
Time-Space Hardness of Learning Sparse Parities

Gillat Kol∗ Ran Raz † Avishay Tal ‡

Abstract

We define a concept class F to be time-space hard (or memory-samples hard) if any
learning algorithm for F requires either a memory of size super-linear in n or a number
of samples super-polynomial in n, where n is the length of one sample. A recent work
shows that the class of all parity functions is time-space hard [R16]. Building on [R16],
we show that the class of all sparse parities of Hamming weight ` is time-space hard,
as long as ` ≥ ω(log n/ log log n). Consequently, linear-size DNF Formulas, linear-size
Decision Trees and logarithmic-size Juntas are all time-space hard. Our result is more
general and provides time-space lower bounds for learning any concept class of parity
functions.

We give applications of our results in the field of bounded-storage cryptography.
For example, for every ω(log n) ≤ k ≤ n, we obtain an encryption scheme that requires
a private key of length k, and time complexity of n per encryption/decryption of each
bit, and is provenly and unconditionally secure as long as the attacker uses at most
o(nk) memory bits and the scheme is used at most 2o(k) times. Previously, this was
known only for k = n [R16].

∗Princeton University. This work was done when the author was a member at the Institute for Advanced
Study, Princeton, NJ. Research supported by the National Science Foundation grant No. CCF-1412958.
†Weizmann Institute of Science, Israel, and the Institute for Advanced Study, Princeton, NJ. Research

supported by the Israel Science Foundation grant No. 1402/14, by the I-CORE Program of the Planning and
Budgeting Committee and the Israel Science Foundation, by the Simons Collaboration on Algorithms and
Geometry, by the Fund for Math at IAS, and by the National Science Foundation grant No. CCF-1412958.
‡Institute for Advanced Study, Princeton, NJ. Research supported by the Simons Collaboration on

Algorithms and Geometry, and by the National Science Foundation grant No. CCF-1412958.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 113 (2016)

1 Introduction

Let T ⊆ {0, 1}n be a set. In the problem of parity learning over T , there is an unknown
string x ∈ T that was chosen uniformly at random. A learner (who knows T) tries to learn x
from samples (a, b), where a ∈R {0, 1}n and b = a · x (where a · x denotes inner product
modulo 2). That is, the learning algorithm is given a stream of samples, (a1, b1), (a2, b2) . . .,
where each at is uniformly distributed over {0, 1}n and for every t, bt = at · x.

It was recently conjectured by Steinhardt, Valiant and Wager [SVW15] and proved
in [R16] that any algorithm for parity learning over T = {0, 1}n requires either a memory of
quadratic size or an exponential number of samples.

In this paper, we give time-space tradeoff lower bounds for parity learning over the set
T` containing all vectors of Hamming weight exactly `. In particular, we prove that for any
` ≥ ω(log n/ log log n), any algorithm for parity learning over T` requires either a memory
of super-linear size or a super-polynomial number of samples. Since a sparse parity function
with sparsity ` is in particular a size-` Junta and can be computed by a DNF formula of
size 2O(`) or a decision tree of size 2`, we conclude that for any ` ≥ ω(log n/ log log n), any
learning algorithm for size-` Juntas, size-2` DNF formulas or size-2` decision trees requires
either a memory of super-linear size or a super-polynomial number of samples. This shows
that some of the most extensively studied learning problems are infeasible under memory
constraints.

We define a concept class F to be time-space hard (or memory-samples hard) if any
learning algorithm for F requires either a memory of size super-linear in n or a number
of samples super-polynomial in n, where n is the length of one sample 1. Thus, for any
` ≥ ω(log n/ log log n), parity functions with sparsity `, size-` Juntas, size-2` DNF formulas
and size-2` decision trees are time-space hard concept classes.

Our results are more general and provide time-space tradeoff lower bounds for parity
learning over any set T .

1.1 Our Results

As in [R16], we model the learning algorithm by a branching program. A branching program
is the strongest and most general model to use in this context. Roughly speaking, the model
allows a learner with infinite computational power, and bounds only the memory size of the
learner and the number of samples used.

Theorem 2 in Section 9 proves a general time-space lower bound for parity learning over
a set T , in terms of the Fourier spectrum of the characteristic function of T . While the
theorem gives non-trivial lower bounds for any set T of size ≥ poly(n), the bound is more
significant when the characteristic function of T has a relatively small number of large Fourier
coefficients.

More precisely, we say that a set T is an (ε, δ)-biased set if at most a δ fraction of the 2n

linear functions over {0, 1}n are of bias larger than ε, on the uniform distribution over T .
Theorem 2 shows that for any (ε, δ)-biased set T , any algorithm for parity learning over T

requires either a memory of size larger than Ω
(
log
(

1
ε

)
· log

(
1
δ

))
or at least

(
1
ε

)Ω(1)
samples.

1This definition is tailored mainly for concept classes of size at most 2O(n).

2

In Section 10, we prove several consequences of Theorem 2. First, as mentioned above, we
prove time-space lower bounds for parity learning over the set T` of all vectors of Hamming
weight exactly `: Theorem 3 proves the following time-space lower bounds:

1. For any ` ≤ n/2, any algorithm for parity learning over T` requires either memory of
size larger than Ω(n`) or at least 2Ω(`) samples.

2. For any ` ≤ n0.9, any algorithm for parity learning over T` requires either memory of
size larger than Ω(n · `0.99) or at least `Ω(`) samples.

In particular, the second result (and a padding argument) show that for any ` ≥
ω(log n/ log log n), parity learning over T` is time-space hard. In Section 3, we give an upper
bound that shows that this result is tight, when the learner is modelled by a branching
program.

Theorem 4 in Section 10 proves the following time-space lower bound for parity learning
over ε-biased sets (as a simple consequence of Theorem 2):

For any ε-biased set T , any algorithm for parity learning over T requires either

memory of size larger than Ω(n · log(1/ε)) or at least
(

1
ε

)Ω(1)
samples.

Our results are stated for a learner that learns x exactly. Nevertheless, it is not hard to see
that all of our results (including the consequences for Juntas, small DNF formulas and small
decision trees) hold also for (both proper and improper) PAC learning. This is true because
if a learner is able to output a function that approximates a parity function, the learner may
as well output the parity function itself, as this function is unique (since parity functions
are orthogonal to each other). The learner can compute the parity function because, as
mentioned above, our lower bounds hold for a learner with an infinite computational power.

1.2 Related Works

Several recent works studied the resources needed for learning, under memory constraints
(see in particular [S14, SVW15, R16] and the references there). Steinhardt, Valiant and
Wager asked whether there exist concept classes that can be efficiently learnt from a
polynomial number of samples, but cannot be learnt from a polynomial number of samples,
under memory constraints, and suggested parity learning as a candidate [SVW15]. They
conjectured that any algorithm for parity learning over T = {0, 1}n requires either a memory
of quadratic size or an exponential number of samples, a conjecture that was proven in [R16].
Our proofs build on the proof given in [R16].

Independently of our results, a recent work of Valiant and Valiant studies the problem of
learning sparse parities, under information constraints [VV16]. However, their work focuses
on the case where the learner can extract only r bits of information from each sample, where
r < n. In the context of our paper, this gives a lower bound on the number of samples needed,
when the memory size of the learner is at most n. In contrast, our work gives lower bounds
on the number of samples needed, when the memory size of the learner is super-linear. The
main motivation of Valiant and Valiant was constructing information theoretically secure
databases [VV16].

3

1.3 Applications for Bounded Storage Cryptography

Let T ⊆ {0, 1}n be a set and assume that any algorithm for parity learning (with non-
negligible probability) over T requires either a memory of size at least s or more than m
samples.

In [R16], the following application was suggested: Assume that a group of (two or more)
users share a (random) secret key x ∈ T . Assume that user Alice wants to send an encrypted
bit M ∈ {0, 1} to user Bob. Let a be a string of n bits, uniformly distributed over {0, 1}n,
and assume that both Alice and Bob know a (we can think of a as taken from a source
of randomness that streams random bits to all parties and if such a source is not available
Alice can just choose a randomly and send it to Bob). Let b be the inner product of a and
x, modulo 2. Thus, b is known to both Alice and Bob and can be used as a one time pad
to encrypt/decrypt M , that is, Alice encrypts by computing M ⊕ b and Bob decrypts by
computing M = (M ⊕ b)⊕ b.

Assume that this protocol is used m+1 times, with the same secret key x. Denote by at, bt
the string a and bit b used at time t. Suppose that during all that time, an attacker could see
(a1, b1), . . . , (am, bm), but the attacker has less than s bits of memory. By the assumption,
the attacker cannot guess the secret key x, with better than negligible probability. Therefore,
using the fact that inner product is a strong extractor, even if the attacker sees am+1, the
attacker cannot predict bm+1, with better than negligible advantage over a random guess.

Thus, if the attacker has less than s bits of memory, the encryption remains secure as
long as it is used at most m+ 1 times.

Using our result for ε-biased sets and the fact that such (explicitly constructed) sets of size
poly(n/ε) exist [NN93, AGHP92], we obtain the following encryption/decryption schemes:
for every ω(log n) ≤ k ≤ n, we obtain an encryption scheme that requires a private key of
length k, and time complexity of n per encryption/decryption of each bit, and is provenly
and unconditionally secure as long as the attacker uses at most o(nk) memory bits and the
scheme is used at most 2o(k) times. (In [R16] such a scheme was obtained for k = n).

Using our first result for sparse parities, we obtain the following encryption/decryption
schemes: for every ω(log n) ≤ ` ≤ n, we obtain an encryption scheme that requires a private
key of length log

(
n
`

)
≤ ` log n, and time complexity of n per encryption/decryption of each

bit, and is provenly and unconditionally secure as long as the attacker uses at most o(n`)
memory bits and the scheme is used at most 2o(`) times.

This last scheme that is based on sparse parities is slightly worse than the one based
on ε-biased sets, in terms of length of keys. Nevertheless, it has the advantage that
encryption/decryption is done by taking the sum (modulo 2) of only ` bits of a, and thus,
depending on the exact setting and model of computation considered, the time complexity
may be considered to be `, rather than n.

In all previous works on bounded storage cryptography, except for [R16] (see for
example [M92, CM97, AR99, ADR02, V03, DM04], and many other works), the number of
random bits transmitted during the encryption was assumed to be larger than the memory-
size of the attacker. Thus, the time needed for encryption/decryption was at least linear in
the memory-size of the attacker. In contrast, the encryption schemes here are secure against
attackers with up to quadratic memory size.

4

2 Proof Outline

In this section, we give an overview of the proof of Theorem 2, our main theorem. Recall
that we define a set T to be (ε, δ)-biased if at most a δ fraction of the 2n linear functions
over {0, 1}n are of bias larger than ε, on the uniform distribution over T . Let T ⊆ {0, 1}n be
an (ε, δ)-biased set, and suppose that we want to prove a time-space lower bound for parity
learning over T .

Computational Model

As in [R16], we model the learning algorithm by a branching program. A branching program
of length m and width d, for parity learning, is a directed (multi) graph with vertices arranged
in m + 1 layers containing at most d vertices each. Intuitively, each layer represents a time
step and each vertex represents a memory state of the learner. In the first layer, that we
think of as layer 0, there is only one vertex, called the start vertex. A vertex of outdegree 0
is called a leaf. Every non-leaf vertex in the program has 2n+1 outgoing edges, labeled by
elements (a, b) ∈ {0, 1}n × {0, 1}, with exactly one edge labeled by each such (a, b), and all
these edges going into vertices in the next layer. Intuitively, these edges represent the action
when reading (at, bt). The samples (a1, b1), . . . , (am, bm) ∈ {0, 1}n × {0, 1} that are given
as input, define a computation-path in the branching program, by starting from the start
vertex and following at Step t the edge labeled by (at, bt), until reaching a leaf.

Each leaf v in the program is labeled by a vector x̃(v) ∈ {0, 1}n, that we think of as the
output of the program on that leaf. We interpret the output of the program as a guess of x.2

We also consider affine branching programs, where every vertex v is labeled by an affine
subspace w(v) ⊆ {0, 1}n, such that, the start vertex is labeled by the space {0, 1}n, and for
any edge (u, v), labeled by (a, b), we have w(u) ∩ {x′ ∈ {0, 1}n : a · x′ = b} ⊆ w(v). These
properties guarantee that if the computation-path reaches a vertex v then x ∈ w(v). Thus,
we can interpret w(v) as an affine subspace that is known to contain x.

Intuitively, each vertex v in an affine branching program “remembers” a set of linear
equations that the input x satisfies, the equations that correspond to the vectors orthogonal3

to w(v). The soundness property, w(u) ∩ {x′ ∈ {0, 1}n : a · x′ = b} ⊆ w(v) (for any edge
(u, v), labeled by (a, b)) captures the fact that the only new equation that we can learn is
the one that we just saw, in addition to linear combinations of that equation with equations
we already remember. We may also forget equations in each step

An affine branching program is called accurate if for (almost) all vertices v, the
distribution of x, conditioned on the event that the computation-path reached v, is close
to the uniform distribution over w(v) ∩ T .

For exact definitions, see Section 6.

2We note that our definition of the program’s output differs from the original definition in [R16]. In [R16],
the output was defined to be an affine subspace w(v), that was interpreted as a guess that x ∈ w(v).

3Here and below in this section, a vector is orthogonal to an affine subspace w if it corresponds to a linear
function that is constant on w.

5

The High-Level Approach

We follow the proof structure of [R16], and divide our proof into two parts: We first show
how to reduce general branching programs to accurate affine branching programs, and then
prove lower bounds for accurate affine branching programs. Both parts of the proof differ
from the proof of [R16], as we need to take into account the more general structure of the
underlying set T . Below, we highlight the new emerged problems and their solutions.

The proof of [R16] considers the case where T = {0, 1}n. One property crucially used
by the proof is that the set T “samples well” every large affine subspace, say a subspace of
dimension larger than n/2. In particular, the proof can be generalized to handle the case
where T is a large random set. For a general set T and an affine subspace w, such that
w ∩ T 6= ∅, we define

Cw = Cw,T =
Prx′ [x

′ ∈ w] · Prx′ [x
′ ∈ T]

Prx′ [x′ ∈ w ∩ T]
,

where the probabilities are over a uniformly random x′ in {0, 1}n. We note that Cw,T
measures the correlation between T and w, and captures how well T samples w (if Cw,T
is close to 1 then T samples w well). We will focus on affine subspaces of high dimension (or,
low co-dimension), as if T is relatively small, it cannot sample well most of the subspaces of
low dimension.

We want to consider “good” subspaces w, of (low co-dimension and) Cw,T close to 1.
However, it will be helpful for us to require a stronger property, that the vector space
orthogonal to w does not contain large Fourier coefficients of UT , the uniform distribution
over T . (It is relatively easy to prove that this is a stronger property – see Claim 5.3).
Hence, we define GT,k as the set of all affine subspaces w of co-dimension at most k, such
that, w∩T 6= ∅ and the space orthogonal to w does not contain any large Fourier coefficient
of UT . Let v be a vertex in an affine branching program. We say that v is good if w(v) ∈ GT,k.

Intuitively, the definition of a good vertex requires that the equations that the vertex
“remembers” are not biased with respect to the set T .

The notion of good vertices plays a major role in our proof. First, in the reduction from
general branching programs to accurate affine branching programs, we will get no upper
bound at all on the number of bad vertices in the simulating affine program; we will only
get an upper bound on the number of good vertices in that program. Nevertheless, this
will be sufficient for us. In the proof of the lower bound for accurate affine branching
programs, we show that since the number of good vertices is bounded, the probability that
the computation-path reaches any bad vertex is small. In particular, the last vertex reached
by the computation-path is good with high probability. Since the last vertex reached by the
computation-path is good (with high probability), and since the affine branching program is
accurate, it is relatively easy to show that conditioned on the event that the computation-
path reached that vertex, the input x is close to being uniformly distributed over a large set,
which implies that the program cannot output the correct x with non-negligible probability.

From Branching Programs to Accurate Affine Branching Programs

In Section 7, we show how to simulate a branching program by an accurate affine branching
program. We do that layer after layer. Assume that we are already done with layer j − 1,

6

so every vertex in layer j − 1 is already labeled by an affine subspace, and the distribution
of x, conditioned on the event that the computation-path reached that vertex, is close to
the uniform distribution over the intersection of T and the affine subspace that labels the
vertex.

Now, take a vertex v in layer j, and consider the distribution of x, conditioned on the
event that the computation-path reached the vertex v. By the property that we already know
on layer j − 1, this distribution is close to a convex combination of uniform distributions
over the intersection of T and affine subspaces of {0, 1}n.

One could split v into a large number of vertices, one vertex for each affine subspace
in the combination. However, this practically means that we would have a vertex for any
affine subspace. We would like to keep the number of vertices somewhat smaller. This is
done by grouping many affine subspaces into one group. The group will be labeled by an
affine subspace that contains all the affine subspaces in the group. Moreover, we will have
the property that for each such group, the uniform distribution over the intersection of T
and the affine subspace that labels the group is close to the relevant weighted average of the
uniform distributions over the intersection of T and the affine subspaces in the group. Thus,
practically, we can replace all the affine subspaces in the group by one affine subspace that
represents all of them.

Lemma 5.6 shows that it is possible to group all the good affine subspaces w ∈ GT,k into
a relatively small number of groups, each labeled by a good subspace s ∈ GT,k. This lemma
does not group the bad subspaces, and keeps one vertex for each bad subspace. We conclude
that in the simulating affine branching program there is a relatively small number of good
vertices (but we will not have any upper bound on the number of bad vertices).

We will now sketch the proof of Lemma 5.6. Let W be a random variable distributed
over good affine subspaces. Our goal is to group the good affine subspaces in the support
of W into a relatively small number of good affine subspaces. The proof works by finding
a subspace s such that Pr[W ⊆ s] is large and the distribution EW |W⊆s [UW∩T] is close to
the uniform distribution over s ∩ T . The subspaces in the support of W that are contained
in s are grouped together to a new vertex labeled by s. This process is then repeated for
(W |W * s), until getting a good approximate covering of W . Observe that if s captures
at least 1/M of the probability mass of W , then Pr[W * s] ≤ 1 − 1/M , and repeating
the process by induction t = O(M · log(1/ε)) times covers all but (1 − 1/M)t ≤ ε of the
probability mass of W .

To find the subspace s, we apply an iterative process that defines a sequence of affine
subspaces s0 ⊇ s1 ⊇ s2 ⊇ . . . ⊇ sk′ = s where 0 ≤ k′ ≤ k and such that each subspace
si is of co-dimension i. We start with s0 = {0, 1}n. To construct si from si−1 we consider
two cases. Let r ∈ [0, n] be some parameter to be optimized later. For a ∈ {0, 1}n and
b ∈ {0, 1}, such that a is not in the orthogonal to si−1, let sa,b be the subspace defined by
{x′ ∈ si−1 : a · x′ = b}. The two cases that we consider are:

1. There exists a, b such that Pr[W ⊆ sa,b|W ⊆ si−1] ≥ 2−r.

2. For every a, b it holds that Pr[W ⊆ sa,b|W ⊆ si−1] < 2−r.

In the first case, we define si = sa,b (and note that codim(sa,b) = codim(si−1) + 1). If the
second case applies, we end the sequence of affine subspaces and set s = si−1 (thus, k′ = i−1).

7

Most of our effort goes into showing that indeed in this case,
∣∣EW |W⊆s[UW∩T]− Us∩T

∣∣
1

is small
(Lemma 5.4). The proof of Lemma 5.4 uses Fourier analysis and is described next.

Proof of Lemma 5.4

Consider a random variable W , supported on affine subspaces in GT,k, and consider the
conditional random variable (W |W ⊆ s). We assume that for every linear equation a ·x′ = b
(not already known to hold for s), we have Pr[W ⊆ sa,b|W ⊆ s] < 2−r. Under this
assumption, we prove that

∣∣EW |W⊆s[UW∩T]− Us∩T
∣∣
1

is small. We first consider the case
where s = {0, 1}n and then reduce the general case to this special case.

The case s = {0, 1}n. Denote D = EW [UW∩T]. To bound |D − UT |1, we use the standard
Cauchy-Schwartz inequality and Parseval’s identity to get

(|D − UT |1)2 ≤ |T | · 2n ·
∑

α∈{0,1}n

(
D̂(α)− ÛT (α)

)2

. (1)

[R16] considered the case T = {0, 1}n and showed that each individual term in the sum∑
α∈{0,1}n (D̂(α)− ÛT (α))2 is small, concluding that the RHS of Equation (1) is small. We

cannot afford bounding each term individually, and need to rely on cancellations. To allow
cancellations, it is much more convenient to bound the `1-distance between UT and D

C
for

some constant C > 0. This is the `1 distance between a distribution UT and some non-
negative function D

C
, which is not necessarily a distribution (in fact, D

C
is a distribution only

if C = 1). Claim 5.1 easily shows that a bound on
∣∣UT − D

C

∣∣
1

implies a bound on |UT −D|1,
losing only a multiplicative factor of 2 (regardless of C).

We pick the value of C to be EW [CW]. Using the convolution formula, we show that
many cancellations occur, and prove that

(|D − UT |1)2 ≤ O
(∣∣D
C
− UT

∣∣
1

)2 ≤ O(|T | · 2n) ·
∑

α∈{0,1}n

(
D̂(α)
C
− ÛT (α)

)2

≤ O(2n) · E
W1,W2

CW1

C
· CW2

C
·
∑

0 6=β1∈W⊥1

∑
06=β2∈W⊥2

∣∣∣ÛT (β1 + β2)
∣∣∣
 , (2)

where the expectation in the last expression is taken over independent random variables
W1,W2 with the same distribution as W , and the summation is taken over all β1, β2 6= 0 in
the vector spaces orthogonal to W1,W2, respectively.

We mention that our proof for Equation (2) uses the fact that UT is the uniform
distribution over a set T , as we use the fact that UT (x)2 = UT (x)/|T | for all x ∈ {0, 1}n
(indeed, for x ∈ T both sides equal 1/|T |2, and for x /∈ T both sides equal 0). Note that
in the right hand side of Equation (2) we are taking the expected sum over at most 22k

Fourier coefficients - as opposed to 2n Fourier coefficients in the original sum. Note also the

multiplicative factor
CW1

C
·CW2

C
that motivated us to define the set GT,k in the first place. Under

the assumption that W is supported only on good subspaces, we get that
CW1

C
· CW2

C
= O(1).

It remains to bound the right hand side of Equation (2). For this bound, we use the fact
that each nonzero vector β ∈ {0, 1}n is orthogonal to W with probability at most 2−r, and
the fact that T is an (ε, δ)-biased set.

8

The general case for s. In the general case, s can be any affine subspace of co-
dimension k′ in GT,k. Apply an invertible affine transformation to {0, 1}n that maps s to
{0, 1}n−k′ × 0k

′
, and consider T and W under that transformation. Such a transformation

maintains the `1 distance between distributions, as well as the Fourier spectrum of T . Thus,
we have reduced the problem of a general s to the case of s = {0, 1}n−k′ × 0k

′
.

Let T ′ = s ∩ T . The distance between Us∩T and EW |W⊆s[UW∩T] equals the distance
between UT ′ and EW |W⊆s[UW∩T ′]. To analyze the distance between UT ′ and EW |W⊆s[UW∩T ′],
we may forget the last k′ coordinates as they are always 0, and use the case s = {0, 1}n−k′ .
The only non-trivial manipulation we did in terms of Fourier coefficients is considering
T ′ = s ∩ T , rather than T . We wish to show that if T is an (ε, δ)-biased set then T ′ is
an (O(ε · 2k), δ · 2k)-biased set. This is done using Claim 5.2 that shows how to write each
Fourier coefficient of UT ′ as the product of Cs and an (alternating) sum of up to 2k Fourier
coefficients of UT , and using the fact that since s ∈ GT,k, we have Cs = O(1).

Note that we use the fact that W is supported only on good affine subspaces both in the
case s = {0, 1}n (to bound CW1 , CW2 and C) and in the reduction from the general case to
the case s = {0, 1}n (to bound Cs).

Our actual proof for Lemma 5.4 combines the two cases together, as on a technical level
handling the general case is not much more difficult than handling the case s = {0, 1}n.

Lower Bounds for Accurate Affine Branching Programs

Assume that we have an accurate affine branching program with a relatively small length
and a relatively small number of good vertices. We prove that the probability that the
computation-path reaches any bad vertex is small. A time-space lower bound follows, because
the affine branching program is accurate, thus conditioned on reaching a good vertex v, x
is almost uniformly distributed over w(v) ∩ T . Since v is good it follows that w(v) is of
co-dimension at most k and that Cw(v),T is close to 1. Therefore, |w(v) ∩ T | ≥ Ω

(
2−k · |T |

)
.

Since a good vertex is almost always reached, it is almost always the case that when the
program stops, x is still close to being uniformly distributed over a large set.

Towards the end of showing that the probability that the computation-path reaches any
bad vertex is small, we prove the following two lemmas. Both lemmas below are proven under
the assumption that all vertices in the branching program are labeled with affine subspaces
of co-dimension ≤ k.

1. In Lemma 8.1 we prove that for every vertex v, such that the co-dimension of w(v)
is k, the probability of reaching v is extremely small. Since we assume that the affine
branching program has a relatively small number of good vertices, we get, by a union
bound, that the probability of reaching any good vertex of co-dimension k is small.

2. In Lemma 8.2 we prove that the probability of reaching any bad vertex is small.

In the proof of Theorem 1, we combine the above lemmas and show that the probability
that the computation-path reaches any bad vertex is small, without using the assumption
that all vertices in the branching program are labeled with affine subspaces of co-
dimension ≤ k. Theorem 2 is an easy corollary of Theorem 1.

9

3 Upper Bounds

There are two trivial protocols for parity learning over any set T , by a branching program.
First, the branching program can store O(log |T |) samples, using O(n · log |T |) memory
bits, and find x by trying all the possibilities. Note that this is not a computationally
efficient protocol, but the computational efficiency is irrelevant when considering a branching
program, as we only care about the width and length of the program, which correspond to
the memory size and number of samples used by the program. Second, parity learning over
T can be solved by a branching program of width O(1), by trying all the possibilities one
after the other, using O(|T | · log |T |) samples.

We next describe a third protocol for parity learning over T` that only requires memory
of size o(n) and (`+log n)O(`) samples (for any ` ≤

√
n/2/ log n). In particular, note that for

` ≤ O(log(n)/ log log(n)), the memory is of size o(n) and the number of samples needed is
polynomial in n. The protocol exhibits the tightness of our lower bound – indeed, Theorem 3
shows that when the number of samples is at most `c·` for some small constant c > 0, the
memory required to learn x is at least n · `0.99. The protocol proceeds as follows:

1. Guessing a set containing the support of x. The learner guesses a set S ⊆ [n]
of size n/t, where t is a parameter. This is done by randomly sampling n/t distinct
coordinates in [n]. If n/t ≥ 2`, the probability that the set S contains the support
of x (the set of non-zero coordinates of x) is larger than Ω(t−`). In the next step, the
learner assumes that indeed S contains the support of x.

2. Obtaining a candidate for x. The learner gathers O(` · log n) samples, and stores
each sample (a, b) by storing b and storing the coordinates of a that are in the set S.
The learner then goes over all possible vectors x′ with sparsity ` and support contained
in S, in order to find a sparsity-` vector x′ that satisfies all the equations of the form
a · x′ = b induced by the stored samples. Observe that since the support of x′ is
contained in S, there is no need of storing the coordinates of a not in S in order to
find x′. Since the samples are random, each sample gives roughly one bit of information
about x. As x is specified by less than ` · dlog ne bits, the induced set of equations has
at most one solution with high probability. The solution x′, if exists, is the current
candidate for x (if more than one solution exists, the learner picks one of them as x′

arbitrarily). Note that if the set S indeed contains the support of x, then x′ = x with
high probability.

3. Checking the candidate x′. If the above steps produced a candidate x′, the learner
uses another O(` · log t) samples, one after the other, and checks whether the candidate
x′ is consistent with all of them. If x′ is consistent with all of them, the learner
outputs x′. Otherwise, the learner returns to Step 1 and repeats the process. Observe
that since the probability that the set S contains the support of x is larger than Ω(t−`),
the learner is likely to find the correct solution after O(t`) repetitions. Note that we
used O(` · log t) samples to check the solution, to ensure that the probability for a false
solution to pass all tests would be smaller than 2−O(`·log t) = t−O(`), which ensures that
with high probability we will not get a false solution even after O(t`) repetitions.

10

The protocol requires memory of size O(` · log(n) · n/t). Since a random set S of size
n/t contains the support of x with probability Ω(t−`) (if n/t ≥ 2`), the number of samples
required is O(t`·`·log n). By taking t = `·(log n)2, we get a number of samples of (`+log n)O(`)

and memory of size o(n) (for any ` such that n/t ≥ 2`, that is, ` ≤
√
n/2/ log n).

4 Preliminaries

4.1 Parity Learning

Let T ⊆ {0, 1}n be a set. In the problem of parity learning over T , there is an unknown
string x ∈ T that was chosen uniformly at random. A learner (who knows T) tries to learn x
from samples (a, b), where a ∈R {0, 1}n and b = a · x (where a · x denotes inner product
modulo 2). That is, the learning algorithm is given a stream of samples, (a1, b1), (a2, b2) . . .,
where each at is uniformly distributed over {0, 1}n and for every t, bt = at · x.

When T is known from the context, we omit T , and refer to the problem of “parity
learning over T” simply as “parity learning”.

4.2 Notation

For an integer n, denote [n] = {1, . . . , n}. For a, x ∈ {0, 1}n, denote by a · x their inner
product modulo 2.

For a function P : Ω→ R, we denote by |P |1 its `1 norm. In particular, for two functions,
P,Q : Ω→ R, we denote by |P −Q|1 =

∑
x∈Ω |P (x)−Q(x)| their `1 distance.

For a random variable X and an event E, we denote by PX the distribution of the random
variables X, and we denote by PX|E the distribution of the random variable X conditioned
on the event E.

For a set S ⊆ {0, 1}n, denote by US the uniform distribution over S.
For n ∈ N, denote by A(n) the set of all affine subspaces of {0, 1}n. For an affine subspace

w ∈ A(n), we define

w⊥ = {(β, b) ∈ {0, 1}n × {0, 1} : ∀x ∈ w, β · x = b} ,
(w⊥)1 =

{
β ∈ {0, 1}n : ∃b ∈ {0, 1}, (β, b) ∈ w⊥

}
.

4.3 Fourier Coefficients

For α ∈ {0, 1}n, let χα : {0, 1}n → {−1, 1} be the character given by χα(x) = (−1)α·x. For
a function f : {0, 1}n → R, let f̂(α) ∈ R be the Fourier coefficient given by

f̂(α) = E
x∈R{0,1}n

[f(x) · χα(x)] .

Let D be a distribution over {0, 1}n. We view D as a function D : {0, 1}n → R+ with∑
x∈{0,1}n D(x) = 1. The Fourier coefficients of D are given by

D̂(α) = E
x∈R{0,1}n

[D(x) · χα(x)] = 2−n · E
x∼D

[χα(x)].

11

4.4 Definitions

Let n ∈ N, T ⊆ {0, 1}n. For w ∈ A(n) such that w ∩ T 6= ∅, we define

Cw,T =
|w| · |T |

2n|w ∩ T |
=

(|w|/2n) · (|T |/2n)

|w ∩ T |/2n
,

that measures the correlation between w and T . For ε > 0, we define the set BT (ε) ⊆ {0, 1}n
of big Fourier coefficients of UT by

BT (ε) =
{
α ∈ {0, 1}n :

∣∣∣ÛT (α)
∣∣∣ > 2−nε

}
.

For k ∈ N, k ≤ n, we define the set GT,k ⊆ A(n) of “good” affine subspaces by

GT,k =
{
w ∈ A(n) : codim(w) ≤ k and w ∩ T 6= ∅ and (w⊥)1 ∩ B

(
2−(k+1)

)
= {~0}

}
.

4.4.1 Global Definitions

Sections 5-9 refer to a general set T ⊆ {0, 1}n and a maximal co-dimension k ∈ N.
Throughout these sections, we think of T and k as fixed. For simplicity of notation, we
refer to Cw,T as Cw, to BT (ε) as B(ε), and to GT,k as G, in all these sections.

From Section 10 on, we analyze some specific choices of T and k.

4.5 A Simple Bound on BT (ε)

Lemma 4.1. Let ε ∈ (0, 1). Then, for any T ⊆ {0, 1}n we have |BT (ε)| ≤ 2n

|T |·ε2 .

Proof. Recall that

BT (ε) =
{
α ∈ {0, 1}n :

∣∣∣ÛT (α)
∣∣∣ > 2−nε

}
.

By Parseval’s identity,

|BT (ε)| · (2−nε)2 ≤
∑

α∈BT (ε)

(
ÛT (α)

)2

≤
∑

α∈{0,1}n

(
ÛT (α)

)2

= E
x∈R{0,1}n

[
(UT (x))2] =

1

|T | · 2n

Therefore, |BT (ε)| ≤ 2n

|T |·ε2

5 Distributions over Affine Subspaces

Recall that throughout this section, we think of the set T ⊆ {0, 1}n and the maximal co-
dimension k ∈ N as fixed (see Section 4.4.1). The section studies convex combinations of
uniform distributions over sets of the form w ∩ T , where w ∈ A(n) is an affine subspace of
co-dimension at most k.

12

5.1 Claims

We first prove some simple claims that will be used in this section.

Claim 5.1. Let D : Ω → [0, 1] be a probability distribution. Let F : Ω → R+ be a
function. Let C =

∑
x∈Ω F (x). If |F − D|1 ≤ ε, then the probability distribution F/C

satisfies |F/C −D|1 ≤ 2ε.

Proof. First assume that C > 1. Let A = {x ∈ Ω : F (x)/C > D(x)}. It holds that∑
x∈A(F (x)/C − D(x)) ≤

∑
x∈A(F (x) − D(x)) ≤

∑
x∈Ω |F (x) − D(x)| ≤ ε. Observe

that
∑

x∈A(F (x)/C − D(x)) =
∑

x∈Ω\A(D(x) − F (x)/C) as D and F/C are probability

distributions. Therefore |F/C −D|1 ≤ 2ε.
The case C < 1 is handled similarly, by considering the set A′ = {x ∈ Ω : F (x)/C <

D(x)}.

Claim 5.2. Let w ∈ A(n) be an affine subspace, such that w∩T 6= ∅. For every α ∈ {0, 1}n,

Ûw∩T (α) = Cw ·
∑

(β,b)∈w⊥
(−1)b · ÛT (α + β).

Proof. An easy calculation shows that the Fourier coefficients of Uw are:

Ûw(β) =

{
(−1)b · 2−n if (β, b) ∈ w⊥

0 otherwise

The Fourier coefficients of Uw∩T are:

Ûw∩T (α) =
1

|w ∩ T |
· 1̂w∩T (α) =

1

|w ∩ T |
· 1̂w · 1T (α) =

|w| · |T |
|w ∩ T |

· Ûw · UT (α)

=
|w| · |T |
|w ∩ T |

·
∑

β∈{0,1}n
Ûw(β) · ÛT (α + β) (convolution)

= Cw ·
∑

(β,b)∈w⊥
(−1)b · ÛT (α + β).

Claim 5.3. For w ∈ G it holds that Cw ∈ (2/3, 2).

Proof. Since Ûw∩T (~0) = 2−n, Claim 5.2 applied with α = ~0 gives

1/Cw = 2n ·
∑

(β,b)∈w⊥
(−1)b · ÛT (β) = 1 + 2n ·

∑
(β,b)∈w⊥\(~0,0)

(−1)b · ÛT (β).

Since w ∈ G, it holds that |w⊥| ≤ 2k and ∀β ∈ (w⊥)1 \ {~0} :
∣∣∣ÛT (β)

∣∣∣ ≤ 2−n · 2−(k+1).

Therefore, ∣∣∣∣∣∣
∑

(β,b)∈w⊥\(~0,0)

(−1)b · ÛT (β)

∣∣∣∣∣∣ ≤ (2k − 1) · 2−n · 2−(k+1) < 2−n−1.

Conclude that 1/Cw ∈ (1/2, 3/2).

13

5.2 Main Lemmas

Lemma 5.4. Let s ∈ G. Denote by A(s) the set of all affine subspaces of s. Let W ∈ A(s)∩G
be a random variable. Let r, ε > 0. Assume that for every (a, b) ∈ ({0, 1}n × {0, 1}) \ s⊥, it
holds that

Pr
W

[∀x ∈ W : a · x = b] ≤ 2−r.

Then, ∣∣∣E
W

[UW∩T]− Us∩T
∣∣∣
1
< 2k+3

√
2−r|B(ε)|+ ε.

Proof. Denote µ = PW . We define the probability distribution ρ over A(s) ∩ G by
ρ(w) = Cw

C
· µ(w), where C =

∑
w∈A(s)∩G Cw · µ(w) is a normalization factor. Since W ∈ G,

by Claim 5.3, for every w ∈ supp(µ) we have Cw ∈ (2/3, 2). Therefore also C ∈ (2/3, 2). For
any event E over the space A(s) ∩ G, we have

Pr
w∼ρ

[E] =
∑

w: E(w)=true

ρ(w) =
∑

w: E(w)=true

Cw
C
· µ(w) <

2

2/3
·

∑
w: E(w)=true

µ(w) = 3 · Pr
w∼µ

[E]. (3)

Let D = EW [UW∩T] = Ew∼µ[Uw∩T]. We show that
∣∣Cs

C
·D − Us∩T

∣∣
1
≤
√
ε′ for

ε′ = 22k+4(2−r|B(ε)| + ε), as by Claim 5.1 this implies that |D − Us∩T |1 ≤ 2
√
ε′, as claimed.

It holds that

(∣∣Cs

C
·D − Us∩T

∣∣
1

)2
=

(∑
x∈T

∣∣Cs

C
·D(x)− Us∩T (x)

∣∣)2

≤ |T | ·
∑
x∈T

(
Cs

C
·D(x)− Us∩T (x)

)2
(Cauchy-Schwartz)

= |T | · 2n · E
x∈R{0,1}n

[(
Cs

C
·D(x)− Us∩T (x)

)2
]

= |T | · 2n ·
∑

α∈{0,1}n

(
Cs

C
· D̂(α)− Ûs∩T (α)

)2

. (Parseval)

The rest of the proof is devoted to showing that
∑

α

(
Cs

C
· D̂(α)− Ûs∩T (α)

)2

≤ ε′

2n|T | . The

proof takes advantage of the fact that for every x ∈ {0, 1}n, it holds that UT (x) ∈ {0, 1/|T |},
thus we have UT (x) · UT (x) = UT (x)/|T |. This yields the equality of the Fourier transform
of the two sides of the equation. Using the convolution formula,

∀β ∈ {0, 1}n :
∑

α∈{0,1}n
ÛT (α) · ÛT (α + β) = ÛT (β)/|T |. (4)

14

It holds that

1

C2
s

∑
α∈{0,1}n

(
Cs
C
· D̂(α)− Ûs∩T (α)

)2

=
1

C2
s

∑
α

Cs
C
· E
w∼µ

Cw · ∑
(β,b)∈w⊥

(−1)b · ÛT (α + β)

− Cs · ∑
(β,b)∈s⊥

(−1)b · ÛT (α + β)

2

(by Claim (5.2))

=
1

C2
s

∑
α

Cs · E
w∼ρ

 ∑
(β,b)∈w⊥

(−1)b · ÛT (α + β)

− Cs · ∑
(β,b)∈s⊥

(−1)b · ÛT (α + β)

2

(ρ(w) = µ(w) · Cw/C)

=
∑
α

 E
w∼ρ

 ∑
(β,b)∈w⊥\s⊥

(−1)b · ÛT (α + β)

2

(for w ∈ supp(ρ) : s⊥ ⊆ w⊥)

=
∑
α

E
w1∼ρ
w2∼ρ

 ∑
(β1,b1)∈w⊥1 \s⊥
(β2,b2)∈w⊥2 \s⊥

(−1)b1+b2 · ÛT (α + β1) · ÛT (α + β2)


= E

w1,w2

 ∑
(β1,b1),(β2,b2)

(−1)b1+b2 ·
∑
α

ÛT (α + β1) · ÛT (α + β2)


= E

w1,w2

 ∑
(β1,b1),(β2,b2)

(−1)b1+b2 ·
∑
α

ÛT (α) · ÛT (α + β1 + β2)


= E

w1,w2

 ∑
(β1,b1),(β2,b2)

(−1)b1+b2 · 1

|T |
· ÛT (β1 + β2)

 (by Equation (4))

≤ 1

|T |
· E
w1,w2

 ∑
(β1,b1),(β2,b2)

∣∣∣ÛT (β1 + β2)
∣∣∣
 (5)

(In the above set of equations, whenever we take an expectation over w1, w2, we mean that
the expectation is over w1 ∼ ρ, w2 ∼ ρ. Whenever we consider a sum over (β1, b1), (β2, b2),
we mean that the sum is over (β1, b1) ∈ w⊥1 \ s⊥, (β2, b2) ∈ w⊥2 \ s⊥.)

Denote E = Ew1,w2

[∑
(β1,b1),(β2,b2)

∣∣∣ÛT (β1 + β2)
∣∣∣]. We next upper-bound the last

expression in Equation (5) by upper-bounding E. Let α ∈ {0, 1}n, we bound the coefficient

of ÛT (α) in E. Fix w1 ∈ supp(ρ) ⊆ G. Since w1 ∈ G, the co-dimension of w1 is at most k,
thus |w⊥1 | ≤ 2k. Therefore, there are at most 2k options for the selection of the pair (β1, b1).
Fix (β1, b1) ∈ w⊥1 \ s⊥. Let β2 = α − β1 and b2 ∈ {0, 1}. The first condition of the lemma
and Equation (3) imply that Prw2∼ρ

[
(β2, b2) ∈ w⊥2

]
< 3 · 2−r, as long as (β2, b2) /∈ s⊥. Since

we are summing only over (β2, b2) /∈ s⊥, we conclude that the coefficient of ÛT (α) in E is

15

smaller than 3 · 2k · 2−r.
Recall that B(ε) =

{
α ∈ {0, 1}n :

∣∣∣ÛT (α)
∣∣∣ > 2−nε

}
is the set of big Fourier coefficients of

UT . For any α ∈ {0, 1}n, we have
∣∣∣ÛT (α)

∣∣∣ ≤ ∣∣∣ÛT (~0)
∣∣∣ = 2−n. Therefore, the total contribution

of the Fourier coefficients ÛT (α) for α ∈ B(ε) to E is smaller than 3 · 2k · 2−r|B(ε)| · 2−n. The

total contribution of the Fourier coefficients ÛT (α) for α ∈ {0, 1}n \ B(ε) to E is at most

22k ·2−nε, as then
∣∣∣ÛT (α)

∣∣∣ ≤ 2−nε and |w⊥1 |, |w⊥2 | ≤ 2k. Hence, by Equation (5), the fact that

s ∈ G and Claim 5.3,∑
α∈{0,1}n

(
Cs
C
· D̂(α)− Ûs∩T (α)

)2

< C2
s ·

3 · 2k · 2−r|B(ε)|+ 22kε

2n|T |

≤ 3 · 22 · 22k(2−r|B(ε)|+ ε)

2n|T |
.

Lemma 5.5. Let W ∈ G be a random variable. Let ε ∈ (0, 1) and r = log(|B(ε)|/ε). Then,
there exists an affine subspace s ∈ G of co-dimension k′ ≤ k, such that:

1. PrW [W ⊆ s] ≥ 2−rk
′
.

2.
∣∣EW |(W⊆s)[UW∩T]− Us∩T

∣∣
1
< 2k+4

√
ε.

Proof. We apply an iterative process to define a sequence of affine subspaces s0 ⊇ s1 ⊇ s2 ⊇
. . . ⊇ sk′ = s where 0 ≤ k′ ≤ k and such that each subspace si is of co-dimension i. We start
with s0 = {0, 1}n. For i = 1, . . . , k we check if there exist ai ∈ {0, 1}n and bi ∈ {0, 1} such
that (ai, bi) /∈ (si−1)⊥ and

Pr
W

[∀x ∈ W : ai · x = bi | W ⊆ si−1] ≥ 2−r.

If this is the case, then we take si = {x ∈ si−1 : ai · x = bi}. Indeed, if si−1 is an
affine subspace of co-dimension i − 1, then si is an affine subspace of co-dimension i. If
this is not the case (that is, for every (ai, bi) ∈ ({0, 1}n × {0, 1}) \ (si−1)⊥ it holds that
PrW [∀x ∈ W : ai · x = bi | W ⊆ si−1] < 2−r), then we halt and take k′ = i− 1 and s = sk′ .
If the process did not halt after these k iterations, we take k′ = k and s = sk′ .

Proving the first property. We prove by induction that for every 0 ≤ i ≤ k′ it holds
that PrW [W ⊆ si] ≥ 2−ri. For i = 0, it holds that PrW [W ⊆ s0] = 1. For i ≥ 1 we have

Pr
W

[W ⊆ si] = Pr
W

[W ⊆ si−1] · Pr
W

[∀x ∈ W : ai · x = bi | W ⊆ si−1] ≥ 2−r(i−1) · 2−r = 2−ri.

Proving that s ∈ G. Since k′ ≤ k, the subspace s is of co-dimension at most k. Let
w ∈ supp(W) be such that w ⊆ s. Such a w exists as PrW [W ⊆ s] ≥ 2−rk

′
> 0. Since w ⊆ s,

s⊥ ⊆ w⊥ and since w ∈ supp(W) ⊆ G, it also holds that s ∈ G.

16

Proving the second property. We first consider the case k′ = k. In such a case we claim
that the statistical distance is 0. This is true since s = sk is a subspace of co-dimension k.
Since W ∈ G it is always of co-dimension at most k. Hence, the random variable (W | W ⊆ s)
must attain the subspace s with probability 1. Conclude that EW |(W⊆s)[UW∩T] = Us∩T .

Next, we consider the case k′ < k. In this case we know that for all (a, b) ∈
({0, 1}n×{0, 1})\s⊥ we have PrW [∀x ∈ W : a ·x = b | W ⊆ s] < 2−r. To finish the proof, we
apply Lemma 5.4 with the s, r, ε defined above and with W = W |(W ⊆ s). Using the choice
of r = log(|B(ε)|/ε), we get that

∣∣EW |(W⊆s)[UW∩T]− Us∩T
∣∣
1
≤ 2k+3

√
2−r|B(ε)|+ ε ≤ 2k+4

√
ε,

as required.

The next lemma is the main result of this section.

Lemma 5.6. Let W ∈ A(n) be a random variable. Let ε ∈ (0, 1) and r = log(|B(ε)|/ε).
There exists a partial function σ : A(n)→ A(n), such that:

1. PrW [W 6∈ domain(σ)] ≤ 2−2n.

2. For every w ∈ domain(σ), w ⊆ σ(w).

3. For every s ∈ image(σ),∣∣∣∣ E
W |(σ(W)=s)

[UW∩T]− Us∩T
∣∣∣∣
1

< 2k+4
√
ε.

4. For every k′ ≤ k, there are at most

n · 2rk′+1

elements s ∈ image(σ) ∩ G, with codim(s) ≤ k′.

Proof. For any w ∈ A(n) \ G we map w to itself, i.e., σ(w) = w. To map subspaces in G
we repeatedly apply Lemma 5.5. We start with the random variable W0 = W | (W ∈ G),
and apply Lemma 5.5 on W0. We obtain a subspace s0 (the subspace s whose existence is
guaranteed by Lemma 5.5). For every w ⊆ s0, we define σ(w) = s0.

We then define the random variable W1 = W0 | (W0 6⊆ s0), and apply Lemma 5.5 on W1.
We obtain a subspace s1 (the subspace s whose existence is guaranteed by Lemma 5.5). For
every w ⊆ s1 on which σ was still not defined, we define σ(w) = s1.

In the same way, in Step i, we define the random variable Wi = Wi−1 | (Wi−1 6⊆ si−1).
Note that Wi = W | (W ∈ G) ∧ (W 6⊆ s0) ∧ . . . ∧ (W 6⊆ si−1), that is, Wi is the restriction
of W to the part of A(n) where σ was still not defined. We apply Lemma 5.5 on Wi and
obtain a subspace si (the subspace s whose existence is guaranteed by Lemma 5.5). For
every w ⊆ si on which σ was still not defined, we define σ(w) = si.

We repeat this until PrW [W 6∈ domain(σ)] ≤ 2−2n.
By Lemma 5.5, for every i it holds that si ∈ G. Note that for i′ < i, si′ 6= si, because the

support of Wi doesn’t contain any element w ⊆ si′ . Hence, the subspaces s0, s1, . . . are all
different.

It remains to show that the properties in the statement of the lemma hold:

17

1. The first property is obvious because we continue to define σ on more and more elements
repeatedly, until the first property holds.

2. The second property is obvious because we mapped w to si only if w ⊆ si.

3. The third property holds for s ∈ image(σ) ∩ G, by the second property guaranteed by
Lemma 5.5. For s ∈ image(σ) \ G, the property trivially holds as the random variable
W | (σ(W) = s) is supported on the singleton {s}.

4. The fourth property holds because by the first property guaranteed by Lemma 5.5, in
each step where we obtain a subspace si of co-dimension at most k′, we define σ on a
fraction of at least 2−rk

′
of the space that still remains. Thus, after at most 2n · 2rk′

such steps we have Pr[W 6∈ domain(σ)] ≤ (1− 2−rk
′
)2n·2rk′ ≤ 2−2n, and we stop. Thus,

the number of elements si, of co-dimension at most k′, that we obtain in the process,
is at most 2n · 2rk′ .

6 Branching Programs for Parity Learning

Recall that in the problem of parity learning, there is a string x ∈ T that was chosen
uniformly at random. A learner tries to learn x from a stream of samples, (a1, b1), (a2, b2) . . .,
where each at is uniformly distributed over {0, 1}n and for every t, bt = at · x.

6.1 General Branching Programs for Parity Learning

In the following definition, we model the learner by a branching program.

Definition 6.1. Branching Program for Parity Learning: A branching program of
length m and width d, for parity learning, is a directed (multi) graph with vertices arranged
in m + 1 layers containing at most d vertices each. In the first layer, that we think of as
layer 0, there is only one vertex, called the start vertex. A vertex of outdegree 0 is called a leaf.
All vertices in the last layer are leaves (but there may be additional leaves). Every non-leaf
vertex in the program has 2n+1 outgoing edges, labeled by elements (a, b) ∈ {0, 1}n × {0, 1},
with exactly one edge labeled by each such (a, b), and all these edges going into vertices in
the next layer. Each leaf v in the program is labeled by a vector x̃(v) ∈ {0, 1}n, that we think
of as the output of the program on that leaf.

Computation-Path: The samples (a1, b1), . . . , (am, bm) ∈ {0, 1}n×{0, 1} that are given
as input, define a computation-path in the branching program, by starting from the start
vertex and following at Step t the edge labeled by (at, bt), until reaching a leaf. The program
outputs the label x̃(v) of the leaf v reached by the computation-path.

Success Probability: The success probability of the program is the probability that
x̃ = x, where x̃ is the vector that the program outputs, and the probability is over x, a1, . . . , am
(where x is uniformly distributed over T , and a1, . . . , am are uniformly distributed over
{0, 1}n, and for every t, bt = at · x).

18

6.2 Affine Branching Programs for Parity Learning

Next, we define affine branching programs for parity learning. In an affine branching program
for parity learning, every vertex v is labeled by an affine subspace w(v) ∈ A(n). We will have
the property that if the computation-path reaches v then x ∈ w(v). Thus, we can interpret
w(v) as an affine subspace that is known to contain x.

Definition 6.2. Affine Branching Program for Parity Learning: A branching program
for parity learning is affine if each vertex v in the program is labeled by an affine subspace
w(v) ∈ A(n), and the following properties hold:

1. Start vertex: The start vertex is labeled by the space {0, 1}n ∈ A(n).

2. Soundness: For an edge e = (u, v), labeled by (a, b), denote

w(e) = w(u) ∩ {x′ ∈ {0, 1}n : a · x′ = b}.

Then,
w(e) ⊆ w(v).

Given an affine branching program for parity learning, and samples (a1, b1), . . . , (am, bm),
such that, for every t, bt = at · x, it follows by induction that for every vertex v in the
program, if the computation-path reaches v then x ∈ w(v).

We remark that an affine branching program is a branching program, and as such is
supposed to have an output. However, in what follows, we ignore this output, and focus
instead on the affine subspace w(v) ∈ A(n) that labels the leaf v reached by the computation-
path. For this reason, we sometimes define affine branching programs without specifying the
output.

6.3 Accurate Affine Branching Programs for Parity Learning

For a vertex v in a branching program for parity learning, we denote by Px|v the distribution
of the random variable x, conditioned on the event that the vertex v was reached by the
computation-path.

Definition 6.3. ε-Accurate Affine Branching Program for Parity Learning: An
affine branching program of length m for parity learning is ε-accurate if all the leaves are in
the last layer, and the following additional property holds (where x is uniformly distributed
over T , and a1, . . . , am are uniformly distributed over {0, 1}n, and for every t, bt = at · x):

3. Accuracy: Let 0 ≤ t ≤ m. Let Vt be the vertex in layer t, reached by the computation-
path. Let yt be a random variable uniformly distributed over the set w(Vt) ∩ T . Then,

|PVt,x − PVt,yt |1 ≤ ε,

or, equivalently,
E
Vt

∣∣Px|Vt − Uw(Vt)∩T
∣∣
1
≤ ε.

19

7 From Branching Programs to Affine Branching

Programs

Recall that throughout this section, we think of the set T ⊆ {0, 1}n and the maximal co-
dimension k ∈ N as fixed (see Section 4.4.1). In this section, we show that any branching
program B for parity learning can be simulated by an affine branching program P for parity
learning. Roughly speaking, each vertex of the simulated program B will be represented by
a set of vertices of the simulating program P . Note that the width of P will typically be
significantly larger than the width of B.

More precisely, a branching program B for parity learning is simulated by a branching
program P for parity learning if there exists a mapping Γ from the vertices of P to the
vertices of B, and the following properties hold:

1. Preservation of structure: For every i, Γ maps layer i of P to layer i of B. Moreover,
Γ maps leaves to leaves and non-leaf vertices to non-leaf vertices. Note that Γ is not
necessarily one-to-one.

2. Preservation of functionality: For every edge (u, v), labeled by (a, b), in P , there
is an edge (Γ(u),Γ(v)), labeled by (a, b), in B.

Lemma 7.1. Assume that there exists a length m and width d branching program B for
parity learning, such that: all leaves of B are in the last layer, and the success probability
of B is β.

Let ε ∈ (2−4n, 1) and r = log(|B(ε)|/ε). Let ε′ = 2k+6m
√
ε. Then, there exists an ε′-

accurate length m affine branching program P for parity learning, such that:

1. For every k′ ≤ k, the number of vertices in P , that are labeled with an affine subspace
in G of co-dimension k′, is at most

n · 2rk′+1 · dm.

2. The probability that the leaf reached by the computation-path of P is labeled by a
subspace in A(n) \ G is at least

β − ε′ − 2k+1

|T |
.

Proof. For every 0 ≤ j ≤ m, let εj = 2k+6j
√
ε. We will use Lemma 5.6 to turn, inductively,

the layers of B, one by one, into layers of an ε′-accurate affine branching program, P . In
Step j of the induction, we will turn layer j of B into layer j of P , and define the label
w(v) ∈ A(n) for every vertex v in that layer of P . Formally, we will construct, inductively, a
sequence of programs B,P0, . . . , Pm = P , where each program is of length m, and for every j,
the program Pj differs from the previous program only in layer j (and in the edges going into
layer j and out of layer j). After Step j of the induction, we will have a branching program
Pj, such that, layers 0 to j of Pj form an affine branching program for parity learning. In
addition, the following inductive hypothesis will hold:

20

Inductive Hypothesis:

Let Lj be the set of vertices in layer j of Pj. Let Vj be the vertex in Lj, reached by the
computation-path of Pj. Note that Vj is a random variable that depends on x, a1, . . . , aj
(and recall that x is uniformly distributed over T , and a1, . . . , am are uniformly distributed
over {0, 1}n, and for every t, bt = at · x). The inductive hypothesis is that there exists a
random variable Uj over Lj, such that, if yj is a random variable uniformly distributed over
the set w(Uj) ∩ T , then ∣∣PVj ,x − PUj ,yj

∣∣
1
≤ εj

2
. (6)

The inductive hypothesis is equivalent to the accuracy requirement (see Definition 6.3)
for layer j of Pj, up to a small multiplicative constant in the accuracy, but we need to
assume it in this slightly different form, in order to avoid deteriorating the accuracy by a
multiplicative factor in each step of the induction.

Base Case:

In the base case of the induction, j = 0, we define P0 by just labeling the start vertex of B
by {0, 1}n ∈ A(n). Thus, the start vertex property in the definition of an affine branching
program is satisfied. The soundness property is trivially satisfied because the restriction of
P0 to layer 0 contains no edges. Since we always start from the start vertex, the distribution
of the random variable x, conditioned on the event that we reached the start vertex, is
just UT , and hence the inductive hypothesis (Equation (6)) holds with U0 = V0.

Inductive Step:

Assume that we already turned layers 0 to j − 1 of B into layers 0 to j − 1 of P . That is,
we already defined the program Pj−1, and layers 0 to j − 1 of Pj−1 satisfy the start vertex
property, the soundness property, and the inductive hypothesis (Equation (6)). We will now
show how to define Pj from Pj−1, that is, how to turn layer j of B into layer j of P .

Let Uj−1 ∈ Lj−1 be the random variable that satisfies the inductive hypothesis
(Equation (6)) for layer j − 1 of Pj−1. Let yj−1 be a random variable uniformly distributed
over the set w(Uj−1) ∩ T . Let a ∈R {0, 1}n. Let b = a · yj−1. Let E = (Uj−1, V) be the
edge labeled by (a, b) outgoing Uj−1 in Pj−1. Thus, V is a vertex in layer j of Pj−1. Let
W = w(E), where w(E) is defined as in the soundness property in Definition 6.2. That is,

w(E) = w(Uj−1) ∩ {x′ ∈ {0, 1}n : a · x′ = b},

where (a, b) is the label of E, and w(Uj−1) is the label of Uj−1 in Pj−1.
Let v be a vertex in layer j of Pj−1 (and note that v is also a vertex in layer j of B). Let

Wv = W |(V = v).

Let σv : A(n)→ A(n) be the partial function whose existence is guaranteed by Lemma 5.6,
when applied on the random variable Wv. Extend σv : A(n)→ A(n) so that it outputs the
special value ∗ on every element where it was previously undefined.

In the program Pj, we will split the vertex v into |image(σv)| vertices (where image(σv)
already contains the additional special value ∗). For every s ∈ image(σv), we will have a

21

vertex (v, s). If s 6= ∗, we label the vertex (v, s) by the affine subspace s, and we label the
additional vertex (v, ∗) by {0, 1}n. For every s ∈ image(σv), the edges going out of (v, s)
(in Pj) will be the same as the edges going out of v in Pj−1. That is, for every edge (v, v′)
(from layer j to layer j + 1) in the program Pj−1, and every s ∈ image(σv), we will have an
edge ((v, s), v′) with the same label, (from layer j to layer j + 1) in the program Pj.

We will now define the edges going into the vertices (v, s) in the program Pj. For every
edge e = (u, v), labeled by (a, b), (from layer j− 1 to layer j), in the program Pj−1, consider
the affine subspace w = w(e) = w(u) ∩ {x′ ∈ {0, 1}n : a · x′ = b} (as in the soundness
property in Definition 6.2), where w(u) is the label of u in Pj−1. Let s = σv(w).

In Pj, we will have the edge (u, (v, s)) (labeled by (a, b)), from layer j − 1 to layer j,
that is, we connect u to (v, s). Note that the edge (u, (v, s)) satisfies the soundness property
in the definition of an affine branching program: If s 6= ∗, the vertex (v, s) is labeled by
s = σv(w) and by Poperty 2 of Lemma 5.6, w ⊆ σv(w). If s = ∗, the vertex (v, s) is labeled
by {0, 1}n and hence the soundness property is trivially satisfied.

Proof of the Inductive Hypothesis:

Next, we will prove the inductive hypothesis (Equation (6)), for Pj. We will define the
random variable Uj ∈ Lj as follows:

As before, let Uj−1 ∈ Lj−1 be the random variable that satisfies the inductive hypothesis
(Equation (6)) for layer j − 1 of Pj−1. Let yj−1 be a random variable uniformly distributed
over the set w(Uj−1) ∩ T . Let a ∈R {0, 1}n. Let b = a · yj−1. Let E = (Uj−1, V) be the edge
labeled by (a, b) outgoing Uj−1 in Pj−1. Thus, V is a vertex in layer j of Pj−1. As before, let
W = w(E) = w(Uj−1)∩{x′ ∈ {0, 1}n : a ·x′ = b}. As before, for a vertex v in layer j of Pj−1,
let σv : A(n) → A(n) be the partial function whose existence is guaranteed by Lemma 5.6,
when applied on the random variable Wv = W |(V = v), and extend σv : A(n) → A(n) so
that it outputs the special value ∗ on every element where it was previously undefined.

We define Uj = (V, σV (W)) ∈ Lj. Let yj be a random variable uniformly distributed
over the set w(Uj) ∩ T , and let Vj be the vertex in Lj, reached by the computation-path of
Pj. We need to prove that ∣∣PVj ,x − PUj ,yj

∣∣
1
≤ 2k+5j

√
ε. (7)

Let y′j be a random variable uniformly distributed over the set W ∩ T . Equation (7)
follows by the following two equations and by the triangle inequality:∣∣∣PUj ,y′j

− PUj ,yj

∣∣∣
1
≤ 2k+5

√
ε. (8)∣∣∣PVj ,x − PUj ,y′j

∣∣∣
1
≤ 2k+5(j − 1)

√
ε. (9)

Thus, it is sufficient to prove Equation (8) and Equation (9). We will start with Equation (8).
By Property 3 of Lemma 5.6, for every v in layer j of Pj−1, and every s ∈ image(σv)\{∗},∣∣∣∣ E

W |(V=v),(σv(W)=s)
[UW∩T]− Us∩T

∣∣∣∣
1

< 2k+4
√
ε.

By the definitions of y′j and Uj,

E
W |(V=v),(σv(W)=s)

[UW∩T] = E
W |(Uj=(v,s))

[UW∩T] = Py′j |(Uj=(v,s)).

22

By the definition of yj,
Us∩T = Pyj |(Uj=(v,s))

Hence ∣∣∣Py′j |(Uj=(v,s)) − Pyj |(Uj=(v,s))

∣∣∣
1
< 2k+4

√
ε.

Taking expectation over Uj, and taking into account that, by Property 1 of Lemma 5.6,
for every v, Pr(σv(W) = ∗) ≤ 2−2n, we obtain∣∣∣PUj ,y′j

− PUj ,yj

∣∣∣
1

= E
Uj

∣∣∣Py′j |Uj
− Pyj |Uj

∣∣∣
1
< 2k+4

√
ε+ 2 · 2−2n,

which proves Equation (8) as ε > 2−4n.
We will now prove Equation (9). Let T be the following probabilistic transformation

from Lj−1 × {0, 1}n to Lj × {0, 1}n. Given (u, z) ∈ Lj−1 × {0, 1}n, the transformation T
chooses a ∈R {0, 1}n and b = a · z, and outputs (V, z), where V ∈ Lj is the vertex obtained
by following the edge labeled by (a, b) outgoing u in Pj.

By the definition of the computation-path, T (Vj−1, x) has the same distribution as (Vj, x).
By the definition of Uj, yj, y

′
j, we have that T (Uj−1, yj−1) has the same distribution as (Uj, y

′
j).

Hence, by the triangle inequality and the inductive hypothesis,∣∣∣PVj ,x − PUj ,y′j

∣∣∣
1

=
∣∣PT (Vj−1,x) − PT (Uj−1,yj−1)

∣∣
1
≤
∣∣PVj−1,x − PUj−1,yj−1

∣∣
1
≤ 2k+5(j − 1)

√
ε,

which gives Equation (9).
Since, by induction, layers 0 to j− 1 of Pj−1 form an affine branching program for parity

learning, and since we already saw that all the edges between layer j − 1 and layer j of Pj
satisfy the soundness property in the definition of an affine branching program, we have that
layers 0 to j of Pj form an affine branching program for parity learning.

P is ε-Accurate:

We will now prove that the final branching program P = Pm, that we obtained, satisfies
the requirements of the lemma. We already know that P is an affine branching program for
parity learning.

We will start by proving that P is ε′-accurate. Let 0 ≤ t ≤ m. Let Vt be the vertex in
layer t of P , reached by the computation-path of P . Let zt be a random variable uniformly
distributed over the set w(Vt) ∩ T , We need to prove that,

|PVt,x − PVt,zt |1 ≤ ε′. (10)

Recall that by the inductive hypothesis (Equation (6)), there exists a random variable Ut
over layer t of P , such that, if yt is a random variable uniformly distributed over the set
w(Ut) ∩ T , then

|PVt,x − PUt,yt |1 ≤
ε′

2
, (11)

and this also implies
|PVt − PUt|1 ≤

ε′

2
.

By the last inequality and since for every v in layer t of P , it holds that Pzt|(Vt=v) = Pyt|(Ut=v)

(since they are both uniformly distributed over w(v) ∩ T), we have

|PVt,zt − PUt,yt |1 = |PVt − PUt |1 ≤
ε′

2
. (12)

Equation (10) follows by Equation (11), Equation (12) and the triangle inequality.

23

P Satisfies the Additional Properties:

We will now prove that P satisfies the two additional properties claimed in the statement of
the lemma. The first property holds since Property 4 of Lemma 5.6 ensures that for every
vertex in layers 1 to m of the branching program B, we obtain at most n · 2rk′+1 vertices in
the branching program P that are labeled with affine subspaces in G of co-dimension k′.

It remains to prove the second property. Let Vm = (V, S) be the vertex in layer m of P ,
reached by the computation-path of P . Note that Vm is a random variable that depends on
x, a1, . . . , am (and recall that x is uniformly distributed over T , and a1, . . . , am are uniformly
distributed over {0, 1}n, and for every t, bt = at · x).

Note that V is the vertex in layer m of B, reached by the computation-path of B (on the
same x, a1, . . . , am). This is true since P simulates B. More precisely, by the construction, if
on x, a1, . . . , am, the program P reaches (V, S), then, on the same x, a1, . . . , am, the program
B reaches V .

Since the success probability of B is β,

Pr[x̃(V) = x] = β,

where x̃(V) is the label of V in B. Let ym be a random variable uniformly distributed over
the set w(Vm) ∩ T , where w(Vm) is the label of Vm in P . Since P is ε′-accurate,

|PV,x − PV,ym|1 ≤ |PV,S,x − PV,S,ym|1 = |PVm,x − PVm,ym|1 ≤ ε′.

Thus,
Pr[ym = x̃(V)] ≥ Pr[x = x̃(V)]− ε′ = β − ε′.

If w(Vm) ∈ G then, by Claim 5.3, it holds that Cw(Vm) ∈ (2/3, 2). In addition,
codim(w(Vm)) ≤ k, thus |w(Vm)| ≥ 2n−k. Therefore,

|w(Vm) ∩ T | = |w(Vm)| · |T |
2n

· 1

Cw(Vm)

≥ 2−n−1 · |w(Vm)| · |T | ≥ 2−k−1 · |T |.

Since ym is uniformly distributed over the set w(Vm) ∩ T , we get that

β − ε′ ≤ Pr[ym = x̃(V)] ≤ 2k+1

|T |
+ Pr[w(Vm) ∈ A(n) \ G].

That is,

Pr[w(Vm) ∈ A(n) \ G] ≥ β − ε′ − 2k+1

|T |
.

8 Bounds for Affine Branching Program

Recall that throughout this section, we think of the set T ⊆ {0, 1}n and the maximal co-
dimension k ∈ N as fixed (see Section 4.4.1).

Lemma 8.1. Let P be a length m affine branching program for parity learning, such that, for
every vertex u of P , codim(w(u)) ≤ k. Let v be a vertex of P , such that, codim(w(v)) = k.
Then, the probability that the computation-path of P reaches v is at most

mk · 2−k(n−2k).

24

Proof. Let s = (w(v)⊥)1. That is,

s = {a ∈ {0, 1}n : ∃b ∈ {0, 1} ∀x′ ∈ w(v) : a · x′ = b} .

Let V0, . . . , Vm be the vertices on the computation-path of P . Note that V0, . . . , Vm are
random variables that depend on x, a1, . . . , am. For every 0 ≤ i ≤ m, let Si = (w(Vi)

⊥)1.
That is,

Si = {a ∈ {0, 1}n : ∃b ∈ {0, 1} ∀x′ ∈ w(Vi) : a · x′ = b} .

By the soundness property in Definition 6.2, for every 1 ≤ i ≤ m,

Si ⊆ span(Si−1 ∪ {ai}). (13)

For every 0 ≤ i ≤ m, let Zi = dim(Si ∩ s). Note that Z0 = 0, and by Equation (13),
for every 1 ≤ i ≤ m, Zi ≤ Zi−1 + 1. If the computation-path of P reaches v then for some
1 ≤ i ≤ m, Zi = k. Thus, if the computation-path of P reaches v, there exist k indices
i1 < . . . < ik ∈ [m], such that, the following event, denoted by Ei1,...,ik , occurs:

Ei1,...,ik =
∧
j∈[k]

(Zij−1 = j − 1) ∧ (Zij = j).

(In particular, Ei1,...,ik occurs if for every j, we take ij to be the first i such that Zi = j).
We will bound the probability that the computation-path of P reaches v, by bounding
Pr[Ei1,...,ik], and taking the union bound over (less than) mk possibilities for i1, . . . , ik ∈ [m].

Fix i1 < . . . < ik ∈ [m]. For r ∈ {0, . . . , k}, let

Ei1,...,ir =
∧
j∈[r]

(Zij−1 = j − 1) ∧ (Zij = j).

Thus,

Pr[Ei1,...,ik] =
∏
j∈[k]

Pr[Ei1,...,ij | Ei1,...,ij−1
].

We will show how to bound Pr[Ei1,...,ij | Ei1,...,ij−1
].

Pr[Ei1,...,ij | Ei1,...,ij−1
] = Pr[(Zij−1 = j − 1) ∧ (Zij = j) | Ei1,...,ij−1

]

= Pr[(Zij−1 = j − 1) ∧ (Zij−1 < Zij) | Ei1,...,ij−1
]

≤ Pr[(Zij−1 < Zij) | Ei1,...,ij−1
∧ (Zij−1 = j − 1)]. (14)

Note that the event Ei1,...,ij−1
∧ (Zij−1 = j − 1) that we condition on, on the right hand side,

depends only on x, a1, . . . , aij−1. We will bound the probability for the event (Zij−1 < Zij),
conditioned on any event that depends only on x, a1, . . . , aij−1.

More generally, fix 1 ≤ i ≤ m, and let E ′i be the event (Zi−1 < Zi). Let E ′ be any event
that depends only on x, a1, . . . , ai−1. Without loss of generality, we can assume that the
event E ′ just fixes the values of x, a1, . . . , ai−1. We will show how to bound Pr[E ′i | E ′].

Thus, we fix x, a1, . . . , ai−1 and we will bound Pr[E ′i] (conditioned on x, a1, . . . , ai−1). By
Equation (13), if E ′i occurs then dim(Si−1∩s) < dim(Si∩s) ≤ dim(span(Si−1∪{ai})∩s), and
hence Si−1∩s (span(Si−1∪{ai})∩s. Thus, there exists a′ ∈ s such that a′ ∈ span(Si−1∪{ai})
but a′ /∈ Si−1, which implies that a′ = ai ⊕ a for some a ∈ Si−1. In other words, ai = a⊕ a′

25

where a ∈ Si−1 and a′ ∈ s, i.e., ai ∈ span(s ∪ Si−1). The event ai ∈ span(s ∪ Si−1) occurs
with probability at most 2dim(s)+dim(Si−1)−n ≤ 22k−n (since ai is uniformly distributed and
independent of x, a1, . . . , ai−1). Thus,

Pr[E ′i | E ′] ≤ 22k−n.

In particular, by Equation (14),

Pr[Ei1,...,ij | Ei1,...,ij−1
] ≤ 22k−n.

Hence,

Pr[Ei1,...,ik] ≤
∏
j∈[k]

22k−n = 2−k(n−2k).

By the union bound, the probability that the computation-path of P reaches v is at most

mk · 2−k(n−2k).

Lemma 8.2. Let P be a length m affine branching program for parity learning, such that,
for every vertex v of P , codim(w(v)) ≤ k. Then, the probability that the computation-path
of P passes through at least one vertex labeled by a subspace in A(n) \ G is at most

m · 23k+2

|T |
.

Proof. Let γ = 2−(k+1). Let V0, . . . , Vm be the vertices on the computation-path of P . Note
that V0, . . . , Vm are random variables that depend on x, a1, . . . , am. Let Si = (w(Vi)

⊥)1. By
the soundness property in Definition 6.2, for every 1 ≤ i ≤ m, we have Si ⊆ span(Si−1∪{ai}).
For 0 ≤ i ≤ m, let Ei be the event that the vertex Vi is labeled by a subspace in A(n) \ G.
Recall that

G =
{
w ∈ A(n) : codim(w) ≤ k and w ∩ T 6= ∅ and (w⊥)1 ∩ B (γ) = {~0}

}
.

Recall that by Definition 6.2, for every vertex v in the program, if the computation-path
reaches v then x ∈ w(v) and in particular w(v) ∩ T 6= ∅. Thus, w(Vi) surely satisfies the
second condition in the definition of G. The first condition in the definition of G is also surely
satisfied by w(Vi), as we assumed that for every vertex v of P , codim(w(v)) ≤ k. It follows
that Ei is equivalent to (w(Vi)

⊥)1 ∩ B(γ) 6= {~0}. That is, Ei is the event that Si contains a
non-zero vector from B(γ). For 1 ≤ i ≤ m, we bound Pr[Ei|¬E0, . . . ,¬Ei−1]. It is enough
to bound the probability of Ei, for any fixed choice of x, a1, . . . , ai−1 under which Ei−1 does
not occur (as E0, . . . , Ei−1 only depend on x, a1, . . . , ai−1). Since we assume that Ei−1 does
not occur, Si−1 does not contain any non-zero vector from B(γ). Thus, Ei occurs only if
ai ⊕ a ∈ B(γ) for some vector a ∈ Si−1. As there are at most 2k vectors in Si−1 and as the
probability that ai ⊕ a ∈ B(γ) for a fixed vector, a, is |B(γ)|/2n we get

Pr[Ei|¬E0, . . . ,¬Ei−1] ≤ 2k−n · |B(γ)| .

Note that Pr[E0] = 0, hence

Pr[E0 ∨ . . . ∨ Em] ≤ Pr[E0] + Pr[E1|¬E0] + . . .+ Pr[Em|¬E0, . . . ,¬Em−1]

≤ m · 2k−n · |B(γ)| .

26

By Lemma 4.1, we have |B(γ)| ≤ 2n

|T |·γ2 = 2n+2k+2

|T | . Thus,

Pr[E0 ∨ . . . ∨ Em] ≤ m · 2k−n · |B(γ)| ≤ m · 23k+2

|T |
.

9 Time-Space Lower Bounds for Parity Learning

Recall that throughout this section, we think of the set T ⊆ {0, 1}n as fixed (see
Section 4.4.1). The maximal co-dimension k ∈ N will be set in the proof of Theorem 2.

Theorem 1. Let B be a branching program of length at most m and width at most d for
parity learning. Assume for simplicity and without loss of generality that all leaves of B are
in the last layer. Let ε ∈ (2−4n, 1) and r = log(|B(ε)|/ε). Then, the success probability of B
is at most

2k+6m
√
ε+

m · 23k+3

|T |
+mk+1 · 2−k(n−r−2k) · 2nd.

Proof. Let B be a branching program of length m and width d for parity learning. Assume
for simplicity and without loss of generality that all leaves of B are in the last layer. Denote
by β the success probability of B.

By Lemma 7.1, there exists a length m affine branching program P for parity learning,
such that:

1. For every k′ ≤ k, the number of vertices in P , that are labeled with an affine subspace
in G of co-dimension k′, is at most

n · 2rk′+1 · dm. (15)

2. The probability that the leaf reached by the computation-path of P is labeled by a
subspace in A(n) \ G is at least

β − 2k+6m
√
ε− 2k+1

|T |
. (16)

Let E be the event that the computation-path of P passes through at least one vertex
labeled by a subspace inA(n)\G. We next upper bound Pr[E]. We partition the event E into
two sub-events: Assume that E occurs. Let V be the first vertex along the computation-path
labeled by a subspace in A(n) \ G.

• Let E1 be the event that E occurs and codim(w(V)) ≤ k.

• Let E2 be the event that E occurs and codim(w(V)) > k.

We note that whenever E occurs, all the vertices on the computation-path reached prior
to V are labeled with subspaces in G, and, in particular, with subspaces of co-dimension at
most k.

27

We first upper bound Pr[E1]. Assume without loss of generality that every vertex u of
P has codim(w(u)) ≤ k. Otherwise, we can remove all vertices with co-dimension greater
than k, without changing Pr[E1]. By Lemma 8.2,

Pr[E1] ≤ m · 23k+2

|T |
.

We next upper bound Pr[E2]. Let V ′ be the predecessor of V on the computation-path.
As mentioned above, w(V ′) ∈ G and codim(w(V ′)) ≤ k. In addition, codim(w(V ′)) ≥ k, by
the soundness property of Definition 6.2. We get that w(V ′) ∈ G and codim(w(V ′)) = k.
Let V be the set of vertices v such that w(v) ∈ G and codim(w(v)) = k. Thus, if E2

occurs, then V ′ ∈ V . For every vertex v ∈ V , let Ev be the event that v is a vertex on the
computation-path, and all vertices on the computation-path prior to v are of co-dimension
at most k. We have that

Pr[E2] = Pr[E2 ∧ (V ′ ∈ V)] =
∑
v∈V

Pr[E2 ∧ (V ′ = v)] ≤
∑
v∈V

Pr[Ev].

We now upper bound Pr[Ev] for every v ∈ V . Assume without loss of generality that
every vertex u of P has codim(w(u)) ≤ k. Otherwise, we can remove all vertices with
co-dimension greater than k, without changing Pr[Ev] for any v ∈ V . By Lemma 8.1,
Pr[Ev] ≤ mk · 2−k(n−2k) for every v ∈ V . By Equation (15), |V| ≤ n · 2rk+1 · dm. Thus,

Pr[E2] ≤ mk+1 · 2−k(n−r−2k) · 2nd.

By Equation (16) we have that

β − 2k+6m
√
ε− 2k+1

|T |
≤ Pr[E] ≤ Pr[E1] + Pr[E2].

That is,

β ≤ 2k+6m
√
ε+

2k+1

|T |
+
m · 23k+2

|T |
+mk+1 · 2−k(n−r−2k) · 2nd

≤ 2k+6m
√
ε+

m · 23k+3

|T |
+mk+1 · 2−k(n−r−2k) · 2nd.

Theorem 2. Let B be a branching program of length at most m and width at most d for
parity learning, where 8m ≤ |T |1/30. Assume for simplicity and without loss of generality
that all leaves of B are in the last layer. Assume that the success probability of B is at
least 1/m. Then,

log(d) ≥ 1
2
· log

(
2n

|B(1/(8m)6)|

)
· log(m)− log(4n).

Proof. Let k = log(m), ε = 1/(8m)6. By Theorem 1, the success probability of B is at most

2k+6m
√
ε+

m · 23k+3

|T |
+mk · 2−k(n−log(|B(ε)|/ε)−2k) · 2nmd

≤ 1/(4m) + 1/(4m) + 2− log(m)·(n−log |B(ε)|−log(1/ε)−3 log(m)) · 2nmd
= 1/(2m) + 2− log(m)·(n−log |B(ε)|−9 log(m)−18) · 2nmd.

28

Since we assumed that the success probability is at least 1/m, we get

1/(2m) ≤ 2− log(m)·(n−log |B(ε)|−9 log(m)−18) · 2nmd.
Equivalently,

log(d) ≥ − log(4nm2) + log(m) · (n− log |B(ε)| − 9 log(m)− 18)

= log(m) ·
(

log
(

2n

|B(1/(8m)6)|

)
− 9 · log(m)− 20

)
− log(4n)

≥ log(m) ·
(

log
(

2n

|B(1/(8m)6)|

)
− 9 · log(8m)

)
− log(4n)

Next we show that 9 log(8m) ≤ 1
2
· log

(
2n

|B(1/(8m)6)|

)
. Using Lemma 4.1, |B(ε)| ≤ 2n

|T |·ε2 . Thus,

|B(1/(8m)6)| ≤ 2n · (8m)12

|T |
As we assumed (8m)30 ≤ |T |, we get

log
(

2n

|B(1/(8m)6)|

)
≥ log

(
|T |

(8m)12

)
≥ log((8m)18) = 18 log(8m)

as promised. Overall, we get

log(d) ≥ log(m) ·
(

log
(

2n

|B(1/(8m)6)|

)
− 9 · log(8m)

)
− log(4n)

≥ 1

2
· log(m) · log

(
2n

|B(1/(8m)6)|

)
− log(4n).

10 Applications

10.1 Sparse Parities

In this section, we give a time-space tradeoff for parity learning over the set T` containing all
vectors of Hamming weight exactly `. Formally, for x ∈ {0, 1}n, we denote wt(x) =

∑n
i=1 xi.

Let ` ∈ [n]. We define the set T` by

T` = {x ∈ {0, 1}n : wt(x) = `} .
We will use the following lemma that is proved in Appendix A.

Lemma 10.1. Let ε ∈ (0, 1] and ` ∈ N. Assume that ε ≥
(

8`
n

)`/2
. Then,

|BT`(ε)| ≤ 2e−ε
2/`·n/8 · 2n.

The following theorem is a corollary of Theorem 2, and the main result of this section.

Theorem 3. Let ` ∈ [n]. Let B be a branching program of length at most m and width at

most d for parity learning over T`, where 8m ≤
(
n
8`

)`/30
. Assume for simplicity and without

loss of generality that all leaves of B are in the last layer. Assume that the success probability
of B is at least 1/m. Then,

log(d) ≥ n · log(m)

16 · (8m)12/`
− log(4mn).

In particular,

29

1. There exists a sufficiently small constant c ∈ (0, 1) such that for ` ≤ cn and m = 2`,
we have

log(d) ≥ Ω(n`).

2. For ` ≤ n0.9 and m = `0.0001·`, we have

log(d) ≥ Ω(n · `0.99).

Proof. Let ε = 1/(8m)6. Since 8m ≤
(
n
8`

)`/30 ≤
(
n
8`

)`/12
, we have that ε ≥

(
8`
n

)`/2
, thus by

Lemma 10.1
|BT`(ε)| ≤ 2e−ε

2/`·n/8 · 2n.

By Theorem 2, since 8m ≤
(
n
8`

)`/30 ≤
(
n
`

)1/30
= |T`|1/30,

log(d) ≥ 1

2
· log

(
2n

|BT` (ε)|

)
· log(m)− log(4n)

≥ 1

2
· log

(
eε

2/`·n/8/2
)
· log(m)− log(4n)

≥ 1

2
· ε2/` · (n/8) · log(m)− log(4mn)

= n · log(m)

16 · (8m)12/`
− log(4mn).

10.2 Small Biased Sets

Theorem 4. Let T ⊆ {0, 1}n be an ε-biased set, for ε ∈ (2−n/2, 1/2). Let B be a
branching program of length at most m and width at most d for parity learning over T ,
where 8m = (1/2ε)1/15. Assume for simplicity and without loss of generality that all leaves
of B are in the last layer. Assume that the success probability of B is at least 1/m. Then,

log(d) ≥ Ω(n · log(1/ε)).

Proof. Since T is an ε-biased set, by Parseval’s identity and as ε ∈ (2−n/2, 1),

1

|T | · 2n
= E

x∈R{0,1}n

[
(UT (x))2] =

∑
α∈{0,1}n

(
ÛT (α)

)2

≤ (2n − 1) · (2−nε)2 + (2−n)2 ≤ 2−nε2 + 2−2n ≤ 2 · 2−nε2.

This implies, |T | ≥ 1/(2ε2), and hence, 8m ≤ |T |1/30. Since T is an ε-biased set, and

ε ≤ 1/(8m)6, it holds that |BT (1/(8m)6)| = 1. Using Theorem 2, as 8m = (1/2ε)1/15,

log(d) ≥ 1

2
· n · log(m)− log(4n) ≥ Ω(n · log(1/ε)).

30

References

[ADR02] Yonatan Aumann, Yan Zong Ding, Michael O. Rabin: Everlasting security in the
bounded storage model. IEEE Transactions on Information Theory 48(6): 1668-1680
(2002) 4

[AGHP92] Noga Alon, Oded Goldreich, Johan H̊astad, René Peralta: Simple Construction
of Almost k-wise Independent Random Variables. Random Struct. Algorithms 3(3): 289-
304 (1992) 4

[AR99] Yonatan Aumann, Michael O. Rabin: Information Theoretically Secure
Communication in the Limited Storage Space Model. CRYPTO 1999: 65-79 4

[CM97] Christian Cachin, Ueli M. Maurer: Unconditional Security Against Memory-
Bounded Adversaries. CRYPTO 1997: 292-306 4

[DM04] Stefan Dziembowski, Ueli M. Maurer: On Generating the Initial Key in the
Bounded-Storage Model. EUROCRYPT 2004: 126-137 4

[M92] Ueli M. Maurer: Conditionally-Perfect Secrecy and a Provably-Secure Randomized
Cipher. J. Cryptology 5(1): 53-66 (1992) 4

[NN93] Joseph Naor, Moni Naor: Small-Bias Probability Spaces: Efficient Constructions
and Applications. SIAM J. Comput. 22(4): 838-856 (1993) 4

[R16] Ran Raz: Fast Learning Requires Good Memory: A Time-Space Lower Bound for
Parity Learning. Electronic Colloquium on Computational Complexity (ECCC) 23: 19
(2016) 1, 2, 3, 4, 5, 6, 8

[S14] Ohad Shamir: Fundamental Limits of Online and Distributed Algorithms for
Statistical Learning and Estimation. NIPS 2014: 163-171 3

[SVW15] Jacob Steinhardt, Gregory Valiant, Stefan Wager: Memory, Communication, and
Statistical Queries. Electronic Colloquium on Computational Complexity (ECCC) 22:
126 (2015) 2, 3

[V03] Salil P. Vadhan: Constructing Locally Computable Extractors and Cryptosystems in
the Bounded-Storage Model. J. Cryptology 17(1): 43-77 (2004) (also in Crypto 2003) 4

[VV16] Gregory Valiant, Paul Valiant: Information Theoretically Secure Databases.
Electronic Colloquium on Computational Complexity (ECCC) 23: 78 (2016) 3

A The Fourier Spectrum of Slices of The Hypercube

For x ∈ {0, 1}n, we denote wt(x) =
∑n

i=1 xi. Let ` ∈ [n]. We next analyze the Fourier
spectrum of the indicator function of the set

T` = {x ∈ {0, 1}n : wt(x) = `} .

31

It suffices to analyze the Fourier coefficients of weight at most n/2, due to the following
simple identity:

Fact A.1. For α ∈ {0, 1}n,

ÛT`(α) = (−1)` · ÛT`(α⊕~1).

The fact holds as

E
x∈RT`

[χα(x)] = E
x∈RT`

[χα⊕~1(x) · χ~1(x)] = (−1)` · E
x∈RT`

[χα⊕~1(x)].

Lemma A.2. Let α ∈ {0, 1}n with wt(α) = n(1−δ)
2

≤ n
2
, for some δ ∈ [0, 1]. Let

jmin = max {0, d(`− δn)/2e} and jmax = min {b`/2c,wt(α)}. For j ∈ {jmin, . . . , jmax},
define

aj =

(
δn
`−2j

)
·
(

(n−δn)/2
j

)(
n
`

) .

Then,

ÛT`(α) = 2−n ·
jmax∑
j=jmin

(−1)j · aj.

In addition, ∣∣∣ÛT`(α)
∣∣∣ ≤ 2−n · max

j∈{jmin,...,jmax}
{aj}.

Proof. We note that ÛT`(α) = 2−n · Ex∈RT` [χα(x)] and compute Ex∈RT` [χα(x)]. We assume
that α is of the form α = (01)(n−δn)/2 ◦ 0δn (that is, α starts with (n − δn)/2 pairs of 01
followed by δn 0’s). This assumption is without loss of generality as Ex∈RT` [χα(x)] only
depends on the weight of α.

Let X be a random variable uniformly distributed over T`. Let E be the event that
for every i ∈ {1, · · · , (n − δn)/2} it holds that X2i−1 = X2i. Observe that by a symmetry
argument,

E
X

[χα(X) | ¬E] = 0.

The reason is that whenever E does not hold, there exists i ∈ {1, · · · , (n − δn)/2}
such that X2i−1 6= X2i, and the case where (X2i−1, X2i) = (0, 1) cancels the case where
(X2i−1, X2i) = (1, 0) in the expectation.

For j ∈ {jmin, . . . , jmax}, let Ej be the event that E occurs and
∑(n−δn)

i=1 Xi = 2j. If Ej
occurs, then

χα(X) = (−1)j.

The first assertion follows as

E
x∈RT`

[χα(x)] =

jmax∑
j=jmin

(−1)j · Pr[Ej] =

jmax∑
j=jmin

(−1)j · |{x : x ∈ Ej}|
|T`|

=

jmax∑
j=jmin

(−1)j ·
(

(n−δn)/2
j

)
·
(
δn
`−2j

)(
n
`

) .

To prove the second assertion, consider the sequence (ajmin
, . . . , ajmax). The ratio between

two consecutive elements in the sequence is given by

aj
aj−1

=

(
δn
`−2j

)
·
(

(n−δn)/2
j

)(
δn

`−2(j−1)

)
·
(

(n−δn)/2
j−1

) =
(`− 2j + 2) · (`− 2j + 1) · ((n− δn)/2− j + 1)

(δn− `+ 2j) · (δn− `+ 2j − 1) · j
.

32

Observe that the right hand side is a decreasing function of j. Thus, the sequence
(ajmin

, . . . , ajmax) is unimodal, i.e., there exists i such that

ajmin
≤ ajmin+1 ≤ . . . ≤ ai−1 ≤ ai ≥ ai+1 ≥ . . . ≥ ajmax .

The second assertion follows by the following claim:

Claim A.3. Let (a0, . . . , aj′) be a non-negative unimodal sequence. Then,∣∣∣∣∣
j′∑
j=0

(−1)j · aj

∣∣∣∣∣ ≤ max
j∈{0,...,j′}

{aj}.

Proof. Since (a0, . . . , aj′) is a unimodal sequence, there exists i such that

a0 ≤ a1 ≤ . . . ≤ ai−1 ≤ ai ≥ ai+1 ≥ . . . ≥ aj′ .

Assume that (−1)i = 1. The other case is similar. Assume that j′ is even, otherwise add
a 0-element at the end of the sequence that will not change the sum and the fact that the
sequence is unimodal.

It holds that

j′∑
j=0

(−1)j · aj = (a0 − a1) + (a2 − a3) + · · ·+ (ai−2 − ai−1) + ai

+ (−ai+1 + ai+2) + (−ai+3 + ai+4) + . . .+ (−aj′−1 + aj′) ≤ ai,

where the last inequality holds as each bracketed pair is non-positive.
It also holds that

j′∑
j=0

(−1)j · aj = a0 + (−a1 + a2) + (−a3 + a4) + · · ·+ (−ai−1 + ai) − ai

+ (ai − ai+1) + (ai+2 − ai+3) + . . .+ (aj′−2 − aj′−1) + aj′ ≥ −ai,

where the last inequality holds as a0, aj′ , and each bracketed pair are non-negative.

Lemma A.4. Let α ∈ {0, 1}n with wt(α) = n(1−δ)
2

for some δ ∈ (−1, 1). Then,∣∣∣ÛT`(α)
∣∣∣ ≤ 2−n ·

(
|δ|+

√
`

n−|δ|·n

)`
.

Proof. Assume that δ ∈ [0, 1). The case where δ ∈ (−1, 0] follows from the case
δ ∈ [0, 1) using Fact A.1. As in Lemma A.2, let jmin = max {0, d(`− δn)/2e} and
jmax = min {b`/2c,wt(α)}. For j ∈ {jmin, . . . , jmax}, let

aj =

(
δn
`−2j

)
·
(

(n−δn)/2
j

)(
n
`

) =

(
δn
`−2j

)
·
(
n−δn

2j

)(
n
`

) ·
(

(n−δn)/2
j

)(
n−δn

2j

) .

33

We bound each of the two terms in the right hand side of the above equation separately.(
δn
`−2j

)
·
(
n−δn

2j

)(
n
`

) =
(δn) · · · (δn− `+ 2j + 1)

n · · · (n− `+ 2j + 1)
· (n− δn) · · · (n− δn− 2j + 1)

(n− `+ 2j) · · · (n− `+ 1)
·
(
`

2j

)
≤ δ`−2j · (n− δn) · · · (n− δn− 2j + 1)

(n− `+ 2j) · · · (n− `+ 1)
·
(
`

2j

)
≤ δ`−2j ·

(
`

2j

)
, (since 2j ≥ 2jmin ≥ `− δn)

and (
(n−δn)/2

j

)(
n−δn

2j

) =

(
(n−δn)/2

j

)
·
(

(n−δn)/2
j

)(
n−δn

2j

) · 1(
(n−δn)/2

j

) ≤ 1(
(n−δn)/2

j

) ≤ (2j

n− δn

)j
.

Overall we get,

aj ≤ δ`−2j ·
(
`

2j

)
·
(

2j

n− δn

)j
≤ δ`−2j ·

(
`

2j

)
·
(

`

n− δn

)j
(as j ≤ jmax ≤ b`/2c)

= δ`−2j ·
(
`

2j

)
·
(√

`
n−δn

)2j

≤
(
δ +

√
`

n−δn

)`
.

The assertion follows from Lemma A.2.

Recall that
BT`(ε) =

{
α ∈ {0, 1}n :

∣∣∣ÛT`(α)
∣∣∣ > 2−nε

}
.

Next, we prove Lemma 10.1.

Lemma (Lemma 10.1 Restated). Let ε ∈ (0, 1] and ` ∈ N. Assume that ε ≥
(

8`
n

)`/2
.

Then,

|BT`(ε)| ≤ 2e−ε
2/`·n/8 · 2n.

Proof. Let δ0 = ε1/`/2 ≤ 1/2. For |δ| ≤ δ0 and α ∈ {0, 1}n with wt(α) = n(1−δ)
2

, it holds that∣∣∣ÛT`(α)
∣∣∣ ≤ 2−n ·

(
|δ|+

√
`

n−|δ|·n

)`
≤ 2−n ·

(
δ0 +

√
2`
n

)`
≤ 2−n ·

(
ε1/`/2 + ε1/`/2

)`
= 2−nε.

Therefore, BT`(ε) ⊆
{
α : wt(α) = n(1−δ)

2
, |δ| > δ0

}
. Using Chernoff,

|BT`(ε)| ≤ 2e−δ
2
0 ·n/2 · 2n = 2e−ε

2/`·n/8 · 2n.

34

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

