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Abstract

We develop a paradigm for studying multi-player deterministic communication, based on
a novel combinatorial concept that we call a strong fooling set. Our paradigm leads to optimal
lower bounds on the per-player communication required for solving multi-player EQUALITY
problems in a private-message setting. This in turn gives a very strong—O(1) versus Ω(n)—
separation between private-message and one-way blackboard communication complexities.

Applying our communication complexity results, we show that for deterministic data stream-
ing algorithms, even loose estimations of some basic statistics of an input stream require large
amounts of space. For instance, approximating the frequency moment Fk within a factor α

requires Ω(n/α1/(1−k)) space for k < 1 and roughly Ω(n/αk/(k−1)) space for k > 1. In partic-
ular, approximation within any constant factor α, however large, requires linear space, with the
trivial exception of k = 1. This is in sharp contrast to the situation for randomized streaming
algorithms, which can approximate Fk to within (1± ε) factors using Õ(1) space for k 6 2 and
o(n) space for all finite k and all constant ε > 0. Previous linear-space lower bounds for de-
terministic estimation were limited to small factors α, such as α < 2 for approximating F0 or
F2.

We also provide certain space/approximation tradeoffs in a deterministic setting for the
problems of estimating the empirical entropy of a stream as well as the size of the maximum
matching and the edge connectivity of a streamed graph.
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1 Introduction

This paper introduces a new paradigm for studying multi-player number-in-hand deterministic
communication complexity, uses the paradigm to obtain some new communication lower bounds
centered around the EQUALITY problem, and applies these results to derive a number of lower
bounds in the data streaming model. These latter results address a very basic topic in the theory
of data stream algorithms.

Data stream algorithms offer a convincing demonstration of the power of randomization. A
large number of problems that call for summarization of “big data” admit remarkably efficient
sublinear-space streaming algorithms, provided such algorithms are allowed to make random de-
cisions. Restricted to determinism, such sublinear-space solutions usually do not exist. This
dichotomy between determinism and randomization is among the first lessons one learns in the
study of streaming algorithms. Indeed, as shown in the pioneering work of Alon, Matias, and
Szegedy [3], one encounters it in the most basic problem of estimating the number of distinct
elements in a stream, as well as the more general problem of estimating the stream’s frequency
moments.

Applying our nuanced understanding of the multi-player EQUALITY problem, we establish
very sharp contrasts between the deterministic and randomized space complexities of several
important problems for data streams. The problems we study are already known to admit very
efficient and accurate randomized estimations. For most of them, past work shows that accurate
deterministic estimations require linear space. An important takeaway from our present work is
that even loose deterministic estimations require linear space: randomization is even more crucial
to these problems than was previously realized.

Returning to the technical level of communication complexity, our lower-bounding paradigm,
which drives these results, should be of independent interest. It sharply separates the “black-
board” and “private-message” communication models, an issue previously highlighted by Gál
and Gopalan [24].

Contributions to Data Streaming. Take the case of estimating F0, the number of distinct ele-
ments, in a stream of elements from the universe [n] := {1, . . . , n}. The randomized algorithm of
Kane et al. [27] makes one pass over the stream, using O(ε−2 + log n) bits of space, and computes
an estimate that lies in [(1− ε)F0, (1 + ε)F0] with probability > 2

3 . In contrast, Alon et al. [3] show
that, for α = 1.1, a deterministic estimator that returns a value in [α−1F0, αF0] using O(1) passes
must use Ω(n) bits of space. One consequence of our results is that this Ω(n) space bound holds
for every constant α, no matter how large.

We go on to show that for every frequency moment Fk, apart from k = 1, deterministic
constant-pass constant-factor estimation requires Ω(n) space. Stated in full (Section 4), our re-
sults give detailed tradeoffs between the space usage, the number of passes, and the quality of
estimation for computing the frequency moments and the empirical entropy of a stream, and for
estimating graph parameters (Section 5) such as the size of a maximum matching and the edge
connectivity, when the input is a stream of undirected edges.

Contributions to Communication Complexity. At a philosophical level, our results ultimately
derive from the phenomenon that, in a communication complexity setting, determining equality
between strings is very hard deterministically but easy with randomization. However, this alone
does not lead to the strong streaming lower bounds we are claiming. In particular, the standard
two-player EQUALITY (EQ) problem does not yield these results. Instead, we study multi-player
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EQ problems with certain strong promises (Section 3) that greatly separate YES-instances from NO-
instances. In one version, each of t players is given an n-bit string: these strings are either all equal
or all distinct. Another variant gives the players fixed-sized sets that are either all equal or have
large “spread,” i.e., large union size.

To effectively lower-bound the complexities of these promise versions of EQ, we need to con-
sider discreet protocols, wherein players can only communicate via private messages. This is in
contrast to the better-studied blackboard protocols, which allow players to write their messages
on a public blackboard. The latter model makes our promise-EQ problems too easy. Gál and
Gopalan [24] had previously shown a separation between the discreet and one-way blackboard
models, but for an artificial1 function and with a bespoke proof for the discreet lower bound.
Here, we separate these models using what may be the natural separating problem (q.v. the end of
Section 3). More importantly, we introduce an abstract paradigm for studying discreet protocols,
based on a novel combinatorial concept that we call a strong fooling set (Definition 2.7) and a key
technical result that we call the “strong fooling set bound” (Lemma 2.8).

Other Contributions. In the process of designing reductions from our promise-EQUALITY prob-
lems to obtain our data streaming lower bounds, we establish a sharp concentration result for
power sums of a collection of independent binomial random variables. This result (Lemma 4.4),
though basic-looking and proved via elementary means, appears to be novel. Indeed, other seem-
ingly basic questions about moments of the binomial distribution seem to have been addressed
only recently [8].

Other Related Work. The general topic of the communication complexity of EQUALITY prob-
lems, in their many variants, has occupied researchers for decades, beginning with Yao’s seminal
work [40]. Some key results for 2-player EQ address its amortized complexity [22], simultaneous-
message complexity [6, 9, 10], direct sum properties [15, 34], round complexity [13], and informa-
tion complexity [12]. Multi-player versions of EQ, which are interesting only in a number-in-hand
setting, have been receiving attention recently, as has the discreet model of communication. Liang
and Vaidya [31] consider the basic version of distinguishing all-equal inputs from not-all-equal
ones. This is easily shown to require nt/2 bits of deterministic communication in total; they show
a nontrivial upper bound of cnt for a specific constant c < 1. A combinatorial construction of
Alon, Moitra, and Sudakov [4] improves this to c = 1/2 + ε. Chattopadhyay, Radhakrishnan,
and Rudra [16] consider another (also non-promise) variant: ELEMENT-DISTINCTNESS, where the
players must distinguish all-distinct inputs from not-all-distinct ones. They study the effect of the
communication topology—who may send messages to whom—on the complexities of this, and
other, problems. Our lower bounds in this work hold regardless of topology.

In the topology-restricted setting, the coordinator model has attracted a lot of study [17, 7, 35].
Building on techniques developed for this model, Woodruff and Zhang [37, 39] gave near-optimal
lower bounds for estimating stream statistics and graph parameters in a randomized distributed
setting. Separately, they gave strong lower bounds for randomized exact computation of such
statistics under general topology [38]. This complements our streaming results, which concern
deterministic weakly-approximate computation.

Our results on estimation of graph parameters contribute to a fast-developing body of litera-
ture on streaming and sketching algorithms for graphs. We discuss the relevant background in
Section 5.

1The Gál–Gopalan function is arguably artificial as a communication problem. It was used in aid of space lower
bounds for the (natural) data-streaming problem of estimating the length of the longest increasing sequence.

2



2 Definitions and Preliminaries: Communication Complexity

All our logarithms are to the base 2. The notation f : A  B denotes a partial function f with
domain A and codomain B; formally this is a function f : A → B ∪ {?}, where ? /∈ B is a special
do-not-care value. We say that f is constant on A′ ⊆ A if | f (A′) \ {?}| 6 1.

Let X1, . . . ,Xt be finite sets. Put X := X1× · · · ×Xt. Consider a communication game between
players PLR1, . . . , PLRt given by a partial function f : X  Z . An input for this game is a tuple
x = (x1, . . . , xt). At the start of the game, PLRi receives the input fragment xi ∈ Xi, for each i;
the players then communicate according to a deterministic protocol Π that ends with an output
Πo(x) ∈ Z . We say that Π computes f if

∀ x ∈ X : f (x) 6= ? =⇒ Πo(x) = f (x) .

In the above context, a discreet protocol is a sequence (s1, r1, M1), . . . , (sL, rL, ML), where the jth
tuple describes the action during the jth step of the protocol: the sender, PLRsj , sends a private
message to the receiver, PLRrj , using the message function Mj : {0, 1}∗ × Xsj → {0, 1}∗. Specifi-
cally, if hj is the concatenation of the messages received by PLRsj during the first j− 1 steps, then
Mj(hj, xsj) is the message she sends in the jth step. We require that the range of each Mj be a
prefix code; this makes such concatenations self-punctuating. Notice that our discreet protocols
are “oblivious” in the sense that the communication pattern (including L, the number of steps) is
input-independent. The final (Lth) message is defined to be the output of the protocol, using some
canonical map from {0, 1}∗ to Z ; the “receiver” rL is a dummy value.

Let Π be a discreet protocol formalized as above. For an input x and a player PLRi, the local
transcript Πi(x) is defined to be concatenation (in order of occurrence) of the messages received
and sent by PLRi when Π is run on x. The protocol Π is B-bounded if, for all i and x, |Πi(x)| 6 B,
i.e., each player sends and receives a total of at most B bits. We define

cost(Π) := maxi,x |Πi(x)| = min{B : Π is B-bounded} ;
DD( f ) := min{cost(Π) : discreet protocol Π computes f } .

Another, better-studied, kind of protocol for such multi-player communication games is a
blackboard protocol. Here, players communicate by writing messages on a blackboard visible to
all players. The communication history determines which player will write the next bit on the
blackboard, and the bit written is a function of this history and the writer’s input fragment. Let
Πw

i (x) denote the concatenation of all messages written by PLRi when a blackboard protocol Π is
run on an input x. We define

cost(Π) := maxi,x |Πw
i (x)| ;

BB( f ) := min{cost(Π) : blackboard protocol Π computes f } ;

costtot(Π) := maxx
(
|Πw

1 (x)|+ · · ·+ |Πw
t (x)|

)
;

BBtot( f ) := min{costtot(Π) : blackboard protocol Π computes f } .

Notice that discreet protocols can be thought of as special cases of blackboard protocols: ones
that are oblivious and wherein each message is ignored by all players except its receiver. This
natural simulation translates a B-bounded t-player discreet protocol Π into a blackboard protocol
Π′ with cost(Π′) 6 B and costtot(Π′) 6 tB/2.
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2.1 Warm-Up: A Weak Fooling Set Bound

We recall the well-known concepts of rectangles and fooling sets used in the analysis of deterministic
two-player protocols [30] and, by an easy extension [24, 20], to deterministic t-player blackboard
protocols. A (combinatorial) rectangle in X is a set of the form Y1 × · · · × Yt, where each Yi ⊆ Xi.
The span of a set F ⊆ X , denoted span(F), is the minimal rectangle that includes F .

Let Π be some t-player blackboard protocol on input space X . The transcript of Π on input
x ∈ X is defined to be (Πw

1 (x), . . . , Πw
t (x)). Two inputs that generate the same transcript are

equivalent: this relation partitions X into equivalence classes.

Lemma 2.1 (Rectangle Property (folklore)). Each equivalence class of Π is a rectangle in X . In partic-
ular, if F ⊆ X lies within an equivalence class, then so does span(F). Consequently, if Π computes a
partial function f , then f is constant on span(F).

Let f : X  Z specify a communication game and let F ⊆ X . We say that F is a K-weak-fooling
set for f if, for all F ′ ⊆ F with |F ′| > K, f is nonconstant on span(F ′). The standard notion of
“fooling set” used in a number of two-player communication complexity lower bounds would be
a 1-weak-fooling set under this terminology.

It follows, using Lemma 2.1, that if f and F are as above, and Π is a blackboard protocol that
computes f , then no subset of F of size > K can lie within an equivalence class of Π. So Π must
have at least |F |/K equivalence classes. This gives us the following basic lower bounds, which
(we emphasize) we are stating for contrast with what is to follow.

Lemma 2.2 (Weak fooling set bound). Suppose that f : X  Z specifies a t-player communication
game and that f has a K-weak-fooling set F . Then

BBtot( f ) > log
|F |
K

; DD( f ) >
2
t

log
|F |
K

.

Proof. The former bound is immediate by counting. The latter follows from the aforementioned
simulation of discreet protocols in the blackboard model.

2.2 The Strong Fooling Set Bound for Discreet Protocols

Having set the stage, we now focus on discreet protocols. We shall analyze such protocols by
using more nuanced notions of equivalence of inputs, and then strengthening the above notion of
weak fooling sets.

Let Π be a t-player discreet protocol on input space X . Inputs x and y are i-equivalent if Πi(x) =
Πi(y); they are equivalent if they are i-equivalent for all i ∈ [t]. These relations partition the
input space X into the i-equivalence classes and the equivalence classes of Π, respectively. Clearly,
Πo(x) = Πo(y) whenever x and y are equivalent.

Let G ⊆ X be nonempty. A neighborhood within G is a t-tuple N = (H1, . . . ,Ht) where each
Hi ⊆ G and its core, defined by core(N ) := H1 ∩ · · · ∩Ht, is nonempty. For an input x =
(x1, . . . , xt), we put proji x := xi. We extend this notation to sets, defining proji G := {proji x : x ∈
G}. We define the width and the span of the neighborhood N as follows:

wid(N ) := min{|H1|, . . . , |Ht|} ,
span(N ) := proj1 H1 × · · · × projt Ht .

The definitions immediately imply that core(N ) ⊆ span(N ) ⊆ X and that core(N ) ⊆ G.
We say that a protocol Π is smooth onN if, for each i ∈ [t], Hi lies within an i-equivalence class

of Π. This notion allows us to generalize the rectangle property from Lemma 2.1.
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Lemma 2.3 (Generalized Rectangle Property). Let Π be a discreet protocol on input space X . LetN be
a neighborhood within X such that Π is smooth on N . Then span(N ) lies within an equivalence class of
Π. Consequently, if Π computes a partial function f , then f is constant on span(N ).

To see that the above is a generalization, consider the neighborhood (G, . . . ,G), where G lies
within an equivalence class of some blackboard protocol.

The following helper lemma will help us prove the generalized rectangle property.

Lemma 2.4. With respect to a protocol Π, suppose that inputs x := (x1, . . . , xt) and y := (y1, . . . , yt) are
i-equivalent, for some i ∈ [t]. Then x and x′ := (x1, . . . , xi−1, yi, xi+1, . . . , xt) are equivalent.

Proof. Think of Π as a “virtual” two-player protocol between PLRi and the rest of the players,
combined into a single entity. The local transcript Πi(x) is the transcript of this virtual protocol
on input x. Since Πi(x) = Πi(y), Lemma 2.1 (the usual rectangle property) applied to this virtual
protocol tells us that Πi(x) = Πi(x′).

Consider a switch of input from x to x′, and consider an arbitrary j ∈ [t] with j 6= i. Since
Πi(x) = Πi(x′), the switch affects neither the input fragment nor any messages received by PLRj.
Therefore Πj(x) = Πj(x′). We conclude that x and x′ are equivalent.

Proof of Lemma 2.3. Fix an input x := (x1, . . . , xt) ∈ core(N ). We shall prove that every input in
span(N ) is equivalent to x. Let y = (y1, . . . , yt) ∈ span(N ). Put

xi := (y1, . . . , yi−1, xi, . . . , xt) , for i ∈ [t + 1] .

Since Π is smooth on N , for i ∈ [t], the set {Πi(x′) : x′ ∈ Hi} is a singleton; let πi be its lone
element.

We shall prove by induction on i that x and xi are equivalent. This will imply that x1 = x
and xt+1 = y are equivalent, as required. The base case, i = 1, is trivial. Since y ∈ span(N ), we
have yi ∈ proji Hi and there is some z := (z1, . . . , zi−1, yi, zi+1, . . . , zt) ∈ Hi. So Πi(z) = πi. Also,
x ∈ core(N ) ⊆Hi, so Πi(x) = πi. Thus, z and x are i-equivalent.

Using Lemma 2.4, we get that x and (x1, . . . , xi−1, yi, xi+1, . . . , xt) =: x′ are equivalent (paste the
ith coordinate of z, which is yi, into that of x). By the inductive hypothesis, x and xi are equivalent.
So x′ and xi are equivalent, and hence, i-equivalent. Using Lemma 2.4 again, we get that xi and
(y1, . . . , yi, xi+1, . . . , xt) = xi+1 are equivalent. This completes the inductive step.

By a pigeonhole argument, a low-cost blackboard protocol entails a large rectangle lying within
an equivalence class.2 We prove the following stronger result for discreet protocols.

Lemma 2.5. Let Π be a B-bounded t-player discreet protocol on input space X . Let G ⊆ X . Then there
exists a neighborhood N within G such that Π is smooth on N and wid(N ) > |G|/(t2B).

Proof. We begin with an observation, readily proved by counting.

Observation 2.6. Suppose the finite set S is partitioned into L blocks and s ∈R S is picked uniformly at
random. For every real A > 0, Pr[s lies in a block of size < |S|/(AL)] < 1/A.

For each i ∈ [t], the i-equivalence classes of Π partition X , and hence G, into at most 2B

blocks. Pick x ∈R G uniformly at random. Put JxKi := {y ∈ G : y is i-equivalent to x}. Then

2Such a rectangle is often said to be “monochromatic.”
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Nx := (JxK1, . . . , JxKt) is a neighborhood within G (its core is nonempty because it contains x) on
which Π is smooth. By the above observation and a union bound, we have

Pr
[

wid(Nx) >
|G|
t2B

]
= 1− Pr

[
∃ i :

∣∣JxKi
∣∣ < |G|

t2B

]
> 1−

t

∑
i=1

Pr
[∣∣JxKi

∣∣ < |G|
t2B

]
> 1−

t

∑
i=1

1
t
= 0 .

Thus, by the probabilistic method, the lemma follows.

We now strengthen our earlier notion of weak fooling sets and prove our main technical
lemma, a stronger communication lower bound in terms of these “strong” fooling sets.

Definition 2.7. Let f : X  Z specify a communication game and let F ⊆ X . We say that F is a
K-fooling set for f if, for every neighborhood N within F ,

wid(N ) > K =⇒ f is nonconstant on span(N ) .

Lemma 2.8 (Strong fooling set bound). Suppose that f : X  Z specifies a t-player communication
game and that f has a K-fooling set F . Then

DD( f ) > log
|F |
tK

.

Proof. Let Π be a B-bounded discreet protocol for f . By Lemma 2.5, there exists a neighborhood
N within F with wid(N ) > |F |/(t2B) such that Π is smooth on N . By Lemma 2.3, f is constant
on span(N ). In view of Definition 2.7, we must have wid(N ) 6 K, which implies

|F |
t2B 6 K .

The lemma follows by rearranging the above inequality.

3 Three Lower Bounds for Multi-Player Equality

We shall now use our strong fooling set bound to analyze two promise versions of the EQUALITY

problem, as alluded to in Section 1. Each of our problems is given by a partial function of the form
f : X t  {0, 1}, where X = {0, 1}n. In the Equal-vs-Distinct problem, the goal is to distinguish
the case when all players hold the same n-bit string from the case when no two players hold the
same string. This is formalized by the following function:

EQ-DISTn,t(x1, . . . , xt) =


1 , if x1 = · · · = xt ,
0 , if xi 6= xj whenever 1 6 i < j 6 t ,
? , otherwise.

In the Equal-vs-Spread problem, each player receives a dβne-subset of [n] and they must distin-
guish the case when all of these subsets are equal from the case when these subsets are sufficiently
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spread out. Formally, we interpret X as the power set 2[n] and use the following function:

EQ-SPRD
β,γ
n,t (x1, . . . , xt) =


1 , if |x1| = · · · = |xt| = dβne and x1 = · · · = xt ,
0 , if |x1| = · · · = |xt| = dβne and |x1 ∪ · · · ∪ xt| > γn ,
? , otherwise.

This problem is nontrivial when the parameters satisfy 0 < β < γ 6 1 and γn > dβne.
We now give strong, essentially optimal, communication lower bounds for discreet determin-

istic protocols that solve these problems. In each case, when the problem’s input space is X t and
x ∈ X is an input fragment, we denote the input (x, x, . . . , x) ∈ X t by x⊗t.

The following observation will aid some of our estimations.

Observation 3.1. For all integral values 0 6 k 6 ` 6 n,(
n
k

)/(
`

k

)
=

n
`
· n− 1
`− 1

· · · · · n− k + 1
`− k + 1

>
(n
`

)k
.

Theorem 3.2 (Lower bound for Equal-vs-Distinct). DD(EQ-DISTn,t) > n− 2 log t.

Proof. Put f := EQ-DISTn,t. We claim that the set F := {x⊗t : x ∈ {0, 1}n} is a (t− 1)-fooling set
for f . Indeed, letN = (H1, . . . ,Ht) be a neighborhood within F such that wid(N ) > t− 1. Since
f (x) = 1 for all x ∈ F , our earlier observations that ∅ 6= core(N ) ⊆ F and core(N ) ⊆ span(N )
imply that f takes the value 1 at some point in span(N ). On the other hand, consider the point
y = (y1, . . . , yt) constructed by the following procedure:

• Having chosen y1, . . . , yi−1, where 1 6 i 6 t, choose an arbitrary fragment yi such that
y⊗t

i ∈Hi \ {y⊗t
1 , . . . , y⊗t

i−1}. This choice is possible because |Hi| > wid(N ) > t− 1 > i− 1.

The construction ensures that y ∈ span(N ) and f (y) = 0. Therefore f is nonconstant on span(N ),
proving the claim.

Applying Lemma 2.8,

DD( f ) > log
|F |

t(t− 1)
> log

2n

t2 = n− 2 log t .

Theorem 3.3 (Lower bound for Equal-vs-Spread). For all values 0 < β < γ 6 1 and sufficiently large
n, if t > γn, then DD(EQ-SPRD

β,γ
n,t ) > (β log(1/γ))n− log t.

Proof. Put f := EQ-SPRD
β,γ
n,t and w = dβne. We claim that the set F := {x⊗t : x ∈ {0, 1}n, |x| = w}

is a (bγnc
w )-fooling set for f . Indeed, let N = (H1, . . . ,Ht) be a neighborhood within F such that

wid(N ) > (bγnc
w ). Since f (x) = 1 for all x ∈ F , as in the proof of Theorem 3.2, f takes the value 1

at some point in span(N ). On the other hand, consider the point y = (y1, . . . , yt) constructed by
the following procedure:

• Having chosen y1, . . . , yi−1, where 1 6 i 6 t, let Ui−1 := y1 ∪ · · · ∪ yi−1. If |Ui−1| > γn, then
choose an arbitrary fragment yi such that y⊗t

i ∈Hi.

• Otherwise, let Bi := {x ∈ {0, 1}n : x ⊆ Ui−1, |x| = w}. Choose an arbitrary fragment yi /∈ Bi
such that y⊗t

i ∈Hi. This choice is possible because

|Bi| =
(
|Ui−1|

w

)
6
(
bγnc

w

)
< wid(N ) 6 |Hi| .
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Then y ∈ span(N ). Notice that |Ui| > |Ui−1| whenever the second case occurs while choosing yi.
We make t > γn choices in total, which ensures that |Ut| > γn, implying that f (y) = 0. Therefore
f is nonconstant on span(N ), proving the claim.

Applying Lemma 2.8 and Observation 3.1,

DD( f ) > log
|F |

t
(
bγnc

w

) = log

( n
w

)
t
(
bγnc

w

) > log

(
n
bγnc

)w

t
> w log

1
γ
− log t .

Theorem 3.3 gives a lower bound for “large” t. In particular, if the spread threshold γn is to
be Ω(n), then we have to take t = Ω(n) in order to apply the theorem. We now give an alternate
lower bound for EQ-SPRD that holds in a different parameter regime, where t could be “small.”

Theorem 3.4. For all values t > 2, β > 0, γ = βt(1− eβt) > β, and sufficiently large integral n, we
have DD(EQ-SPRD

β,γ
n,t ) > 2eβ2n− 2 log t−Θ(1).

We shall prove this result by a reduction from EQ-DIST, using a coding-style argument. The
idea is to encode strings in {0, 1}N , for some suitable N, as fixed-sized subsets of [n] that are
pairwise “far apart.” Define an (r, s, n)-packing to be set system C ⊆ 2[n] such that

• for all A ∈ C, |A| = s, and

• for all A, B ∈ C with A 6= B, |A ∩ B| 6 r.

We shall need the following bound, which can be inferred from Proposition 2.1 in Erdös, Frankl,
and Füredi [19].

Lemma 3.5. For all values 0 6 r 6 s 6 n, there exists an (r, s, n)-packing C such that

|C| >
(

n
r

)/(
s
r

)2

.

Proof of Theorem 3.4. Let C be a maximum-sized (r, s, n)-packing, with s = dβne and r = 2deβse.
By Lemma 3.5, Observation 3.1, and the estimation (s

r) 6 (es/r)r,

|C| >
( n

r

)( s
r

)2 >
(n

s

)r ( r
es

)r
=
( nr

es2

)r
.

By our choice of parameters,

r log
nr
es2 > r log

2eβsn
es2 = r log

2βn
dβne = r

(
1−Θ

(
1
n

))
= 2eβ2n−Θ(1) .

Therefore, we can find an injection from {0, 1}N to C provided N 6 2eβ2n−Θ(1). We choose the
largest possible N satisfying this bound and fix such an injection.

To solve EQ-DISTN,t, the players encode their respective input fragments using this injection
and then solve EQ-SPRD

β,γ
n,t on the encoded input. Recall that γ = βt(1− eβt). We now argue that

this reduction is correct. A 1-input for EQ-DISTN,t is, rather obviously, mapped to a 1-input for
EQ-SPRD

β,γ
n,t . Suppose a 0-input for EQ-DISTN,t maps to the input (x1, . . . , xt). Then x1, . . . , xt are

distinct sets in C. By the packing property,

|x1 ∪ · · · ∪ xt| > ts−
(

t
2

)
r = ts− t(t− 1)deβse > ts− t2eβs = dβnet(1− eβt) > γn ,
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where the second inequality holds once n (and hence, s) is sufficiently large. So EQ-SPRD
β,γ
n,t (x1, . . . , xt) =

0, which proves the correctness of the reduction.
Appealing to Theorem 3.2, we obtain DD(EQ-SPRD

β,γ
n,t ) > DD(EQ-DISTN,t) > N − 2 log t >

2eβ2n− 2 log t−Θ(1), as required.

We conclude this section with some commentary on the lower bounds that we have just shown.

Optimality. Suppose that t = poly(n). The trivial protocol, where PLR1 sends his input to PLR2,
shows that DD(EQ-DISTn,t) 6 n + 1. This shows that Theorem 3.2 is tight up to lower order terms.
Another trivial protocol, where players efficiently encode dβne-subsets of [n] and each sends his
input to the “next” player, shows that

DD(EQ-SPRD
β,γ
n,t ) 6 2 log

(
n
dβne

)
6 2H(β)n ,

for β < 1/2. Thus, Theorem 3.3 and Theorem 3.4 are both asymptotically tight in their dependence
on n. Moreover, when γ/β = O(1), Theorem 3.3 is also tight in its dependence on β.

Separation Between Models. Our lower bounds also demonstrate a separation between one-
way blackboard protocols and discreet protocols, an issue highlighted by Gál and Gopalan [24].
Consider the following blackboard protocol for EQ-DISTn,t. Partition [n] into t − 1 blocks, each
of size at most dn/(t− 1)e. For each j ∈ [t − 1], PLRj announces his input fragment restricted
to the jth block, provided all blocks from 1 to j − 1 of his input fragment agree with previously
announced blocks (if not, PLRj ends the protocol with output 0). If this protocol reaches PLRt,
he knows the entirety of PLRt−1’s input fragment. He outputs 1 if his own fragment agrees with
this, and outputs 0 otherwise. Based on the promise, this is a correct protocol for EQ-DISTn,t.
This protocol has max-cost O(n/t), which is O(1) when t = Θ(n). Yet, DD(EQ-DISTn,Θ(n)) =
n−Θ(log n).

4 Stream Statistics

In the data stream model, an input consists of m elements of [n] arriving in the form of a stream
σ that may be read in one or more passes by a streaming algorithm. Formally, σ is a sequence
(a1, a2, . . . , am), where each aj ∈ [n]. The stream σ defines a frequency vector f = f(σ) = ( f1, . . . , fn),
where fi = |{j ∈ [m] : aj = i}| for each i ∈ [n]. Stream statistics problems involve comput-
ing some function of f, e.g., frequency moments and empirical entropy, which we consider in
this section. The kth frequency moment and the empirical entropy are defined, respectively, as
Fk(f) := ∑i∈[n] f k

i and ENT(f) = m−1 ∑i∈[n] fi log(m/ fi). Note that F1(f) = m and F0(f) is the
number of distinct elements in σ.

Our focus is on deterministic streaming algorithms. An s-space p-pass streaming algorithm is
one that uses s = s(m, n) bits of space to process its input, which it reads in p = p(m, n) passes.
Consider such an algorithm A. We denote its output, on input σ, by A(σ). By splitting σ into
t = t(m, n) sub-streams, we obtain a communication problem for which A naturally gives rise to
a 2ps-bounded discreet protocol, for every t. For a real quantity α = α(m, n) > 1, we say that A is
an α-estimator for a quantity Q(σ) if

∃ κ, λ > 1 (κλ 6 α and ∀ σ (κ−1Q(σ) 6 A(σ) 6 λQ(σ)) ) .
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The main results in this section are lower bounds that trade off α against the product ps, for algo-
rithms estimating frequency moments and empirical entropy. For Fk (k 6= 1), when α = O(1), we
obtain the strongest possible bound: ps = Ω(n). We also give simple estimators (upper bounds)
for Fk and ENT; for moments of “lower” order (0 6 k < 1) these simple estimators show that our
lower bounds are tight even in their dependence on α.

Throughout this section, asymptotic expressions may hide constants depending on k. For read-
ability, we ignore floors and ceilings. This does not affect our (asymptotic) bounds.

4.1 Warm-Up: Distinct Elements and Basic Lower Bounds for Other Moments

We shall first obtain lower bounds for estimating Fk (k 6= 1) by reduction from the communication
game EQ-SPRD

β,γ
n,t , for certain values of t, β, γ and invoking Theorems 3.3 and 3.4 to lower-bound

DD(EQ-SPRD
β,γ
n,t ). The bound we obtain is tight for F0 (the distinct elements problem). Our bounds

here are also tight for all k when α = O(1). In the next section, we use a more complicated analysis
to obtain a tighter tradeoff between ps and α.

Theorem 4.1. For each k ∈ [0, 1), every deterministic s-space p-pass α-estimator for Fk satisfies ps =
Ω(max{n1−k/α, n/α2/(1−k)}). In particular, at k = 0 we have ps = Ω(n/α).

Proof. Let x = (x1, . . . , xt) be an input for EQ-SPRD
β,γ
n,t . For each j ∈ [t], PLRj turns his input

fragment xj ∈ {0, 1}n into the stream of indices j where xj = 1. The concatenations of the t such
streams has frequency vector f = x1 + · · ·+ xt. Note that

EQ-SPRD
β,γ
n,t (x) = 1 =⇒ Fk(f) = βtkn ; (1)

EQ-SPRD
β,γ
n,t (x) = 0 =⇒ F0(f) > γn . (2)

Also, Fk(f) > F0(f). Thus, an α-estimator for Fk can separate these two cases provided γ/(βtk) > α.
If such an estimator uses s bits of space and p passes then, as argued at the start of Section 4, we
have 2ps > DD(EQ-SPRD

β,γ
n,t ). It remains to invoke a suitable communication lower bound.

Set γ = 1/e, t = γn, and β = γ/(αtk)− 1/n. This ensures that γ/(βtk) > α and optimizes the
lower bound from Theorem 3.3, giving ps > 1

2 ((n/e)1−k(log e)/α− log n) = Ω(n1−k/α).
We could instead apply Theorem 3.4 to estimate DD(EQ-SPRD

β,γ
n,t ). We set t = (2α)1/(1−k) and

β < 1/(2et); the theorem then requires γ = βt(1 − eβt). Note that γ/(βtk) > α, as required.
Applying the theorem gives ps > eβ2n− log t−Θ(1) = Ω(n/t2) = Ω(n/α2/(1−k)).

For frequency moments Fk of “higher” order (k > 1), we can follow a similar proof template,
but it takes more work to analyze the effect of the “spread” case in the Equal-vs-Spread problem.

Theorem 4.2. For each k > 1, every deterministic s-space p-pass α-estimator for Fk has ps = Ω(n/α2k/(k−1)).

Proof. As in Theorem 4.1, we reduce from EQ-SPRD
β,γ
n,t . An input x for EQ-SPRD

β,γ
n,t turns into a

stream with frequency vector f satisfying eqs. (1) and (2). We now need a good upper bound on
Fk(f) when eq. (2) applies. For this, we invoke the following technical lemma.

Lemma 4.3. Let g : R → R be a nondecreasing convex function and let f ∈ {0, 1, . . . , t}n where t > 2.
Suppose that F1(f) = m, F0(f) > r, and rt > m. Then

n

∑
i=1

g( fi) 6 `g(t) + (r− `)g(1) ,

where ` = d(m− r)/(t− 1)e.
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The proof, given in Section 6, is via a shifting argument that redistributes the “mass” in f,
subject to the constraints on F1(f) and F0(f), and uses convexity and Karamata’s inequality to
analyze the effect of this redistribution on ∑ g( fi).

We use Lemma 4.3 with g(x) = xk, which is convex because k > 1. For our frequency vector f,
we have m = βtn and, thanks to eq. (2), we may use r = γn. We take γ = βt(1− eβt) as required
by Theorem 3.4. This gives ` = deβ2t2n/(t− 1)e 6 3β2tn. Also, r− ` 6 r 6 βtn. Thus,

Fk(f) =
n

∑
i=1

f k
i 6 `tk + (r− `)1k 6 3β2tn · tk + βtn = βtn(3βtk + 1) .

On the other hand, when eq. (1) applies, we have Fk(f) = βtkn. The gap between these two cases
is at least

βtkn
/(

βtn(3βtk + 1)
)
= tk−1

/
(3βtk + 1) .

Setting t = (2α)1/(k−1) and β < 1/(3tk) makes the above gap greater than α. Therefore, an
s-space p-pass α-estimator for Fk gives a 2ps-bounded discreet protocol for EQ-SPRD

β,γ
n,t . By Theo-

rem 3.4, we get ps > eβ2n− log t−Θ(1) = Ω(n/α2k/(k−1)), as required.

4.2 Stronger Lower Bounds for Frequency Moments

We shall now improve the lower bounds in Theorems 4.1 and 4.2, obtaining a tighter dependence
on α. From a data-streaming perspective, the two new lower bounds for Fk estimation given in
this section—one for k > 1 and one for k < 1—are the main theorems of this paper.

The improvements ultimately stem from sufficiently sharp concentration bounds for power
sums of binomial random variables. Let Y1, . . . , Yn be independent random variables, each with
binomial distribution B(t, q). Let Z = Z(n, t, q, k) = Yk

1 + · · ·+ Yk
n be the kth power sum of this

collection. In Section 6.1, we prove the following concentration bounds for Z.

Lemma 4.4. For each k > 1, there exist b, c > 0 such that the following holds. For each q ∈ (0, 1/(2e2)),
there exist integers n0 and t0 such that, for all n > n0 and t > t0,

Pr[Z > bqktkn] 6 exp
(
− cqktn
(log log(1/q))2

)
.

Lemma 4.5. For each k > 0, each q ∈ (0, 1), and each integer t > 32/q, there exists an integer n0 such
that, for all n > n0,

Pr[Z < qktkn/2k+1] 6 exp(−qtn/32) .

The upper tail bound, Lemma 4.4, does not follow from Chernoff-Hoeffding and Azuma-
Hoeffding inequalities [5]; those give a much weaker upper bound of the form exp(−Θ(n)). In-
deed, even a bound of exp(−Θ(tn)) would not be strong enough for our purposes. We need to
understand how the coefficient in front of tn depends on q, and this seems to require a delicate
partitioning of the large deviation event.

In contrast, the lower tail bound, Lemma 4.5, does follow from standard Chernoff bounds.

Our improved lower bounds for Fk estimation are obtained by reducing from EQ-DISTN,t, using
what we shall call an Fk-separating mapping, defined as follows. A function R : {0, 1}N → {0, 1}n is
said to be Fk-separating with parameters (t, α) if

min{Fk(t · R(x)) : x ∈ {0, 1}N}
max{Fk(R(x1) + · · ·+ R(xt)) : EQ-DISTN,t(x1, . . . , xt) = 0} > α , when k > 1 , (3)
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and

min{Fk(R(x1) + · · ·+ R(xt)) : EQ-DISTN,t(x1, . . . , xt) = 0}
max{Fk(t · R(x)) : x ∈ {0, 1}N} > α , when k < 1 . (4)

Suppose that such a mapping exists and that we have an s-space p-pass α-estimator for Fk over
the universe [n]. Then, following the template from Section 4.1, a team of t players can solve
EQ-DISTN,t by mapping their inputs to {0, 1}n via R and converting the mapped inputs to streams
over [n]. Applying Theorem 3.2, we obtain 2ps > DD(EQ-DISTN,t) = N − 2 log t.

Theorem 4.6. For each k > 1 and α > 1, every deterministic s-space p-pass α-estimator for Fk satisfies
ps = Ω(n/(αk/(k−1)(log log α)2)).

Proof. We follow the outline above. It remains to prove the existence of an Fk-separating mapping
for a large enough N = N(n, t, α) and a not-too-large t.

We construct the mapping R at random, as follows. Generate a random 2N × n matrix whose
entries are independent Bernoulli random variables, each equal to 1 with probability q. We shall
fix q later. Then, for each x ∈ {0, 1}N , define R(x) to be the xth row of this matrix. We claim that
with positive probability both of the following events occur:

E1 :=
{

min{Fk(t · R(x)) : x ∈ {0, 1}N} > qtkn/2
}

,

E2 :=
{

max{Fk(R(x1) + · · ·+ R(xt)) : EQ-DISTN,t(x1, . . . , xt) = 0} 6 bqktkn
}

.

Noting that E|R(x)| = qn for each x ∈ {0, 1}N , a standard Chernoff bound followed by a
union bound gives Pr[¬E1] = Pr

[
∃ x ∈ {0, 1}N : |R(x)| < qn/2

]
6 2N exp(−qn/8). On the other

hand, for each choice of distinct x1, . . . , xt ∈ {0, 1}N , the quantity Fk(R(x1) + · · ·+ R(xt)) is the
kth power sum of n independent binomial random variables. By Lemma 4.4 and a union bound,

Pr[¬E2] 6
(

2N

t

)
exp

(
− cqktn
(log log(1/q))2

)
6 2Nt exp

(
− cqktn
(log log(1/q))2

)
,

for all large enough n and t. Therefore, setting N = c′qkn/(log log(1/q))2 for an appropriate
constant c′ ensures Pr[¬E1 ∨ ¬E2] < 1.

Thus, there exists a specific R at which both E1 and E2 occur. For this R, the left-hand side
of eq. (3) is at least (qtkn/2)/(bqktkn) = 1/(2bqk−1). We set q = O(1/α1/(k−1)) so that this ratio
exceeds α. Then eq. (3) is satisfied and R is Fk-separating.

Taking t = n (say) gives us the bound ps = Ω(N − log t) = Ω(n/(αk/(k−1)(log log α)2)).

Next, we handle frequency moments of “lower” order, in a similar fashion.

Theorem 4.7. For each k ∈ [0, 1) and α > 1, every deterministic s-space p-pass α-estimator for Fk satisfies
ps = Ω(n/α1/(1−k)).

Proof. Again, we prove the existence of an Fk-separating mapping for a large enough N = N(n, t, α),
using the same random construction of R. The events of interest are

E1 :=
{

max{Fk(t · R(x)) : x ∈ {0, 1}N} 6 2qtkn
}

,

E2 :=
{

min{Fk(R(x1) + · · ·+ R(xt)) : EQ-DISTN,t(x1, . . . , xt) = 0} > qktkn/2k+1} .

Since E|R(x)| = qn for each x ∈ {0, 1}N , a standard Chernoff bound followed by a union
bound gives Pr[¬E1] = Pr

[
∃ x ∈ {0, 1}N : |R(x)| > 2qn

]
6 2N exp(−qn/3). As before, for
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each choice of distinct x1, . . . , xt ∈ {0, 1}N , the quantity Fk(R(x1) + · · ·+ R(xt)) is the kth power
sum of n independent binomial random variables. By Lemma 4.5 and a union bound, Pr[¬E2] 6
2Nt exp(−qtn/32), for t > 32/q. Therefore, setting N = qn/64 ensures Pr[¬E1 ∨ ¬E2] < 1.

Thus, there exists a specific R at which both E1 and E2 occur. For this R, the left-hand side of
eq. (4) is at least (qktkn/2k+1)/(2qtkn) = 1/(q1−k22+k). We set q = O(1/α1/(1−k)) so that this ratio
exceeds α. Then eq. (4) is satisfied and R is Fk-separating.

Again, taking t = n and applying Theorem 3.2 gives ps = Ω(N − log t) = Ω(n/(α1/(1−k))).

4.3 A Lower Bound for Empirical Entropy

We now turn to the estimation of ENT(f), the empirical entropy of the input stream. Using the
template established in Section 4.2 leads to the following space/approximation tradeoff.

Theorem 4.8. For every ε > 0 and α ∈ [1, o(log n)], every deterministic s-space p-pass α-estimator for
ENT(f) satisfies ps = Ω(n1/((1+ε)α)).

Proof. We reduce from EQ-DISTN,t using a separating mapping whose existence we prove using
the same random construction R : {0, 1}N → {0, 1}n as in the proofs of Theorems 4.6 and 4.7.
This causes the players to estimate ENT(R(x1) + · · ·+ R(xt)), given an input x = (x1, . . . , xt) for
EQ-DISTN,t. Note that, when EQ-DISTN,t(x) = 1, i.e., x = x⊗t, then this entropy equals ENT(t ·
R(x)) = ENT(R(x)) = log |R(x)|.

Define the events

E1 :=
{

max{ENT(R(x)) : x ∈ {0, 1}N} 6 log(2qn)
}

,

E2 :=
{

min{ENT(R(x1) + · · ·+ R(xt)) : EQ-DISTN,t(x1, . . . , xt) = 0} > (log n)/(1 + ε/2)
}

.

By a Chernoff and a union bound, Pr[¬E1] 6 2N exp(−qn/3). On the other hand, by a tail estimate
analogous to Lemma 4.5, Pr[¬E2] 6 2Nt exp(−Ωε(qtn)), for all large enough t and n. The required
tail estimate is formally proved as Lemma 6.4 in Section 6.1.

Setting N = cqn, for an appropriate constant c, ensures that Pr[¬E1 ∨ ¬E2] < 1. So there
exists a specific R at which both E1 and E2 occur. Using this R, and setting q = n−1+1/((1+ε)α)

gives a gap of (log n)/((1 + ε/2) log(2qn)) > α in the entropy values corresponding to the cases
EQ-DISTN,t(x) = 0 and EQ-DISTN,t(x) = 1. Thus, an s-space p-pass α-estimator for entropy re-
quires ps = Ω(N− 2 log t). Taking t = n (say) gives ps = Ω(N) = Ω(n1/((1+ε)α)), as required.

4.4 Some Simple Upper Bounds

Here, we give (very) simple deterministic estimators for the frequency moments. These already
suffice to show that our tradeoff lower bounds for Fk are optimal for 0 6 k < 1 and in the correct
ballpark for k > 1.

Recall that the input stream is a sequence (a1, . . . , am) with each aj ∈ [m]. Crucially, it is an
“insert-only” stream, as opposed to a “turnstile” stream. This restriction is reasonable, since all
our lower bounds were proved in this same model.

Consider the following one-pass estimator for Fk. Divide the universe [n] into n/β buckets of
size β each; Let Bi ⊆ [n] be the ith bucket. Maintain the quantity Qi := ∑j∈Bi

f j for each i ∈ [n/β].
This requires only O(n log m/β) bits of space. At the end of the stream,

• if k > 1, output β ∑
n/β
i=1 (Qi/β)k;

• if 0 6 k < 1, output ∑
n/β
i=1 Qk

i .
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Let Si be the contribution of items landing in bucket Bi to the sum defining Fk, i.e., Si = ∑j∈Bi
f k
j .

A shifting argument based on convexity and Karamata’s inequality (akin to the argument in the
proof of Lemma 6.5) can be used to show that

β(Qi/β)k 6 Si 6 Qk
i = β(Qi/β)kβk−1 , when k > 1 ,

Qk
i β1−k = β(Qi/β)k > Si > Qk

i , when 0 6 k < 1 .

Therefore, our algorithm is a βk−1-estimator for Fk when k > 1 and β1−k-estimator for Fk when
k < 1. Choosing β = α1/(k−1) in the former case and β = α1/(1−k) in the latter case gives us an
α-estimator in each case.

For estimating F0, we can dispense with maintaining the quantities Qi and simply maintain
one bit per bucket indicating whether or not Qi > 0.

Finally, we can further cut down the space usage if we are allowed p > 1 passes. Simply divide
the universe [n] into p equal-sized ranges and, for each ` ∈ [p], use the `th pass to estimate the
contribution of the `th range to Fk, using the above one-pass procedure.

Putting all of this together, we obtain the following collection of results.

Theorem 4.9. For integers p > 1, and reals k > 0 and α > 1, there is a family of deterministic p-pass
α-estimators for Fk, with the following guarantees on their space usage, s.

• When k = 0, we have ps = dn/αe+ O(log n).

• When 0 < k < 1, we have ps = O(n log m/α1/(1−k)).

• When k = 1, at p = 1 we have s 6 dlog me, trivially.

• When k > 1, we have ps = O(n log m/α1/(k−1)).

Next, we turn to the estimation of the empirical entropy of a stream. Notice that the lower
bound in Theorem 4.8 becomes trivial once α = Ω(log n). We give another simple estimator to
show that this behavior is to be expected.

Theorem 4.10. There is a deterministic O(log m)-space 2-pass (1 + log n)-estimator for the empirical
entropy of a stream.

Proof. Let m and f denote the stream’s length and its frequency vector, as usual. An element j ∈ [n]
is called a majority in the stream if f j > m/2.

The algorithm is as follows. In the first pass, use either the Misra-Gries algorithm with one
counter [33] or (equivalently) the Boyer-Moore algorithm [11] to identify a majority candidate M ∈
[n]. If the stream does have a majority, then M is guaranteed to be that majority. In the second
pass, count fM precisely to determine whether this is the case. Let γ = fM/m.

If the stream has no majority, then ENT(f) > 1. Output 1 in this case. Since ENT(f) 6 log n,
this is a (log n)-estimate. Otherwise, let f−M denote the vector f restricted to the coordinates in
[n] \ {M}. An application of the chain rule for entropy gives us

ENT(f) = H(γ) + (1− γ)ENT(f−M) ,

where H(x) = −x log x − (1− x) log(1− x) is the binary entropy function. Output H(γ) in this
case. Noting that γ > 1/2, the approximation ratio is

1 +
(1− γ)ENT(f−M)

H(γ)
6 1 +

(1− γ) log n
(1− γ) log 1

1−γ

6 1 + log n , since γ > 1/2.
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5 Graph Streams

A number of important data stream problems are graph-theoretic. The input graph Gn = (V, E),
where |V| = n, is described as a stream of edges (the edge-arrival model, our default). It is usually
interesting, and nontrivial, to achieve space Õ(n) for most standard graph computations [23]. We
focus on two particular graph problems: maximum matching size estimation (MMSE), described
next, and a variant of edge connectivity, described in Section 5.2.

5.1 Maximum Matching Size

The MMSE problem asks for an estimate of the number of edges in a maximum cardinality match-
ing (MCM). For this problem, it is also natural to consider the vertex-arrival model, where the
input is a bipartite graph Gn = (V1, V2, E), with |V2| = n and |V1| = O(n), and the stream lists
each vertex u ∈ V1 with all its neighbors in V2. This potentially makes an algorithm’s task easier,
so lower bounds proven in this model are stronger. We prove lower bounds in the vertex-arrival
model for s-space p-pass α-estimators for MMSE; our bounds trade off α against the product ps. A
closely-related problem, which we call the MCM problem, is that of outputting a large matching.

Previous Work on MMSE. An algorithm that just maintains a maximal matching using ndlog ne
space is a 2-estimator for MMSE. Another simple algorithm that just maintains a simple ran-
domized sketch and uses O(polylog n) space is a O(

√
n)-estimator. Kapralov et al. [29] gave a

O(polylog n)-estimator over randomly-ordered streams that uses O(polylog n) space. Esfandiari
et al. [21] gave a one-pass randomized O(ν)-estimator that uses O(νn2/3) space and a two-pass
randomized O(ν)-estimator that uses O(ν

√
n) space for graphs with arboricity ν = o(

√
n), which

is defined as ν := maxU⊆V E(U)/(|U| − 1), where E(U) is the set of edges with both endpoints
in U. Even when randomization is allowed, no o(n)-space α-estimator is known, where α is a
constant.

Esfandiari et al. [21] also gave a Ω(
√

n) space lower bound for randomized one-pass (3/2− ε)-
estimators and Ω(n) space lower bound for deterministic one-pass (3/2− ε)-estimators; the latter
bound should be compared with that in Theorem 5.2. They obtain these lower bounds by reducing
from a communication problem known as Boolean Hidden Matching (BHM), using lower bounds
given by Gavinsky et al. [25]. Bury and Schwiegelshohn [14] show that for any constant β > 2,
one-pass randomized (1+ 1/(3β/2− 1))-estimators need space Ω(n1−1/β). Note that substituting
β = 2 recovers the lower bound by Esfandiari et al. [21]. They achieve this generalization by using
the reduction given by Esfandiari et al. [21] and the lower bound given by Verbin and Yu [36] for
the communication problem Boolean Hidden Hypermatching (BHHM), which is a generalization of
BHM.

Previous Work on MCM. Since an MCM can have Ω(n) size, an algorithm needs Ω(n log n)
space just to output a large matching. As noted earlier, outputting a maximal matching is a 2-
approximation algorithm for MCM. We note that no better one-pass deterministic or randomized
approximation using o(n2) space is known. Feigenbaum et al. [23] were the first to study MCM
in the streaming model, and they gave a (3/2 + ε)-approximation algorithm. Improving this, Mc-
Gregor [32] gave a randomized (1 + ε)-approximation algorithm, and Ahn and Guha [1] gave
a linear-programming based, deterministic, (1 + ε)-approximation algorithm. Each of the algo-
rithms just mentioned uses O(n polylog n) space and Oε(1) passes.

On the lower-bound side, Goel, Kapralov, and Khanna [26] showed that a one-pass random-
ized MCM algorithm achieving approximation better than 3/2 must use n1+Ω(1/ log log n) space,
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even in the vertex-arrival model; Kapralov [28] showed that this bound in fact applies to algo-
rithms achieving approximation better than e/(e− 1). For exact one-pass algorithms, Ω(n2) space
is required even if randomization is allowed; this can be proved by a simple reduction from the
two-party communication problem of INDEX.

Maximum Matching in the Simultaneous Message (SM) model. Dobzinski, Nisan, and Oren [18]
consider a related problem in the SM model. To elaborate, there are n players, and together they
hold a bipartite graph Gn = (V1, V2, E), with |V1| = |V2| = n. Each player gets as input the set
of neighbors of a vertex in V1. They send a possibly randomized message to a coordinator si-
multaneously who has to output a perfect matching, say M, possibly containing edges not in E.
The goal is to maximize |M ∩ E|. They give lower bounds for the maximum message size, say `,
where the maximum is taken over all players. They show that for deterministic α-approximation
protocols, ` = Ω(n/α), and for randomized α-approximation protocols, for any constant ε > 0,
` = Ω(n1/2−ε/α).3 A careful examination shows that their lower-bound proof for deterministic
protocols works for the problem when the coordinator has to just estimate the maximum match-
ing size. Our communication lower-bound techniques for discreet protocols also extend to SM
protocols with essentially no change. So the lower bound obtained in Theorem 5.2 below also
applies to SM protocols and discreet protocols for MMSE defined appropriately as a communica-
tion problem. Thus it generalizes the deterministic lower bound by Dobzinski et al. from a star
communication topology (for SM protocols) to arbitrary topology. This, in particular, yields data
streaming lower bounds.

Our Results. First, we define a variant of the Equal-vs-Spread problem that we call Equal-vs-
Distinct-Representatives. There are t = bγnc players. Each player receives a dβne-subset of [n]
(where β < γ) and they must distinguish the case when all of these subsets are equal from the case
when each player can pick a representative element from her subset so that these representatives
are distinct. Formally, we use the following function:

EQ-DR
β
n,t(x1, . . . , xt) =


1 , if |x1| = · · · = |xt| = dβne and x1 = · · · = xt ,
0 , if |x1| = · · · = |xt| = dβne and ∃ g : [t]→ x1 ∪ · · · ∪ xt

such that g is injective and g(i) ∈ xi for each i ∈ [t] ,
? , otherwise.

It is not hard to see that the proof of Theorem 3.3 applies to an analysis of this problem as well,
after the substitution γ = t/n, due to the way in which y ∈ span(N ) is constructed in that proof.
This leads to the following lower bound.

Theorem 5.1. For all values 0 < β < 1, ε > 0, and sufficiently large n, if (β + ε)n 6 t < n, then we
have DD(EQ-DR

β
n,t) > (β log(n/t))n− log t.

We reduce EQ-DR
β
n,t to MMSE to get lower bounds for α-estimators for MMSE. This improves

the Ω(n) space lower bound for one-pass (3/2− ε)-estimators, where ε > 0, due to Esfandiari et
al. [21]. Though the following theorem is stated for streaming algorithms for MMSE, it is a special
case of a more general communication result as noted earlier.

Theorem 5.2. For a deterministic s-space p-pass α-estimator for MMSE, we have ps > ((n/eα)(log e)−
log n)/2.

3We can show that their bound can be improved to Ω(n/α2) by tweaking the parameters in their proof slightly.
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Proof. We reduce from EQ-DR
β
n,t setting t and β later. The theorem can be proved in the vertex

arrival model with V1 = {u1, . . . , ut} and V2 = [n]. Note that the lower bounds for vertex-arrival
model also apply for the edge-arrival model. For i ∈ [t], PLRi adds edges {{ui, j} : j ∈ xi}. Call the
resulting graph Gn. When EQ-DR

β
n,t(x1, . . . , xt) = 1, an MCM in Gn has size βn. When EQ-DR

β
n,t(x1,

. . . , xt) = 0, an MCM in Gn has size t, because the definition of EQ-DR
β
n,t guarantees existence of

an injective mapping g from [t] to [n]. So, if β and t are such that t/βn > α, then a deterministic
s-space p-pass α-estimator for MMSE can be used to give a 2ps-bounded discreet protocol EQ-DR

β
n,t.

Setting t = n/e and β = 1/(αe)− 1/n optimizes the lower bound we get by Theorem 5.1, i.e., we
get 2ps > (β log(n/t))n− log t = (1/(αe)− 1/n)(log e)n− log n + log e; after simplification, this
gives us the desired result.

We note that we can reduce EQ-SPRD
β,γ
n,t to MMSE by making each player add dβne vertices, but

that reduction gives a much weaker bound than that in Theorem 5.2.

5.2 Edge Connectivity

We divert from multi party to two party communication complexity in this section. The dynamic
graph connectivity problem XCONN is as follows. There are two players, Alice and Bob, who get
inputs EA and EB which are sets of edges on the vertex set [n]. For two sets S and T, denote
by S⊕ T the set (S ∪ T) \ (S ∩ T). Alice and Bob communicate to determine whether the graph
EA ⊕ EB is connected.

We reduce EQn2/4 to XCONN, where EQ is the well-known two-party equality problem. Alice
adds a complete graph on [n/2], Bob adds a complete graph on [n] \ [n/2], and they encode the
inputs for EQn2/4 within the edges in [n/2]× ([n] \ [n/2]). In case of equality, XCONN will evaluate
to false, otherwise XCONN will evaluate to true; hence, communication complexity of XCONN is at
least n2/4.

There is a randomized protocol for XCONN. Alice can send Bob the sketch for connectivity
given by Ahn, Guha, and McGregor [2] of size O(n log3 n). Bob can solve XCONN using this
sketch. This separates the randomized and deterministic communication complexity of XCONN.

By using error correcting codes (ECC), we can show that even the following version of XCONN

with a strong promise is hard. Alice and Bob get inputs EA and EB with the promise that the graph
(EA ∪ EB) \ (EA ∩ EB) is disconnected or (n/2− 1)-connected, i.e., at least n/2− 1 edges need to
be removed to disconnect it. We reduce from EQN2 where N = Ω(n). We use a binary ECC of size
2N2

, block length n2/4, and distance n/2− 1. By Shannon’s construction, we can construct such
an ECC with N = Ω(n). Then we use the same construction as in the reduction from EQn2/4 to
XCONN to get EA and EB. In case of equality, EA ⊕ EB will be disconnected (no edge from [n/2]
to [n] \ [n/2]). In case of inequality, there will be at least n/2− 1 edges from [n/2] to [n] \ [n/2].
Since EA ⊕ EB has a complete graph within [n/2] and within [n] \ [n/2], it is at least (n/2− 1)-
connected. Hence, the communication complexity of strong-promise version of XCONN is at least
N2 = Ω(n2).

6 Proofs of Technical Lemmas

In this section, we prove the technical lemmas used in obtaining results in earlier sections. Our
proof of an upper-tail bound on power sums of independent binomial random variables is par-
ticularly instructive and worth understanding for its own sake. Though basic-looking, this result
appears to be novel. As noted before, other seemingly basic questions about moments of the
binomial distribution were addressed only recently [8].
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6.1 Power Sums of Binomial Random Variables

Let Y1, . . . , Yn be independent random variables, each with binomial distribution B(t, q). Define
Z = Z(n, t, q, k) = Yk

1 + · · ·+Yk
n , the kth power sum of this collection. We shall prove the following

theorem, which was used as a key technical lemma in establishing Theorem 4.6, our lower bound
for higher-order frequency moments.

Theorem 6.1 (Restatement of Lemma 4.4). For each k > 1, there exist b, c > 0 such that the following
holds. For each q ∈ (0, 1/(2e2)), there exist integers n0 and t0 such that, for all n > n0 and t > t0,

Pr[Z > bqktkn] 6 exp
(
− cqktn
(log log(1/q))2

)
.

Though Z is a sum of independent, bounded random variables, this tail bound does not follow
from Chernoff-Hoeffding and Azuma-Hoeffding inequalities [5]; those give a much weaker upper
bound of the form exp(−Θ(n)). Indeed, even a bound of exp(−Θ(tn)) would not be strong
enough to prove Theorem 4.6. We need to understand how the coefficient in front of tn depends
on q, and this seems to require a delicate partitioning of the large deviation event.

Our proof proceeds by partitioning the random variables {Yj}—or rather, their indices—into
buckets: indices j placed in a “high” bucket correspond to Yjs whose realization is much higher
than the expected value of qt. Intuitively, the higher the bucket, the fewer the indices we expect to
land in that bucket, but also, the fewer the indices we can afford to have land in that bucket so that
the power sum Z stays small. The trick is to define buckets and events involving their sizes with
parameters chosen carefully enough to balance these two effects.

We shall make use of the following form of the Chernoff bound.

Lemma 6.2. Suppose that 0 < q1 < q < κ. Let Y ∼ B(t, q1) for some integer t > 1. Then

Pr[Y > κt] 6 exp
(
−κt ln

κ

eq
− qt

)
6 exp

(
−κt ln

κ

eq

)
.

Proof of Lemma 4.4. Put S(κ, λ) = {j ∈ [n] : κt 6 Yj 6 λt}. Let θ ∈ (2−k, 1/2) be a parameter to be
determined. Define the events

E0 :=
{
|S(θ, 1)| > qkn

}
,

Em :=
{∣∣∣S(θkm

, θkm−1)∣∣∣ > m−2qkθ−km
n
}

, for each integer m > 1 .

We choose θ so that there exists an integer M > 0 such that θkM
= e2q. Indeed, since q < 1/(2e2),

θ is the unique member of the sequence e2q, (e2q)1/k, (e2q)1/k2
, . . . that lies in (2−k, 1/2). If none of

the events E0, . . . , EM occur, then

Z 6

 ∑
j∈S(θ,1)

Yk
j

+

 M

∑
m=1

∑
j∈S(θkm ,θkm−1 )

Yk
j

+

 ∑
j∈S(0,e2q)

Yk
j


6 |S(θ, 1)|tk +

(
M

∑
m=1

∣∣∣S(θkm
, θkm−1)∣∣∣ (θkm−1

t)k

)
+ |S(0, e2q)| (e2qt)k

6 qkntk +

(
M

∑
m=1

(m−2qkθ−km
n)(θkm

tk)

)
+ n(e2qt)k
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=

(
1 + e2k +

M

∑
m=1

m−2

)
qktkn

6 bqktkn ,

for some constant b depending on k, where the last step uses the convergence of ∑∞
m=1 m−2.

We now seek good bounds on the probabilities of these events Em. For this, we first bound
the tails of |S(κ, λ)|. Note that |S(κ, λ)| 6 |S(κ, 1)| = ∑n

j=1 1{Yj>κt} ∼ B(n, Pr[Y1 > κt]). Invoking
Lemma 6.2, we obtain that, for e2q 6 κ 6 1,

Pr[Y1 > κt] 6 exp
(
−κt ln

κ

eq

)
6 exp(−κt) . (5)

By design, e2q 6 θkm
6 1 for each m with 0 6 m 6 M. So, by another invocation of Lemma 6.2, for

each m ∈ [M], we have

Pr[Em] 6 Pr
[∣∣S(θkm

, 1)
∣∣ > m−2qkθ−km

n
]

= Pr

[
n

∑
j=1

1{Yj>θkm t} > m−2qkθ−km
n

]

6 exp
(
−m−2qkθ−km

n · ln m−2qkθ−km

e · exp(−θkm t)

)
, using Lemma 6.2 and (5) ,

= exp(−m−2qknt + nx ln(e/x)) , where x = m−2qkθ−km ∈ (0, 1) ,

6 exp(−M−2qktn + n) , using x ln(e/x) 6 1 .

Similarly,

Pr[E0] = Pr
[
|S(θ, 1)| > qkn

]
= Pr

[
n

∑
j=1

1{Yj>θt} > qkn

]

6 exp
(
−qkn · ln qk

e · exp(−θt)

)
, using Lemma 6.2 and (5) ,

= exp(−θqknt + nqk ln(e/qk))

6 exp(−θqktn + n) , using qk ln(e/qk) 6 1 .

Therefore, applying a union bound,

Pr[Z > bqktkn] 6 Pr

[
M∨

m=0

Em

]
6

M

∑
m=0

Pr[Em] 6 M · exp(−M−2qktn + n) + exp(−θqktn + n) .

By definition, M = logk log1/θ(1/e2q) 6 logk log(1/q). So, taking n and t large enough,

Pr[Z > bqktkn] 6 exp(−c′M−2qktn) 6 exp
(
− cqktn
(log log(1/q))2

)
,

for suitably chosen constants c′ and c, dependent on k alone and not on q, t, and n.
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Next, we bound the lower tail of the distribution of the same random variable, Z. This turns
out to be considerably more straightforward than bounding the upper tail. The lower-tail bound
was used as a key lemma in the proof of Theorem 4.7.

Lemma 6.3 (Restatement of Lemma 4.5). For each k > 0, each q ∈ (0, 1), and each integer t > 32/q,
there exists an integer n0 such that, for all n > n0,

Pr[Z < qktkn/2k+1] 6 exp(−qtn/32) .

Proof. By a Chernoff bound, Pr[Yj < qt/2] 6 exp(−qt/8), for j ∈ [n]. Using Lemma 6.2,

Pr

[
n

∑
j=1

1{Yj<qt/2} > n/2

]
6 exp

(
−(n/2) · ln 1/2

e · exp(−qt/8)

)
= exp(−(n/2) · (qt/8− ln(2e)))
6 exp(−(n/2) · (qt/16)) , because qt/16 > 2 and ln(2e) 6 2,
= exp(−qtn/32) . (6)

Notice that ∑n
j=1 1{Yj>qt/2} > n/2 implies Z > (qt/2)kn/2. Therefore,

1− Pr[Z < qktkn/2k+1] = Pr[Z > (qt/2)kn/2]

> Pr

[
n

∑
j=1

1{Yj>qt/2} > n/2

]

= 1− Pr

[
n

∑
j=1

1{Yj<qt/2} > n/2

]
> 1− exp(−qtn/32) ,

where we use Equation (6) in the last step. Rearranging the above gives the desired bound.

In the spirit of the above tail bounds, we establish a tail bound for the empirical entropy of an
ensemble of independent binomial random variables.

Lemma 6.4. For any constant ε > 0, q ∈ (0, 1), and t > 32/q, we have Pr[ENT((Y1, . . . , Yn)) <
(log n)/(1 + ε)] 6 exp(−Ω(qtn)).

Proof. For ease of exposition, we shall instead prove the following weaker form of the lemma: For
each q ∈ (0, 1) and t > 32/q, Pr[ENT((Y1, . . . , Yn)) < (log(n/4))/8] 6 exp(−qtn/40).

By a Chernoff bound, Pr[∑j∈[n] Yj > 2qtn] 6 exp(−qtn/3), and Pr[Yj /∈ [qt/2, 2qt]] 6 exp(−qt/8),
for j ∈ [n]. Now, using Lemma 6.2,

Pr

[
n

∑
j=1

1{Yj /∈[qt/2,2qt]} > n/2

]
6 exp

(
−(n/2) · ln 1/2

e · exp(−qt/8)

)
= exp(−(n/2) · (qt/8− ln(2e)))
6 exp(−(n/2) · (qt/16)) , because qt/16 > 2 and ln(2e) 6 2,
= exp(−qtn/32) .
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If ∑j∈[n] Yj 6 2qtn and ∑n
j=1 1{Yj∈[qt/2,2qt]} > n/2, then

ENT((Y1, . . . , Yn)) >
n
2

qt/2
2qtn

log
qtn/2

2qt
=

1
8

log
n
4

.

Hence,

Pr[ENT((Y1, . . . , Yn)) > (log(n/4))/8] > Pr

 ∑
j∈[n]

Yj 6 2qtn ∧
n

∑
j=1

1{Yj∈[qt/2,2qt]} > n/2

 ,

which, after taking complements of the events, gives

Pr[ENT((Y1, . . . , Yn)) < (log(n/4))/8] 6 Pr

 ∑
j∈[n]

Yj > 2qtn ∨
n

∑
j=1

1{Yj /∈[qt/2,2qt]} > n/2

 .

Using the bounds on the probabilities for the events on the right hand side of the inequality above,
we get the desired result.

6.2 A Convexity Lemma

Our proof of Theorem 4.2 and the analysis of our algorithms leading to Theorem 4.9 relied on
bounds on the `k-norm of a vector under certain technical conditions on its coordinates. We now
give a detailed proof of one such bound, namely, Lemma 4.3.

Lemma 6.5 (Restatement of Lemma 4.3). Let g : R → R be a nondecreasing convex function with
g(0) = 0, and let f ∈ {0, 1, . . . , t}n where t > 2. Suppose that F1(f) = m, F0(f) > r, and rt > m. Then

n

∑
i=1

g( fi) 6 `g(t) + (r− `)g(1) , (7)

where f = ( f1, . . . , fn) and ` = d(m− r)/(t− 1)e.

Proof. Assume WLOG that f1 > f2 > · · · > fn. Note that, by the conditions of the lemma,
` 6 d(rt− r)/(t− 1)e = r. Let f∗ = ( f ∗1 , . . . , f ∗n ) be the unique vector such that

f ∗1 = · · · = f ∗`−1 = t , f ∗`+1 = · · · = f ∗r = 1 , f ∗r+1 = · · · = f ∗n = 0 , and F1(f∗) = m .

We can see that f∗ ∈ {0, 1, . . . , t}n and f ∗1 > f ∗2 > · · · > f ∗n from the computation

f ∗` = m− (`− 1)t− (r− `) = t−
(⌈

m− r
t− 1

⌉
− m− r

t− 1

)
(t− 1) .

We now claim that the vector f∗ majorizes f. Assuming this claim, we then have

n

∑
i=1

g( fi) 6
n

∑
i=1

g( f ∗i ) = (`− 1)g(t) + g( f ∗` ) + (r− `)g(1) + (n− r)g(0) 6 `g(t) + (r− `)g(1) ,

where the first step uses Karamata’s inequality and the convexity of g, and the last step uses the
facts that g is nondecreasing and g(0) = 0. This proves eq. (7), as required.

To prove our claim, we first note that ∑n
i=1 f ∗i = m = ∑n

i=1 fi, by construction. Suppose, to
the contrary, that f∗ does not majorize f. Then let j ∈ [n − 1] be the smallest index such that
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∑
j
i=1 fi > ∑

j
i=1 f ∗i . Now, j cannot be less than ` because f ∗i = t for i < `. Also, j cannot be greater

than r because ∑r
i=1 f ∗i = m. Thus, ` 6 j 6 r. We then have

F1(f) >
j

∑
i=1

fi +
r

∑
i=j+1

fi , since F0(f) > r,

>
j

∑
i=1

f ∗i +
r

∑
i=j+1

fi , by assumption,

>
j

∑
i=1

f ∗i +
r

∑
i=j+1

1 , because F0(f) > r implies that f j+1, . . . , fr > 1,

=
n

∑
i=1

f ∗i , because j > `, implying f ∗j+1 = · · · = f ∗r = 1,

= m ,

which is a contradiction. This completes the proof of the claim, and hence, the lemma.
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