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Abstract

The main contribution of this work is a construction of a two-source extractor for
quasi-logarithmic min-entropy. That is, an extractor for two independent n-bit sources
with min-entropy Õ(log n), which is optimal up to the poly(log log n) factor. A strong
motivation for constructing two-source extractors for low entropy is for Ramsey graphs
constructions. Our two-source extractor readily yields a (log n)(log log logn)O(1)

-Ramsey
graph on n vertices.

Although there has been exciting progress towards constructing O(log n)-Ramsey
graphs in recent years, a line of work that this paper contributes to, it is not clear if
current techniques can be pushed so as to match this bound. Interestingly, however, as
an artifact of current techniques, one obtains strongly explicit Ramsey graphs, namely,
graphs on n vertices where the existence of an edge connecting any pair of vertices can
be determined in time polylog n. On top of our strongly explicit construction, in this
work, we consider algorithms that output the entire graph in poly(n)-time, and make
progress towards matching the desired O(log n) bound in this setting. In our opinion,
this is a natural setting in which Ramsey graphs constructions should be studied.

The main technical novelty of this work lies in an improved construction of an
independence-preserving merger (IPM), a variant of the well-studied notion of a merger,
that was recently introduced by Cohen and Schulman (FOCS’16). Our construction is
based on a new connection to correlation breakers with advice. In fact, our IPM satisfies
a stronger and more natural property than that required by the original definition, and
we believe it may find further applications.
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1 Introduction

Ramsey theory is a branch of combinatorics that investigates the unavoidable presence of
local structure in globally unstructured objects. In the paper that marks the birth of Ramsey
theory [Ram28], Ramsey considered this general phenomena in the graph-theoretic setting.

Definition 1.1 (Ramsey graphs [Ram28]). An undirected graph is k-Ramsey if it contains
neither a clique nor an independent set of size k.

Ramsey [Ram28], and Erdaős, Szekeres [ES35] proved that there does not exist a graph
on n vertices that is 0.5 log2 n-Ramsey. In his influential paper that inaugurated the prob-
abilistic method, Erdős [Erd47] complemented Ramsey’s result by proving the existence of
a k-Ramsey graph on n vertices, where k = 2 log2 n + O(1). Unfortunately, Erdős’ argu-
ment is non-constructive and one does not obtain from Erdős’ proof an explicit example of a
graph that is k-Ramsey–a challenge that was posed by Erdős and had attracted a significant
attention in the literature since then (see Table 1.)

There are several ways to formalize what it means for a graph to be “explicit”. First, one
must consider not a single graph but rather a family of graphs G = {Gn}n∈N , where N ⊆ N,
and Gn = (Vn, En) is an undirected graph with |Vn| = n. The family G is strongly explicit
if there is an algorithm Astrong that, on inputs u, v ∈ Vn, runs in time polylog(n) and decide
whether {u, v} ∈ En. A natural relaxation would ask for an algorithm Asemi that on input
n ∈ N runs in time poly(n) and outputs the adjacency matrix representation of Gn. In such
case, the family G is called semi-explicit. We typically abuse notation and say that a graph
G = (V,E) is strongly explicit or semi-explicit while formally refer to a family of graphs, of
which G is a representative.

Interestingly, as a byproduct of existing techniques, almost all of the known Ramsey graph
constructions are strongly explicit. However, semi-explicit constructions are as natural as
strongly explicit constructions in the setting of Ramsey graphs. In this paper, among other
results, we make progress on both strongly explicit and semi-explicit constructions of Ramsey
graphs. Our first result is an improved strongly explicit construction of Ramsey graphs.

Theorem 1.2. There exists a universal constant c ≥ 1 for which the following holds. For any
integer n, there exists a strongly explicit O((log n)(log log logn)c)-Ramsey graph on n vertices.

Theorem 1.2 improves upon an exciting line of work [BKS+10, BRSW12, Coh16d, CZ16]

that has been accumulated to a construction of (log n)2O(
√
log log logn)

-Ramsey graphs by Ben-
Aroya, Doron, and Ta-Shma [BADTS16]. While Theorem 1.2 is fairly close to optimal, it
is not clear if current techniques for constructing strongly explicit Ramsey graphs can be
pushed further so as to match the desired 2 log2 n+O(1) bound, or even to obtain O(log n)-
Ramsey graphs. The best construction of a 2 log2 n+O(1)-Ramsey graph on n vertices runs
in quasi-polynomial time nO(logn) [BKS+10]. This naturally leads us to consider semi-explicit
constructions. To present our results in this direction, we proceed with a discussion on multi-
source extractors. This will also allow us to present our two-source extractor construction
(Theorem 1.4.)
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Construction k(n) Bipartite

[Erd47] (non-constructive) 2 log2 n+O(1) X

[Abb72] nlog5 2

[Nag75] n1/3

[Fra77] no(1)

[Chu81] 2O((logn)3/4·(log logn)1/4)

[FW81, Nao92, Alo98, Gro01, Bar06] 2O(
√

logn·log logn)

The Hadamard matrix (folklore)
√
n X

[PR04] n1/2−o(1) X

[BKS+10] nO(1/ log logn) X

[BRSW12] 22(log logn)1−α
X

[Coh16d, CZ16] 2(log logn)O(1)
X

[BADTS16] (log n)2O(
√
log log logn)

X

Theorem 1.2 (log n)(log log logn)O(1)
X

Table 1: Summary of Ramsey graphs constructions from the literature. Bipartite Ramsey
graphs are the analog of Ramsey graphs for the bipartite setting (for the formal definition
see, e.g., [BRSW12]). One can show that any bipartite Ramsey graph induces a Ramsey
graph with comparable parameters.

1.1 Two-Source Extractors for Quasi-Logarithmic Entropy

Recall that a random variable X is said to have min-entropy k if ∀x Pr[X = x] ≤ 2−k. In
such case, X is called a k-source or, more informatively, an (n, k)-source if X is supported
on n-bit strings.

Definition 1.3 (Two-source extractors [CG88]). A function Ext : {0, 1}n×{0, 1}n → {0, 1}
is called a (k, ε) two-source extractor if for any pair of independent (n, k)-sources X, Y ,
Ext(X, Y ) ≈ε U .

In this paper, we only consider extractors with a single output bit and with constant error
guarantee ε. This regime of parameters is most interesting for Ramsey graphs constructions.
It is easy to prove the existence of a (k, ε) two-source extractor for n-bit sources with k =
log2 n + O(1), and that this value is optimal up to the additive constant term. One can
show that for any ε < 1, a (k, ε) two-source extractor Ext : {0, 1}n × {0, 1}n → {0, 1} yields
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a 2k+1-Ramsey graph on 2n vertices. Moreover, if Ext can be evaluated in poly(n)-time then
the induced Ramsey graph is strongly explicit.

The main result of this work is an explicit two-source extractor for quasi-logarithmic
min-entropy. By the connection to Ramsey graphs mentioned above, Theorem 1.4 readily
implies Theorem 1.2.

Theorem 1.4. For any integer n and constant ε > 0 there exists a poly(n)-time computable

(k, ε) two-source extractor with k = Õ(log n). 1

Construction Supported entropy Comments

[CG88] (non-constructive) log2 n+O(1)

[CG88] (conditional) o(n)

[CG88] (1/2 + δ)n for any constant δ > 0

[Raz05] (1/2 + δ)n, O(log n) for any constant δ > 0

[Bou05] (1/2− β)n for some universal constant β > 0

[BSZ11] (conditional) (2/5 + δ)n for any constant δ > 0

[CZ16] (log n)c for some universal constant c

[BADTS16] log n · 2O(
√

log logn)

Theorem 1.4 Õ(log n)

Table 2: Explicit constructions of two-source extractors from the literature.

1.2 Semi-Explicit Four-Source Extractors

In their influential paper, Barak, Impagliazzo, and Wigderson [BIW06] considered a gener-
alization of two-source extractors.

Definition 1.5 (Multi-source extractors [BIW06]). Let s ≥ 2 be an integer. A function
Ext : ({0, 1}n)s → {0, 1} is a (k, ε) s-source extractor if for any independent (n, k)-sources
X1, . . . , Xs, Ext(X1, . . . , Xs) ≈ε U .

One can extend the argument for the existence of two-source extractors that is mentioned
above so as to prove the following.

1We use the standard notation Õ(m) for m · (logm)O(1).
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Fact 1.6. For any constant integer s ≥ 2 and constant ε > 0 there exists a (k, ε) s-source
extractor Ext : ({0, 1}n)s → {0, 1}, where

k =
1

s− 1
· log2 n+O(1).

This is tight up to the additive constant term.

As mentioned, although Theorem 1.4 comes fairly close to optimal and, as a result,
yields close to optimal strongly explicit Ramsey graphs, it seems unlikely to us that current
techniques will yield strongly explicit Ramsey graphs matching the existential 2 log2 n+O(1)
bound. For that one would need a two-source extractor for min-entropy 1 · log2 n+O(1). In
particular, one must insists on the tight constant factor that multiplies log2 n. This seems
out of reach. Obtaining semi-explicit Ramsey graphs raises the problem of constructing
extractors that are allowed to run in exponential-time in their input length. By allowing this
exponential slowdown, which is completely natural in the setting of Ramsey graphs, we ask
for optimal, or near optimal, constructions. In particular, we insists on obtaining the tight
constant that multiplies log2 n, which is 1 in the case of two-source extractors and, more
generally, is 1

s−1
for s-source extractors.

In this work we make a step towards constructing optimal semi-explicit Ramsey graph
by devising exponential-time multi-source extractors with the tight constant factor that
multiplies log2 n. More precisely, we prove the following.

Theorem 1.7. For any constant integer s ≥ 3, constant ε > 0, and integer n, there exists

an exp
(
n+ n

2
s−1 · log10 n

)
-time computable (k, ε) s-source extractor, where

k =
1

s− 1
· log2 n+ 5 log2 log n+O(1).

Note that for any s ≥ 4, Theorem 1.7 gives an exponential-time s-source extractor with
the tight constant factor that multiplies log2 n. The extractor is optimal up to the additive
5 log2 log n + O(1) term. Moreover, Theorem 1.7 yields a 3-source extractor with similar
parameters, however, its running-time is exp(n · log10 n) as opposed to the desired exp(n)
running-time. Unfortunately, our techniques breaks at s = 2, and we do not obtain an
improvement over the Barak et al. result [BKS+10], which is optimal up to an additive
constant factor, and runs in time exp(n2). The proof of Theorem 1.7 can be found in
Section 7.

1.3 Non-Malleable Extractors

For the proof of Theorem 1.4, we construct an improved non-malleable extractor [DW09].
The original motivation for studying non-malleable extractors was for the problem of pri-
vacy amplification. A framework for constructing privacy amplification protocols was de-
vised [DW09] that is instantiated with a non-malleable extractor, and where the parameters
of the protocol inherits those of the extractor. In particular, via the Dodis-Wichs framework,
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an optimal non-malleable extractor readily induces an optimal privacy amplification proto-
col. For a discussion on the Dodis-Wichs framework, the reader may consult the original
paper [DW09] or Section 2.3 of [Coh16a] for a brief and informal treatment. In [DW09] it was
shown that non-malleable extractors exist, though the task of constructing such extractors
was left for future research, and has gained a significant attention as summarized in Table 3.

Definition 1.8 (Non-malleable extractors [DW09]). A function nmExt : {0, 1}n×{0, 1}d →
{0, 1}m is called a (k, ε)-non-malleable extractor if for any (n, k)-source X and function
A : {0, 1}d → {0, 1}d with no fixed points,

(nmExt(X, Y ), nmExt(X,A(Y )), Y ) ≈ε (Um, nmExt(X,A(Y )), Y ),

where Y is uniformly distributed over {0, 1}d independently of X. If nmExt is a (k, ε)-
non-malleable extractor, we say that nmExt has error guarantee ε and that nmExt supports
min-entropy k.

It can be shown that, regardless of the computational aspect, any (k, ε)-non-malleable
extractor for n-bit sources requires seed length d = Ω(log(n/ε)), can only support min-
entropy k = Ω(log(1/ε)), and can output at most k/2−Ω(log(1/ε)) bits. Prior to this work,
the state of the art explicit non-malleable extractor [Coh16a] has seed length d = O(log n) +

log(1/ε) · 2O(
√

log log(1/ε)), supports min-entropy k = Ω(d), and can output m = (1/2 − α)k
bits for any desired constant α > 0. In this work we improve upon this result and obtain
the following.

Theorem 1.9. For any constant α > 0 there exists a constant c ≥ 1 such that for any integer
n and any ε > 0, there exists an explicit (k, ε)-non-malleable extractor nmExt : {0, 1}n ×
{0, 1}d → {0, 1}m with seed length d = O(log n) + Õ(log(1/ε)) for any k ≥ cd, with m =
(1/2− α)k output bits.

By plugging our non-malleable extractor from Theorem 1.9 to the Dodis-Wichs frame-
work, we obtain improved, near-optimal, privacy amplification protocols.

Corollary 1.10. For all n, λ, there exists an explicit two-round privacy amplification protocol
against an active adversary, that supports min-entropy k = Ω(d), with entropy-loss O(λ +

log n), and communication complexity O(d+ (λ+ log k) · log k), where d = O(log n) + Õ(λ).

In the next two subsections we briefly review what is known about the connection between
non-malleable extractors and two-source extractors–a connection we employ so as to deduce
Theorem 1.4 from Theorem 1.9.

1.3.1 The [CZ16] Reduction From Two-Source Extractors to Non-Malleable
Extractors

In a recent breakthrough [CZ16], Chattopadhyay and Zuckerman showed how to reduce
the problem of constructing two-source extractors to that of constructing non-malleable
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Construction Seed length d (up to constants)
Supported en-
tropy

[DW09] (non-constructive) log(n) +O(1) Ω(log log n)

[LWZ11] n (0.5 + δ) · n

[CRS14, DLWZ14, Li12a] log(n/ε) (0.5 + δ) · n

[Li12b] log(n/ε) (0.5− β) · n

[CGL16] log2(n/ε) Ω(d)

[Coh16b] log(n/ε) · log(log(n)/ε) Ω(d)

[Coh16c] log n+ log3(1/ε) Ω(d)

[CL16] log(n/ε) · 2
√

log log(n/ε) Ω(d)

[Coh16a] log n+ log(1/ε) · 2
√

log log(1/ε) Ω(d)

Theorem 1.9 log n+ Õ(log(1/ε)) Ω(d)

Table 3: Explicit constructions of non-malleable extractors from the literature. We note
that [Coh16b, CL16] offer several more constructions.

extractors. More precisely, it was shown how to construct a two-source extractor given a
non-malleable extractor as well as an extractor for non-oblivious bit-fixing sources. The
min-entropy supported by the two-source extractor is related to the seed length d and the
supported min-entropy k of the non-malleable extractor when set with error guarantee ε =
2− logc n for some large enough constant c > 1. By plugging the state of the art non-malleable
extractor that was available at the time [CGL16] to their reduction, the first n-bit two-source
extractor for polylog(n) min-entropy sources was obtained.

Although exciting, the [CZ16] reduction from non-malleable extractors to two-source
extractors cannot be used to obtain two-source extractors for min-entropy O(log n). In
fact, as was observed by [CS16], ideas that were used at the time were stuck at min-entropy
Ω(log2 n) for several different reasons, even if one has access to any o(log n) number of sources
(as opposed to just 2 sources) and even if one would settle for a disperser. In a sequence of
works [CS16, CL16] that has accumulated to [Coh16a], an extractor for 5 n-bit sources with
min-entropy log n · 2O(

√
log logn) was constructed. It was not clear, however, how to reduce

the number of sources from 5 to 2.

1.3.2 The Improved [BADTS16] Reduction

Very recently, Ben-Aroya, Doron, and Ta-Shma [BADTS16] devised an improved reduction
from two-source extractors to non-malleable extractors. The new reduction has two advan-
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tages over the original reduction of [CZ16]. First, as in [CS16, CL16, Coh16a], the fairly
complicated extractor for non-oblivious bit-fixing sources was replaced with the simple ma-
jority function, significantly simplifying the overall construction. Second, the reduction ap-
plies the non-malleable extractor with error guarantee ε = poly(1/n). Thus, the [BADTS16]
reduction paves the way for constructing two-source extractors for min-entropy O(log n).

For their reduction, Ben-Aroya et al. apply some of the new techniques that were devel-
oped in [CS16, Coh16a, CL16], as well as a variation on a classical error reduction technique
for seeded extractors [RRV99] and a result by Dodis et al. [DPW14]. By plugging the ex-
plicit non-malleable extractor of [Coh16a] to their reduction, Ben-Aroya et al. obtained a
two-source extractor for n-bit sources with min-entropy log n · 2O(

√
log logn). By plugging our

non-malleable extractor from Theorem 1.9 instead, we readily obtain Theorem 1.4.

2 Independence-Preserving Mergers and Correlation

Breakers

Now that the notion of a non-malleable extractor and its applications were briefly discussed,
we turn to consider the inner workings of our non-malleable extractor. To this end we
discuss two recently introduced pseudorandom objects: independence-preserving mergers
(IPM) [CS16], and correlation breakers (CBA) [Coh15, CGL16, Coh16b].

2.1 Independence-Preserving Mergers (IPM)

Informally speaking, a merger is a function that is given as input a sequence of random
variables M1, . . . ,Mr, one of which is uniform, while the others are arbitrary and may cor-
relate with the former in arbitrary ways. As implied by its name, the task of a merger Merg
is to “merge” the sequence to a new random variable Z = Merg(M1, . . . ,Mr) that is close
to uniform. We find it convenient to stack all Mi’s as the rows of a matrix M . One can
show that as we do not know which row Mg of M is uniform, and since all rows of M can
correlate with Mg in arbitrary ways, for the merger to fulfil its task, it must have access to
some “fresh” randomness, namely, to a random variable Y that is independent of M .

The problem of constructing seeded-mergers, namely, mergers with a uniformly dis-
tributed Y , attracted a significant attention in the literature [TS96a, TS96b, LRVW03,
Raz05, DS07, DW09, DKSS09], mainly due to its role in some constructions of seeded extrac-
tors. Other works studied the problem of constructing mergers with weak-seeds [BRSW12,
Coh15] in which Y is only assumed to be a weak-source.

Motivated by the problem of constructing multi-source extractors, the notion of an
independence-preserving merger (IPM) was introduced in [CS16] and was further studied
and used in other contexts [CL16, Coh16a]. This is a function IPM that, similarly to a
“standard” merger, is given a matrix M and an auxiliary fresh randomness Y . Further,
all rows of M are uniform (in which case, standard merging is trivial, deterministically).
However, an adversary holds a matrix M ′ that is allowed to arbitrarily correlate with M but
for the assumption that some row of M is uniform (even) conditioned on the corresponding
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IPM Non-malleable extractors

Privacy amplification protocols (active adversary)

Two-source extractors

CBA
[CZ’16,BADTS’16]

[DW’09][CGL’16,Coh’16b]

[Coh’16a]

This work
Ramsey graphs

Flip-Flop

[CGL’16]

Figure 1: A schematic description of the connection between non-malleable extractors, their
applications, and inner workings. The dashed arrow represents the first technique for con-
structing CBA [CGL16] via the flip-flop primitive [Coh15], which was subsumed by an IPM-
based construction [Coh16a]. Among other ideas, our improved non-malleable extractors
rely on a new, inverse, reduction from IPM to CBA.

row of M ′. The guarantee of the independence-preserving merger is that IPM(M,Y ) is close
to uniform even when conditioned on IPM(M ′, Y ′) where Y ′ may correlate arbitrarily with
Y . In that sense, IPM preserves the existing independence that one of the rows of M has
with the corresponding row in M ′.

Although seeded-IPM are natural objects, for current applications one is required to con-
sider the stronger notion of an IPM with weak-seeds, namely, the IPM must work with Y
that is not necessarily uniform and is only guaranteed to have some min-entropy k. The
quantitative goal is to optimize k with respect to r and ε – the statistical distance of the
output of IPM from uniform. In fact, for technical reasons, the formal definition (see Def-
inition 4.2) is more involved, and we prefer to postpone it and carry out only a high-level
discussion in this section.

Being somewhat imprecise for the sake of simplicity, in [CS16] an IPM was constructed
for k = r · log(1/ε). Subsequently, a strengthening of IPM was constructed in [CL16] for
k = 2

√
log r · log(1/ε). The main technical contribution of this work is the construction of

an IPM with a lower min-entropy requirement. The formal statement is the content of
Theorem 4.3. Here we settle for an informal statement.

Theorem 2.1 (Main technical contribution – informal statement). There exists an explicit
IPM for r-row matrix with k = polylog(r) · log(1/ε).

In fact, our construction yields a stronger and more natural variant of IPM as it does
not require all rows of M to be uniform. The only requirement is that some row of M
must be uniform when conditioned on the corresponding row of M ′. We remark that, for
different reasons, previous constructions [CL16, Coh16a] require all rows of M to be uniform.
Throughout the paper we sometimes refer to our stronger notion of IPM as IPM with no
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uniformity assumption.

2.2 Correlation Breakers with Advice (CBA)

When constructing pseudorandom objects, one often faces undesired correlations between
random variables. For examples, mergers are able to merge random variables despite their
correlations, and IPM preserves, in some sense, an already acquired independence despite
the presence of other correlations. Extractors can be thought of as breaking correlations
between the different bits of the weak-source, etc.

As their name suggests, correlation breakers tackle the problem of breaking correlations
between random variables heads on. Although a central issue, the problem of efficiently
breaking arbitrary correlations some adversarial random variable has with a uniformly dis-
tributed random variable that we posses, using (unavoidably) an auxiliary source of random-
ness, was first explicitly studied by [Coh15] in the form of an object called a local correlation
breaker, and was constructed based on techniques developed in [Li13] who obtained some re-
stricted results on that direction. By adapting the construction of local correlation breakers,
Chattopadhyay et al. [CGL16] gave a construction for a different type of correlation break-
ers, which was later explicitly defined and coined correlation breakers with advice [Coh16b].
This primitive is the main component, both conceptually and in terms of technical effort,
in existing constructions of non-malleable extractors [CGL16, Coh16b, Coh16c]. Correlation
breakers with advice found applications in other contexts as well [CS16].

The formal definition of CBA is fairly technical, and we choose to conduct an informal
and high-level discussion here. For a formal treatment see Definition 3.16. The first con-
struction of CBA [CGL16] was based on a sequential application of the so-called flip-flop
primitive [Coh15]. The parameters of that construction are exponential in the advice length,
which is the main parameter of complexity in these constructs. In [Coh16a], a reduction from
CBA to IPM was established, which allowed for a construction of CBA with near-optimal
parameters, and in particular with the optimal dependence on the advice length.

In this work we establish a reduction in the other direction, namely we show how to use
a CBA for the construction of IPM. Combined with the original, inverse, reduction [Coh16a]
we obtain CBA with improved parameters (see Theorem 5.1). We further remark that our re-
duction from non-malleable extractors to CBA has a slight twist on the original one [CGL16]
and on its followup improvement [Coh16b] which allows us to save even further on random-
ness (see Section 6).

2.3 Independent Work

While writing this paper, we have learned that in a concurrent and independent work,
Li [Li16] obtained results that are comparable to ours using different ideas. In particu-
lar, Li constructed a non-malleable extractor with seed length d = O(log n) + O(log(1/ε) ·
log log(1/ε)). Li also obtained a 10-source extractor for n-bit sources with min-entropy
O(log n) which is incomparable with our semi-explicit 4-source extractor for min-entropy
(1/3 + o(1)) log2 n.
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3 Preliminaries

In this section we set some notations that will be used throughout the paper and recall some
of the more standard results from the literature that we make use of.

Setting some standard notations. Unless stated otherwise, the logarithm in this paper
is always taken base 2. For every natural number n ≥ 1, define [n] = {1, 2, . . . , n}. We avoid
the use of flooring and ceiling in order not to make the equations cumbersome. We say that a
function is explicit or efficiently-computable when the corresponding family of functions can
be computed by a (uniform) algorithm that runs in polynomial-time in the input length. In
particular, when a real parameter ε is introduced, the running time is polynomial in log(1/ε)
(as apposed to 1/ε).

Random variables and distributions. We sometimes abuse notation and syntactically
treat random variables and their distribution as equal, specifically, we denote by Um a random
variable that is uniformly distributed over {0, 1}m. Furthermore, if Um appears in a joint
distribution (Um, X) then Um should be understood as being independent of X. When m
is clear from context, we omit it from the subscript and write U . The support of a random
variable X is denoted by supp(X). Let X, Y be two random variables. We say that Y is
a deterministic function of X if the value of X determines the value of Y . Namely, there
exists a function f such that Y = f(X).

Statistical distance. The statistical distance between two distributions X, Y on the same
domain D is defined by

SD (X, Y ) = max
A⊆D
{|Pr[X ∈ A]−Pr[Y ∈ A] |} .

If SD(X, Y ) ≤ ε we write X ≈ε Y and say that X and Y are ε-close.

3.1 Average Conditional Smooth Min-Entropy

Throughout the paper we make use of the notion of average conditional smooth min-entropy
and some basic properties of it. We start by recalling the more basic notion of The min-
entropy. The min-entropy of a random variable X, denoted by H∞(X), is defined by

H∞(X) = min
x∈supp(X)

log2(1/Pr[X = x]).

If X is supported on {0, 1}n, we define the min-entropy rate of X by H∞(X)/n. In such
case, if X has min-entropy k or more, we say that X is an (n, k)-source. When wish to refer
to an (n, k)-source without specifying the quantitative parameters, we sometimes use the
standard terms source or weak-source.
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Definition 3.1. Let A,B be random variables. The average conditional min-entropy of A
given B is defined as

H∞(A | B) = − log2

(
E
b∼B

[
max
a

Pr [A = a | B = b]
])
.

Further, for an ε > 0 define

Hε
∞(A | B) = max H∞(A′ | B′),

where the maximum is taken over all (A′, B′) that are within statistical distance ε from
(A,B). This quantity is referred to as the average conditional smooth min-entropy of A
given B, where ε is the smoothness parameter.

Lemma 3.2 (Chain rule, [VDTR13]). For any random variables A,B,C and for any ε, δ > 0
it holds that

Hε+δ
∞ (A|BC) ≥ Hε

∞(AB|C)− |supp(B)| −O(log(1/δ)),

where supp(B) is the support of B.

Theorem 3.3. Let f : D → {0, 1} be some function with domain D, and let µ = Ex [f(x)]
be the expectation of f , where x is sampled uniformly at random from D. Let x1, . . . , xt be
elements that are sampled uniformly and independently at random from D. Then,

Pr

[∣∣∣∣∣µ− 1

t
·

t∑
i=1

f(xi)

∣∣∣∣∣ > ε

]
≤ 2 · e−2ε2t.

3.2 Building Blocks We Use

Throughout the paper we make use of several building blocks from the literature. We turn
to state these results we use.

Extractors and condensers.

Definition 3.4 (Seeded extractors). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is called a
(k, ε)-seeded extractor if for any (n, k)-source X it holds that Ext(X,S) ≈ε Um, where S is
uniformly distributed over {0, 1}d and is independent of X. We say that Ext is a strong if
(Ext(X,S), S) ≈ε Um+d.

We sometimes say that an extractor Ext supports min-entropy k. By that we mean that
Ext is an extractor for min-entropy k. Throughout the paper we make use of the following
family of explicit strong seeded extractors.

Theorem 3.5 ([GUV09]). There exists a universal constant cGUV > 0 such that the following
holds. For all positive integers n, k and ε > 0, there exists an efficiently-computable (k, ε)-
strong seeded-extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m having seed length d = cGUV · log(n/ε)
and m = k/2 output bits. Further, one can have m = (1 − α)k for any constant α > 0 at
the price of having a larger constant cGUV = cGUV(α).

11



Theorem 3.6 ([GUV09], Theorem 4.4). For all integers n, k and ε > 0, there is a poly(n, log(1/ε))-
time computable k →ε k + d condenser Cond : {0, 1}n × {0, 1}d → {0, 1}m with

d = log2 n+ log2 k + log2(1/ε) + 1,

m = d(k + 2).

Lemma 3.7 ([Li11, CS16]). Let Cond : {0, 1}n × {0, 1}d → {0, 1}m be a k →ε k
′ condenser.

Let X be an (n, k)-source and let S be an independent random variable that is uniformly
distributed over d-bit strings. Then, for any δ > 0, with probability 1− δ over s ∼ S it holds
that Cond(X, s) is (2ε/δ)-close to having min-entropy k′ − d− log2(2/δ).

Theorem 3.8. There exist universal constants cRaz, c
′
Raz such that the following holds. Let

n, k be integers and let ε > 0. Set d = cRaz · log(n/ε). For all k ≥ c′Razd, there exists an
efficiently-computable function

Raz : {0, 1}n × {0, 1}d → {0, 1}k/2

with the following property. Let X be an (n, k)-source, and let Y be an independent (d, 0.6d)-
source. Then, (Raz(X, Y ), Y ) ≈ε (U, Y ).

Theorem 3.9 ([BKS+10, Raz05, Zuc07]). For any constants δ1, δ2 > 0 there exists a constant
integer ∆ = ∆(δ1, δ2) ≥ 1 such that the following holds. For any integer n there exists a
sequence of efficiently computable functions {Condi : {0, 1}n → {0, 1}n/∆}∆

i=1 such that the
following holds. For any (n, δ1n)-source X, the joint distribution of {Condi(X)}∆

i=1 is 2−n/∆-
close to a convex combination such that for any participant (Y1, . . . , Y∆) in the combination,
there exists g ∈ [∆] such that Yg has min-entropy rate 1− δ2.

Definition 3.10 (Seeded condensers). A function Cond : {0, 1}n × {0, 1}d → {0, 1}m is
said to be a k →ε k

′ condenser if for any (n, k)-source X and for any independent random
variable S that is uniformly distributed over d-bit strings, it holds that Cond(X,S) is ε-close
to a random variable with min-entropy k′. The function Cond is called a lossless condenser
if k′ = k + d.

We also make use of the following lemma.

Lemma 3.11 ([CG88]). Any (n, k)-source X can be written as a convex combination of
(n, k) flat sources.

Error correcting codes. We also make us of the following standard definition of an error
correcting code.

Definition 3.12. Let Σ be some set. A mapping ECC : Σk → Σn is called an error correcting
code with relative-distance δ if for any x, y ∈ Σk, it holds that the Hamming distance between
ECC(x) and ECC(y) is at least δn. The rate of the code, denoted by ρ, is defined by ρ = k/n.
We say that the alphabet size of the code is |Σ|.
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Theorem 3.13 ([GS95] (see also [Sti09])). Let p be any prime number and let m be an even
integer. Set q = pm. For every ρ ∈ [0, 1] and for any large enough integer n, there exists
an efficiently-computable rate ρ linear error correcting code ECC : Fρnq → Fnq with relative
distance δ such that

ρ+ δ ≥ 1− 1
√
q − 1

.

Bounded-independence distributions.

Definition 3.14 ([NN93]). Let n, k be integers such that k ≤n, and let δ > 0. A random
variable X over n-bit strings is called (n, k, δ)-independent, if for any S ⊆ [n], with |S| ≤ k,
the marginal distribution XS is δ-close to uniform.

Theorem 3.15 ([NN93, AGHP92]). For all δ > 0 and integers n, k, there exists an explicit
construction of an (n, k, δ)-independent sample space, with size (2kn/δ)O(1).

Correlation breakers.

Definition 3.16 (Correlation breakers with advice). A function

CBA : {0, 1}n × {0, 1}` × {0, 1}a → {0, 1}m

is called a (t, k, ε)-correlation breaker with advice (or (t, k, ε)-CBA for short) if the following
holds. Let α, α1, . . . , αt ∈ {0, 1}a. Let X = (X,X1, . . . , X t) be a sequence of n-bit random
variables, Y = (Y, Y 1, . . . , Y t) a sequence of `-bit random variables, and let H be a random
variable for which the following holds:

• Conditioned on H the random variables X ,Y are independent;

• The strings α, α1, . . . , αt ∈ {0, 1}a are fixed when conditioned on H, and α 6∈ {αi | i ∈
[t]};

• Hε
∞ (X | H) ≥ k + Ω(log(1/ε)); and

• (Y,H) ≈ε (U,H).

Then,(
CBA (X, Y, α) ,

{
CBA

(
X i, Y i, αi

)}t
i=1

,Y ,H
)
≈O(ε)

(
U,
{
CBA

(
X i, Y i, αi

)}t
i=1

,Y ,H
)
.

When considering (t = 1, k, ε)-CBA, we sometimes abbreviate and write (k, ε)-CBA.
Further, we sometimes consider (t, k, ε)-CBA with k = δn for some constant δ. We refer to
such objects also as (t, δ, ε)-CBA, and note that this should never cause any confusion (as
δ < 1 < k). For our constructions we make use of the following construction of CBA.

Theorem 3.17 ([Coh16a]). For any constant integers a, t there exists a constant c =
c(a, t) ≥ 1 such that the following holds. Let n,m be integers and let ε > 0. Then, there
exists an explicit (t, k, ε)-CBA

CBA : {0, 1}n × {0, 1}` × {0, 1}a → {0, 1}m

with ` = c · log(n/ε) and k = c(m+ `).
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3.3 Hierarchy of Independence

Let n, b be integers and let ε > 0. Let cGUV be the constant that is given by Theorem 3.5
and set s = cGUV · log(n/ε). Note that s is sufficiently long so to be used as a seed for the
strong seeded extractor that is given by Theorem 3.5 when fed with a sample from an n-bit
source and when set with error guarantee ε. We make use of the following pair of extractors:

• Let Extin : {0, 1}n×{0, 1}s → {0, 1}s be the (2s, ε)-strong seeded extractor that is given
by Theorem 3.5.

• Let Extout : {0, 1}n × {0, 1}s → {0, 1}b be the (2b, ε)-strong seeded extractor that is
given by Theorem 3.5.

Define the pair of functions

a : {0, 1}s × {0, 1}n → {0, 1}b,
b : {0, 1}s × {0, 1}n × {0, 1}n → {0, 1}b,

as follows. For y ∈ {0, 1}s and z, w ∈ {0, 1}n,

a(y, w) = Extout(w, y),

b(y, z, w) = Extout(w,Extin(z,Extin(w, y))).

The following lemma, in different forms and with different twists, appears in several
previous works [DP07, DW09, Li13, Li15, Coh15, CS16, Coh16a].

Lemma 3.18. Let Y = (Y, Y ′) be a pair of s-bit random variables, Z = (Z,Z ′) a pair of
n-bit random variables, and let W = (W,W ′) be a pair of n-bit random variables. Let H be
a random variable for which the following holds:

• Conditioned on H, the random variable W is independent of (Y ,Z);

• (Y,H) ≈δ (U,H);

• Hε
∞(Z | H) ≥ 4s+ Ω(log(1/ε)); and

• Hε
∞(W | H) ≥ 2b+ 2s+ Ω(log(1/ε)).

Write

Â = a(Y,W ), a(Y ′,W ′),

Ẑ = Extin(Z,Extin(W,Y )),Extin(Z
′,Extin(W

′, Y ′)).

Then, the following holds:

1. (a(Y,W ),Z,Y ,H) ≈δ+2ε (U,Z,Y ,H) ,
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2.
(
b(Y, Z,W ),Z, Ẑ, Â,Y ,H

)
≈δ+6ε

(
U,Z, Ẑ, Â,Y ,H

)
.

Furthermore,

3. H2ε
∞

(
Z | Ẑ, Â,Y ,H

)
≥ Hε

∞ (Z | H)− 4s−O(log(1/ε)),

4. H2ε
∞

(
W | Ẑ, Â,Y ,H

)
≥ Hε

∞ (W | H)− 2b− 2s−O(log(1/ε)).

4 IPM with No Uniformity Assumption

Definition 4.1 (Somewhere-independent matrices with no uniformity assumption). Let
M,M ′ be a pair of random variables in the form of r × ` matrices. Let H be a random
variable and let δ > 0. We say that M is (δ,H)-somewhere independent of M ′ if there exists
g ∈ [r] such that (

Mg,M
′
g,H

)
≈δ
(
U,M ′

g,H
)
.

Definition 4.2 (IPM with no uniformity assumption). A function

IPM : {0, 1}r×` × {0, 1}d × {0, 1}d → {0, 1}` (4.1)

is called a (k, ε)-independence preserving merger (or (k, ε)-IPM for short) with no uniformity
assumption if the following holds. Let X = (X,X ′) be a pair of d-bit random variables,
Y = (Y, Y ′) a pair of d-bit random variables, and let M = (M,M ′) be a pair of random
variables in the form of r × ` matrices. Let H be a random variable for which the following
holds:

• Conditioned on H the random variable X is independent of (M,Y);

• Hε
∞ (X | H) ≥ k + Ω(log(1/ε));

• Hε
∞ (Y | M,H) ≥ k + Ω(log(1/ε)); and

• M is (ε,H)-somewhere independent of M ′.

Then,

(IPM(M,X, Y ), IPM(M ′, X ′, Y ′),M,Y ,H) ≈O(ε) (U, IPM(M ′, X ′, Y ′),M,Y ,H) .

Some remarks. Unlike previous works [CS16, CL16, Coh16a], our construction of independence-
preserving mergers satisfies the stronger notion of being an independence-preserving merger
with no uniformity assumption. That is, we do not require that ∀i ∈ [r] (Mi, H) ≈δ (U,H).
Thus, for the rest of this paper we simply use the term independence-preserving mergers (or
IPM for short) when referring to the stronger notion that is introduced in Definition 4.2.
Further, we sometimes consider (k, ε)-IPM as in (4.1) with k = δd for some constant δ. We
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refer to such objects as (δ, ε)-IPM, and note that this should never cause any confusion (as
δ < 1 < k).

The main result proved in this section, which is the main technical contribution of this
work, is the following theorem, which is a formal restatement of Theorem 2.1.

Theorem 4.3. For any constant τ > 0 there exists a constant c = c(τ) ≥ 1 such that the
following holds. For all integers r, ` and for any ε > 0 such that ` = Ω(log(log(r)/ε)), there
exists an explicit (6/7 + τ, ε)-IPM

IPM : {0, 1}r×` × {0, 1}d × {0, 1}d → {0, 1}`

with d = O(` · logc r).

The construction of the IPM stated in Theorem 4.3 is recursive. For the base of the
recursion we need an IPM with no uniformity assumption for a constant number of rows.
We construct this base IPM in the following section. This is the content of Lemma 4.4. We
then proceed to prove Theorem 4.3 in Section 4.2.

4.1 IPM for a Constant Number of Rows via CBA

Lemma 4.4. For any constant integer r, any integers d, `, and any ε > 0 such that ` =
Ω(log(d/ε)) there exists an explicit (k, ε)-IPM

BaseIPM : {0, 1}r×` × {0, 1}d × {0, 1}d → {0, 1}`

with k = Ω(`).

For the proof of Lemma 4.4 we first observe a property of CBA. Correlation breakers with
advice are designated to break correlations between random variables when fed with distinct
advices. In the following lemma we show that any CBA is also independence-preserving
in the sense that if some random variable is already uniform conditioned on another, that
independence is preserved even if one applies a CBA to both variables using the same advice
string. We make this formal in the following lemma.

Lemma 4.5. Let CBA : {0, 1}n×{0, 1}`×{0, 1}a → {0, 1}m be a (t, k, 2ε)-CBA. Let α, α1, . . . , αt ∈
{0, 1}a, and set I = {i | α = αi}. Let X = (X,X1, . . . , X t) be a sequence of n-bit random
variables, Y = (Y, Y 1, . . . , Y t) a sequence of `-bit random variables, and let H be a random
variable for which the following holds:

• Conditioned on H, the random variables X ,Y are independent;

• The strings α, α1, . . . , αt are fixed when conditioned on H;

• Hε
∞ (X | H) ≥ k +m|I|+ Ω(log(1/ε)); and

• (Y, {Y i}i∈I ,H) ≈ε (U, {Y i}i∈I ,H).
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Then,(
CBA (X, Y, α) ,

{
CBA

(
X i, Y i, αi

)}t
i=1

,Y ,H
)
≈O(ε)

(
U,
{
CBA

(
X i, Y i, αi

)}t
i=1

,Y ,H
)
.

(4.2)

Proof. By the hypothesis of the lemma,(
Y, {Y i}i∈I ,H

)
≈ε
(
U, {Y i}i∈I ,H

)
.

Conditioned on {Y i | i ∈ I},H, the random variable Y is independent of the joint distribu-
tion of {X i | i ∈ I}, and so we can adjoin the latter to the above equation and obtain(

Y, {X i, Y i}i∈I ,H
)
≈ε
(
U, {X i, Y i}i∈I ,H

)
.

As CBA(X i, Y i, αi) is a deterministic function of X i, Y i, we conclude that

(Y,H1) ≈ε (U,H1) , (4.3)

where H1 = {CBA(X i, Y i, αi), Y i | i ∈ I},H. Note that we removed the random variables
{X i | i ∈ I} when deducing (4.3) and preserved only the corresponding set of outputs
{CBA(X i, Y i, αi) | i ∈ I}. This step is crucial for the following derivation. By Lemma 3.2,

H2ε
∞(X | H1) ≥ Hε

∞(X | H)−m|I| −O(log(1/ε)) ≥ k + Ω(log(1/ε)). (4.4)

Let X ′ = {X i | i 6∈ I}, Y ′ = {Y i | i 6∈ I}. Note that conditioned on H1, the random
variables X ′,Y ′ are independent. By (4.3), (4.4) we may apply CBA to X ′,Y ′ with H1 and
the corresponding advices {αi | i 6∈ I} to conclude that(

CBA(X, Y, α), {CBA(X i, Y i, αi)}i 6∈I ,Y ′,H1

)
≈O(ε)

(
U, {CBA(X i, Y i, αi)}i 6∈I ,Y ′,H1

)
,

which readily concludes the proof.

With Lemma 4.5 in hand, we are now ready to prove Lemma 4.4.

Proof of Lemma 4.4. Let cGUV be the constant that is given by Theorem 3.5. Set a = log r,
t = 2r, and m = cGUV · log(d/ε). Note that a, t are constants.

Building blocks. For the construction of BaseIPM we make use of the following building
blocks:

• Let CBA : {0, 1}d × {0, 1}` × {0, 1}a → {0, 1}m be the (t, k−m−O(log(1/ε)), ε)-CBA
that is given by Theorem 3.17. Note that the hypothesis of Theorem 3.17 regarding
`, k is met.

• Let Ext1 : {0, 1}d × {0, 1}m → {0, 1}m be the (2m, ε)-strong seeded extractor that is
given by Theorem 3.5. Note that m was chosen as required by Theorem 3.5.

• Let Ext2 : {0, 1}d×{0, 1}m → {0, 1}` be the (2`, ε)-strong seeded extractor that is given
by Theorem 3.5.
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The construction. Let m ∈ {0, 1}r×` and let x, y ∈ {0, 1}d. For i ∈ [r] we define

zi = CBA(x,mi, i), (4.5)

where by feeding i as the third argument to CBA we formally mean the binary string obtained
by writing the integer i to the base 2. Note that indeed the advice length is log r = a. Define

s =
r⊕
i=1

zi,

t = Ext1(y, s),

and set
BaseIPM(m,x, y) = Ext2(x, t).

Analysis. Let X = (X,X ′) be a pair of d-bit random variables, Y = (Y, Y ′) a pair of d-bit
random variables, and let M = (M,M ′) be a pair of random variables in the form of r × `
matrices. Let H be a random variable for which the following holds:

• Conditioned on H, the random variable X is independent of (M,Y);

• Hε
∞ (X | H) ≥ k + Ω(log(1/ε));

• Hε
∞ (Y | M,H) ≥ k + Ω(log(1/ε)); and

• (Mg,M
′
g,H) ≈ε (U,M ′

g,H) for some g ∈ [r].

Note that we set the advice strings in such a way that with every row in the pair of
matrices M,M ′ we associate an advice that is distinct of all other advices but for one – the
one associated with the corresponding row in the other matrix. Further, clearly the advices
are fixed (also when conditioned on H). Thus, we may apply Lemma 4.5 with Theorem 3.17
to conclude that(

Zg, {Zi}i∈[r]\{g}, {Z ′i}ri=1,M,H
)
≈O(ε)

(
U, {Zi}i∈[r]\{g}, {Z ′i}ri=1,M,H

)
.

It then follows that
(S, S ′,M,H) ≈O(ε) (U, S ′,M,H) ,

where we used the simple fact that (A,B,C) ≈ε (U,B,C) implies (A⊕B,B,C) ≈ε (U,B,C).
Conditioned on S ′,M,H, the random variable S is independent of Y ′ and so we may adjoin
Y ′ to obtain

(S, Y ′, S ′,M,H) ≈O(ε) (U, Y ′, S ′,M,H) .

As T ′ = Ext1(Y ′, S ′) is a deterministic function of Y ′, S ′ we conclude that

(S, T ′, S ′,M,H) ≈O(ε) (U, T ′, S ′,M,H) .
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Note that we removed Y when deducing the above equation. This is crucial for the follow-
ing. Conditioned on T ′, S ′,M,H, the random variables S, Y are independent. Further, by
Lemma 3.2,

H2ε
∞(Y | T ′, S ′,M,H) ≥ Hε

∞(Y | M,H)−m−O(log(1/ε))

≥ k −m−O(log(1/ε))

≥ 2m+ Ω(log(1/ε)),

and so
(T, S, T ′, S ′,M,H) ≈O(ε) (U, S, T ′, S ′,M,H) .

Conditioned on S, T ′, S ′,M,H, the random variables T,X ′ are independent, and so

(T,X ′, S, T ′, S ′,M,H) ≈O(ε) (U,X ′, S, T ′, S ′,M,H) .

The above equation together with the fact that BaseIPM(M ′, X ′, Y ′) = Ext2(X ′, T ′) is a
deterministic function of X ′, T ′ implies that

(T,BaseIPM(M ′, X ′, Y ′), S, T ′, S ′,M,H) ≈O(ε) (U,BaseIPM(M ′, X ′, Y ′), S, T ′, S ′,M,H) .
(4.6)

Further,

H2ε
∞(X | BaseIPM(M ′, X ′, Y ′), S, T ′, S ′,M,H) ≥ Hε

∞(X | H)− `− 2m

≥ 2`+ Ω(log(1/ε)). (4.7)

By Equations (4.6), (4.7), and by the fact that X,T are independent when conditioned on
the output BaseIPM(M ′, X ′, Y ′), and S, T ′, S ′,M,H, we have that

(BaseIPM(M,X, Y ), T,BaseIPM(M ′, X ′, Y ′), S, T ′, S ′,M,H) ≈O(ε)

(U, T,BaseIPM(M ′, X ′, Y ′), S, T ′, S ′,M,H) .

Conditioned on T,BaseIPM(M ′, X ′, Y ′), S, T ′, S ′,M,H, the random variable BaseIPM(M,X, Y )
is independent of Y , and so we can adjoin Y and remove the excess random variables to obtain

(BaseIPM(M,X, Y ),BaseIPM(M ′, X ′, Y ′),M,Y ,H) ≈O(ε) (U,BaseIPM(M ′, X ′, Y ′),M,Y ,H) ,

which completes the proof.

4.2 Proof of Theorem 4.3

Before proving Theorem 4.3 we prove the following lemma.

Lemma 4.6. Let X,X ′ be n-bit random variables, and let H be a random variable such that
Hε
∞(X | H) ≥ (1 − δ)n. Let τ > 0, and define X1, X

′
1 to be the length n1 = (δ + τ)n bit

prefixes of X,X ′, respectively. Define X2, X
′
2 to be the length n2 = 3(δ + τ)n bit prefixes of

X,X ′, respectively. Then, the following holds:
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• H2ε
∞(X1 | H) ≥ τn1 −O(log(1/ε));

• H2ε
∞(X2 | X1, X

′
1,H) ≥ τn2 −O(log(1/ε)); and

• H2ε
∞(X | X2, X

′
2,H) ≥ (1− 7δ − 6τ)n−O(log(1/ε)).

Proof. Write X = X1 ◦ X>1 = X2 ◦ X>2, where X>1, X>2 are of length n − n1, n − n2,
respectively. Using Lemma 3.2 we obtain

H2ε
∞(X1 | H) ≥ H2ε

∞(X | X>1,H)

≥ Hε
∞(X | H)− |X>1| −O(log(1/ε))

≥ (1− δ)n− (1− δ − τ)n−O(log(1/ε))

= τn−O(log(1/ε))

≥ τn1 −O(log(1/ε)),

which proves the first item. As for the second item,

H2ε
∞(X2 | X1, X

′
1,H) ≥ H2ε

∞(X | X>2, X1, X
′
1,H)

≥ Hε
∞(X | H)− |X>2| − |X1| − |X ′1| −O(log(1/ε))

≥ (1− δ)n− (n− 3(δ + τ)n)− 2(δ + τ)n−O(log(1/ε))

= τn−O(log(1/ε))

≥ τn2 −O(log(1/ε)),

which concludes the proof of the second item. The third item follows by a similar argument:

H2ε
∞(X | X2, X

′
2,H) ≥ Hε

∞(X | H)− 2 · 3(δ + τ)n−O(log(1/ε))

≥ (1− δ)n− 6(δ + τ)n−O(log(1/ε))

= (1− 7δ − 6τ)n−O(log(1/ε)).

Lemma 4.6 readily implies the following corollary by setting τ = 1/7− δ.

Corollary 4.7. Let τ > 0. Let X,X ′ be n-bit random variables such that Hε
∞(X | H) ≥

(6/7+τ)n+Ω(log(1/ε)) for some random variable H. Define X1, X
′
1 to be the length n1 = n/7

bit prefixes of X,X ′, respectively. Define X2, X
′
2 to be the length n2 = 3n/7 bit prefixes of

X,X ′, respectively. Then, the following holds:

• H2ε
∞(X1 | H) ≥ τn1 −O(log(1/ε));

• H2ε
∞(X2 | X1, X

′
1,H) ≥ τn2 −O(log(1/ε)); and

• H2ε
∞(X | X2, X

′
2,H) ≥ τn−O(log(1/ε)).

We are now ready to prove Theorem 4.3.
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Proof of Theorem 4.3. We construct the function IPM recursively. More precisely, for any
integer r and any ` that meet the hypothesis of the theorem, we construct a (6/7 + τ, ε(r))-
IPM

IPMr : {0, 1}r×` × {0, 1}d(r) × {0, 1}d(r) → {0, 1}`

given an explicit (6/7 + τ, ε(
√
r))-IPM

IPM√r : {0, 1}
√
r×` × {0, 1}d(

√
r) × {0, 1}d(

√
r) → {0, 1}`,

where ε(
√
r) is set with hindsight to be Θ(ε(r)). For ease of readability, we let d = d(r). For

a d-bit string s we let s1, s2 denote the length d/7, 3d/7 prefixes of s, respectively.

Building blocks. On top of IPM√r, for the construction of IPMr we make use of the
following building blocks:

• Let {Cond1
i : {0, 1}d/7 → {0, 1}d/(7∆)}∆

i=1 be the sequence of functions that is given by
Theorem 3.9 set with δ1 = τ/2 and δ2 = 1/7− 2τ . By Theorem 3.9, ∆ = ∆(τ) is some
constant.

• Let {Cond2
i : {0, 1}3d/7 → {0, 1}3d/(7∆)}∆

i=1 be the sequence of functions that is given by
Theorem 3.9 also set with δ1 = τ/2 and δ2 = 1/7− 2τ .

• Let BaseIPM : {0, 1}∆4×`×{0, 1}d×{0, 1}d → {0, 1}` be the (k, ε(r))-IPM that is given
by Lemma 4.4.

Note that the output length of the functions {Cond2
i }i is 3 times longer than that of

the functions {Cond1
i }i. For technical reasons, it will be simpler for these two sequences

of functions to have a common output length. This can be easily achieved without any
asymptotic affect on the parameters. Thus, from this point on we assume that the output
length of the functions Cond1

i ,Cond
2
i is d′ = αd for some constant α (recall that ∆ is constant).

We further define d′1 = d′/7 and d′2 = 3d′/7.

The construction. Let m ∈ {0, 1}r×` and let x, y ∈ {0, 1}d. Let m1, . . . ,m
√
r be

√
r × `

matrices obtained by partitioning the r rows of m in an arbitrary manner. For concreteness,
assume that mi contains rows (i − 1)

√
r + 1, . . . , i

√
r of m. For (i1, j1) ∈ [∆]2 define the√

r × ` matrix z(i1,j1) as follows. For v ∈ [
√
r], row v of z(i1,j1) is defined as

z(i1,j1)
v = IPM√r

(
mv,Cond1

i1
(x1),Cond1

j1
(y1)

)
. (4.8)

Define the ∆4 × ` matrix t, with rows indexed by (i1, j1, i2, j2) ∈ [∆]4 by

t(i1,j1,i2,j2) = IPM√r
(
z(i1,j1),Cond2

j2
(y2),Cond2

i2
(x2)

)
. (4.9)

Finally, define
IPMr(m,x, y) = BaseIPM(t, x, y).

Note that in the above construction, and in particular in Equations (4.8),(4.9), we implicitly
set d(

√
r) = d′ = αd = αd(r).
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Analysis. Let X = (X,X ′) be a pair of d-bit random variables, Y = (Y, Y ′) a pair of d-bit
random variables, andM = (M,M ′) a pair of random variables in the form of r×` matrices.
Let H be a random variable such that the following holds:

• Conditioned on H, the random variable X is independent of (M,Y);

• H
ε(r)
∞ (X | H) ≥ (6/7 + τ)d+ Ω(log(1/ε(r)));

• H
ε(r)
∞ (Y | M,H) ≥ (6/7 + τ)d+ Ω(log(1/ε(r))); and

• M is (ε(r),H)-somewhere independent of M ′.

By Corollary 4.7,

H2ε(r)
∞ (X1 | H) ≥ τd1 −O(log(1/ε(r))) ≥ (τ/2)d1,

where we used ε(r) > 2−Ω(d), the fact that τ is constant, and that d1 = Θ(d). Therefore, by
Theorem 3.9 there exists i∗1 ∈ [∆] such that

H3ε(r)
∞

(
Cond1

i∗1
(X1) | H

)
≥ (6/7 + 2τ)d′1 ≥ (6/7 + τ)d′1 + Ω(log(1/ε(r))), (4.10)

where, again, we used ε(r) > 2−Ω(d), and d1 = Θ(d). Similarly, there exists j∗1 ∈ [∆] such
that

H3ε(r)
∞

(
Cond1

j∗1
(Y1) | M,H

)
≥ (6/7 + τ)d′1 + Ω(log(1/ε(r))). (4.11)

As M is (ε(r),H)-somewhere independent of M ′, by the way we defined M1, . . . ,M
√
r,

there exist g1, g2 ∈ [
√
r] such that(

M g1
g2
, (M ′)g1g2 ,H

)
≈ε(r)

(
U, (M ′)g1g2 ,H

)
. (4.12)

Recall that IPM√r is a (6/7 + τ, ε(
√
r))-IPM and that ε(

√
r) = Θ(ε(r)). Equations (4.10),

(4.11), (4.12) imply that(
Z(i∗1,j

∗
1 )

g1
, (Z ′)(i∗1,j

∗
1 )

g1
, {M g1

i , (M
′)g1i }

√
r

i=1,Cond
1
j∗1

(Y1),Cond1
j∗1

(Y ′1),H
)
≈O(ε(r))(

U, (Z ′)(i∗1,j
∗
1 )

g1
, {M g1

i , (M
′)g1i }

√
r

i=1,Cond
1
j∗1

(Y1),Cond1
j∗1

(Y ′1),H
)
,

which readily implies that(
Z(i∗1,j

∗
1 )

g1
, (Z ′)(i∗1,j

∗
1 )

g1
,H1

)
≈O(ε(r))

(
U, (Z ′)(i∗1,j

∗
1 )

g1
,H1

)
, (4.13)

with H1 = M, Y1, Y
′

1 ,H. Hence, the
√
r × ` matrix Z(i∗1,j

∗
1 ) is (O(ε(r)),H1)-somewhere

independent of the matrix (Z ′)(i∗1,j
∗
1 ).
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Note that the random variable Z(i∗1,j
∗
1 ) (resp. (Z ′)(i∗1,j

∗
1 )) is a deterministic function of X1

(resp. X ′1) when conditioned on H1. This, together with Corollary 4.7, implies that

H2ε(r)
∞

(
X2 | Z(i∗1,j

∗
1 ), (Z ′)(i∗1,j

∗
1 ),H1

)
≥ H2ε(r)

∞ (X2 | X1, X
′
1,H1)

= H2ε(r)
∞ (X2 | X1, X

′
1,H)

≥ τd2 −O(log(1/ε(r)))

≥ (τ/2)d2.

Therefore, by Theorem 3.9 there exists i∗2 ∈ [∆] such that

H3ε(r)
∞

(
Cond2

i∗2
(X2) | Z(i∗1,j

∗
1 ), (Z ′)(i∗1,j

∗
1 ),H1

)
≥ (6/7 + τ)d′2 + Ω(log(1/ε(r))). (4.14)

By a similar argument, there exists j∗2 ∈ [∆] such that

H3ε(r)
∞

(
Cond2

j∗2
(Y2) | H1

)
≥ (6/7 + τ)d′2 + Ω(log(1/ε(r))). (4.15)

Recall that

T(i∗1,j
∗
1 ,i
∗
2,j
∗
2 ) = IPM√r

(
Z(i∗1,j

∗
1 ),Cond2

j∗2
(Y2),Cond2

i∗2
(X2)

)
.

By (4.13),(4.14),(4.15) and since Z(i∗1,j
∗
1 ), (Z ′)(i∗1,j

∗
1 ) are jointly independent of (Cond2

j∗2
(Y2),

Cond2
j∗2

(Y ′2)) when conditioned on H1, we have that(
T(i∗1,j

∗
1 ,i
∗
2,j
∗
2 ), (T

′)(i∗1,j
∗
1 ,i
∗
2,j
∗
2 ), Z

(i∗1,j
∗
1 ), (Z ′)(i∗1,j

∗
1 ),Cond2

i∗2
(X2),Cond2

i∗2
(X ′2),H1

)
≈O(ε(r))(

U, (T ′)(i∗1,j
∗
1 ,i
∗
2,j
∗
2 ), Z

(i∗1,j
∗
1 ), (Z ′)(i∗1,j

∗
1 ),Cond2

i∗2
(X2),Cond2

i∗2
(X ′2),H1

)
.

As T(i∗1,j
∗
1 ,i
∗
2,j
∗
2 ) is a deterministic function of Cond2

j∗2
(Y2) when conditioned on Z(i∗1,j

∗
1 ), Cond2

i∗2
(X2),

we may adjoin X2, X
′
2 and disregard the excess random variables to obtain(

T(i∗1,j
∗
1 ,i
∗
2,j
∗
2 ), (T

′)(i∗1,j
∗
1 ,i
∗
2,j
∗
2 ),H2

)
≈O(ε(r))

(
U, (T ′)(i∗1,j

∗
1 ,i
∗
2,j
∗
2 ),H2

)
, (4.16)

where H2 = X2, X
′
2,H1. That is, T is (O(ε(r)),H2)-somewhere independent of T ′. Further,

for any i1, j1, i2, j2 ∈ [∆]4, the random variables T(i1,j1,i2,j2), T
′
(i1,j1,i2,j2) are deterministic

functions of Y2, Y
′

2 , respectively, when conditioned on H2, and are therefore independent of
X . This, together with Corollary 4.7, implies that

H2ε(r)
∞ (Y | T, T ′,H2) ≥ H2ε(r)

∞ (Y | Y2, Y
′

2 ,H2)

= H2ε(r)
∞ (Y | Y2, Y

′
2 ,H1)

= H2ε(r)
∞ (Y | Y2, Y

′
2 ,M,H)

≥ τd−O(log(1/ε(r)))

≥ τd/2. (4.17)
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Similarly,

H2ε(r)
∞ (X | H2) = H2ε(r)

∞ (X | X2, X
′
2,H1)

= H2ε(r)
∞ (X | X2, X

′
2,H)

≥ τd/2. (4.18)

Recall that IPMr(M,X, Y ) = BaseIPM(T,X, Y ). By Equations (4.16),(4.17),(4.18) we con-
clude

(IPMr(M,X, Y ), IPMr(M
′, X ′, Y ′), T, T ′,Y ,H2) ≈O(ε(r)) (U, IPMr(M

′, X ′, Y ′), T, T ′,Y ,H2)

which readily implies that

(IPMr(M,X, Y ), IPMr(M
′, X ′, Y ′),M,Y ,H) ≈O(ε(r)) (U, IPMr(M

′, X ′, Y ′),M,Y ,H) .

As the for parameters. The construction forces the recursive relation d(r) = c · d(
√
r)

for some constant c = c(τ). This solves for d(r) = d(∆4) · polylog(r), where we set the
base of the recursion at r = ∆4 rows. To make sure that the applications of BaseIPM are
all valid, we must meet the hypothesis of Lemma 4.4 which forces ` = Ω(log(d(r)/ε)) (as
we fix ` throughout the O(log log r) steps of the recursion, and d(r) increases with r) and
k = Ω(`), where k is the min-entropy of the two sources, which in our applications are
proportional to the lengths of these sources as τ is constant. As these lengths increase with
r, it is enough to require d(∆4) = Ω(`). Even after taking into account the deterioration of
the error parameter throughout the recursion, all of the required conditions are met by the
hypothesis of the theorem, namely, d(r) = ` · polylog(r) and ` = Ω(log(log(r)/ε)).

5 Improved CBA via IPM

In this section we construct an improved CBA based on the IPM that was developed in the
previous section. Our construction follows a similar construction from [Coh16a]. There are
some technical differences between the two works and so we cannot rely on [Coh16a] and are
required to give a complete proof. This is the content of the following theorem.

Theorem 5.1. There exist universal constants cACB > 1 > γ0 > 0 such that for any 0 <
γ ≤ γ0 the following holds. For any integers n, a and for any ε > 0 that satisfy

n = Ω((log a)cACB · log(1/ε)),

there exists an explicit (1− γ, ε)-CBA

CBA : {0, 1}n × {0, 1}n × {0, 1}a → {0, 1}m

with m = (1/2−O(γ))n.

24



Proof. Let x, y ∈ {0, 1}n and α ∈ {0, 1}a. Defining CBA(x, y, α) will require some prepara-
tions, namely, introducing some notations and building blocks that we use. Let cGUV, cIPM
be the constants from Theorem 3.5 and Theorem 4.3, respectively. Let c1 be a constant to
be set later on. Set

n1 = c1 · (log(n/ε) + log log a) ,

n2 = 2γn,

n3 = 40γn.

By the hypothesis of the theorem, and by taking γ0 < 40, we have that n1 < n2 < n3 < n.
For i = 1, 2, 3, let xi (resp. yi) be the length ni prefix of x (resp. y).

Building blocks. For the construction of CBA we make use of the following building
blocks:

• Let a : {0, 1}n1 × {0, 1}n2 → {0, 1}n1 and b : {0, 1}n1 × {0, 1}n2 × {0, 1}n2 → {0, 1}n1

be the pair of functions that are given in Section 3.3, set with error guarantee ε. Note
that by taking c1 ≥ cGUV, the parameter n1 was chosen large enough as n ≥ n2.

• Let IPM : {0, 1}(2a)×n1 × {0, 1}n3 × {0, 1}n3 → {0, 1}n1 be the (0.86, ε)-IPM that is
given by Theorem 4.3. This instantiation of Theorem 4.3 is valid when taking c, c1

large enough, as:

– n1 ≥ c1 · log(log(a)/ε),

– n3 = Ω(n) = Ω((log a)cIPM · log(1/ε)),

– 0.86 > 6/7.

• Set m = (1−82γ)n/2. Let Ext : {0, 1}n×{0, 1}n1 → {0, 1}m be the ((1+γ)m, ε)-strong
seeded extractor that is given by Theorem 3.5. Note that by taking c1 to be a large
enough constant (as a function of the constant γ), the parameter n1 is sufficiently large
as required by Theorem 3.5.

The construction. We start by defining a (2a) × n1 matrix m = m(x2, y2, α) as follows.
For i ∈ [2a], row i of m is defined by

mi =

{
a(y1, x2), i 6= αdi/2e (mod 2);
b(y1, y2, x2), i = αdi/2e (mod 2).

We then define
s = IPM(m, y3, x3),

and finally define
CBA(x, y, α) = Ext(x, s).
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Analysis. We now turn to the analysis. Let X = (X,X ′) be a pair of n-bit random
variables, Y = (Y, Y ′) a pair of n-bit random variables, and let α, α′ ∈ {0, 1}a. Let H be a
random variable for which the following holds:

• Conditioned on H, the random variables X ,Y are independent;

• α, α′ are fixed distinct strings when conditioned on H;

• Hε
∞(X | H) ≥ (1− γ)n+ Ω(log(1/ε));

• (Y,H) ≈ε (U,H).

To conclude the proof, we are required to show that

(CBA (X, Y, α) ,CBA (X ′, Y ′, α′) ,Y ,H) ≈O(ε) (U,CBA (X ′, Y ′, α′) ,Y ,H) .

Define M = m(X2, Y2, α) and M ′ = m(X ′2, Y
′

2 , α
′). We begin by showing that M is

somewhere-independent of M ′. More precisely, we establish the following claim.

Claim 5.2. M is (O(ε),H1)-somewhere independent of M ′, where H1 = Y ′2 , Y2,H.

Proof of Claim 5.2. Recall that α 6= α′ when conditioned on H. Let i = i(H) ∈ [a] be such
that αi 6= α′i, and set g = 2i − αi. Note that, by construction, Mg = b(Y1, Y2, X2) whereas
M ′

g = a(Y ′1 , X
′
2). We can therefore apply Lemma 3.18 with W = (X2, X

′
2), Y = (Y1, Y

′
1),

Z = (Y2, Y
′

2), and H, to conclude that(
Mg,M

′
g, Y2, Y

′
2 ,H

)
≈O(ε)

(
U,M ′

g, Y2, Y
′

2 ,H
)
.

To justify this application of Lemma 3.18 we note that

• Conditioned on H, the random variables X2, X
′
2 are jointly independent of (Y2, Y

′
2),

which also include Y1, Y
′

1 as their respective prefixes;

• (Y1,H) ≈ε (U,H);

• |Y2| = n2 ≥ 4n1 + Ω(log(1/ε)) and (Y2,H) ≈ε (U,H), and so Hε
∞(Y2 | H) ≥ 4n1 +

Ω(log(1/ε)); and

• H2ε
∞(X2 | H) ≥ 4n1 + Ω(log(1/ε)). To see this, set X>2 to be the length n− n2 suffix

of X, and observe that

H2ε
∞ (X2 | H) ≥ H2ε

∞ (X | X>2,H)

≥ Hε
∞ (X | H)− |X>2| −O(log(1/ε))

≥ (1− γ)n− (n− n2)−O(log(1/ε))

= γn−O(log(1/ε))

≥ 4n1 + Ω(log(1/ε)).
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This concludes the proof of the claim.

Returning to the proof of Theorem 5.1, our next step is to show that

(IPM(M,Y3, X3), IPM(M ′, Y ′3 , X
′
3),H2) ≈O(ε) (U, IPM(M ′, Y ′3 , X

′
3),H2) , (5.1)

where H2 = M,M ′, X3, X
′
3,H1. To this end we prove the following claim which states that

all the assumptions required by the application of IPM in the above equation are met.

Claim 5.3. The following holds:

• Conditioned onH1, the random variables Y3, Y
′

3 are jointly independent of X3, X
′
3,M,M ′;

• M is (O(ε),H1)-somewhere independent of M ′;

• H
O(ε)
∞ (Y3 | H1) ≥ 0.86n3 + Ω(log(1/ε));

• H
O(ε)
∞ (X3 |M,M ′,H1) ≥ 0.86n3 + Ω(log(1/ε)).

Proof of Claim 5.3. Recall that M = m(X2, Y2, α), M ′ = m(X ′2, Y
′

2 , α
′) are deterministic

functions of X2, X
′
2, Y2, Y

′
2 . Since H1 = Y ′2 , Y2,H, conditioned on H1, the random variables

M,M ′ are deterministic functions of X2, X
′
2, and therefore also of X3, X

′
3, that are jointly

independent of (Y3, Y
′

3) when conditioned on H1. This proves the first item. The second
item is the content of Claim 5.2.

As for the third item, let Y>3 be the length n − n3 suffix of Y . By Lemma 3.2, and by
our choice of parameters,

HO(ε)
∞ (Y3 | H1) ≥ HO(ε)

∞ (Y | Y>3,H1)

= HO(ε)
∞ (Y | Y>3, Y2, Y

′
2 ,H)

≥ Hε
∞(Y | H)− |Y>3| − |Y2| − |Y ′2 | −O(log(1/ε))

≥ n− (n− n3)− 2n2 −O(log(1/ε))

= n3 − 4γn−O(log(1/ε))

≥ 0.9n3 −O(log(1/ε))

≥ 0.86n3 + Ω(log(1/ε)).

For the forth item, recall that M,M ′ are deterministic functions of X2, X
′
2 when conditioned

on H1, and so

HO(ε)
∞ (X3 |M,M ′,H1) ≥ HO(ε)

∞ (X3 | X2, X
′
2,H1)

≥ HO(ε)
∞ (X | X>3, X2, X

′
2,H1)

≥ Hε
∞(X | H1)− |X>3| − |X2| − |X ′2| −O(log(1/ε))

= Hε
∞(X | H)− |X>3| − |X2| − |X ′2| −O(log(1/ε))

≥ (1− γ)n− (n− n3)− 2n2 −O(log(1/ε))

≥ n3 − 5γn−O(log(1/ε))

≥ (7/8)n3 −O(log(1/ε))

≥ 0.86n3 + Ω(log(1/ε)).
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This concludes the proof of the claim.

By Claim 5.3 we can apply Theorem 4.3 and conclude (5.1), that is,

(S, S ′,H2) ≈O(ε) (U, S ′,H2) .

Conditioned on S ′,H2, the random variable S = IPM(M,Y3, X3) is a deterministic function
of Y3 whereas Ext(X ′, S ′) is a deterministic function of X ′, which is independent of Y3. Thus,
we may adjoin Ext(X ′, S ′) to the above equation and conclude that

(S,Ext(X ′, S ′), S ′,H2) ≈O(ε) (U,Ext(X ′, S ′), S ′,H2) . (5.2)

As X is independent of S ′ when conditioned on H2, and since M,M ′ are deterministic
functions of X2, X

′
2, we have that

HO(ε)
∞ (X | Ext(X ′, S ′), S ′,H2) = HO(ε)

∞ (X | Ext(X ′, S ′), X3, X
′
3,H)

≥ Hε
∞(X | H)− |Ext(X ′, S ′)| − |X3| − |X ′3| −O(log(1/ε))

≥ (1− γ)n−m− 2n3 −O(log(1/ε))

≥ (1− 81γ)n−m−O(log(1/ε))

≥ (1 + γ)m+ Ω(log(1/ε)), (5.3)

where the last inequality follows as

(2 + γ)m = (2 + γ)

(
1− 82γ

2

)
n < (1− 81γ)n.

By equations (5.2),(5.3), and by the fact that X is independent of S when conditioned on
Ext(X ′, S ′), S ′,H2, we have that

(Ext(X,S),Ext(X ′, S ′), S, S ′,H2) ≈O(ε) (U,Ext(X ′, S ′), S, S ′,H2) .

Recall that CBA(X, Y, α) = Ext(X,S) and CBA(X ′, Y ′, α′) = Ext(X ′, S ′). Conditioned
on Ext(X ′, S ′), S, S ′,H2, the random variable Ext(X,S) is independent of Y and so we may
adjoin Y to the above equation and remove the excess random variables to obtain

(CBA (X, Y, α) ,CBA (X ′, Y ′, α′) ,Y ,H) ≈O(ε) (U,CBA (X ′, Y ′, α′) ,Y ,H) ,

which concludes the proof.

6 Non-Malleable Extractors via CBA

In this section we prove Theorem 1.9. As in [CGL16, Coh16b], our construction of non-
malleable extractors relies on CBA. Besides using the improved CBA that we constructed
in Theorem 5.1, we also make some improvements to the reduction itself. In particular, we
show how to generate a shorter advice string.
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Proof of Theorem 1.9. Let cGUV, cRaz be the constants that are given by Theorem 3.5 and
Theorem 3.8, respectively, and let γ0 be the constant that is given by Theorem 5.1. Set

d1 = cGUV · log(n/ε),

d2 = max (10d1, cRaz · log(n/ε)) .

For a d-bit string y, let y1 denote the length d1 prefix of y. Similarly, let y2 denote the length
d2 prefix of y. We further assume that d ≥ (3/γ0) · d2. Note that this assumption is met by
taking the hidden constant under the O(·) notation in the seed length d large enough with
respect to the constants cGUV, cRaz.

Building blocks. For the construction of nmExt we make use of the following building
blocks.

• Let q be the least even prime power of 2 that is larger or equal than 5/ε2. Note that
q ≤ 20/ε2. Let r be the least integer such that qr ≥ d. We identify [d] with an arbitrary
subset of Frq. Set v = 2r/ε and let ECC : Frq → Fvq be the error correcting code that is
given by Theorem 3.13, set with relative distance 1−ε. Theorem 3.13 gives an explicit
code with these parameters.

• Let ExtAG : {0, 1}n × {0, 1}d1 → {0, 1}log v be the (2 log v, ε)-strong seeded extractor
that is given by Theorem 3.5. Note that d1 was defined to be large enough so as to be
used as a seed for ExtAG. We identify the output of ExtAG as an element of [v].

• Let Raz : {0, 1}n × {0, 1}d2 → {0, 1}d be the (2d, ε)-extractor with weak-seeds that is
given by Theorem 3.8. Note that d2 was chosen large enough as required by Theo-
rem 3.8.

• Set a = log(qv). Let CBA : {0, 1}d × {0, 1}d × {0, 1}a → {0, 1}d1 be the (1 − γ0, ε)-
CBA that is given by Theorem 5.1. By Theorem 5.1, the output length of CBA is
(1/2− O(γ0))d, which is larger than d1. Thus, we may truncate the output length to
d1 bits. Moreover, by the hypothesis of the theorem, the requirement d = Ω((log a)cACB ·
log(1/ε)) of Theorem 5.1 is met. Indeed,

(log a)cACB · log(1/ε) = (log log(qv))cACB · log(1/ε)

≤
(

log log

(
log d

ε

))cACB
· log(1/ε)

= O(d).

• Let Extout : {0, 1}n × {0, 1}d1 → {0, 1}(1/2−α)k be the (k/2, ε)-strong seeded extractor
that is given by Theorem 3.5. Note that d1 is large enough as required by Theorem 3.5
when taking the constant cGUV large enough (as a function of the constant α).
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The construction. On input x ∈ {0, 1}n, y ∈ {0, 1}d, we define nmExt(x, y) as follows.
First we compute

i = i(x, y1) = ExtAG(x, y1),

and define
AdvGen(x, y) = ECC(y)i ◦ i.

In the expression above, by ECC(y)i we mean the following – we interpret i ∈ {0, 1}log v as
an index in [v] of the codeword ECC(y). Then, ECC(y)i refers to the content in that i’th
entry, when interpreted as a (log q)-bit string. Define

z = CBA (y,Raz(x, y2),AdvGen(x, y)) .

Finally, we define
nmExt(x, y) = Extout(x, z).

Analysis. Let X be an (n, k)-source, Y a random variable that is uniformly distributed
over d-bit strings, independently of X, and let A : {0, 1}d → {0, 1}d be a function with no
fixed points. Denote Y ′ = A(Y ). We start by proving the following claim.

Claim 6.1. Let C,C ′ be a pair of arbitrarily correlated random variables over n-bit strings
such that the relative Hamming distance between C,C ′ is at least 1 − ε1 (with probability
1). Let I, I ′ be a pair of arbitrarily correlated random variables over [n] that are jointly
independent of (C,C ′). Assume that I ∼ε2 U . Then,

Pr [CI ◦ I = C ′I′ ◦ I ′] ≤ ε1 + ε2,

where CI (resp. C ′I′) denotes the I’th entry of C (resp. (I ′)’th entry of C ′).

Proof. For i ∈ supp(I), let I ′i denote the random variable I ′ | (I = i). Using the assumption
that C,C ′ are jointly independent of I,

Pr [CI ◦ I = C ′I′ ◦ I ′] =
∑

i∈supp(I)

Pr[I = i] ·Pr
[
Ci ◦ i = C ′I′i ◦ I

′
i

]
. (6.1)

Observe that for any i ∈ supp(I),

Pr
[
Ci ◦ i = C ′I′i ◦ I

′
i

]
≤ Pr

[
Ci ◦ i = C ′I′i ◦ I

′
i | I ′i = i

]
= Pr [Ci = C ′i] ,

where we have used the independence between (C,C ′) and (I, I ′). Let J be a random
variable that is uniformly distributed over [n]. By plugging the above equation back to
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Equation (6.1), and using again the independence of I from (C,C ′), we conclude that

Pr [CI ◦ I = C ′I′ ◦ I ′] ≤
∑

i∈supp(I)

Pr[I = i] ·Pr [Ci = C ′i]

=
∑

i∈supp(I)

Pr[I = i] ·Pr [Ci = C ′i | I = i]

= Pr [CI = C ′I ]

≤ Pr [CJ = C ′J ] + SD(I, J)

≤ ε1 + ε2.

Returning back to the proof of Theorem 1.9, we prove the following claim.

Claim 6.2.
Pr

(x,y)∼(X,Y )
[AdvGen(x, y) = AdvGen(x, y′)] = O(

√
ε).

Proof. Recall that I = i(X, Y1) = ExtAG(X, Y1) and AdvGen(X, Y ) = ECC(Y )I ◦ I. As ExtAG
is a (k, ε)-strong seeded extractor, (I, Y1) ≈ε (U, Y1). Conditioned on any fixing of Y1, the
random variables I, Y ′1 are independent and so we may adjoin Y ′1 to the latter equation and
conclude that

(I, Y ′1 , Y1) ≈ε (U, Y ′1 , Y1) .

Therefore, by Markov’s inequality, except with probability
√
ε over (y1, y

′
1) ∼ (Y1, Y

′
1), it

holds that I ≈√ε U . By aggregating an error of
√
ε to the total error, we condition on the

event (Y1, Y
′

1) = (y1, y
′
1) for which I ≈√ε U holds. Observe that for any fixing of (Y1, Y

′
1)

to (y1, y
′
1), the random variables I, I ′ are jointly independent of (ECC(Y ),ECC(Y ′)). This,

together with the fact that ECC has relative Hamming distance 1 − ε, allows us to apply
Claim 6.1, which readily concludes the proof of the claim.

By Lemma 3.2, by our choice of parameters, and as ECC has alphabet size q,

Hε
∞ (Y2 | AdvGen(X, Y ),AdvGen(X, Y ′)) ≥ d2 − 2(d1 + log q) ≥ 0.6d2.

Further,

Hε
∞ (X | AdvGen(X, Y ),AdvGen(X, Y ′)) ≥ k − 2 log v

≥ max (2d, c′Razd2) + Ω(log(1/ε)).

Note that one can condition on AdvGen(X, Y ), AdvGen(X, Y ′) while maintaining the in-
dependence between X and Y . Indeed, after conditioning on Y1, Y

′
1 , the random variables

ExtAG(X, Y1), ExtAG(X, Y ′1) are deterministic functions of X, and so one can further condition
on these random variables without introducing dependencies between X and Y . Conditioned
on Y1, Y ′1 , ExtAG(X, Y1), ExtAG(X, Y ′1), the random variables AdvGen(X, Y ), AdvGen(X, Y ′)
are deterministic functions of Y , and so conditioning on these variables does not introduce
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any dependencies between X, Y . By the above, we can apply Theorem 3.8 and conclude
that

(Raz(X, Y2), Y2,AdvGen(X, Y ),AdvGen(X, Y ′)) ≈O(ε) (U, Y2,AdvGen(X, Y ),AdvGen(X, Y ′)) .

As Raz(X, Y2) is independent of Y ′2 when conditioned on Y2, AdvGen(X, Y ), AdvGen(X, Y ′),
we have that

(Raz(X, Y2),H) ≈O(ε) (U,H) , (6.2)

where H = Y ′2 , Y2,AdvGen(X, Y ),AdvGen(X, Y ′).
Recall that

Z = CBA (Y,Raz(X, Y2),AdvGen(X, Y )) .

By (6.2), the second argument to CBA is close to uniform, as required, when conditioned on
H. We now consider the first argument. By Lemma 3.2,

Hε
∞ (Y | H) ≥ d− 2(d2 + log q)−O(log(1/ε))

≥ (1− γ0)d+ Ω(log(1/ε)), (6.3)

where we have used the fact that d ≥ (3/γ0) · d2 and that d2 = Ω(log(1/ε)).
By Equations (6.2),(6.3), we can apply Theorem 5.1 to conclude that

(Z,Z ′,H′) ≈O(
√
ε) (U,Z ′,H′) ,

where H′ = Raz(X, Y2),Raz(X, Y ′2),H. Note that conditioned on Z ′,H′, the random vari-
ables Z and Extout(X,Z

′) are independent. Thus, we may adjoin Extout(X,Z
′) to the above

equation and conclude that

(Z,Extout(X,Z
′), Z ′,H′) ≈O(

√
ε) (U,Extout(X,Z

′), Z ′,H′) .

By Lemma 3.2 and since Extout is set to have (1/2− α)k output bits,

HO(ε)
∞ (X | Extout(X,Z ′), Z ′,H′) ≥ k − (1/2− α)k − 2(d+ log v)−O(log(1/ε))

= (1/2 + α)k − 2(d+ log v)−O(log(1/ε))

≥ k/2 + Ω(log(1/ε)).

Therefore,

(Extout(X,Z), Z,Extout(X,Z
′), Z ′,H′) ≈O(

√
ε) (U,Z,Extout(X,Z

′), Z ′,H′) .

By the definition of nmExt and since conditioned on Z, Extout(X,Z
′), Z ′,H′, the random

variable Extout(X,Z) is independent of Y , we may adjoin Y to the above equation and remove
the excess random variables to conclude

(nmExt(X, Y ), nmExt(X, Y ′), Y ) ≈O(
√
ε) (U, nmExt(X, Y ′), Y ) ,

as desired.
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7 Semi-Explicit Four-Source Extractors

In this section we prove Theorem 1.7. Our construction of the semi-explicit multi-source
extractors is divided into several step. In Section 7.1, we construct semi-explicit seeded
extractors with seed length and output length that are better than what is known for strongly
explicit constructions (see Proposition 7.1). These savings are crucial for us. Building on
our seeded extractor, in Section 7.2, we construct a semi-explicit two-source condenser. For
any desired constant α > 0, this algorithm converts two independent (n, α log2 n) sources to
an (n1−α, α log2 n−O(1)) source (see Proposition 7.3). Building on these, in Section 7.3, we
can finally prove Theorem 1.7.

7.1 Seeded Extractors with Short Seeds and Optimal Entropy
Loss

Proposition 7.1. For any integer n and constants 0 < α, ε < 1, there exists an exp(nα ·
log3 n)-time (k, ε)-strong seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m, where

k = α log2 n,

m = k −O(1),

d = log2 n+ 3 log2 log2 n+O(1).

For the proof of Proposition 7.1 we prove the following lemma.

Lemma 7.2. For all integers n, k and constant ε > 0 such that k ≥ 2 log2(1/ε)+log2 log2(1/ε)+
1, there exists an exp(n · 2kk)-time computable (k, ε)-strong seeded extractor Ext : {0, 1}n ×
{0, 1}d → {0, 1}m with seed length d = log2 n+O(1) and m = k −O(1) output bits.

Proof of Lemma 7.2. Let c be a constant to be chosen later on (as a function of the constant
error guarantee ε). Set

m = k − c,
d = log2 n+ c,

N = 2n+d ·m,
K = 2k+d ·m,
δ = 2−ε

3·2k+d .

Let Z be the (N,K, δ)-independent random variable that is given by Theorem 3.15. We
index the N bits of Z by tuples (x, y, j) where x ∈ {0, 1}n, y ∈ {0, 1}d, and j ∈ [m]. We
define the (random) function F : {0, 1}n × {0, 1}d → {0, 1}m by F (x, y)j = Z(x,y,j). Note
that, as a random variable, F is completely determined by Z. For any z ∈ supp(Z), we
denote the (deterministic) function F | (Z = z) by fz.

We show that there exists z ∈ supp(Z) such that fz is a (k, ε)-strong seeded extractor.
By Lemma 3.11, it suffices to consider only (n, k)-flat sources. Fix such a flat source X. We
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slightly abuse notation and denote the support of X also by X. We further fix τ : {0, 1}m →
{0, 1} and y ∈ {0, 1}d.

As |X| = 2k, by our choice of K, the joint distribution of the random variables {F (x, y) |
x ∈ X, y ∈ {0, 1}d} is δ-close to uniform. Let {R(x,y) | x ∈ X, y ∈ {0, 1}d} be a sequence of
uniform and independent m-bit random variables. We say that y is “bad” with respect to
X, τ if ∣∣∣∣ E

x∼X

[
τ(R(x,y))

]
− E

v∼Um
[τ(v)]

∣∣∣∣ ≥ ε,

and denote the set of bad y’s with respect to X, τ by BX,τ . By Theorem 3.3, for any
y ∈ {0, 1}d,

Pr [y ∈ BX,τ ] ≤ 2 · e−2ε2·2k .

Thus, by the union bound over all functions τ : {0, 1}m → {0, 1},

Pr [y ∈ BX ] ≤ 22m · 2 · e−2ε2·2k ≤ 2−ε
2·2k ,

where BX = ∪τBX,τ . The last inequality follows by taking the constant c = 2 log(1/ε) + c′

for some universal constant c′. By the union bound,

Pr
[
|BX | ≥ ε · 2d

]
≤
(

2d

ε · 2d

)
·
(

2−ε
2·2k
)ε·2d

≤ 2−ε
3·2k+d/2

where the last equality follows as k ≥ 2 log(1/ε) + log log(1/ε) + 1. Thus, by our choice of
δ, the probability that the event |BX | ≥ ε · 2d holds with respect to Z is bounded above
by 2−ε

3·2k+d/2 + δ ≤ 2−ε
3·2k+d/3. By the union bound over all k-flat sources X, we have

that except with probability
(

2n

2k

)
· 2−ε3·2k+d/2 over z ∼ Z, the function fz has the following

property. For any flat source X with support of size 2k, at most ε fraction of the seeds are
bad with respect to X. By our choice of parameters, the above expression is strictly smaller
than 1 and so there exists some z such that fz is a (k,O(

√
ε))-strong seeded extractor. The

error guarantee can be easily reduced to ε.
Now that it has been established that there exists z ∈ supp(Z) for which fz is a (k, ε)-

strong seeded extractor, we are ready to define the function Ext. On input x, y, we find the
first (under some order) z∗ ∈ supp(Z) for which fz∗ is a (k, ε)-strong seeded extractor. We
do so by iterating over all z ∈ supp(Z) according to the order, and for each z check whether
fz is a (k, ε)-strong seeded extractor. This is done in a brute force manner, by iterating over
all k-flat sources X and functions τ : {0, 1}m → {0, 1}, and for each, check whether fz has
the desired guarantee with respect to the current pair of X, τ . This can be done in time
polynomial in

|supp(Z)| · 22m ·
(

2n

2k

)
= exp(n · 2kk).

Once z∗ is found, the output Ext(x, y) is defined by fz∗(x, y). This evaluation can be com-
puted in time that is dominated by the above running-time.

Proof of Proposition 7.1. For the construction of Ext, we make use of the following building
blocks:
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• Set d1 = log2 n + log2 k + O(1), and let Cond : {0, 1}n × {0, 1}d1 → {0, 1}` be the
k →ε k + d1 condenser that is given by Theorem 3.6. By Theorem 3.6, ` = d1(k + 2).

• Set d2 = log2 ` + O(1), and let Ext′ : {0, 1}` × {0, 1}d2 → {0, 1}m be the strong (k −
O(1), ε)-seeded extractor that is given by Lemma 7.2. By Lemma 7.2, m = k −O(1).

We partition the seed y to two consecutive strings y = y1 ◦ y2 where |y1| = d1 and |y2| = d2.
We then define

Ext(x, y) = Ext′(Cond(x, y1), y2).

Let X be an (n, k)-source and Y a d-bit uniformly distributed random variable that is
independent of X. By Theorem 3.6 and Lemma 3.7, with probability 1−

√
ε over y1 ∼ Y1,

the random variable Cond(X, y1) is 2
√
ε-close to an (`, k − O(1))-source. For any such y1,

with probability 1 − ε over y2 ∼ Y2, it holds that Ext′(Cond(X, y1), y2) ≈2
√
ε+ε Um. Thus,

Ext(X, Y ) is a (k,O(
√
ε)) strong seeded extractor. The error guarantee can be reduced to ε

without changing the proposition statement.
Note that d, the seed length for Ext, is d1 + d2 = log2 n + 3 log2 log2 n + O(1) as stated.

Further, recall that m = k − O(1). The running-time for computing Ext(x, y) is poly(n) +
exp(` · 2kk) = exp(nα · log3 n).

7.2 A Two-Source Condenser

In this section we prove the following proposition. Roughly speaking, the proposition states
that one can transform two independent weak-sources to a single, shorter, weak-source with
comparable min-entropy. Moreover, this transformation is “strong” in one of the sources.

Proposition 7.3. For any integer n and constants 0 < α, ε < 1, there exists an exp(n2α)-
time computable function TwoSourceCond : {0, 1}n×{0, 1}n → {0, 1}m, where m = O(n1−α ·
log5 n), having the following property. For any pair of independent (n, α log n)-sources X, Y ,
except with probability ε over y ∼ Y , the random variable TwoSourceCond(X, y) is ε-close to
having min-entropy α log n−O(1).

For the proof of Proposition 7.3 we also require the following variant of a lemma by [BKS+10].

Lemma 7.4. For any integer n and constant ε > 0, there exists an exp(n2)-time computable
strong (k, ε) two-source extractor TwoSourceExt : {0, 1}n × {0, 1}n → {0, 1}m, where k =
log2 n+O(1) and m = k −O(1).

Proof. Let c be a constant to be chosen later on. Similarly to the proof of Lemma 7.2, set

m = k − c,
N = 22n ·m,
K = 2k ·m,
δ = 2−ε

3·22k .
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Let Z be the (N,K, δ)-independent random variable that is given by Theorem 3.15. We
index the N bits of Z by tuples (x, y, j) where x, y ∈ {0, 1}n, and j ∈ [m]. We define the
(random) function F : {0, 1}n × {0, 1}n → {0, 1}m by F (x, y)j = Z(x,y,j). Note that, as a
random variable, F is completely determined by Z. For any z ∈ supp(Z), we denote the
(deterministic) function F | (Z = z) by fz.

We turn to show that with strictly positive probability over z ∼ Z, the deterministic
function fz is a strong (k, ε) two-source extractor. We show the strongest in the second
source. The proof for the strongest in the first source is similar (and we do not need it
anyhow.) Let X be an (n, k) flat source. We slightly abuse notation and also denote that
support of X by X. Let τ : {0, 1}m → {0, 1} be an arbitrary function.

As |X| = 2k and since F has m output bits, our choice of K implies that for any
y ∈ {0, 1}n, the joint distribution of {F (X, y) | x ∈ X} is δ-close to uniform. Thus,
the expectation of τ(F (X, y)) is within distance δ to the expectation of τ applied to 2k

uniform and independent random variables. By Theorem 3.3, the probability that the latter
expression has bias exceeding ε is bounded above by 2 · e−2ε2·2k . By taking the union bound
over all τ : {0, 1}m → {0, 1}, the probability that the number of “bad” y’s exceeds ε · 2k is
bounded above by (

2n

ε · 2k

)
·
(

2 · e−2ε2·2k · 22m
)ε·2k

< 2n·2
k−ε3·22k/2.

By taking the union bound over all
(

2n

2k

)
(n, k)-flat sources X, we conclude that except with

probability 22n·2k−ε3·22k/2, over z ∼ Z, the function fz is a (k,O(ε)) two-source extractor.
By our choice of parameters, this probability is strictly smaller than 1, and so there exists
z ∈ supp(Z) for which fz is a (k,O(ε)) two-source extractor. As in Lemma 7.2, for the
construction of the two-source extractor we first find such z and then apply fz to the samples.
It can be easily verified that the running-time is as stated.

We are now ready to prove Proposition 7.3.

Proof of Proposition 7.3. We first describe the construction of TwoSourceCond and then turn
to the analysis. To this end, we make use of the following components:

• Let Ext : {0, 1}n × {0, 1}d → {0, 1}` be the (k, ε)-strong seeded extractor that is given
by Proposition 7.1 with k = α log2 n. By Proposition 7.1, ` = k − O(1), where the
O(1) term depends only on the constant error guarantee ε. Further, the seed length
d = log2 n+ 3 log2 log2 n+O(1). We further set r = 2d = O(n · log3 n) and identify [r]
with {0, 1}d.

• Set r′ = γ · 2k/k for some constant 0 < γ < 1 that we fix later on (as a function
of the constant ε). Let TwoSourceExt : {0, 1}r′` × {0, 1}r′` → {0, 1}`′ be the (k′, ε)
two-source extractor that is given by Lemma 7.4. Note that k′ = log2(r′`) + O(1) =
k − log(1/γ) + O(1). By taking γ > 0 small enough, one can ensure that ` ≥ k′.
Moreover, by Lemma 7.4, `′ = k′ −O(1) = k −O(1).
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On inputs x, y ∈ {0, 1}n the function TwoSourceCond is defined as follows. First, we
apply Ext to x with each possible seed s ∈ {0, 1}d. We stack all outputs as the rows of an
r×` matrix denoted by mx. That is, for i ∈ [r], the i’th row of mx is given by mx

i = Ext(x, i).
We define my in an analogous way, namely, my

i = Ext(y, i). We partition the rows of mx

(resp. my) to r/r′ consecutive blocks, each consists of r′ rows. We denote these blocks by
bx1 , . . . , b

x
r/r′ (resp. by1, . . . , b

y
r/r′). For each i ∈ [r/r′], we compute zi = TwoSourceExt(bxi , b

y
i ),

where we treat bxi , b
y
i as a pair of (r′`)-bit strings, ignoring their matrix form. The output

TwoSourceCond(x, y) is defined as the concatenation of all r/r′ outputs z1, . . . , zr/r′ .
We turn to the analysis. Let X, Y be a pair of independent (n, k)-sources. By Theo-

rem 7.1, if we denote the random variable mx, with x ∼ X, by mX , then all but one third of
the rows of mX are 3ε-close to uniform. A similar property holds for the matrix mY defined
in an analogous way.

As at most one third of the rows of each of the matrices mX ,mY are not 3ε-close to
uniform, there exists a common row index g ∈ [r] such that each of mX

g ,m
Y
g os 3ε-close to

uniform. Thus, there is some common g′ ∈ [r/r′] such that each of the blocks bXg′ , b
Y
g′ is 3ε-

close to a block that contains a uniform row. We denote these blocks by B1, B2, respectively.
As each of B1, B2 is an r′×` random variable in the form of a matrix that contains a uniform
row, each of B1, B2 is an (r′`, `)-source.

As ` ≥ k′, except with probability ε over b2 ∼ B2, the random variable TwoSourceExt(B1, b2)
is ε-close to uniform. Thus, except with probability 4ε over y ∼ Y , the random variable
TwoSourceExt(bXg′ , b

y
g′) is 4ε-close to a uniform string on `′ bits. Thus, except with prob-

ability 4ε over y ∼ Y , the output TwoSourceCond(X, y) is 4ε-close to having min-entropy
`′ = k−O(1). Up to the factor of 4 in the error guarantee, this is the property we were set to
prove. Clearly, this factor of 4 can be eliminated by using components Ext and TwoSourceExt
with error guarantee ε/4. This does not affect the statement of the proposition.

As for the running-time, by Proposition 7.1, computing the matrices mx,my given x, y
can be done in time exp(nα · log3 n). By Lemma 7.4, each application of TwoSourceExt can
be carried out in time exp((r′`)2) = exp(n2α), which dominates the total running-time. To
conclude the proof, note that the output length is (r/r′) · `′ = O(n1−α · log5 n).

7.3 Proof of Theorem 1.7

For the proof of Theorem 1.7 we make use of the following lemma that generalizes, in a
straightforward manner, a lemma by Barak et al. [BKS+10] who proved a similar lemma for
the special case s = 2 (see Lemma 7.4.)

Lemma 7.5. For any constant integer s ≥ 2, constant ε > 0, and integer n, there exists

an exp
(
n1+ 1

s−1

)
-time computable (k, ε) s-source extractor Ext : ({0, 1}n)s → {0, 1}, where

k = 1
s−1
· log2 n+O(1).

Proof of Lemma 7.5. Set N = 2sn, K = 2sk, and δ = 2−ε
22sk . Let Z be the (N,K, δ)-

independent random variable given by Theorem 3.15. We index the N bits of Z by tu-
ples (x1, . . . , xs) where for each i ∈ [s], xi ∈ {0, 1}n. We define the (random) function
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F : ({0, 1}n)s → {0, 1} by F (x1, . . . , xs) = Z(x1,...,xs). Note that F is completely determined
by Z. For any z ∈ supp(Z), we denote the deterministic function F | (Z = z) by fz.

We turn to show that with strictly positive probability over z ∼ Z, the function fz is a
(k, ε) s-source extractor. By Lemma 3.11, it is enough to consider only (n, k)-flat-sources.
Let X1, . . . , Xs be independent (n, k) flat sources. We slightly abuse notation and also denote
that support of each flat source Xi by Xi.

As |Xi| = 2k for all i ∈ [s], our choice of K implies that the joint distribution of
{F (x1, . . . , xs) | xi ∈ Xi} is δ-close to uniform. Thus, the probability that the bias of
F (X1, . . . , Xs) exceeds ε is bounded above by δ + 2 · e−2ε22sk . By the union bound over all(

2n

2k

)s
s-tuples of (n, k)-flat-sources, we conclude that except with probability(

2n

2k

)s
·
(
δ + 2 · e−2ε22sk

)
over z ∼ Z, the function fz is a (k, ε) s-source extractor. Note that by our choice of
parameters, the above expression is strictly smaller than 1.

Now that it has been established that there exists a z ∈ supp(Z) for which the (deter-
ministic) function fz is a (k, ε) s-source extractor, we define the s-source extractor to be the
function fz∗ , where z∗ ∈ supp(Z) is the first element for which fz∗ has the above property.

In order to evaluate the extractor, one first needs to find z∗. This can be done by
iterating over all z ∈ supp(Z), according to the chosen order, and check in a brute-force
manner whether fz has the desired property. The running-time for finding z∗ is polynomial

in |supp(Z)| · 2sn·2k , which is bounded above by exp
(
n1+ 1

s−1

)
. Once z∗ is found, evaluating

fz∗ on a given input can be done in time comparable to the time required by the computation
that was carried out so far.

We are now ready to prove Theorem 1.7.

Proof of Theorem 1.7. For the proof we make use of the following building blocks:

• Set α = 1
s−1

+ 5 log2 log2 n
log2 n

2, and let TwoSourceCond : {0, 1}n × {0, 1}n → {0, 1}m be

the two-source condenser that is given by Proposition 7.3 with this choice of α and
with error guarantee ε = 1/(10s). By Proposition 7.3 and by our choice of α, m =

O(n1−α · log5 n) = O
(
n1− 1

s−1

)
.

• Let Ext′ : ({0, 1}m)s−1 → {0, 1} be the (s − 1)-source extractor for min-entropy k′ =
1
s−2
· log2m + O(1), set with error guarantee 1/20, that is given by Lemma 7.5. Note

that k′ = 1
s−1
· log2 n+O(1).

With these building blocks, we define

Ext(x1, . . . , xs) = Ext′ (TwoSourceCond(x1, xs), . . . ,TwoSourceCond(xs−1, xs)) .

2Throughout this section we assumed that α is constant. However, it is enough that α is bounded by a
constant.
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We turn to the analysis. Let X1, . . . , Xs be independent (n, k)-sources. For i ∈ [s−1], let
Yi = TwoSourceCond(Xi, Xs). By Proposition 7.3, for each i ∈ [s−1], except with probability
1/(10s) over xs ∼ Xs, it holds that Yi is 1/(10s)-close to having min-entropy k − O(1).
Thus, by the union bound and by the triangle inequality for statistical distance, except with
probability 1/10 over xs ∼ Xs, (Y1, . . . , Ys−1) ≈1/10 (Z1, . . . , Zs−1), where Z1, . . . , Zs−1 are
independent (m, k − O(1))-sources (that depends on the choice of xs). Consider any such
xs. By Lemma 7.5, Ext′(Z1, . . . , Zs−1) ≈1/20 U , and so Ext′(Y1, . . . , Ys−1) ≈1/5 U . By taking
the “bad” xs into account, we have that Ext(X1, . . . , Xs) ≈1/3 U .

The running-time is

exp
(
n2α
)

+ exp
(
m1+ 1

s−2

)
= exp

(
n

2
s−1 · log10 n

)
+ exp

((
n1− 1

s−1

)1+ 1
s−2

)
= exp

(
n+ n

2
s−1 · log10 n

)
.

This concludes the proof.
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