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Abstract

This paper offers the following contributions:

• We construct a two-source extractor for quasi-logarithmic min-entropy. That is, an ex-
tractor for two independent n-bit sources with min-entropy Õ(log n). Our construction
is optimal up to poly(log log n) factors and improves upon a recent result by Ben-Aroya,

Doron, and Ta-Shma (ECCC’16) that can handle min-entropy log n · 2O(
√
log logn).

• A central problem in combinatorics is that of constructing k-Ramsey graphs on n vertices
with k = O(log n). Prior to this work, the best construction, which readily follows by

the work of Ben-Aroya et al. , is for k = (log n)2
O(

√
log log log n)

. We improve that to k =

(log n)(log log logn)O(1)

.

• We obtain a privacy amplification protocol against active adversaries with security param-
eter λ = k/(log k)O(1), where k is the min-entropy of the source shared by the parties.
Prior to this work, the security parameter of the best protocols by Chattopadhyay and Li
(FOCS’16), and Cohen (FOCS’16), was k/2O(

√
log log k).

We obtain our results by constructing an improved non-malleable extractor. For n-bit
sources, when set with error guarantee ε, our non-malleable extractor has seed length d =
O(log n) + Õ(log(1/ε)) and can support any min-entropy Ω(d).

The main technical novelty of this work lies in an improved construction of an independence-
preserving merger (IPM) – a variant of the well-studied notion of a merger, that was recently
introduced by Cohen and Schulman (FOCS’16). Our construction is based on a new connection
to correlation breakers with advice. In fact, our IPM satisfies a stronger and more natural
property than that required by the original definition, and we believe it may find further appli-
cations.
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1 Introduction

Motivated by the problem of privacy amplification over an unauthenticated channel [MW97], Dodis
and Wichs [DW09] introduced the notion of a non-malleable extractor, which significantly strength-
ens the well-studied notion of a seeded extractor [NZ96]. A framework for constructing privacy
amplification protocols was devised [DW09] that is instantiated with a non-malleable extractor,
and where the parameters of the protocol inherits those of the extractor. In particular, via the
Dodis-Wichs framework, an optimal non-malleable extractor readily induces an optimal privacy am-
plification protocol. In [DW09] it was shown that non-malleable extractors exist, though the task
of constructing such extractors was left for future research, and has gained a significant attention
as summarized in Table 1, Appendix A.

The main technical contribution of this work is an improved construction of non-malleable
extractors. We therefore choose to present already at this stage the formal definition of a non-
malleable extractor. We refer the unfamiliar reader to the Preliminaries for standard notions that
we use, such as min-entropy and statistical distance. For a broader perspective on non-malleable
extractors, its relation to standard seeded extractors, and for other equivalent form of it, we refer
the interested reader to [Coh16b]. For a discussion on the Dodis-Wichs framework, the reader may
consult the original paper [DW09] or Section 2.3 of [Coh16a] for a brief and informal treatment.

Definition 1.1 (Non-malleable extractors [DW09]). A function nmExt : {0, 1}n×{0, 1}d → {0, 1}m
is called a (k, ε)-non-malleable extractor if for any (n, k)-source X and any function A : {0, 1}d →
{0, 1}d with no fixed points, it holds that

(nmExt(X,Y ), nmExt(X,A(Y )), Y ) ≈ε (Um, nmExt(X,A(Y )), Y ),

where Y is uniformly distributed over {0, 1}d independently of X. If nmExt is a (k, ε)-non-malleable
extractor, we say that nmExt has error guarantee ε and that nmExt supports min-entropy k.

It can be shown that regardless of the computational aspect, any (k, ε)-non-malleable extrac-
tor for n-bit sources requires seed length d = Ω(log(n/ε)), can only support min-entropy k =
Ω(log(1/ε)), and can output at most k/2−Ω(log(1/ε)) bits. Prior to this work, the state of the art

explicit non-malleable extractor [Coh16a] has seed length d = O(log n) + log(1/ε) · 2O(
√

log log(1/ε)),
supports min-entropy k = Ω(d), and can output m = (1/2 − α)k bits for any desired constant
α > 0. In this work we improve upon this result and obtain the following.

Theorem 1.2. For any constant α > 0 there exists a constant c ≥ 1 such that for any integer n and
any ε > 0, there exists an explicit (k, ε)-non-malleable extractor nmExt : {0, 1}n×{0, 1}d → {0, 1}m
with seed length d = O(log n) + Õ(log(1/ε)) for any k ≥ cd, with m = (1/2− α)k output bits. 1

By plugging our non-malleable extractor from Theorem 1.2 to the Dodis-Wichs framework, we
obtain the following result.

Corollary 1.3. For all n, λ, there exists an explicit two-round privacy amplification protocol against
an active adversary, that supports min-entropy k = Ω(d), with entropy-loss O(λ + log n), and
communication complexity O(d+ (λ+ log k) · log k), where d = O(log n) + Õ(λ).

Corollary 1.3 improves upon [CL16, Coh16a] in which the same result holds but with the larger
value d = O(log n) + λ · 2O(

√
log λ).

1We use the standard notation Õ(n) for n · (logn)O(1).
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1.1 Two-source extractors and Ramsey graphs

A two-source extractor [CG88] for min-entropy k is a function Ext : {0, 1}n × {0, 1}n → {0, 1} with
the following property. For any pair of independent (n, k)-sources X,Y , the bias of Ext(X,Y ) is
bounded by 1/3. 2 One can prove the existence of two-source extractors for n-bit sources with
k = log(n) + O(1), which is optimal up to the additive constant factor. Constructing two-source
extractors for such low min-entropy would resolve a classical problem in combinatorics, namely,
matching Erdős proof for the existence of Ramsey graphs [Erd47] with a constructive proof. In
fact, it suffices to construct a two-source disperser for the same min-entropy, where a disperser is
a relaxation of an extractor in which the output is only required to be non-constant.

An undirected graph on n vertices is called k-Ramsey if it contains no clique nor independent
set of size k. Ramsey [Ram28] proved that there does not exist a 0.5 log n-Ramsey graph on n
vertices. This result was later complemented by Erdős [Erd47], who proved that most graphs on
n vertices are (2 + o(1)) log n-Ramsey. One can show that a two-source disperser for n-bit sources
with min-entropy k yields a K = 22k-Ramsey graph on N = 2n vertices. In particular, a two-source
disperser for n-bit sources with min-entropy k = O(log n) yields a K = polylog(N)-Ramsey graph
on N vertices. Ramsey graphs have an analogous definition for bipartite graphs. A bipartite graph
on two sets of n vertices is bipartite k-Ramsey if it has no k × k complete or empty bipartite
subgraph. One can show that a bipartite Ramsey graph induces a Ramsey graph with comparable
parameters. Thus, constructing bipartite Ramsey graphs is at least as hard as constructing Ramsey
graphs. We refer the reader to Table 3 in Appendix A for known constructions of Ramsey graphs,
and their stronger bipartite variant.

For a long time explicit Ramsey graphs, especially their bipartite analogs, had fairly poor param-
eters. In their celebrated paper, Barak et al. [BRSW12], building on techniques from [BKS+10],

obtained bipartite Ramsey graphs on n vertices with k = 22(log logn)1−α
for some small constant

α > 0. Building on [BRSW12, Li15], bipartite k-Ramsey graphs with k = 2(log logn)O(1)
were con-

structed in [Coh16d]. This result was matched soon after by Chattopadhyay and Zuckerman [CZ16]
using independent techniques. In fact, the latter construction was for a two-source extractor, sig-
nificantly improving the state of the art result by Bourgain [Bou05].

The [CZ16] reduction from two-source extractors to non-malleable extractors

Chattopadhyay and Zuckerman [CZ16] constructed their two-source extractor by providing a re-
duction to non-malleable extractors. More precisely, it was shown how to construct a two-source
extractor given a non-malleable extractor as well as an extractor for non-oblivious bit-fixing sources.
The min-entropy supported by the two-source extractor is polynomially related to the seed length
d and the supported min-entropy k of the non-malleable extractor when set with error guarantee
ε = poly(1/n). By plugging the state of the art non-malleable extractor that was available at the
time [CGL16] to their reduction, an n-bit two-source extractor for polylog(n) min-entropy sources
was obtained.

Although exciting, the [CZ16] reduction from non-malleable extractors to two-source extractors
suffers a polynomial overhead and therefore cannot be used to obtain two-source extractors for min-
entropy O(log n). In fact, as was observed by [CS16], ideas that were used at the time were stuck
at min-entropy Ω(log2 n) for several different reasons, even if one has access to any o(log n) number

2We consider the arbitrary bias 1/3 for simplicity. One may consider arbitrary bias ε > 0. Further, one may also
consider extractors with more than one output bit, in which case the bias is replaced by the statistical distance.
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of sources (as apposed to just 2) and would settle for a disperser. In a sequence of works [CS16,
CL16] that has accumulated to [Coh16a], an extractor for 5 n-bit sources with min-entropy log n ·
2O(
√

log logn) was constructed. Moreover, the min-entropy requirement of the 5-source extractor was
linear in the parameters of the non-malleable extractor (or more precisely, the CBA being used).
It was not clear, however, how to reduce the number of sources from 5 to 2 while maintaining this
linear dependence.

The improved [BADTS16] reduction

Very recently, Ben-Aroya, Doron, and Ta-Shma [BADTS16] devised an improved reduction from
two-source extractors to non-malleable extractors that has two advantages over the original reduc-
tion of [CZ16]. First, as in [CS16, CL16, Coh16a], the fairly complicated extractor for non-oblivious
bit-fixing sources was replaced with the simple majority function, simplifying the overall construc-
tion. Second, the min-entropy supported by the two-source extractor is linear (as apposed to
polynomial) in the seed length d and the supported min-entropy k of the non-malleable extractor,
when applied with error guarantee ε = poly(1/n). Thus, the [BADTS16] reduction paves the way
for constructing two-source extractors for logarithmic min-entropy.

For their reduction, Ben-Aroya et al. [BADTS16] apply some of the new techniques that were
developed in [CS16, Coh16a, CL16], as well as a variation on a classical error reduction technique
for seeded extractors [RRV99] and a result by Dodis et al. [DPW14]. By plugging the explicit
non-malleable extractor of [Coh16a] to their reduction, Ben-Aroya et al. obtained a two-source
extractor for n-bit sources with min-entropy log n · 2O(

√
log logn). By plugging our non-malleable

extractor from Theorem 1.2 instead, we readily obtain the following result.

Corollary 1.4. For any integer n there exists an explicit two-source extractor for n-bit sources
with min-entropy Õ(log n).

Corollary 1.4 then implies the following.

Corollary 1.5. For any integer n there exists an explicit bipartite (log n)(log log logn)O(1)
-Ramsey

graph on n vertices.

Now that the notion of a non-malleable extractor and its applications were briefly discussed, we
turn to consider the inner workings of our non-malleable extractor. To this end we recall two re-
cently introduced pseudorandom objects: independence-preserving mergers (IPM), and correlation
breakers with advice (CBA).

1.2 Independence-preserving mergers (IPM)

Informally speaking, a merger is a function that is given as input a sequence of random variables
M1, . . . ,Mr, one of which is uniform, while the others are arbitrary and may correlate with the
former in arbitrary ways. As implied by its name, the task of a merger Merg is to “merge” the
sequence to a new random variable Z = Merg(M1, . . . ,Mr) that is close to uniform. We find it
convenient to stack all Mi’s as the rows of a matrix M . One can show that as we do not know
which row Mg of M is uniform, and since all rows of M can correlate with Mg in arbitrary ways, for
the merger to fulfil its task, it must have access to some “fresh” randomness, namely, to a random
variable Y that is independent of M .
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IPM Non-malleable extractors

Privacy amplification protocols (active adversary)

Two-source extractors

CBA
[CZ’16,BADTS’16]

[DW’09][CGL’16,Coh’16b]

[Coh’16a]

This work
Ramsey graphs

Flip-Flop

[CGL’16]

Figure 1: A schematic description of the connection between non-malleable extractors, their ap-
plications, and inner workings. The dashed arrow represents the first technique for constructing
CBA [CGL16] via the flip-flop primitive [Coh15], which was subsumed by an IPM-based construc-
tion [Coh16a]. Among other ideas, our improved non-malleable extractors rely on a new, inverse,
reduction from IPM to CBA.

The problem of constructing seeded-mergers, namely, mergers with a uniformly distributed Y ,
attracted a significant attention in the literature [TS96a, TS96b, LRVW03, Raz05, DS07, DW09,
DKSS09], mainly due to its role in some constructions of seeded extractors. Other works studied
the problem of constructing mergers with weak-seeds [BRSW12, Coh15] in which Y is only assumed
to be a weak-source.

Motivated by the problem of constructing multi-source extractors, the notion of an independence-
preserving merger (IPM) was introduced in [CS16] and was further studied and used in other con-
texts [CL16, Coh16a]. This is a function IPM that, similarly to a “standard” merger, is given a
matrix M and an auxiliary fresh randomness Y . Further, all rows of M are uniform (in which
case, standard merging is trivial, deterministically). However, an adversary holds a matrix M ′ that
is allowed to arbitrarily correlate with M but for the assumption that some row of M is uniform
(even) conditioned on the corresponding row of M ′. The guarantee of the independence-preserving
merger is that IPM(M,Y ) is close to uniform even when conditioned on IPM(M ′, Y ′) where Y ′ may
correlate arbitrarily with Y . In that sense, IPM preserves the existing independence that one of
the rows of M has with the corresponding row in M ′.

Although seeded-IPM are natural objects, for current applications one is required to consider
the stronger notion of an IPM with weak-seeds, namely, the IPM must work with Y that is not
necessarily uniform and is only guaranteed to have some min-entropy k. The quantitative goal is
to optimize k with respect to r and ε – the statistical distance of the output of IPM from uniform.
In fact, for technical reasons, the formal definition (see Definition 3.2) is more involved, and we
prefer to postpone it and carry out only a high-level discussion in this section.

Being somewhat imprecise for the sake of simplicity, in [CS16] an IPM was constructed for k =
r·log(1/ε). Subsequently, a strengthening of IPM was constructed in [CL16] for k = 2

√
log r ·log(1/ε).

The main technical contribution of this work is the construction of an IPM with a lower min-entropy
requirement. The formal statement is the content of Theorem 3.3. Here we settle for an informal
statement.
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Theorem 1.6 (Main technical contribution – informal statement). There exists an explicit IPM
for r-row matrix with k = polylog(r) · log(1/ε).

In fact, our construction yields a stronger and more natural variant of IPM as it does not
require all rows of M to be uniform. The only requirement is that some row of M must be uniform
when conditioned on the corresponding row of M ′. We remark that, for different reasons, previous
constructions [CL16, Coh16a] require all rows of M to be uniform. Throughout the paper we
sometimes refer to our stronger notion of IPM as IPM with no uniformity assumption.

1.3 Correlation breakers with advice (CBA)

When constructing pseudorandom objects, one often faces undesired correlations between random
variables. For examples, mergers are able to merge random variables despite their correlations,
and IPM preserves, in some sense, an already acquired independence despite the presence of other
correlations. Extractors can be thought of as breaking correlations between the different bits of the
weak-source, etc.

As their name suggests, correlation breakers tackle the problem of breaking correlations between
random variables heads on. Although a central issue, the problem of efficiently breaking arbitrary
correlations some adversarial random variable has with a uniformly distributed random variable
that we posses, using (unavoidably) an auxiliary source of randomness, was first explicitly studied
by [Coh15] in the form of an object called a local correlation breaker, and was constructed based on
techniques developed in [Li13] who obtained some restricted results on that direction. By adapting
the construction of local correlation breakers, Chattopadhyay et al. [CGL16] gave a construction
for a different type of correlation breakers, which was later explicitly defined and coined correlation
breakers with advice [Coh16b]. This primitive is the main component, both conceptually and in
terms of technical effort, in existing constructions of non-malleable extractors [CGL16, Coh16b,
Coh16c]. Correlation breakers with advice found applications in other contexts as well [CS16].

The formal definition of CBA is fairly technical, and we choose to conduct an informal and
high-level discussion here. For a formal treatment see Definition 2.9. The first construction of
CBA [CGL16] was based on a sequential application of the so-called flip-flop primitive [Coh15]. The
parameters of that construction are exponential in the advice length, which is the main parameter
of complexity in these constructs. In [Coh16a], a reduction from CBA to IPM was established,
which allowed for a construction of CBA with near-optimal parameters, and in particular with the
optimal dependence on the advice length.

In this work we establish a reduction in the other direction, namely we show how to use a CBA
for the construction of IPM. Combined with the original, inverse, reduction [Coh16a] we obtain
CBA with improved parameters (see Theorem 4.1). We further remark that our reduction from
non-malleable extractors to CBA has a slight twist on the original one [CGL16] and on its followup
improvement [Coh16b] which allows us to save even further on randomness (see Section 5).

1.4 Independent work

While writing this paper, we have learned that in a concurrent and independent work, Li [Li16]
obtained results that are comparable to ours using different ideas. In particular, Li constructed a
non-malleable extractor with seed length d = O(log n) + O(log(1/ε) · log log(1/ε)) which slightly
improves upon our Theorem 1.2 that gives d = O(log n) + Õ(log(1/ε)). Li readily derived the
applications to two-source extractors and privacy amplification protocol. Moreover, Li obtained a
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10-source extractor for n-bit sources with min-entropy O(log n) and an improved construction of
non-malleable codes.

2 Preliminaries

In this section we set some notations that will be used throughout the paper and recall some of the
more standard results from the literature that we make use of.

Setting some standard notations. Unless stated otherwise, the logarithm in this paper is
always taken base 2. For every natural number n ≥ 1, define [n] = {1, 2, . . . , n}. We avoid the use
of flooring and ceiling in order not to make the equations cumbersome. We say that a function is
explicit or efficiently-computable when the corresponding family of functions can be computed by
a (uniform) algorithm that runs in polynomial-time in the input length. In particular, when a real
parameter ε is introduced, the running time is polynomial in log(1/ε) (as apposed to 1/ε).

Random variables and distributions. We sometimes abuse notation and syntactically treat
random variables and their distribution as equal, specifically, we denote by Um a random variable
that is uniformly distributed over {0, 1}m. Furthermore, if Um appears in a joint distribution
(Um, X) then Um should be understood as being independent of X. When m is clear from context,
we omit it from the subscript and write U . The support of a random variable X is denoted by
supp(X). Let X,Y be two random variables. We say that Y is a deterministic function of X if the
value of X determines the value of Y . Namely, there exists a function f such that Y = f(X).

Statistical distance. The statistical distance between two distributionsX,Y on the same domain
D is defined by

SD (X,Y ) = max
A⊆D

{|Pr[X ∈ A]−Pr[Y ∈ A] |} .

If SD(X,Y ) ≤ ε we write X ≈ε Y and say that X and Y are ε-close.

2.1 Average conditional smooth min-entropy

Throughout the paper we make use of the notion of average conditional smooth min-entropy and
some basic properties of it. We start by recalling the more basic notion of The min-entropy. The
min-entropy of a random variable X, denoted by H∞(X), is defined by

H∞(X) = min
x∈supp(X)

log2(1/Pr[X = x]).

If X is supported on {0, 1}n, we define the min-entropy rate of X by H∞(X)/n. In such case,
if X has min-entropy k or more, we say that X is an (n, k)-source. When wish to refer to an
(n, k)-source without specifying the quantitative parameters, we sometimes use the standard terms
source or weak-source.

Definition 2.1. Let A,B be random variables. The average conditional min-entropy of A given
B is defined as

H∞(A | B) = − log2

(
E
b∼B

[
max
a

Pr [A = a | B = b]
])
.
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Further, for an ε > 0 define
Hε
∞(A | B) = max H∞(A′ | B′),

where the maximum is taken over all (A′, B′) that are within statistical distance ε from (A,B).
This quantity is referred to as the average conditional smooth min-entropy of A given B, where ε
is the smoothness parameter.

Lemma 2.2 (Chain rule, [VDTR13]). For any random variables A,B,C and for any ε, δ > 0 it
holds that

Hε+δ
∞ (A|BC) ≥ Hε

∞(AB|C)− |supp(B)| −O(log(1/δ)),

where supp(B) is the support of B.

2.2 Building blocks we use

Throughout the paper we make use of several building blocks from the literature. We turn to state
these results we use.

Extractors and condensers.

Definition 2.3 (Seeded extractors). A function Ext : {0, 1}n×{0, 1}d → {0, 1}m is called a (k, ε)-
seeded extractor if for any (n, k)-source X it holds that Ext(X,S) ≈ε Um, where S is uniformly
distributed over {0, 1}d and is independent of X. We say that Ext is a strong if (Ext(X,S), S) ≈ε
Um+d.

We sometimes say that an extractor Ext supports min-entropy k. By that we mean that Ext
is an extractor for min-entropy k. Throughout the paper we make use of the following family of
explicit strong seeded extractors.

Theorem 2.4 ([GUV09]). There exists a universal constant cGUV > 0 such that the following holds.
For all positive integers n, k and ε > 0, there exists an efficiently-computable (k, ε)-strong seeded-
extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m having seed length d = cGUV · log(n/ε) and m = k/2
output bits. Further, one can have m = (1 − α)k for any constant α > 0 at the price of having a
larger constant cGUV = cGUV(α).

Theorem 2.5. There exist universal constants cRaz, c
′
Raz such that the following holds. Let n, k

be integers and let ε > 0. Set d = cRaz · log(n/ε). For all k ≥ c′Razd, there exists an efficiently-
computable function

Raz : {0, 1}n × {0, 1}d → {0, 1}k/2

with the following property. Let X be an (n, k)-source, and let Y be an independent (d, 0.6d)-source.
Then, (Raz(X,Y ), Y ) ≈ε (U, Y ).

Theorem 2.6 ([BKS+10, Raz05, Zuc07]). For any constants δ1, δ2 > 0 there exists a constant
integer ∆ = ∆(δ1, δ2) ≥ 1 such that the following holds. For any integer n there exists a sequence
of efficiently computable functions {Condi : {0, 1}n → {0, 1}n/∆}∆i=1 such that the following holds.
For any (n, δ1n)-source X, the joint distribution of {Condi(X)}∆i=1 is 2−n/∆-close to a convex
combination such that for any participant (Y1, . . . , Y∆) in the combination, there exists g ∈ [∆]
such that Yg has min-entropy rate 1− δ2.

7



Error correcting codes. We also make us of the following standard definition of an error cor-
recting code.

Definition 2.7. Let Σ be some set. A mapping ECC : Σk → Σn is called an error correcting code
with relative-distance δ if for any x, y ∈ Σk, it holds that the Hamming distance between ECC(x)
and ECC(y) is at least δn. The rate of the code, denoted by ρ, is defined by ρ = k/n. We say that
the alphabet size of the code is |Σ|.

Theorem 2.8 ([GS95] (see also [Sti09])). Let p be any prime number and let m be an even integer.
Set q = pm. For every ρ ∈ [0, 1] and for any large enough integer n, there exists an efficiently-
computable rate ρ linear error correcting code ECC : Fρnq → Fnq with relative distance δ such that

ρ+ δ ≥ 1− 1
√
q − 1

.

Correlation breakers.

Definition 2.9 (Correlation breakers with advice). A function

CBA : {0, 1}n × {0, 1}` × {0, 1}a → {0, 1}m

is called a (t, k, ε)-correlation breaker with advice (or (t, k, ε)-CBA for short) if the following holds.
Let α, α1, . . . , αt ∈ {0, 1}a. Let X = (X,X1, . . . , Xt) be a sequence of n-bit random variables,
Y = (Y, Y 1, . . . , Y t) a sequence of `-bit random variables, and let H be a random variable for which
the following holds:

• Conditioned on H the random variables X ,Y are independent;

• The strings α, α1, . . . , αt ∈ {0, 1}a are fixed when conditioned on H, and α 6∈ {αi | i ∈ [t]};

• Hε
∞ (X | H) ≥ k + Ω(log(1/ε)); and

• (Y,H) ≈ε (U,H).

Then,(
CBA (X,Y, α) ,

{
CBA

(
Xi, Y i, αi

)}t
i=1

,Y,H
)
≈O(ε)

(
U,
{
CBA

(
Xi, Y i, αi

)}t
i=1

,Y,H
)
.

When considering (t = 1, k, ε)-CBA, we sometimes abbreviate and write (k, ε)-CBA. Further,
we sometimes consider (t, k, ε)-CBA with k = δn for some constant δ. We refer to such objects
also as (t, δ, ε)-CBA, and note that this should never cause any confusion (as δ < 1 < k). For our
constructions we make use of the following construction of CBA.

Theorem 2.10 ([Coh16a]). For any constant integers a, t there exists a constant c = c(a, t) ≥ 1
such that the following holds. Let n,m be integers and let ε > 0. Then, there exists an explicit
(t, k, ε)-CBA

CBA : {0, 1}n × {0, 1}` × {0, 1}a → {0, 1}m

with ` = c · log(n/ε) and k = c(m+ `).
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2.3 Hierarchy of independence

Let n, b be integers and let ε > 0. Let cGUV be the constant that is given by Theorem 2.4 and set
s = cGUV · log(n/ε). Note that s is sufficiently long so to be used as a seed for the strong seeded
extractor that is given by Theorem 2.4 when fed with a sample from an n-bit source and when set
with error guarantee ε. We make use of the following pair of extractors:

• Let Extin : {0, 1}n × {0, 1}s → {0, 1}s be the (2s, ε)-strong seeded extractor that is given by
Theorem 2.4.

• Let Extout : {0, 1}n × {0, 1}s → {0, 1}b be the (2b, ε)-strong seeded extractor that is given by
Theorem 2.4.

Define the pair of functions

a : {0, 1}s × {0, 1}n → {0, 1}b,
b : {0, 1}s × {0, 1}n × {0, 1}n → {0, 1}b,

as follows. For y ∈ {0, 1}s and z, w ∈ {0, 1}n,

a(y, w) = Extout(w, y),

b(y, z, w) = Extout(w,Extin(z,Extin(w, y))).

The following lemma, in different forms and with different twists, appears in several previous
works [DP07, DW09, Li13, Li15, Coh15, CS16, Coh16a].

Lemma 2.11. Let Y = (Y, Y ′) be a pair of s-bit random variables, Z = (Z,Z ′) a pair of n-bit
random variables, and let W = (W,W ′) be a pair of n-bit random variables. Let H be a random
variable for which the following holds:

• Conditioned on H, the random variable W is independent of (Y,Z);

• (Y,H) ≈δ (U,H);

• Hε
∞(Z | H) ≥ 4s+ Ω(log(1/ε)); and

• Hε
∞(W | H) ≥ 2b+ 2s+ Ω(log(1/ε)).

Write

Â = a(Y,W ), a(Y ′,W ′),

Ẑ = Extin(Z,Extin(W,Y )),Extin(Z ′,Extin(W ′, Y ′)).

Then, the following holds:

1. (a(Y,W ),Z,Y,H) ≈δ+2ε (U,Z,Y,H) ,

2.
(
b(Y, Z,W ),Z, Ẑ, Â,Y,H

)
≈δ+6ε

(
U,Z, Ẑ, Â,Y,H

)
.

Furthermore,

3. H2ε
∞

(
Z | Ẑ, Â,Y,H

)
≥ Hε

∞ (Z | H)− 4s−O(log(1/ε)),

4. H2ε
∞

(
W | Ẑ, Â,Y,H

)
≥ Hε

∞ (W | H)− 2b− 2s−O(log(1/ε)).
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3 IPM with no Uniformity Assumption

Definition 3.1 (Somewhere-independent matrices with no uniformity assumption). Let M,M ′ be
a pair of random variables in the form of r× ` matrices. Let H be a random variable and let δ > 0.
We say that M is (δ,H)-somewhere independent of M ′ if there exists g ∈ [r] such that(

Mg,M
′
g,H

)
≈δ
(
U,M ′g,H

)
.

Definition 3.2 (IPM with no uniformity assumption). A function

IPM : {0, 1}r×` × {0, 1}d × {0, 1}d → {0, 1}` (3.1)

is called a (k, ε)-independence preserving merger (or (k, ε)-IPM for short) with no uniformity as-
sumption if the following holds. Let X = (X,X ′) be a pair of d-bit random variables, Y = (Y, Y ′)
a pair of d-bit random variables, and let M = (M,M ′) be a pair of random variables in the form
of r × ` matrices. Let H be a random variable for which the following holds:

• Conditioned on H the random variable X is independent of (M,Y);

• Hε
∞ (X | H) ≥ k + Ω(log(1/ε));

• Hε
∞ (Y | M,H) ≥ k + Ω(log(1/ε)); and

• M is (ε,H)-somewhere independent of M ′.

Then, (
IPM(M,X, Y ), IPM(M ′, X ′, Y ′),M,Y,H

)
≈O(ε)

(
U, IPM(M ′, X ′, Y ′),M,Y,H

)
.

Some remarks. Unlike previous works [CS16, CL16, Coh16a], our construction of independence-
preserving mergers satisfies the stronger notion of being an independence-preserving merger with
no uniformity assumption. That is, we do not require that ∀i ∈ [r] (Mi, H) ≈δ (U,H). Thus, for
the rest of this paper we simply use the term independence-preserving mergers (or IPM for short)
when referring to the stronger notion that is introduced in Definition 3.2. Further, we sometimes
consider (k, ε)-IPM as in (3.1) with k = δd for some constant δ. We refer to such objects as
(δ, ε)-IPM, and note that this should never cause any confusion (as δ < 1 < k).

The main result proved in this section, which is the main technical contribution of this work,
is the following theorem, which is a formal restatement of Theorem 1.6.

Theorem 3.3. For any constant τ > 0 there exists a constant c = c(τ) ≥ 1 such that the following
holds. For all integers r, ` and for any ε > 0 such that ` = Ω(log(log(r)/ε)), there exists an explicit
(6/7 + τ, ε)-IPM

IPM : {0, 1}r×` × {0, 1}d × {0, 1}d → {0, 1}`

with d = O(` · logc r).

The construction of the IPM stated in Theorem 3.3 is recursive. For the base of the recursion
we need an IPM with no uniformity assumption for a constant number of rows. We construct this
base IPM in the following section. This is the content of Lemma 3.4. We then proceed to prove
Theorem 3.3 in Section 3.2.
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3.1 IPM for a constant number of rows via CBA

Lemma 3.4. For any constant integer r, any integers d, `, and any ε > 0 such that ` = Ω(log(d/ε))
there exists an explicit (k, ε)-IPM

BaseIPM : {0, 1}r×` × {0, 1}d × {0, 1}d → {0, 1}`

with k = Ω(`).

For the proof of Lemma 3.4 we first observe a property of CBA. Correlation breakers with advice
are designated to break correlations between random variables when fed with distinct advices. In
the following lemma we show that any CBA is also independence-preserving in the sense that if
some random variable is already uniform conditioned on another, that independence is preserved
even if one applies a CBA to both variables using the same advice string. We make this formal in
the following lemma.

Lemma 3.5. Let CBA : {0, 1}n×{0, 1}`×{0, 1}a → {0, 1}m be a (t, k, 2ε)-CBA. Let α, α1, . . . , αt ∈
{0, 1}a, and set I = {i | α = αi}. Let X = (X,X1, . . . , Xt) be a sequence of n-bit random variables,
Y = (Y, Y 1, . . . , Y t) a sequence of `-bit random variables, and let H be a random variable for which
the following holds:

• Conditioned on H, the random variables X ,Y are independent;

• The strings α, α1, . . . , αt are fixed when conditioned on H;

• Hε
∞ (X | H) ≥ k +m|I|+ Ω(log(1/ε)); and

•
(
Y, {Y i}i∈I ,H

)
≈ε
(
U, {Y i}i∈I ,H

)
.

Then,(
CBA (X,Y, α) ,

{
CBA

(
Xi, Y i, αi

)}t
i=1

,Y,H
)
≈O(ε)

(
U,
{
CBA

(
Xi, Y i, αi

)}t
i=1

,Y,H
)
. (3.2)

Proof. By the hypothesis of the lemma,(
Y, {Y i}i∈I ,H

)
≈ε
(
U, {Y i}i∈I ,H

)
.

Conditioned on {Y i | i ∈ I},H, the random variable Y is independent of the joint distribution of
{Xi | i ∈ I}, and so we can adjoin the latter to the above equation and obtain(

Y, {Xi, Y i}i∈I ,H
)
≈ε
(
U, {Xi, Y i}i∈I ,H

)
.

As CBA(Xi, Y i, αi) is a deterministic function of Xi, Y i, we conclude that

(Y,H1) ≈ε (U,H1) , (3.3)

where H1 = {CBA(Xi, Y i, αi), Y i | i ∈ I},H. Note that we removed the random variables {Xi |
i ∈ I} when deducing (3.3) and preserved only the corresponding set of outputs {CBA(Xi, Y i, αi) |
i ∈ I}. This step is crucial for the following derivation. By Lemma 2.2,

H2ε
∞(X | H1) ≥ Hε

∞(X | H)−m|I| −O(log(1/ε)) ≥ k + Ω(log(1/ε)). (3.4)
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Let X ′ = {Xi | i 6∈ I}, Y ′ = {Y i | i 6∈ I}. Note that conditioned on H1, the random variables
X ′,Y ′ are independent. By (3.3), (3.4) we may apply CBA to X ′,Y ′ with H1 and the corresponding
advices {αi | i 6∈ I} to conclude that(

CBA(X,Y, α), {CBA(Xi, Y i, αi)}i 6∈I ,Y ′,H1

)
≈O(ε)

(
U, {CBA(Xi, Y i, αi)}i 6∈I ,Y ′,H1

)
,

which readily concludes the proof.

With Lemma 3.5 in hand, we are now ready to prove Lemma 3.4.

Proof of Lemma 3.4. Let cGUV be the constant that is given by Theorem 2.4. Set a = log r, t = 2r,
and m = cGUV · log(d/ε). Note that a, t are constants.

Building blocks. For the construction of BaseIPM we make use of the following building blocks:

• Let CBA : {0, 1}d×{0, 1}`×{0, 1}a → {0, 1}m be the (t, k−m−O(log(1/ε)), ε)-CBA that is
given by Theorem 2.10. Note that the hypothesis of Theorem 2.10 regarding `, k is met.

• Let Ext1 : {0, 1}d × {0, 1}m → {0, 1}m be the (2m, ε)-strong seeded extractor that is given by
Theorem 2.4. Note that m was chosen as required by Theorem 2.4.

• Let Ext2 : {0, 1}d × {0, 1}m → {0, 1}` be the (2`, ε)-strong seeded extractor that is given by
Theorem 2.4.

The construction. Let m ∈ {0, 1}r×` and let x, y ∈ {0, 1}d. For i ∈ [r] we define

zi = CBA(x,mi, i), (3.5)

where by feeding i as the third argument to CBA we formally mean the binary string obtained by
writing the integer i to the base 2. Note that indeed the advice length is log r = a. Define

s =

r⊕
i=1

zi,

t = Ext1(y, s),

and set
BaseIPM(m,x, y) = Ext2(x, t).

Analysis. Let X = (X,X ′) be a pair of d-bit random variables, Y = (Y, Y ′) a pair of d-bit
random variables, and letM = (M,M ′) be a pair of random variables in the form of r×` matrices.
Let H be a random variable for which the following holds:

• Conditioned on H, the random variable X is independent of (M,Y);

• Hε
∞ (X | H) ≥ k + Ω(log(1/ε));

• Hε
∞ (Y | M,H) ≥ k + Ω(log(1/ε)); and

• (Mg,M
′
g,H) ≈ε (U,M ′g,H) for some g ∈ [r].
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Note that we set the advice strings in such a way that with every row in the pair of matrices
M,M ′ we associate an advice that is distinct of all other advices but for one – the one associated
with the corresponding row in the other matrix. Further, clearly the advices are fixed (also when
conditioned on H). Thus, we may apply Lemma 3.5 with Theorem 2.10 to conclude that(

Zg, {Zi}i∈[r]\{g}, {Z ′i}ri=1,M,H
)
≈O(ε)

(
U, {Zi}i∈[r]\{g}, {Z ′i}ri=1,M,H

)
.

It then follows that (
S, S′,M,H

)
≈O(ε)

(
U, S′,M,H

)
,

where we used the simple fact that (A,B,C) ≈ε (U,B,C) implies (A ⊕ B,B,C) ≈ε (U,B,C).
Conditioned on S′,M,H, the random variable S is independent of Y ′ and so we may adjoin Y ′ to
obtain (

S, Y ′, S′,M,H
)
≈O(ε)

(
U, Y ′, S′,M,H

)
.

As T ′ = Ext1(Y ′, S′) is a deterministic function of Y ′, S′ we conclude that(
S, T ′, S′,M,H

)
≈O(ε)

(
U, T ′, S′,M,H

)
.

Note that we removed Y when deducing the above equation. This is crucial for the following.
Conditioned on T ′, S′,M,H, the random variables S, Y are independent. Further, by Lemma 2.2,

H2ε
∞(Y | T ′, S′,M,H) ≥ Hε

∞(Y | M,H)−m−O(log(1/ε))

≥ k −m−O(log(1/ε))

≥ 2m+ Ω(log(1/ε)),

and so (
T, S, T ′, S′,M,H

)
≈O(ε)

(
U, S, T ′, S′,M,H

)
.

Conditioned on S, T ′, S′,M,H, the random variables T,X ′ are independent, and so(
T,X ′, S, T ′, S′,M,H

)
≈O(ε)

(
U,X ′, S, T ′, S′,M,H

)
.

The above equation together with the fact that BaseIPM(M ′, X ′, Y ′) = Ext2(X ′, T ′) is a determin-
istic function of X ′, T ′ implies that(

T,BaseIPM(M ′, X ′, Y ′), S, T ′, S′,M,H
)
≈O(ε)

(
U,BaseIPM(M ′, X ′, Y ′), S, T ′, S′,M,H

)
. (3.6)

Further,

H2ε
∞(X | BaseIPM(M ′, X ′, Y ′), S, T ′, S′,M,H) ≥ Hε

∞(X | H)− `− 2m

≥ 2`+ Ω(log(1/ε)). (3.7)

By Equations (3.6), (3.7), and by the fact that X,T are independent when conditioned on the
output BaseIPM(M ′, X ′, Y ′), and S, T ′, S′,M,H, we have that(

BaseIPM(M,X, Y ), T,BaseIPM(M ′, X ′, Y ′), S, T ′, S′,M,H
)
≈O(ε)(

U, T,BaseIPM(M ′, X ′, Y ′), S, T ′, S′,M,H
)
.

Conditioned on T,BaseIPM(M ′, X ′, Y ′), S, T ′, S′,M,H, the random variable BaseIPM(M,X, Y ) is
independent of Y, and so we can adjoin Y and remove the excess random variables to obtain(

BaseIPM(M,X, Y ),BaseIPM(M ′, X ′, Y ′),M,Y,H
)
≈O(ε)

(
U,BaseIPM(M ′, X ′, Y ′),M,Y,H

)
,

which completes the proof.
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3.2 Proof of Theorem 3.3

Before proving Theorem 3.3 we prove the following lemma.

Lemma 3.6. Let X,X ′ be n-bit random variables, and let H be a random variable such that
Hε
∞(X | H) ≥ (1− δ)n. Let τ > 0, and define X1, X

′
1 to be the length n1 = (δ + τ)n bit prefixes of

X,X ′, respectively. Define X2, X
′
2 to be the length n2 = 3(δ+τ)n bit prefixes of X,X ′, respectively.

Then, the following holds:

• H2ε
∞(X1 | H) ≥ τn1 −O(log(1/ε));

• H2ε
∞(X2 | X1, X

′
1,H) ≥ τn2 −O(log(1/ε)); and

• H2ε
∞(X | X2, X

′
2,H) ≥ (1− 7δ − 6τ)n−O(log(1/ε)).

Proof. Write X = X1 ◦X>1 = X2 ◦X>2, where X>1, X>2 are of length n−n1, n−n2, respectively.
Using Lemma 2.2 we obtain

H2ε
∞(X1 | H) ≥ H2ε

∞(X | X>1,H)

≥ Hε
∞(X | H)− |X>1| −O(log(1/ε))

≥ (1− δ)n− (1− δ − τ)n−O(log(1/ε))

= τn−O(log(1/ε))

≥ τn1 −O(log(1/ε)),

which proves the first item. As for the second item,

H2ε
∞(X2 | X1, X

′
1,H) ≥ H2ε

∞(X | X>2, X1, X
′
1,H)

≥ Hε
∞(X | H)− |X>2| − |X1| − |X ′1| −O(log(1/ε))

≥ (1− δ)n− (n− 3(δ + τ)n)− 2(δ + τ)n−O(log(1/ε))

= τn−O(log(1/ε))

≥ τn2 −O(log(1/ε)),

which concludes the proof of the second item. The third item follows by a similar argument:

H2ε
∞(X | X2, X

′
2,H) ≥ Hε

∞(X | H)− 2 · 3(δ + τ)n−O(log(1/ε))

≥ (1− δ)n− 6(δ + τ)n−O(log(1/ε))

= (1− 7δ − 6τ)n−O(log(1/ε)).

Lemma 3.6 readily implies the following corollary by setting τ = 1/7− δ.

Corollary 3.7. Let τ > 0. Let X,X ′ be n-bit random variables such that Hε
∞(X | H) ≥ (6/7 +

τ)n+Ω(log(1/ε)) for some random variable H. Define X1, X
′
1 to be the length n1 = n/7 bit prefixes

of X,X ′, respectively. Define X2, X
′
2 to be the length n2 = 3n/7 bit prefixes of X,X ′, respectively.

Then, the following holds:

• H2ε
∞(X1 | H) ≥ τn1 −O(log(1/ε));
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• H2ε
∞(X2 | X1, X

′
1,H) ≥ τn2 −O(log(1/ε)); and

• H2ε
∞(X | X2, X

′
2,H) ≥ τn−O(log(1/ε)).

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. We construct the function IPM recursively. More precisely, for any integer
r and any ` that meet the hypothesis of the theorem, we construct a (6/7 + τ, ε(r))-IPM

IPMr : {0, 1}r×` × {0, 1}d(r) × {0, 1}d(r) → {0, 1}`

given an explicit (6/7 + τ, ε(
√
r))-IPM

IPM√r : {0, 1}
√
r×` × {0, 1}d(

√
r) × {0, 1}d(

√
r) → {0, 1}`,

where ε(
√
r) is set with hindsight to be Θ(ε(r)). For ease of readability, we let d = d(r). For a

d-bit string s we let s1, s2 denote the length d/7, 3d/7 prefixes of s, respectively.

Building blocks. On top of IPM√r, for the construction of IPMr we make use of the following
building blocks:

• Let {Cond1
i : {0, 1}d/7 → {0, 1}d/(7∆)}∆i=1 be the sequence of functions that is given by Theo-

rem 2.6 set with δ1 = τ/2 and δ2 = 1/7− 2τ . By Theorem 2.6, ∆ = ∆(τ) is some constant.

• Let {Cond2
i : {0, 1}3d/7 → {0, 1}3d/(7∆)}∆i=1 be the sequence of functions that is given by

Theorem 2.6 also set with δ1 = τ/2 and δ2 = 1/7− 2τ .

• Let BaseIPM : {0, 1}∆4×` × {0, 1}d × {0, 1}d → {0, 1}` be the (k, ε(r))-IPM that is given by
Lemma 3.4.

Note that the output length of the functions {Cond2
i }i is 3 times longer than that of the func-

tions {Cond1
i }i. For technical reasons, it will be simpler for these two sequences of functions to have

a common output length. This can be easily achieved without any asymptotic affect on the param-
eters. Thus, from this point on we assume that the output length of the functions Cond1

i ,Cond
2
i is

d′ = αd for some constant α (recall that ∆ is constant). We further define d′1 = d′/7 and d′2 = 3d′/7.

The construction. Let m ∈ {0, 1}r×` and let x, y ∈ {0, 1}d. Let m1, . . . ,m
√
r be

√
r×` matrices

obtained by partitioning the r rows of m in an arbitrary manner. For concreteness, assume that
mi contains rows (i − 1)

√
r + 1, . . . , i

√
r of m. For (i1, j1) ∈ [∆]2 define the

√
r × ` matrix z(i1,j1)

as follows. For v ∈ [
√
r], row v of z(i1,j1) is defined as

z(i1,j1)
v = IPM√r

(
mv,Cond1

i1(x1),Cond1
j1(y1)

)
. (3.8)

Define the ∆4 × ` matrix t, with rows indexed by (i1, j1, i2, j2) ∈ [∆]4 by

t(i1,j1,i2,j2) = IPM√r

(
z(i1,j1),Cond2

j2(y2),Cond2
i2(x2)

)
. (3.9)

Finally, define
IPMr(m,x, y) = BaseIPM(t, x, y).

Note that in the above construction, and in particular in Equations (3.8),(3.9), we implicitly set
d(
√
r) = d′ = αd = αd(r).
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Analysis. Let X = (X,X ′) be a pair of d-bit random variables, Y = (Y, Y ′) a pair of d-bit
random variables, and M = (M,M ′) a pair of random variables in the form of r × ` matrices. Let
H be a random variable such that the following holds:

• Conditioned on H, the random variable X is independent of (M,Y);

• H
ε(r)
∞ (X | H) ≥ (6/7 + τ)d+ Ω(log(1/ε(r)));

• H
ε(r)
∞ (Y | M,H) ≥ (6/7 + τ)d+ Ω(log(1/ε(r))); and

• M is (ε(r),H)-somewhere independent of M ′.

By Corollary 3.7,
H2ε(r)
∞ (X1 | H) ≥ τd1 −O(log(1/ε(r))) ≥ (τ/2)d1,

where we used ε(r) > 2−Ω(d), the fact that τ is constant, and that d1 = Θ(d). Therefore, by
Theorem 2.6 there exists i∗1 ∈ [∆] such that

H3ε(r)
∞

(
Cond1

i∗1
(X1) | H

)
≥ (6/7 + 2τ)d′1 ≥ (6/7 + τ)d′1 + Ω(log(1/ε(r))), (3.10)

where, again, we used ε(r) > 2−Ω(d), and d1 = Θ(d). Similarly, there exists j∗1 ∈ [∆] such that

H3ε(r)
∞

(
Cond1

j∗1
(Y1) | M,H

)
≥ (6/7 + τ)d′1 + Ω(log(1/ε(r))). (3.11)

As M is (ε(r),H)-somewhere independent of M ′, by the way we defined M1, . . . ,M
√
r, there

exist g1, g2 ∈ [
√
r] such that (

Mg1
g2 , (M

′)g1g2 ,H
)
≈ε(r)

(
U, (M ′)g1g2 ,H

)
. (3.12)

Recall that IPM√r is a (6/7+τ, ε(
√
r))-IPM and that ε(

√
r) = Θ(ε(r)). Equations (3.10),(3.11), (3.12)

imply that (
Z

(i∗1,j
∗
1 )

g1 , (Z ′)
(i∗1,j

∗
1 )

g1 , {Mg1
i , (M

′)g1i }
√
r

i=1,Cond
1
j∗1

(Y1),Cond1
j∗1

(Y ′1),H
)
≈O(ε(r))(

U, (Z ′)
(i∗1,j

∗
1 )

g1 , {Mg1
i , (M

′)g1i }
√
r

i=1,Cond
1
j∗1

(Y1),Cond1
j∗1

(Y ′1),H
)
,

which readily implies that(
Z

(i∗1,j
∗
1 )

g1 , (Z ′)
(i∗1,j

∗
1 )

g1 ,H1

)
≈O(ε(r))

(
U, (Z ′)

(i∗1,j
∗
1 )

g1 ,H1

)
, (3.13)

with H1 =M, Y1, Y
′

1 ,H. Hence, the
√
r× ` matrix Z(i∗1,j

∗
1 ) is (O(ε(r)),H1)-somewhere independent

of the matrix (Z ′)(i∗1,j
∗
1 ).

Note that the random variable Z(i∗1,j
∗
1 ) (resp. (Z ′)(i∗1,j

∗
1 )) is a deterministic function of X1 (resp.

X ′1) when conditioned on H1. This, together with Corollary 3.7, implies that

H2ε(r)
∞

(
X2 | Z(i∗1,j

∗
1 ), (Z ′)(i∗1,j

∗
1 ),H1

)
≥ H2ε(r)

∞
(
X2 | X1, X

′
1,H1

)
= H2ε(r)

∞
(
X2 | X1, X

′
1,H

)
≥ τd2 −O(log(1/ε(r)))

≥ (τ/2)d2.

16



Therefore, by Theorem 2.6 there exists i∗2 ∈ [∆] such that

H3ε(r)
∞

(
Cond2

i∗2
(X2) | Z(i∗1,j

∗
1 ), (Z ′)(i∗1,j

∗
1 ),H1

)
≥ (6/7 + τ)d′2 + Ω(log(1/ε(r))). (3.14)

By a similar argument, there exists j∗2 ∈ [∆] such that

H3ε(r)
∞

(
Cond2

j∗2
(Y2) | H1

)
≥ (6/7 + τ)d′2 + Ω(log(1/ε(r))). (3.15)

Recall that

T(i∗1,j
∗
1 ,i
∗
2,j
∗
2 ) = IPM√r

(
Z(i∗1,j

∗
1 ),Cond2

j∗2
(Y2),Cond2

i∗2
(X2)

)
.

By (3.13),(3.14),(3.15) and since Z(i∗1,j
∗
1 ), (Z ′)(i∗1,j

∗
1 ) are jointly independent of (Cond2

j∗2
(Y2), Cond2

j∗2
(Y ′2))

when conditioned on H1, we have that(
T(i∗1,j

∗
1 ,i
∗
2,j
∗
2 ), (T

′)(i∗1,j
∗
1 ,i
∗
2,j
∗
2 ), Z

(i∗1,j
∗
1 ), (Z ′)(i∗1,j

∗
1 ),Cond2

i∗2
(X2),Cond2

i∗2
(X ′2),H1

)
≈O(ε(r))(

U, (T ′)(i∗1,j
∗
1 ,i
∗
2,j
∗
2 ), Z

(i∗1,j
∗
1 ), (Z ′)(i∗1,j

∗
1 ),Cond2

i∗2
(X2),Cond2

i∗2
(X ′2),H1

)
.

As T(i∗1,j
∗
1 ,i
∗
2,j
∗
2 ) is a deterministic function of Cond2

j∗2
(Y2) when conditioned on Z(i∗1,j

∗
1 ), Cond2

i∗2
(X2),

we may adjoin X2, X
′
2 and disregard the excess random variables to obtain(

T(i∗1,j
∗
1 ,i
∗
2,j
∗
2 ), (T

′)(i∗1,j
∗
1 ,i
∗
2,j
∗
2 ),H2

)
≈O(ε(r))

(
U, (T ′)(i∗1,j

∗
1 ,i
∗
2,j
∗
2 ),H2

)
, (3.16)

where H2 = X2, X
′
2,H1. That is, T is (O(ε(r)),H2)-somewhere independent of T ′. Further, for

any i1, j1, i2, j2 ∈ [∆]4, the random variables T(i1,j1,i2,j2), T
′
(i1,j1,i2,j2) are deterministic functions of

Y2, Y
′

2 , respectively, when conditioned on H2, and are therefore independent of X . This, together
with Corollary 3.7, implies that

H2ε(r)
∞ (Y | T, T ′,H2) ≥ H2ε(r)

∞ (Y | Y2, Y
′

2 ,H2)

= H2ε(r)
∞ (Y | Y2, Y

′
2 ,H1)

= H2ε(r)
∞ (Y | Y2, Y

′
2 ,M,H)

≥ τd−O(log(1/ε(r)))

≥ τd/2. (3.17)

Similarly,

H2ε(r)
∞ (X | H2) = H2ε(r)

∞ (X | X2, X
′
2,H1)

= H2ε(r)
∞ (X | X2, X

′
2,H)

≥ τd/2. (3.18)

Recall that IPMr(M,X, Y ) = BaseIPM(T,X, Y ). By Equations (3.16),(3.17),(3.18) we conclude(
IPMr(M,X, Y ), IPMr(M

′, X ′, Y ′), T, T ′,Y,H2

)
≈O(ε(r))

(
U, IPMr(M

′, X ′, Y ′), T, T ′,Y,H2

)
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which readily implies that(
IPMr(M,X, Y ), IPMr(M

′, X ′, Y ′),M,Y,H
)
≈O(ε(r))

(
U, IPMr(M

′, X ′, Y ′),M,Y,H
)
.

As the for parameters. The construction forces the recursive relation d(r) = c · d(
√
r) for some

constant c = c(τ). This solves for d(r) = d(∆4) · polylog(r), where we set the base of the recursion
at r = ∆4 rows. To make sure that the applications of BaseIPM are all valid, we must meet the
hypothesis of Lemma 3.4 which forces ` = Ω(log(d(r)/ε)) (as we fix ` throughout the O(log log r)
steps of the recursion, and d(r) increases with r) and k = Ω(`), where k is the min-entropy of
the two sources, which in our applications are proportional to the lengths of these sources as τ
is constant. As these lengths increase with r, it is enough to require d(∆4) = Ω(`). Even after
taking into account the deterioration of the error parameter throughout the recursion, all of the
required conditions are met by the hypothesis of the theorem, namely, d(r) = ` · polylog(r) and
` = Ω(log(log(r)/ε)).

4 Improved CBA via IPM

In this section we construct an improved CBA based on the IPM that was developed in the previous
section. Our construction follows a similar construction from [Coh16a]. There are some technical
differences between the two works and so we cannot rely on [Coh16a] and are required to give a
complete proof. This is the content of the following theorem.

Theorem 4.1. There exist universal constants cACB > 1 > γ0 > 0 such that for any 0 < γ ≤ γ0

the following holds. For any integers n, a and for any ε > 0 that satisfy

n = Ω((log a)cACB · log(1/ε)),

there exists an explicit (1− γ, ε)-CBA

CBA : {0, 1}n × {0, 1}n × {0, 1}a → {0, 1}m

with m = (1/2−O(γ))n.

Proof. Let x, y ∈ {0, 1}n and α ∈ {0, 1}a. Defining CBA(x, y, α) will require some preparations,
namely, introducing some notations and building blocks that we use. Let cGUV, cIPM be the constants
from Theorem 2.4 and Theorem 3.3, respectively. Let c1 be a constant to be set later on. Set

n1 = c1 · (log(n/ε) + log log a) ,

n2 = 2γn,

n3 = 40γn.

By the hypothesis of the theorem, and by taking γ0 < 40, we have that n1 < n2 < n3 < n. For
i = 1, 2, 3, let xi (resp. yi) be the length ni prefix of x (resp. y).

Building blocks. For the construction of CBA we make use of the following building blocks:

• Let a : {0, 1}n1 × {0, 1}n2 → {0, 1}n1 and b : {0, 1}n1 × {0, 1}n2 × {0, 1}n2 → {0, 1}n1 be the
pair of functions that are given in Section 2.3, set with error guarantee ε. Note that by taking
c1 ≥ cGUV, the parameter n1 was chosen large enough as n ≥ n2.

18



• Let IPM : {0, 1}(2a)×n1 × {0, 1}n3 × {0, 1}n3 → {0, 1}n1 be the (0.86, ε)-IPM that is given by
Theorem 3.3. This instantiation of Theorem 3.3 is valid when taking c, c1 large enough, as:

– n1 ≥ c1 · log(log(a)/ε),

– n3 = Ω(n) = Ω((log a)cIPM · log(1/ε)),

– 0.86 > 6/7.

• Set m = (1 − 82γ)n/2. Let Ext : {0, 1}n × {0, 1}n1 → {0, 1}m be the ((1 + γ)m, ε)-strong
seeded extractor that is given by Theorem 2.4. Note that by taking c1 to be a large enough
constant (as a function of the constant γ), the parameter n1 is sufficiently large as required
by Theorem 2.4.

The construction. We start by defining a (2a) × n1 matrix m = m(x2, y2, α) as follows. For
i ∈ [2a], row i of m is defined by

mi =

{
a(y1, x2), i 6= αdi/2e (mod 2);

b(y1, y2, x2), i = αdi/2e (mod 2).

We then define
s = IPM(m, y3, x3),

and finally define
CBA(x, y, α) = Ext(x, s).

Analysis. We now turn to the analysis. Let X = (X,X ′) be a pair of n-bit random variables,
Y = (Y, Y ′) a pair of n-bit random variables, and let α, α′ ∈ {0, 1}a. Let H be a random variable
for which the following holds:

• Conditioned on H, the random variables X ,Y are independent;

• α, α′ are fixed distinct strings when conditioned on H;

• Hε
∞(X | H) ≥ (1− γ)n+ Ω(log(1/ε));

• (Y,H) ≈ε (U,H).

To conclude the proof, we are required to show that(
CBA (X,Y, α) ,CBA

(
X ′, Y ′, α′

)
,Y,H

)
≈O(ε)

(
U,CBA

(
X ′, Y ′, α′

)
,Y,H

)
.

Define M = m(X2, Y2, α) and M ′ = m(X ′2, Y
′

2 , α
′). We begin by showing that M is somewhere-

independent of M ′. More precisely, we establish the following claim.

Claim 4.2. M is (O(ε),H1)-somewhere independent of M ′, where H1 = Y ′2 , Y2,H.

Proof of Claim 4.2. Recall that α 6= α′ when conditioned on H. Let i = i(H) ∈ [a] be such that
αi 6= α′i, and set g = 2i − αi. Note that, by construction, Mg = b(Y1, Y2, X2) whereas M ′g =
a(Y ′1 , X

′
2). We can therefore apply Lemma 2.11 with W = (X2, X

′
2), Y = (Y1, Y

′
1), Z = (Y2, Y

′
2),

and H, to conclude that (
Mg,M

′
g, Y2, Y

′
2 ,H

)
≈O(ε)

(
U,M ′g, Y2, Y

′
2 ,H

)
.

To justify this application of Lemma 2.11 we note that
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• Conditioned on H, the random variables X2, X
′
2 are jointly independent of (Y2, Y

′
2), which

also include Y1, Y
′

1 as their respective prefixes;

• (Y1,H) ≈ε (U,H);

• |Y2| = n2 ≥ 4n1 +Ω(log(1/ε)) and (Y2,H) ≈ε (U,H), and so Hε
∞(Y2 | H) ≥ 4n1 +Ω(log(1/ε));

and

• H2ε
∞(X2 | H) ≥ 4n1 + Ω(log(1/ε)). To see this, set X>2 to be the length n − n2 suffix of X,

and observe that

H2ε
∞ (X2 | H) ≥ H2ε

∞ (X | X>2,H)

≥ Hε
∞ (X | H)− |X>2| −O(log(1/ε))

≥ (1− γ)n− (n− n2)−O(log(1/ε))

= γn−O(log(1/ε))

≥ 4n1 + Ω(log(1/ε)).

This concludes the proof of the claim.

Returning to the proof of Theorem 4.1, our next step is to show that(
IPM(M,Y3, X3), IPM(M ′, Y ′3 , X

′
3),H2

)
≈O(ε)

(
U, IPM(M ′, Y ′3 , X

′
3),H2

)
, (4.1)

where H2 = M,M ′, X3, X
′
3,H1. To this end we prove the following claim which states that all the

assumptions required by the application of IPM in the above equation are met.

Claim 4.3. The following holds:

• Conditioned on H1, the random variables Y3, Y
′

3 are jointly independent of X3, X
′
3,M,M ′;

• M is (O(ε),H1)-somewhere independent of M ′;

• H
O(ε)
∞ (Y3 | H1) ≥ 0.86n3 + Ω(log(1/ε));

• H
O(ε)
∞ (X3 |M,M ′,H1) ≥ 0.86n3 + Ω(log(1/ε)).

Proof of Claim 4.3. Recall that M = m(X2, Y2, α), M ′ = m(X ′2, Y
′

2 , α
′) are deterministic functions

of X2, X
′
2, Y2, Y

′
2 . Since H1 = Y ′2 , Y2,H, conditioned on H1, the random variables M,M ′ are

deterministic functions of X2, X
′
2, and therefore also of X3, X

′
3, that are jointly independent of

(Y3, Y
′

3) when conditioned on H1. This proves the first item. The second item is the content of
Claim 4.2.

As for the third item, let Y>3 be the length n − n3 suffix of Y . By Lemma 2.2, and by our
choice of parameters,

HO(ε)
∞ (Y3 | H1) ≥ HO(ε)

∞ (Y | Y>3,H1)

= HO(ε)
∞ (Y | Y>3, Y2, Y

′
2 ,H)

≥ Hε
∞(Y | H)− |Y>3| − |Y2| − |Y ′2 | −O(log(1/ε))

≥ n− (n− n3)− 2n2 −O(log(1/ε))

= n3 − 4γn−O(log(1/ε))

≥ 0.9n3 −O(log(1/ε))

≥ 0.86n3 + Ω(log(1/ε)).
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For the forth item, recall that M,M ′ are deterministic functions of X2, X
′
2 when conditioned on

H1, and so

HO(ε)
∞ (X3 |M,M ′,H1) ≥ HO(ε)

∞ (X3 | X2, X
′
2,H1)

≥ HO(ε)
∞ (X | X>3, X2, X

′
2,H1)

≥ Hε
∞(X | H1)− |X>3| − |X2| − |X ′2| −O(log(1/ε))

= Hε
∞(X | H)− |X>3| − |X2| − |X ′2| −O(log(1/ε))

≥ (1− γ)n− (n− n3)− 2n2 −O(log(1/ε))

≥ n3 − 5γn−O(log(1/ε))

≥ (7/8)n3 −O(log(1/ε))

≥ 0.86n3 + Ω(log(1/ε)).

This concludes the proof of the claim.

By Claim 4.3 we can apply Theorem 3.3 and conclude (4.1), that is,(
S, S′,H2

)
≈O(ε)

(
U, S′,H2

)
.

Conditioned on S′,H2, the random variable S = IPM(M,Y3, X3) is a deterministic function of Y3

whereas Ext(X ′, S′) is a deterministic function of X ′, which is independent of Y3. Thus, we may
adjoin Ext(X ′, S′) to the above equation and conclude that(

S,Ext(X ′, S′), S′,H2

)
≈O(ε)

(
U,Ext(X ′, S′), S′,H2

)
. (4.2)

As X is independent of S′ when conditioned on H2, and since M,M ′ are deterministic functions
of X2, X

′
2, we have that

HO(ε)
∞ (X | Ext(X ′, S′), S′,H2) = HO(ε)

∞ (X | Ext(X ′, S′), X3, X
′
3,H)

≥ Hε
∞(X | H)− |Ext(X ′, S′)| − |X3| − |X ′3| −O(log(1/ε))

≥ (1− γ)n−m− 2n3 −O(log(1/ε))

≥ (1− 81γ)n−m−O(log(1/ε))

≥ (1 + γ)m+ Ω(log(1/ε)), (4.3)

where the last inequality follows as

(2 + γ)m = (2 + γ)

(
1− 82γ

2

)
n < (1− 81γ)n.

By equations (4.2),(4.3), and by the fact thatX is independent of S when conditioned on Ext(X ′, S′),
S′,H2, we have that(

Ext(X,S),Ext(X ′, S′), S, S′,H2

)
≈O(ε)

(
U,Ext(X ′, S′), S, S′,H2

)
.

Recall that CBA(X,Y, α) = Ext(X,S) and CBA(X ′, Y ′, α′) = Ext(X ′, S′). Conditioned on
Ext(X ′, S′), S, S′,H2, the random variable Ext(X,S) is independent of Y and so we may adjoin Y
to the above equation and remove the excess random variables to obtain(

CBA (X,Y, α) ,CBA
(
X ′, Y ′, α′

)
,Y,H

)
≈O(ε)

(
U,CBA

(
X ′, Y ′, α′

)
,Y,H

)
,

which concludes the proof.
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5 Non-Malleable Extractors via CBA

In this section we prove Theorem 1.2. As in [CGL16, Coh16b], our construction of non-malleable
extractors relies on CBA. Besides using the improved CBA that we constructed in Theorem 4.1,
we also make some improvements to the reduction itself. In particular, we show how to generate a
shorter advice string.

Proof of Theorem 1.2. Let cGUV, cRaz be the constants that are given by Theorem 2.4 and Theo-
rem 2.5, respectively, and let γ0 be the constant that is given by Theorem 4.1. Set

d1 = cGUV · log(n/ε),

d2 = max (10d1, cRaz · log(n/ε)) .

For a d-bit string y, let y1 denote the length d1 prefix of y. Similarly, let y2 denote the length d2

prefix of y. We further assume that d ≥ (3/γ0) · d2. Note that this assumption is met by taking
the hidden constant under the O(·) notation in the seed length d large enough with respect to the
constants cGUV, cRaz.

Building blocks. For the construction of nmExt we make use of the following building blocks.

• Let q be the least even prime power of 2 that is larger or equal than 5/ε2. Note that q ≤ 20/ε2.
Let r be the least integer such that qr ≥ d. We identify [d] with an arbitrary subset of Frq. Set
v = 2r/ε and let ECC : Frq → Fvq be the error correcting code that is given by Theorem 2.8,
set with relative distance 1− ε. Theorem 2.8 gives an explicit code with these parameters.

• Let ExtAG : {0, 1}n × {0, 1}d1 → {0, 1}log v be the (2 log v, ε)-strong seeded extractor that is
given by Theorem 2.4. Note that d1 was defined to be large enough so as to be used as a seed
for ExtAG. We identify the output of ExtAG as an element of [v].

• Let Raz : {0, 1}n×{0, 1}d2 → {0, 1}d be the (2d, ε)-extractor with weak-seeds that is given by
Theorem 2.5. Note that d2 was chosen large enough as required by Theorem 2.5.

• Set a = log(qv). Let CBA : {0, 1}d × {0, 1}d × {0, 1}a → {0, 1}d1 be the (1− γ0, ε)-CBA that
is given by Theorem 4.1. By Theorem 4.1, the output length of CBA is (1/2−O(γ0))d, which
is larger than d1. Thus, we may truncate the output length to d1 bits. Moreover, by the
hypothesis of the theorem, the requirement d = Ω((log a)cACB · log(1/ε)) of Theorem 4.1 is
met. Indeed,

(log a)cACB · log(1/ε) = (log log(qv))cACB · log(1/ε)

≤
(

log log

(
log d

ε

))cACB
· log(1/ε)

= O(d).

• Let Extout : {0, 1}n × {0, 1}d1 → {0, 1}(1/2−α)k be the (k/2, ε)-strong seeded extractor that is
given by Theorem 2.4. Note that d1 is large enough as required by Theorem 2.4 when taking
the constant cGUV large enough (as a function of the constant α).
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The construction. On input x ∈ {0, 1}n, y ∈ {0, 1}d, we define nmExt(x, y) as follows. First we
compute

i = i(x, y1) = ExtAG(x, y1),

and define
AdvGen(x, y) = ECC(y)i ◦ i.

In the expression above, by ECC(y)i we mean the following – we interpret i ∈ {0, 1}log v as an
index in [v] of the codeword ECC(y). Then, ECC(y)i refers to the content in that i’th entry, when
interpreted as a (log q)-bit string. Define

z = CBA (y,Raz(x, y2),AdvGen(x, y)) .

Finally, we define
nmExt(x, y) = Extout(x, z).

Analysis. Let X be an (n, k)-source, Y a random variable that is uniformly distributed over
d-bit strings, independently of X, and let A : {0, 1}d → {0, 1}d be a function with no fixed points.
Denote Y ′ = A(Y ). We start by proving the following claim.

Claim 5.1. Let C,C ′ be a pair of arbitrarily correlated random variables over n-bit strings such
that the relative Hamming distance between C,C ′ is at least 1 − ε1 (with probability 1). Let I, I ′

be a pair of arbitrarily correlated random variables over [n] that are jointly independent of (C,C ′).
Assume that I ∼ε2 U . Then,

Pr
[
CI ◦ I = C ′I′ ◦ I ′

]
≤ ε1 + ε2,

where CI (resp. C ′I′) denotes the I’th entry of C (resp. (I ′)’th entry of C ′).

Proof. For i ∈ supp(I), let I ′i denote the random variable I ′ | (I = i). Using the assumption that
C,C ′ are jointly independent of I,

Pr
[
CI ◦ I = C ′I′ ◦ I ′

]
=

∑
i∈supp(I)

Pr[I = i] ·Pr
[
Ci ◦ i = C ′I′i

◦ I ′i
]
. (5.1)

Observe that for any i ∈ supp(I),

Pr
[
Ci ◦ i = C ′I′i

◦ I ′i
]
≤ Pr

[
Ci ◦ i = C ′I′i

◦ I ′i | I ′i = i
]

= Pr
[
Ci = C ′i

]
,

where we have used the independence between (C,C ′) and (I, I ′). Let J be a random variable that
is uniformly distributed over [n]. By plugging the above equation back to Equation (5.1), and using
again the independence of I from (C,C ′), we conclude that

Pr
[
CI ◦ I = C ′I′ ◦ I ′

]
≤

∑
i∈supp(I)

Pr[I = i] ·Pr
[
Ci = C ′i

]
=

∑
i∈supp(I)

Pr[I = i] ·Pr
[
Ci = C ′i | I = i

]
= Pr

[
CI = C ′I

]
≤ Pr

[
CJ = C ′J

]
+ SD(I, J)

≤ ε1 + ε2.
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Returning back to the proof of Theorem 1.2, we prove the following claim.

Claim 5.2.
Pr

(x,y)∼(X,Y )

[
AdvGen(x, y) = AdvGen(x, y′)

]
= O(

√
ε).

Proof. Recall that I = i(X,Y1) = ExtAG(X,Y1) and AdvGen(X,Y ) = ECC(Y )I ◦ I. As ExtAG is
a (k, ε)-strong seeded extractor, (I, Y1) ≈ε (U, Y1). Conditioned on any fixing of Y1, the random
variables I, Y ′1 are independent and so we may adjoin Y ′1 to the latter equation and conclude that(

I, Y ′1 , Y1

)
≈ε
(
U, Y ′1 , Y1

)
.

Therefore, by Markov’s inequality, except with probability
√
ε over (y1, y

′
1) ∼ (Y1, Y

′
1), it holds

that I ≈√ε U . By aggregating an error of
√
ε to the total error, we condition on the event

(Y1, Y
′

1) = (y1, y
′
1) for which I ≈√ε U holds. Observe that for any fixing of (Y1, Y

′
1) to (y1, y

′
1),

the random variables I, I ′ are jointly independent of (ECC(Y ),ECC(Y ′)). This, together with the
fact that ECC has relative Hamming distance 1 − ε, allows us to apply Claim 5.1, which readily
concludes the proof of the claim.

By Lemma 2.2, by our choice of parameters, and as ECC has alphabet size q,

Hε
∞
(
Y2 | AdvGen(X,Y ),AdvGen(X,Y ′)

)
≥ d2 − 2(d1 + log q) ≥ 0.6d2.

Further,

Hε
∞
(
X | AdvGen(X,Y ),AdvGen(X,Y ′)

)
≥ k − 2 log v

≥ max
(
2d, c′Razd2

)
+ Ω(log(1/ε)).

Note that one can condition on AdvGen(X,Y ), AdvGen(X,Y ′) while maintaining the indepen-
dence between X and Y . Indeed, after conditioning on Y1, Y

′
1 , the random variables ExtAG(X,Y1),

ExtAG(X,Y ′1) are deterministic functions of X, and so one can further condition on these random
variables without introducing dependencies between X and Y . Conditioned on Y1, Y ′1 , ExtAG(X,Y1),
ExtAG(X,Y ′1), the random variables AdvGen(X,Y ), AdvGen(X,Y ′) are deterministic functions of Y ,
and so conditioning on these variables does not introduce any dependencies between X,Y . By the
above, we can apply Theorem 2.5 and conclude that(

Raz(X,Y2), Y2,AdvGen(X,Y ),AdvGen(X,Y ′)
)
≈O(ε)

(
U, Y2,AdvGen(X,Y ),AdvGen(X,Y ′)

)
.

As Raz(X,Y2) is independent of Y ′2 when conditioned on Y2, AdvGen(X,Y ), AdvGen(X,Y ′), we
have that

(Raz(X,Y2),H) ≈O(ε) (U,H) , (5.2)

where H = Y ′2 , Y2,AdvGen(X,Y ),AdvGen(X,Y ′).
Recall that

Z = CBA (Y,Raz(X,Y2),AdvGen(X,Y )) .
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By (5.2), the second argument to CBA is close to uniform, as required, when conditioned on H.
We now consider the first argument. By Lemma 2.2,

Hε
∞ (Y | H) ≥ d− 2(d2 + log q)−O(log(1/ε))

≥ (1− γ0)d+ Ω(log(1/ε)), (5.3)

where we have used the fact that d ≥ (3/γ0) · d2 and that d2 = Ω(log(1/ε)).
By Equations (5.2),(5.3), we can apply Theorem 4.1 to conclude that(

Z,Z ′,H′
)
≈O(

√
ε)

(
U,Z ′,H′

)
,

where H′ = Raz(X,Y2),Raz(X,Y ′2),H. Note that conditioned on Z ′,H′, the random variables Z
and Extout(X,Z

′) are independent. Thus, we may adjoin Extout(X,Z
′) to the above equation and

conclude that (
Z,Extout(X,Z

′), Z ′,H′
)
≈O(

√
ε)

(
U,Extout(X,Z

′), Z ′,H′
)
.

By Lemma 2.2 and since Extout is set to have (1/2− α)k output bits,

HO(ε)
∞ (X | Extout(X,Z ′), Z ′,H′) ≥ k − (1/2− α)k − 2(d+ log v)−O(log(1/ε))

= (1/2 + α)k − 2(d+ log v)−O(log(1/ε))

≥ k/2 + Ω(log(1/ε)).

Therefore, (
Extout(X,Z), Z,Extout(X,Z

′), Z ′,H′
)
≈O(

√
ε)

(
U,Z,Extout(X,Z

′), Z ′,H′
)
.

By the definition of nmExt and since conditioned on Z, Extout(X,Z
′), Z ′,H′, the random variable

Extout(X,Z) is independent of Y , we may adjoin Y to the above equation and remove the excess
random variables to conclude(

nmExt(X,Y ), nmExt(X,Y ′), Y
)
≈O(

√
ε)

(
U, nmExt(X,Y ′), Y

)
,

as desired.
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A Summary of Explicit Constructions From the Literature

Construction Seed length d Supported entropy

[DW09] (non-constructive) log(n) +O(1) Ω(log logn)

[LWZ11] n (0.5 + δ) · n

[CRS14, DLWZ14, Li12a] log(n/ε) (0.5 + δ) · n

[Li12b] log(n/ε) (0.5− β) · n

[CGL16] log2(n/ε) Ω(d)

[Coh16b] log(n/ε) · log(log(n)/ε) Ω(d)

[Coh16c] log n+ log3(1/ε) Ω(d)

[CL16] log(n/ε) · 2
√

log log(n/ε) Ω(d)

[Coh16a] log n+ log(1/ε) · 2
√

log log(1/ε) Ω(d)

Theorem 1.2 log n+ Õ(log(1/ε)) Ω(d)

Table 1: Explicit constructions of non-malleable extractors from the literature. We remark
that [Coh16b, CL16] offer several more constructions.
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Construction Supported entropy Comments

[CG88] (non-constructive) log(n) +O(1)

[CG88] (1/2 + δ)n for any constant δ > 0

[Raz05] (1/2 + δ)n and O(log n) for any constant δ > 0

[Bou05] (1/2− β)n for some universal constant β > 0

[CZ16] (log n)c for some universal constant c ≥ 9

[BADTS16] log n · 2O(
√

log logn)

Corollary 1.4 Õ(log n)

Table 2: Explicit constructions of two-source extractors from the literature.

Construction k(n) Bipartite

[Erd47] (non-constructive) 2 log n X

[Abb72] nlog5 2

[Nag75] n1/3

[Fra77] no(1)

[Chu81] 2O((logn)3/4·(log logn)1/4)

[FW81, Nao92, Alo98, Gro01, Bar06] 2O(
√

logn·log logn)

The Hadamard matrix (folklore)
√
n X

[PR04] n1/2−o(1) X

[BKS+10] nO(1/ log logn) X

[BRSW12] 22(log logn)1−α
X

[Coh16d, CZ16] 2(log logn)O(1)
X

[BADTS16] (log n)2O(
√
log log logn)

X

Corollary 1.5 (log n)(log log logn)O(1)
X

Table 3: Summary of Ramsey graphs constructions from the literature.

30

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


