation, a−1L(q) =
δ(a, q)(L(·)). Thus, for q in Qn, we have that a−1L(q) can be obtained as a
boolean combination of languages in Ln+1.

Putting everything together, it implies thatw−1L can be obtained as a boolean
combination of languages in Ln+1, finishing the inductive proof. ut

2.2 The Query Table Method

Definition 3 (Query Table). Consider a family of languages L. Given a word
w, its profile with respect toL, orL-profile, is the boolean vector stating whether
w belongs to L, for each L in L. The size of the query table of L is the number
of different L-profiles, when considering all words.

For a language L, its query table of order n is the query table of the left
quotients of L of order n.

The name query table comes from the following image: the query table of
L is the infinite table whose columns are indexed by languages in L and rows
by words (so, there are infinitely many rows). The cell corresponding to a word
w and a language L in L is the boolean indicating whether w is in L. Thus the
L-profile of w is the row corresponding to w in the query table of L.

Lemma 1. Consider a lattice of languages L generated by k languages. The
query table of L has size at most 2k.

Indeed, there are at most 2k different profiles with respect to L.

Theorem 3. Let L in Alt (f). There exists a constant C such that for all n ∈ N,
the query table of L of order n has size at most 2C·f(n).

Thanks to Theorem 3, to prove that L does not have sublogarithmic (respec-
tively sublinear) alternating OSC, it is enough to exhibit a constant C > 0 such
that for infinitely many n, the query table of L of order n has size at least C · n
(respectively at least 2C·n).

The proof of Theorem 3 relies on the following lemma.

Lemma 2. Consider two lattices of languages L andM. IfM ⊆ L, then the
size of the query table of M is smaller than or equal to the size of the query
table of L.

Proof. It suffices to observe that the query table ofM is “included” in the query
table of L. More formally, consider in the query table of L the sub-table which
consists of rows corresponding to languages inM: this is the query table ofM.
This implies the claim. ut

We now prove Theorem 3. Thanks to Theorem 2, the family of left quotients
of L of order n is contained in a lattice generated by a family of size at most
C · f(n). It follows from Lemma 2 that the size of the query table of L of order
n is smaller than or equal to the size of the query table of a lattice generated by
at most C · f(n) languages, which by Lemma 1 is at most 2C·f(n).

2.3 A First Application of the Query Table Method

As a first application of our technique, we exhibit a language which has maximal
(i.e. exponential) alternating OSC. Surprisingly, this language is simple in the
sense that it is context-free and definable in Presburger arithmetic.

We say that L has subexponential alternating OSC if L ∈ Alt (f) for some
f such that f = o(Cn) for all C > 1. Thanks to Theorem 3, to prove that L
does not have subexponential alternating OSC, it is enough to exhibit a constant
C > 1 such that for infinitely many n, the query table of the left quotients of L
of order n has size at least 2C

n
.

Theorem 4. There exists a language which does not have subexponential alter-
nating OSC, yet is both context-free and definable in Presburger arithmetic.

Proof. Denote

L =

{
u]u1]u2] · · ·]uk

∣∣∣∣ u, u1, . . . , uk ∈ {0, 1}∗ ,∃j ∈ {1, . . . , k} , u = uj

}
.

The notation u stands for the reverse of u: formally, u = u(n− 1) · · ·u(0).
It is easy to see that L is both context-free and definable in Presburger arith-

metic (the use of reversed words in the definition of L is only there to make L
context-free).

We show that L does not have subexponential alternating OSC. We prove
that for all n, the query table of the left quotients of L of order n has size at least
22

n
. Thanks to Theorem 3, this implies the result.
Fix n. Denote by U the set of all words u in {0, 1}n, it has cardinal 2n.

Consider any subset S of U , we argue that there exists a word w which satisfies
that if u in U , then the following equivalence holds:

w ∈ u−1L⇐⇒ u ∈ S.

This shows the existence of 22
n

different profiles with respect to the left quo-
tients of order n, as claimed.

Denote u1, . . . , u|S| the words in S. Consider

w =]u1]u2] · · ·]u|S|.

The word w clearly satisfies the claim above. ut

3 A Hierarchy Theorem for Languages of Polynomial Alternating
Online State Complexity

Theorem 5. For each ` ≥ 2, there exists a language L` such that:

– L` is in Alt
(
n`
)
,

– L` is not in Alt
(
n`−ε

)
for any ε > 0.

Consider the alphabet {0, 1} ∪ {♦,]}.
Let ` ≥ 2. Denote

L` =

{
♦pu]u1]u2] · · ·]uk

∣∣∣∣u, u1, . . . , uk ∈ {0, 1}∗ ,j ≤ p` and u = uj

}
.

Proof.

– The machine has three consecutive phases:
1. First, a non-deterministic guessing phase while reading ♦p, which passes

onto the second phase a number j in
{
1, . . . , p`

}
.

Formally, the set of states for this phase is N, the initial state is 0 and the
transitions are:

δ(0,♦) = 1
δ(k`,♦) =

∨
j∈{1,...,(k+1)`} j

δ(p,♦) = p

2. Second, a universal phase while reading u. For each i in {1, . . . , |u|},
the machine launches one copy storing the position i, the letter u(i) and
the number j guessed in the first phase.

Formally, the set of states for this phase is N× ({0, 1}∪ {⊥})×N. The
first component is the length of the word read so far (in this phase), the
second component stores the letter stored, where the letter ⊥ stands for
undeclared, and the last component is the number j.
The initial state is (0,⊥, j). The transitions are:

δ((q,⊥, j), a) = (q + 1,⊥, j) ∧ (q, a, j)
δ((q, a, j), b) = (q, a, j)

This requires quadratically many states.
3. Third, a deterministic phase while reading]u1]u2] · · ·]uk. It starts from

a state of the form (q, a, j). It checks whether uj(q) = a. The localisa-
tion of the uj is achieved by decrementing the number j by one each
time a letter] is read. While in the corresponding uj , the localisation of
the position q in uj as achieved by decrementing one position at a time.
This requires quadratically many states.

– We now prove the lower bound.
We prove that for all n, the size of the query table of L` of order n + 2

n
` is

at least 22
n

. Thanks to Theorem 3, this implies that L` is not in Alt
(
n`−ε

)
for any ε > 0.
Fix n. Denote by U the set of all words u in {0, 1}n, it has cardinal 2n.

Observe that ♦2
n
` u]u1]u2] · · ·]u2n belongs to L` if, and only if, there exists

j in {1, . . . , 2n} such that u = uj .
Consider any subset S of U , we argue that there exists a word w which
satisfies that if u in U , then the following equivalence holds:

w ∈
(
♦2

n
` u
)−1

L⇐⇒ u ∈ S.

This shows the existence of 22
n

different profiles with respect to the left
quotients of order n+ 2

n
` , as claimed.

Denote u1, . . . , u|S| the words in S. Consider

w =]u1]u2] · · ·]u|S|.

The word w clearly satisfies the claim above.

4 The Online State Complexity of Prime Numbers

In this section, we give lower bounds on the alternating online state complexity
of the language of prime numbers written in binary:

PRIMES = {u ∈ {0, 1}∗ | bin(u) is prime} .

By definition bin(w) =
∑

i∈{0,...,n−1}w(i)2
i; note that the least significant

digit is on the left.
The complexity of this language has long been investigated; many efforts

have been put in finding upper and lower bounds. In 1976, Miller gave a first
conditional polynomial time algorithm, assuming the generalised Riemann hy-
pothesis [Mil76]. In 2002, Agrawal, Kayal and Saxena obtained the same re-
sults, but non-conditional, i.e. not predicated on unproven number-theoretic con-
jectures [AKS02].

The first lower bounds were obtained by Hartmanis and Shank in 1968,
who proved that checking primality requires at least logarithmic deterministic
space [HS68], conditional on number-theoretic assumptions. It was shown by
Hartmanis and Berman in 1976 that if the number is presented in unary, then
logarithmic deterministic space is necessary and sufficient [HB76].

The best lower bound we know from circuit complexity is due to Allender,
Saks and Shparlinski: they proved unconditionally in 2001 that PRIMES is not
in AC0[p] for any prime p [ASS01].

The results above are incomparable to our setting, as we are here inter-
ested in online computation. The first and only result to date about the OSC
of PRIMES is due to Hartmanis and Shank in 1969:

Theorem 6 ([HS69]). The set of prime numbers written in binary does not have
subexponential deterministic online state complexity.

Their result is unconditional, and makes use of Dirichlet’s theorem on arith-
metic progressions of prime numbers. More precisely, they prove the following
result.

Proposition 1 ([HS69]). Fix n > 1, and consider u and v two differents words
of length n starting with a 1. Then the left quotients u−1PRIMES and v−1PRIMES

are different.

Proposition 1 directly implies Theorem 6 [HS69]. It also yields a lower
bound of n − 1 on the size of the query table of PRIMES of order n. Thus,
together with Theorem 3, this proves that PRIMES does not have sublogarithmic
alternating OSC.

Corollary 1. The set of prime numbers written in binary does not have sublog-
arithmic alternating online state complexity.

Our contribution in this section is to extend this result by showing that
PRIMES does not have sublinear alternating OSC, which is an exponential im-
provement.

Theorem 7. The set of prime numbers written in binary does not have sublinear
alternating online state complexity.

We state the following immediate corollary for Turing machines, relying on
Theorem 1.

Corollary 2. The set of prime numbers written in binary cannot be recognised
by a one-way realtime alternating Turing machine using sublogarithmic space.

Our result is unconditional, but it relies on the following advanced theorem
from number theory, which can be derived from the results obtained by Maier
and Pomerance [MP90]. Note that their results are more general; we simplified
the statement to make it both simple and closer to what we actually use.

Simply put, this result says that in any (reasonable) arithmetic progression
and for any degree of isolation, there exists a prime number in this progression,
isolated with respect to all prime numbers.

Theorem 8 ([MP90]). For every arithmetic progression a+bN such that a and
b are coprime, for every N , there exists a number k such that p = a + b · k is
the only prime number in [p−N, p+N].

We proceed to the proof of Theorem 7.

Proof. We show that for all n > 1, the query table of PRIMES of order n has
size at least 2n−1. Thanks to Theorem 3, this implies the result.

Fix n > 1. Denote by U the set of all words u of length n starting with a
1. Equivalently, we see U as a set of numbers; it contains all the odd numbers
smaller than 2n. It has cardinal 2n−1.

We argue that for all u in U , there exists a word w which satisfies that
for all v in U , w is in v−1PRIMES if, and only if, u = v. In other words the
profile of w is 0 everywhere but on the column u−1PRIMES. Let u in U ; denote
a = bin(u). Consider the arithmetic progression a + 2nN; note that a and 2n

are coprime. Thanks to Theorem 8, for N = 2n, there exists a number k such
that p = a + 2n · k is the only prime number in [p − N, p + N]. Denote w a
word such that bin(w) = k. We show that for all v in U , we have the following
equivalence: w is in v−1PRIMES if, and only if, u = v.

Indeed, bin(vw) = bin(v) + 2n · bin(w). Observe that

|bin(vw)− bin(uw)| = |bin(v)− bin(u)| < 2n.

Since p is the only prime number in [p− 2n, p+ 2n], the equivalence follows.
We constructed 2n−1 words each having a different profile, implying the

claimed lower bound. ut

Theorem 7 proves a linear lower bound on the alternating OSC of PRIMES.
We do not know of any non-trivial upper bound, and believe that there are none,
meaning that PRIMES does not have subexponential alternating OSC.

An evidence for this is the following probabilistic argument. Consider the
distribution of languages over {0, 1}∗ such that a word u in thrown into the
language with probability 1

|u| . It is a common (yet flawed) assumption that the
prime numbers satisfy this distribution, as witnessed for instance by the Prime
Number theorem. One can show that with high probability such a language does
not have subexponential alternating OSC, the reason being that two different
words are very likely to induce different profiles in the query table. Thus it
is reasonable to expect that PRIMES does not have subexponential alternating
OSC.

We dwell on the possibility of proving stronger lower bounds for the alter-
nating OSC of PRIMES. Theorem 8 fleshes out the sparsity of prime numbers:
it constructs isolated prime numbers in any arithmetic progression, and allows
us to show that the query table of PRIMES contains all profiles with all but one
boolean value set to false.

To populate the query table of PRIMES further, one needs results witnessing
the density of prime numbers, i.e. to prove the existence of clusters of prime
numbers. This is in essence the contents of the Twin Prime conjecture, or more
generally of Dickson’s conjecture, which are both long-standing open problems
in number theory, suggesting that proving better lower bounds is a very chal-
lenging objective. The Dickson’s conjecture reads:

Conjecture 1 (Dickson’s Conjecture). Fix b and a subset S ⊆ {1, . . . , b− 1}
such that there exists no prime number p which divides

∏
a∈S(b · k + a) for

every k in N. Then there exists a number k such that b · k + a is prime for each
a in S.

Unfortunately, the Dickson’s conjecture is not enough; indeed, it constructs
words whose profiles contain at least a certain number of booleans set to true
(the ones from the subset S). To obtain different profiles, one needs to ensure
that these profiles contain exactly these booleans set to true. Hence the following
slight generalisation of Dickson’s conjecture.

Conjecture 2. Fix b and a subset S ⊆ {1, . . . , b− 1} such that there exists no
prime number p which divides

∏
a∈S(b · k + a) for every k in N. Then there

exists a number k such that b · k + a is prime if, and only if, a is in S.

Theorem 9. Assuming the Conjecture 2 holds true, the set of prime numbers
written in binary does not have subexponential alternating online state com-
plexity.

Proof. We show that for all n > 1, the query table of PRIMES of order n has
size doubly-exponential in n. Thanks to Theorem 3, this implies the result.

Fix n > 1. As above, denote by U the set of all words u of length n starting
with a 1, i.e. odd numbers.

For a subset S of U , denote (♦) the property that there exists no prime
number p which divides

∏
a∈S(b · k + a) for every k in N.

Let S be a subset of U satisfying (♦). We argue that there exists a word w
which satisfies that for all v in U , w is in v−1PRIMES if, and only if, v is in S.
In other words the profile of w is 1 on the columns corresponding to S, and 0
everywhere else.

Thanks to Conjecture 2, there exists a number k such that 2n ·k+a is prime
if, and only if a is in S. Denote w a word such that bin(w) = k, it clearly
satisfies the condition above.

For each subset S satisfying (♦) we constructed a word such that these
words have pairwise different profiles. To conclude, we need to explain why
there are doubly-exponentially many subsets S satisfying (♦). Advanced sieve
techniques from number theory can be used to precisely estimate this; we will
rely on a simpler argument here to obtain an exponential upper bound. Indeed,
observe that if there exists one subset S satisfying (♦) of exponential size (i.e.
Cn for some C > 1), then all subsets of S also satisfy (♦), which yields
doubly-exponentially many of them, implying the claimed lower bound. We
claim that S defined by {a ∈ U | 2n + a is a prime number} satisfies (♦). This
follows from the remark that no prime number can divide both

∏
a∈S a and∏

a∈S(2
n + a). ut

Conclusion

We have developed a generic lower bound technique for alternating online state
complexity, and applied it to two problems. The first result is to show that the
polynomial hierarchy of alternating online algorithms is infinite. The second re-
sult is to give lower bounds on the alternating online state complexity of the
language of prime numbers; we show that it is not sublinear, which is an expo-
nential improvement over the previous result. However, the exact complexity is
left open; we conjecture that it is not subexponential, but obtaining this result
may require major advances in number theory.

References

[AKS02] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in P. Annals of Mathe-
matics, 2:781–793, 2002.

[AMS96] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating
the frequency moments. In STOC’96, pages 20–29, 1996.

[ASS01] Eric Allender, Michael E. Saks, and Igor Shparlinski. A lower bound for primality.
Journal of Computer and System Sciences, 62(2):356–366, 2001.

[BFS86] László Babai, Peter Frankl, and Janos Simon. Complexity classes in communication
complexity theory (preliminary version). In FOCS’86, pages 337–347, 1986.

[CKS81] Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alternation. Journal of
the ACM, 28(1):114–133, 1981.

[CS76] Ashok K. Chandra and Larry J. Stockmeyer. Alternation. In FOCS’76, pages 98–108,
1976.

[Fij16] Nathanaël Fijalkow. The online space complexity of probabilistic languages. In
LFCS’2016, pages 106–116, 2016.

[FM85] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base
applications. Journal of Computer and System Sciences, 31(2):182–209, 1985.

[HB76] Juris Hartmanis and Leonard Berman. On tape bounds for single letter alphabet lan-
guage processing. Theoretical Computer Science, 3(2):213–224, 1976.

[HS68] Juris Hartmanis and H. Shank. On the recognition of primes by automata. Journal of
the ACM, 15(3):382–389, 1968.

[HS69] Juris Hartmanis and H. Shank. Two memory bounds for the recognition of primes by
automata. Mathematical Systems Theory, 3(2), 1969.

[Kar67] Richard M. Karp. Some bounds on the storage requirements of sequential machines
and Turing machines. Journal of the ACM, 14(3), 1967.

[Koz76] Dexter Kozen. On parallelism in Turing machines. In FOCS’76, pages 89–97, 1976.
[Mil76] Gary L. Miller. Riemann’s hypothesis and tests for primality. Journal of Computer and

System Sciences, 13(3):300–317, 1976.
[MP80] J. Ian Munro and Mike Paterson. Selection and sorting with limited storage. Theoretical

Computer Science, 12:315–323, 1980.
[MP90] Helmut Maier and Carl Pomerance. Unusually large gaps between consecutive primes.

Transactions of the American Mathematical Society, 322(1):201–237, 1990.
[Rab63] Michael O. Rabin. Probabilistic automata. Information and Control, 6(3):230–245,

1963.
[SB96] Jeffrey Shallit and Yuri Breitbart. Automaticity I: properties of a measure of descrip-

tional complexity. Journal of Computer and System Sciences, 53(1):10–25, 1996.
[Vol99] Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Approach. Texts in

Theoretical Computer Science. An EATCS Series. Springer, 1999.

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

