
Discrete Logarithm and Minimum Circuit Size

M. Rudow1

Abstract

This paper shows that the Discrete Logarithm Problem is in ZPPMCSP (where MCSP
is the Minimum Circuit Size Problem). This result improves the previous bound that
the Discrete Logarithm Problem is in BPPMCSP Allender et al. (2006). In doing so,
this paper helps classify the relative difficulty of the Minimum Circuit Size Problem.

Keywords: Computational Complexity, Minimum Circuit Size Problem, Discrete
Logarithm Problem

1. Introduction

The Minimum Circuit Size Problem (MCSP) is a well known problem which is
suspected to be NP-intermediate. MCSP has been a problem of interest for many
years; for example, it was a focus of study with respect to Brute Force Search in the
1950’s in the Soviet UnionTrakhtenbrot (1984). Despite its long history, the exact
complexity of MCSP remains a mystery. Thus MCSP has been puzzling computer
scientists for decades. Recently, several results reducing other problems to MCSP have
been shown. For example, Allender and Das proved that SZK⊆ Promise-BPPMCSP and
GI ∈ RPMCSP where Statistical Zero Knowledge and Graph Isomorphism are denoted
as SZK and GI Allender and Das (2014).

Furthermore, there is some interest in improving BPPMCSP (and likewise RPMCSP)
reductions to ZPPMCSP reductions. For instance, Allender and Das list determin-
ing whether GI ∈ ZPPMCSP as an open problemAllender and Das (2014). Addition-
ally, Allender, Grochow, and Moore prove that Graph Automorphism (GA) is in
ZPPMKTPAllender et al. (2015), where MKTP is a time-bounded Kolmogorov com-
plexity problem that is similar to MCSP and often studied in tandem with MCSP.

The Discrete Logarithm Problem (DLP) is another famous candidate of suspected
NP-intermediate status. Used widely in cryptography, DLP is an important com-
plexity problem with many useful applications. Allender, Buhrman, Koucký, Van
Melkebeek, and Ronneburger proved that Factoring is in ZPPMCSP and DLP is in
BPPMCSPAllender et al. (2006). This paper improves Allender et al.’s result by show-
ing that DLP is in ZPPMCSP by modifying the authors’ method used in Allender et al.
(2006).

Email address: mrudow@seas.upenn.edu (M. Rudow)
1DIMACS, Rutgers University, Piscataway, NJ, USA. Candidate for Bachelor of Science in En-

gineering, University of Pennsylvania, Philadelphia, PA, USA.

Preprint submitted to Information Processing Letters July 15, 2016

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 108 (2016)

Our proof uses Allender et al.’s construction Allender et al. (2006) for computing
the prime factorization in ZPPMCSP in order to compute the prime factorization of
p − 1, thus enabling efficient computation of a generator of the group. We then use
the fact (previously established by Allender et al. (2006)) that DLP can be solved
in ZPPMCSP when g is a generator of the multiplicative group mod p. Using such a
construction to compute the values of the inputs as powers of a generator, one can
efficiently both determine if a valid discrete logarithm exists and, provided it exists,
compute it quickly.

2. Preliminaries

This section will serve to provide definitions of the computational problems that
we study.

Definition 1 (The Discrete Logarithm Problem (DLP)). On input (g, z, p) where p
is a prime, compute x such that gx ≡ z mod p if such an x exists, and otherwise
return 0.

Definition 2 (The Factoring Problem). On input N return the prime factorization
of N .

Definition 3 (The Minimum Circuit Size Problem (MCSP)). On input (T, s) where
T is a truth table of some function f : {0, 1}n → {0, 1} of size 2n, determine if f can
be represented by a boolean circuit of size ≤ s Kabanets and Cai (2000).

3. Main Result

Theorem 1. DLP ∈ ZPPMCSP.

Proof. Start with input (g, z, p) where p is a prime, 0 < g < p, 0 < z < p. We
terminate with x ∈ {0, · · · , p− 1} such that x > 0, gx ≡ z mod p if such an x exists
and x = 0 otherwise.

Apply Lemma 1 to compute h such that h is a generator of Z×p in expected
polynomial time. Then apply Lemma 2 to compute a, b such that ha ≡ g mod p
and hb ≡ z mod p in expected polynomial time. Use Lemma 3 to determine if
∃x ∈ {1, · · · , p− 1} such that a · x ≡ b mod p− 1. If so, the application of Lemma
3 produces such a x. Thus gx ≡ (ha)x ≡ ha·x ≡ hb ≡ z mod p. So return x. If no
such x exists, then there is no x such that gx ≡ z mod p and we return 0. The total
runtime is polynomial in log p in expectation and the x returned is always correct.

Lemma 1. Finding a generator g of Z×p , the multiplicative group mod p, is in
ZPPMCSP.

Proof. We start by computing the prime factorization of p−1 in expected polynomial
time. This is possible because FACTORING ∈ ZPPMCSP. Let L denote the list of
unique prime factors of p− 1. Define f : {0, · · · , p− 1} → {0, 1} as

f(a) =

{
1 ∀q ∈ L | a

p−1
q 6≡ 1 mod p

0 ∃q ∈ L | a
p−1
q ≡ 1 mod p

2

We know a is a generator if and only if ∀q ∈ L | a
p−1
q 6≡ 1 mod p (Stein, 2008, p. 44).

Thus f(a) = 1 if and only if a is a generator. Furthermore, |L| ≤ log(p− 1) < log p,
and ∀w ∈ {1, · · · , p − 1} we know aw mod p can be computed in polynomial time
with fast modular exponentiation through repeated squaring. Thus f is computable
in time O(logk p) for some k ∈ N.

We know that ∃h that generates Z×p . Thus Z×p = {hi | 1 ≤ i ≤ p−1}. Clearly, p−1
can have at most log(p − 1) distinct prime factors. Furthermore, the prime number
theorem tells us that there are Ω(p−1

log(p−1)) prime numbers in {1, · · · , (p−1)−1}. Thus

after we eliminate the at most log(p − 1) of these possibilities which correspond to
prime factors of p− 1, we are left with at least

c· p− 1

log(p− 1)
−log(p−1) >

p− 1

log(p− 1)2
−log(p−1) =

p− 1− log(p− 1)3

log(p− 1)2
>

p− 1

2 log(p− 1)2

primes that do not divide p− 1.
Let d be any such prime and let g = hd. Then let |g| denote the order of g (which

is ≤ p− 1). Then g|g| ≡ 1 ≡ hd|g| mod p which means d|g| | p− 1. Thus |g| = p− 1
and g = hd is a generator of Z×p . Thus for every prime number in {1, · · · , (p− 1)− 1}
that does not divide p − 1 there is a corresponding generator of the group. Hence
there are at least p−1

2 log(p−1)2 generators, and a random element of the group has at

least a 1
2·log(p−1)2 chance of being a generator.

The following algorithm finds a generator in expected polynomial time: pick a
random element e of the group. If f(e) = 1 then return e as the generator. Otherwise
repeat the algorithm.

Each application of the algorithm takes polynomial time, and we need only run
it at most 2 · log(p − 1)2 < log(p)3 times in expectation to succeed. Whenever it
terminates, f(e) = 1 thus e is truly a generator. Hence it terminates with the correct
output in expected polynomial time.

Lemma 2. Given a valid input to DLP, (g, z, p) where g is a generator of the mul-
tiplicative group mod p, Z×p , computing x such that gx ≡ z mod p can be done in
ZPPMCSP.

Proof. Note, Lemma 2 was already observed by Allender et al. (2006) and the proof
is included for completeness.

First let us state (Allender et al., 2006, Theorem 45): Let L be a language of
polynomial density such that for some ε > 0, for every x ∈ L, KT (x) ≥ |x|ε. Let
f(y,x) be computable uniformly in time polynomial in |x|. There exists a polynomial-
time probabilistic oracle Turing machine N and a polynomial q such that for any n
and y Pr|x|=n,s[f(y,NL(y, f(y, x), s)) = f(y, x)] ≥ 1

q(n)
, where x is chosen uniformly at

random and s denotes the internal coin flips of N. This theorem uses a construction
from H̊astad et al. (1999). In this theorem, KT (x) represents the time-bounded
Kolmogorov complexity of x.

Let y = (g, p) and denote fy(x) = gx mod p. Allender et al. observe that there

is an L in PMCSP that satisfies the hypothesis Allender et al. (2006). Thus we

3

apply (Allender et al., 2006, Theorem 45) with this L ∈ PMCSP to conclude that
there is a a polynomial-time probabilistic oracle Turing machine N and a polynomial
r satisfying Prz,s[fy(N

L(y, z, s)) ≡ z mod p] ≥ 1
r(n)

for random input bits s and

z ∈R {1, · · · , p− 1}.
Repeat the following trial until success:
Pick v from {1, · · · , p− 1} randomly and pick a random s.
Let w = NL((g, p), z · gv, s).
Report success if gw ≡ z · gv mod p.
Note that because g is a generator ∀v∃w | z · gv = gw. Furthermore because

∃x | gx ≡ z mod p we know that z · gv ≡ gv+x mod p. Thus z · gv is a random power
of g and is therefore uniformly distributed in the codomain. Thus we need only invert
a single element randomly chosen from the codomain to succeed. In expectation, we
must repeat the trial r(log p) = poly(log p) times to succeed. Hence the total runtime
is polynomial in expectation.

Given gw ≡ z · gv mod p we know gw · gp−1−v ≡ z · gv · gp−1−v ≡ z · gp−1 ≡ z
mod p. Thus gp−1+w−v ≡ z mod p. We have therefore computed x = p− 1 + w − v
in expected polynomial time.

Lemma 3. On input (a, b, p − 1) for 0 ≤ a, b < p − 1, determining if ∃x such that
a · x ≡ b mod p− 1 and computing such an x if it exists can be done in ZPPMCSP.

Proof. Begin by factoring p− 1 = Πk
i=1p

ei
i . Let q(x) = (x mod pe11 , · · · , x mod pekk).

By the Chinese Remainder Theorem, q is a bijection with q−1((y1, · · · , yk)) computed
in polynomial time defined as follows: let Mi = p−1

p
ei
i

and let ui = M−1
i mod peii (under

multiplication). Then q−1((x1, · · · , xk)) =
∑k

i=1 xi · ui ·Mi mod p − 1 (Ding et al.,
1996, p. 23).

Denote q(a) = (a1, · · · , ak) and q(b) = (b1, · · · , bk). By the Chinese Remainder
Theorem, we know ∃x ∈ {0, · · · , (p − 1) − 1} such that a · x ≡ b mod p if and only
if ∃x | q(a · x) = b. We either construct (x1, · · · , xk) such that (a1 · x1, · · · , ak · xk) =
(b1, · · · , bk) and return q−1((x1, · · · , xk)) or show that no such (x1, · · · , xk) exists. If
we return x = q−1((x1, · · · , xk)), it is correct. The reason is that there is a unique
solution q−1(b1, · · · , bk) and q(a · x) = (a · x mod pe11 , · · · , a · x mod pekk) = ((a
mod pe11) · (x mod pe11), · · · , (a mod pekk) · (x mod pekk)) = (a1 · x1, · · · , ak · xk) =
(b1, · · · , bk). Thus q(a · x) = q(b) and so q−1(q(a · x)) ≡ q−1(q(b)). Thus a · x ≡ b
mod p− 1.

The following algorithm constructs each xi for i ∈ {1, · · · , k}. The algorithm runs
in polynomial time, thus repeating it k times to construct the entirety of (x1, · · · , xk)
or disproving its existence can be done in polynomial time.

Case 1: bi = 0 then let xi = 0. Thus ai · xi = ai · 0 = 0 = bi.
Case 2: bi 6= 0 and ai = 0. Then return no such x exists because ∀xi we know

ai · xi = 0 6= bi.
Denote d = gcd(peii , ai).
Case 3: d = 1. Use the Euclidean Algorithm in polynomial time to compute

k, l such that peii · k + ai · l = 1 thus ai · l ≡ 1 mod peii . Let xi = l · bi, thus
ai · xi ≡ (ai · l) · bi ≡ 1 · bi ≡ bi mod peii .

4

Case 4: d 6= 1, d | bi. Denote bi = z · d, then use the Euclidean Algorithm in
polynomial time to compute i, j such that peii · i+ ai · j = d thus ai · j ≡ d mod peii .
Let xi = j · z thus ai · xi ≡ (ai · j) · z ≡ d · z ≡ bi mod peii .

Case 5: d 6= 1, d 6 | bi. Return no such x exists. The proof of this fact goes
as follows: suppose towards contradiction that ∃xi | ai · xi ≡ bi mod peii . By the
definition of modulo, we know that ai · xi − w · peii = b for some w ∈ Z+ ∪ {0}. Then

since bi 6= 0 we know ai · xi − w · peii 6= 0. Hence bi = d · (ai
d
· xi − w · p

ei
i

d
) = d · m

for appropriately defined integer m ∈ {1, · · · , peii }. Thus d | bi which contradicts the
assumption. Thus the original assumption is false, and hence no such x exists.

In all cases we either produce the appropriate xi or show that no such xi exists.
Thus in polynomial time, we either compute (x1, · · · , xk) such that (a1 · x1, · · · , ak ·
xk) = (b1, · · · , bk) or show no such (x1, · · · , xk) exists. Hence we either show no valid
x exists, or return x = q−1((x1, · · · , xk)) in expected polynomial time. For the sake
of consistency of notation, if x exists and x = 0 then return instead x = p− 1.

4. Conclusion and Future Directions

This paper’s proof can be extended to other versions of DLP. Bach shows that
computing the Discrete Logarithm modulo a composite N can be done by computing
its prime factorization and calculating the discrete logarithms modulo each prime in
its prime factorizationBach (1984). The Discrete Logarithm Problem with a compos-
ite is the same as DLP except that the input is (g, z, n) for composite n rather than
(g, z, p) for prime p. Furthermore, it is possible to compute the Discrete Logarithm
modulo a prime power pe by simply computing the discrete logarithm mod p Bach
(1984). Consequently, this paper’s proof that DLP ∈ ZPPMCSP can be extended to
inputs of the form (g, z, p) where p need not be prime.

Several results have shown problems such as Graph Automorphism, Graph Iso-
morphism, Factoring, and DLP reduce to MCSP Allender et al. (2015); Allender and
Das (2014); Allender et al. (2006). Theorem 1 improves one such reduction; many
other reductions are also candidates for such progress. Allender et al. show that the
Shortest Independent Vector Problem, Shortest Basis Problem, Length of Shortest
Vector Problem, Unique Shortest Vector Problem, Closest Vector Problem, and Cov-
ering Radius Problem are all in BPPMCSP Allender et al. (2006). One open question
is whether any of those results can be improved to ZPPMCSP.

Acknowledgements The author acknowledges that this work was carried out
while the he was a participant in the 2016 DIMACS REU program at Rutgers Uni-
versity, supported by NSF grant CCF-1559855. He also acknowledges the invaluable
advice of Professor Allender. The author also acknowledges Karel Král, Martin Böhm,
Martin Töpfer, Veronika Sĺıvová, Mark Karpilovskij, and Stanislav Kučera for helpful
discussions on the subject.

5

Bibliography

Allender, E., Buhrman, H., Koucký, M., van Melkebeek, D., Ronneburger, D., 2006.
Power from random strings. SIAM Journal on Computing 35 (6), 1467–1493.
URL http://dx.doi.org/10.1137/050628994

Allender, E., Das, B., 2014. Zero knowledge and circuit minimization. In: Mathemat-
ical Foundations of Computer Science (MFCS). Vol. 8635. Springer, pp. 25–32.

Allender, E., Grochow, J. A., Moore, C., 2015. Graph isomorphism and circuit size.
CoRR abs/1511.08189.
URL http://arxiv.org/abs/1511.08189

Bach, E., Jun 1984. Discrete logarithms and factoring. Tech. Rep. UCB/CSD-84-186,
EECS Department, University of California, Berkeley.
URL http://www.eecs.berkeley.edu/Pubs/TechRpts/1984/5973.html

Ding, C., Pei, D., Salomaa, A., 1996. Chinese remainder theorem: applications in
computing, coding, cryptography. World Scientific.

H̊astad, J., Impagliazzo, R., Levin, L., Luby, M., 1999. A pseudorandom generator
from any one-way function 28, 1364–1396.

Kabanets, V., Cai, J.-Y., 2000. Circuit minimization problem. pp. 73–79.

Stein, W., 2008. Elementary Number Theory: Primes, Congruences, and Secrets.
Springer-Verlag New York.

Trakhtenbrot, B. A., 1984. A survey of Russian approaches to perebor (brute-force
searches) algorithms. IEEE Annals of the History of Computing 6 (4), 384–400.

6

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

http://dx.doi.org/10.1137/050628994
http://arxiv.org/abs/1511.08189
http://www.eecs.berkeley.edu/Pubs/TechRpts/1984/5973.html

