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Abstract

In this paper we give improved constructions of several central objects in the literature of
randomness extraction and tamper-resilient cryptography. Our main results are:

(1) An explicit seeded non-malleable extractor with error ǫ and seed length d = O(log n) +
O(log(1/ǫ) log log(1/ǫ)), that supports min-entropy k = Ω(d) and outputs Ω(k) bits. Combined
with the protocol in [DW09], this gives a two round privacy amplification protocol with optimal
entropy loss in the presence of an active adversary, for all security parameters up to Ω(k/ log k),
where k is the min-entropy of the shared weak random source. Previously, the best known seeded

non-malleable extractors require seed length and min-entropy O(log n) + log(1/ǫ)2O
√

log log(1/ǫ)

[CL16, Coh16a], and only give two round privacy amplification protocols with optimal entropy

loss for security parameter up to k/2O(
√

log k).
(2) An explicit non-malleable two-source extractor for min-entropy k ≥ (1 − γ)n, some

constant γ > 0, that outputs Ω(k) bits with error 2−Ω(n/ logn). We further show that we can
efficiently uniformly sample from the pre-image of any output of the extractor. Combined with
the connection in [CG14b] this gives a non-malleable code in the two-split-state model with
relative rate Ω(1/ log n). This exponentially improves previous constructions, all of which only
achieve rate n−Ω(1).1

(3) Combined with the techniques in [BADTS16], our non-malleable extractors give a two-
source extractor for min-entropy O(log n log log n), which also implies a K-Ramsey graph on
N vertices with K = (logN)O(log log logN). Previously the best known two-source extractor

in [BADTS16] requires min-entropy log n2O(
√

logn), which gives a Ramsey graph with K =

(logN)2
O(

√

log log log N)

. We further show a way to reduce the problem of constructing seeded
s-source non-malleable extractors to the problem of constructing non-malleable (s + 1)-source
extractors. Using the non-malleable 10-source extractor with optimal error in [CZ14], we obtain
a seeded non-malleable 9-source extractor with optimal seed length, which in turn gives a 10-
source extractor for min-entropy O(log n). Previously the best known extractor for such min-
entropy requires O(log log n) sources [CS16].

Independent of our work, Cohen [Coh16d] obtained similar results to (1) and the two-source
extractor, except the dependence on ǫ is log(1/ǫ)polylog log(1/ǫ) and the two-source extractor
requires min-entropy log npolylog log n.

∗Supported in part by NSF Grant CCF-1617713.
1The work of Aggarwal et. al [ADKO15] had a construction which “achieves” constant rate, but recently the

author found an error in their proof.
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1 Introduction

Randomness extractors are fundamental objects in the study of pseudorandomness, a branch of
modern theoretical computer science. Their motivations come from the need of uniform random
bits in many applications, such as randomized algorithms, distributed computing, and cryptogra-
phy, and the fact that natural random sources are almost always biased. Informally, randomness
extractors transform imperfect random sources (whether naturally so or as a result of adversar-
ial information leakage) into nearly uniform random bits, which can then be used in standard
applications. Over the past decades randomness extractors have been extensively studied.

To model imperfect randomness, we use the by now standard model of a general weak random
source with a certain amount of entropy.

Definition 1.1. The min-entropy of a random variable X is

H∞(X) = min
x∈supp(X)

log2(1/Pr[X = x]).

For X ∈ {0, 1}n, we call X an (n,H∞(X))-source, and we say X has entropy rate H∞(X)/n.

It is well known that by just having one weak source as input, no deterministic extractor can
work for all (n, k) sources even if k = n − 1. Several ways are thus explored to get around this.
One approach, introduced by Nisan and Zuckerman [NZ96], is to give the extractor an additional
independent short uniform random seed. This results in the so called seeded extractors.

Definition 1.2. (Seeded Extractor) A function Ext : {0, 1}n×{0, 1}d → {0, 1}m is a (k, ε)-extractor
if for every source X with min-entropy k and independent Y which is uniform on {0, 1}d,

|Ext(X,Y )− Um| ≤ ǫ.

If in addition we have |(Ext(X,Y ), Y )− (Um, Y )| ≤ ǫ then we say it is a strong (k, ε)-extractor.

One can show that seeded extractors with very good parameters exist for all (n, k) sources, and
with a long line of research their constructions are now close to optimal (e.g., [LRVW03, GUV09,
DW08, DKSS09]). Besides their original motivation, seeded extractors have found many other
applications in theoretical computer science.

This paper, on the other hand, focuses on several other kinds of randomness extractors which
have gained a lot of attention recently. The first one is extractors for independent sources. Here,
the extractor does not have any additional uniform random seed, but instead it is given as input
more than one independent general weak random sources. The probabilistic method shows that
deterministic extractors exist for just two independent (n, k) sources with k ≥ logn+O(1). In fact,
with high probability a random function is such a two-source extractor. However, giving explicit
constructions of such extractors turns out to be quite challenging.

The second kind of extractors we study here, focuses on the case where either the seed or the
source is tampered with by an adversary. In this case, one useful and natural property to impose
on the extractors is to ensure that the non-tampered output of the extractor is (close to) uniform
even given the tampered output. This leads to a large class of generalized randomness extractors
called non-malleable extractors.

Definition 1.3 (Tampering Funtion). For any function f : S → S, f has a fixed point at s ∈ S if
f(s) = s. We say f has no fixed points in T ⊆ S, if f(t) 6= t for all t ∈ T . We say f has no fixed
points if f(s) 6= s for all s ∈ S.
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When the tampering acts on the seed of a seeded extractor, one obtains a generalization of
strong seeded extractors called seeded non-malleable extractors, originally introduced by Dodis and
Wichs in [DW09].

Definition 1.4 (Non-malleable extractor). A function snmExt : {0, 1}n × {0, 1}d → {0, 1}m is a
seeded non-malleable extractor for min-entropy k and error ǫ if the following holds : If X is a source
on {0, 1}n with min-entropy k and A : {0, 1}d → {0, 1}d is an arbitrary tampering function with
no fixed points, then

|snmExt(X,Ud) ◦ snmExt(X,A(Ud)) ◦ Ud − Um ◦ snmExt(X,A(Ud)) ◦ Ud| < ǫ

where Um is independent of Ud and X.

When the tampering acts on the sources in an independent source extractor, one obtains a
generalization of independent source extractors called seedless non-malleable extractors, originally
introduced by Cheraghchi and Guruswami [CG14b].

Definition 1.5 (Seedless Non-Malleable C-Source Extractor). A function nmExt : ({0, 1}n)C →
{0, 1}m is a (k, ǫ)-seedless non-malleable extractor for C independent sources, if it satisfies the
following property: Let X1, · · · , XC be C independent (n, k) sources, and f1, · · · , fC : {0, 1}n →
{0, 1}n be C arbitrary tampering functions such that there exists an fi with no fixed points, then

|nmExt(X1, · · · , XC) ◦ nmExt(f1(X1), · · · , fC(X2))− Um ◦ nmExt(f1(X1), · · · , fC(X2))| < ǫ.

Further, we say that the non-malleable extractor is strong if for every i, we have that

|nmExt(X1, · · · , XC)◦nmExt(f1(X1), · · · , fC(X2))◦Xi−Um ◦nmExt(f1(X1), · · · , fC(X2))◦Xi| < ǫ.

We can also generalize the definition to handle more than one tampering functions.

Definition 1.6 (Seeded t-Non-malleable extractor). A function snmExt : {0, 1}n × {0, 1}d →
{0, 1}m is a seeded t-non-malleable extractor for min-entropy k and error ǫ if the following holds :
If X is a source on {0, 1}n with min-entropy k and A1, · · · ,At : {0, 1}d → {0, 1}d are t arbitrary
tampering functions with no fixed points, then

|snmExt(X,Ud) ◦ {snmExt(X,Ai(Ud)), i ∈ [t]} ◦ Ud−Um ◦ {snmExt(X,Ai(Ud)), i ∈ [t]} ◦ Ud| < ǫ

where Um is independent of Ud and X.

This definition can also be generalized to the case of seeded t-non-malleable extractor for more
than one weak sources in the obvious way, and we omit the definition here.

As stated above, seeded non-malleable extractors were first introduced by Dodis and Wichs in
[DW09], to study a cryptographic problem known as privacy amplification. Although they seem
to be irrelevant to independent source extractors, it turns out that these two kinds of extractors
are closely related. Indeed, since the author’s previous work [Li12b, Li13b] which first established
connections between seeded non-malleable extractors and independent source extractors, their con-
nections have been demonstrated in several subsequent work. In particular, with other techniques,
these connections have led to the recent breakthrough construction of two source extractors by
Chattopadhyay and Zuckerman [CZ16]. We now briefly review previous work below.
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Independent source extractors. The introduction of independent source extractors, as well
as the first explicit construction of a two-source extractor appeared in [CG88], where Chor and
Goldreich showed that the well known Lindsey’s lemma gives an extractor for two independent
(n, k) sources with k > n/2. Since then there has been essentially no progress until Barak et.
al[BIW04] introduced new techniques in additive combinatorics into this problem, and constructed
extractors for O(1/δ) independent (n, δn) sources. Subsequently, a long line of fruitful results
[BIW04, BKS+05, Raz05, Bou05, Rao06, BRSW06, Li11, Li13b, Li13a, Li15b, Coh15] has intro-
duced many new techniques and culminated in the three source extractor of exponentially small
error for poly-logarithmic min-entropy by the author [Li15b]. In the case of two-source extractors,
Bourgain [Bou05] gave a construction that breaks the entropy rate 1/2 barrier, and works for two
independent (n, 0.49n) sources. In a different work, Raz [Raz05] gave an incomparable result of two
source extractors which requires one source to have min-entropy larger than n/2, while the other
source can have min-entropy O(logn). In a recent result, Chattopadhyay and Zuckerman [CZ16]
greatly improved the situation and gave the first explicit two-source extractor for (n, k) sources
with k ≥ logC n for some large enough constant C. Their construction only outputs one bit but
this was later improved by the author to output almost all entropy [Li16] and by Meka [Mek15] to
work for smaller min-entropy.

Very recently, there has been a new line of work focusing on constructing explicit indepen-
dent source extractors for very small min-entropy (i.e., near logarithmic). Cohen and Schulman
[CS16] constructed extractors for O(1/δ) sources with min-entropy log1+δ n. Chattopadhyay and
Li [CL16] improved this result to give an explicit extractor for O(1) sources with min-entropy
log n2O(

√
log logn), and this was subsequently improved by Cohen [Coh16a] to achieve a 5-source ex-

tractor with the same entropy requirement. Finally, Ben-Aroya et. al [BADTS16] further improves
this and achieves a two-source extractor for min-entropy log n2O(

√
log logn).

Seeded non-malleable extractors and privacy amplification. As mentioned above, seeded
non-malleable extractors were first introduced by Dodis and Wichs [DW09] to study the question of
privacy amplification with an active adversary, and they were later found to have close connections
to independent source extractors. Thus, any progress in non-malleable extractors is likely to lead to
progress in both the privacy amplification problem and the independent source extractor problem.

Privacy amplification [BBR88] is a basic problem in information theoretic cryptography, where
two parties with local (non-shared) uniform random bits communicate through a public channel
to convert a shared secret weak random source X into shared secret nearly uniform random bits.
The communication channel is watched by an adversary Eve, who has unlimited computational
power and tries to corrupt the protocol. Standard strong seeded extractors are enough to give very
efficient protocols for this problem in the case where Eve is passive (i.e., can only see the messages
but cannot change them). In the more complicated case where Eve is active (i.e., can arbitrarily
change, delete and reorder messages), the goal is to design a protocol that uses as few number of
interactions as possible, and outputs a shared uniform random string R as long as possible (the
difference between the length of the output and H∞(X) is called entropy loss). The protocol is
associated with a security parameter s, and ensures that if Eve is active, then the probability that
Eve can successfully make the two parties output two different strings without being detected is at
most 2−s. On the other hand, if Eve remains passive, then the two parties should achieve shared
secret random bits that are 2−s-close to uniform. We refer the readers to [DLWZ14] for a formal
definition.
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Much research has been devoted to this problem [MW97, DKRS06, DW09, RW03, KR09,
CKOR10, DLWZ14, CRS14, Li12a, Li12b, Li15a]. It is known that when the entropy rate of X is
large, i.e., bigger than 1/2, there exist protocols that take only one round (e.g., [MW97, DKRS06]),
albeit with quite large entropy loss. When the entropy rate of X is smaller than 1/2, [DW09]
showed that any protocol has to take at least two rounds with entropy loss at least O(s). Thus,
the natural goal is to design a two-round protocol with such optimal entropy loss, for any possi-
ble security parameter (ideally up to Ω(k)). However, all protocols before the work of [DLWZ14]
require O(s) rounds or entropy loss O(s2).

In [DW09], Dodis and Wichs further showed that two-round privacy amplification protocols
with optimal entropy loss can be constructed using explicit seeded non-malleable extractors. Using
the probabilistic method, they showed the existence of non-malleable extractors when k > 2m +
2 log(1/ε) + log d + 6 and d > log(n − k + 1) + 2 log(1/ε) + 5. However, they were not able to
give any explicit construction. The first explicit seeded non-malleable extractor was constructed in
[DLWZ14], with subsequent improvements in [CRS14, Li12a, DY13, Li12b]. Unfortunately all these
constructions require min-entropy at least 0.49n, and thus only give two-round privacy amplification
protocols with optimal entropy loss for such min-entropy. Although, combined with other ideas,
[DLWZ14] also gives poly(1/δ) round protocols with optimal entropy loss for min-entropy k ≥ δn,
any constant δ > 0. Subsequently, without improving on the non-malleable extractors, the author
[Li12b] gave a two-round protocol with optimal entropy loss for min-entropy k ≥ δn, any constant
δ > 0. Using a relaxation of non-malleable extractors called non-malleable condensers, the author
[Li15a] also obtained a two-round protocol with optimal entropy loss for min-entropy k ≥ C log2 n,
some constant C > 1, as long as the security parameter s satisfies k ≥ Cs2.

The next improvement in non-malleable extractors appeared in [CGL16], where Chattopadhyay,
Goyal and Li constructed explicit non-malleable extractors with error ε, for min-entropy k =
Ω(log2 (n/ǫ)) and seed-length d = O(log2(n/ǫ)). This gives an alternative protocol matching that
of [Li15a]. Further improvements were obtained by Cohen [Coh16b, Coh16c], where he constructed
non-malleable extractors with seed length d = O(log(n/ǫ) log((log n)/ǫ)) and min-entropy k =
Ω(log(n/ǫ) log((log n)/ǫ)); seed-length O(logn) and min-entropy k = n/(logn)O(1); and seed length
d = O(logn+ log3(1/ǫ)) and min-entropy k = Ω(d). However, none of these improves the privacy
amplification protocols in [Li15a].

Very recently, Chattopadhyay and Li [CL16] obtained an improved non-malleable extractor with

error ε, for min-entropy k = log (n/ǫ)2O(
√

log log(n/ǫ)) and seed-length d = log (n/ǫ)2O(
√

log log(n/ǫ)),

and min-entropy k = O(logn) and seed length d = O(logn) for error ǫ ≥ 2− log1−β n for any
constant 0 < β < 1. Independently, Cohen [Coh16a] also obtained a non-malleable extractor with

error ε, for min-entropy k = O(logn) + log(1/ǫ)2O(
√

log log(1/ǫ)) and seed-length d = O(log n) +

log(1/ǫ)2O(
√

log log(1/ǫ)). Both these constructions give two round privacy amplification protocols
with optimal entropy loss, for security parameter s up to k/2O(

√
log k).

Seedless non-malleable extractors and non-malleable codes. Seedless non-malleable ex-
tractors were first introduced by Cheraghchi and Guruswami [CG14b], in the context of non-
malleable codes. Non-malleable codes, introduced by Dziembowski, Pietrzak and Wichs [DPW10],
are a useful generalization of standard error correcting codes in the sense that they can handle
a much larger class of attacks. Most notably, they can provide security guarantees even if the
attacker can completely overwrite the codeword. Informally, a non-malleable code for a specific
tampering family of tampering functions F , consists of a randomized encoding function E and a
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deterministic decoding function D, such that if a codeword E(x) is modified into f(E(x)) by some
function f ∈ F , then the decoded message x′ = D(f(E(x))) is either the original message x, or a
completely unrelated message. The formal definition is given in Section 7. As shown in [DPW10],
such non-malleable codes can be used in several applications in tamper-resilient cryptography.

While it can be seen that even non-malleable codes cannot exist if F is completely unrestricted,
it is also known to exist for many broad tampering families. One of the most natural tampering
families, and the most well studied, is the so called split-state model. Here, a k-bit message x is
encoded into t parts of messages y1, · · · , yt, each of length n. Now the adversary can arbitrarily
tamper with each yi independently. In this case, the rate of the code is defined as k/(tn).

This model arises in many applications naturally, for example when the different parts of mes-
sages y1, · · · , yt are stored in different parts of memory. It can also be viewed as a kind of “non-
malleable secret sharing scheme”. Clearly, the case of t = 1 corresponds to unrestricted tampering
functions, and cannot be handled by non-malleable codes. Thus the case of t = 2 is the most
useful and interesting setting. There has been a lot of work studying non-malleable codes in the
t-split-state model. Since in this paper we focus on the information theoretic setting, we will only
briefly review those previous work in the same setting.

The existence of non-malleable codes was first proved in [DPW10], and then Cheraghchi and
Guruswami [CG14a] improved this result to show that the optimal rate of non-malleable codes in
the 2-split-state model is 2. The first explicit construction appears in [DKO13], where the authors
constructed explicit non-malleable codes for 1-bit messages in the split-state model. Subsequently,
Aggarwal et. al [ADL14] constructed the first explicit non-malleable code for k-bit messages. Their
encoding has message length n = O(k7 log7 k). This was later improved by Aggarwal [Agg14] to
obtain n = O(k7).

Cheraghchi and Guruswami [CG14b] found a connection between non-malleable t-source extrac-
tors and non-malleable codes in the t-split state model. Their construction allows one to construct
non-malleable codes in the t-split state model given sufficiently good non-malleable t-source extrac-
tors. However, they were not able to construct explicit non-malleable two-source extractors even
for min-entropy k = n. Using this connection and techniques form additive combinatorics, Chat-
topadhyay and Zuckerman [CZ14] constructed a non-malleable 10-source extractor and a constant
rate non-malleable code in the 10-split-state model. In a subsequent work, Chattopadhyay, Goyal
and Li [CGL16] constructed the first explicit non-malleable two-source extractor for min-entropy

k = (1−γ)n with output Ω(k) and error 2−k
Ω(1)

, and used it to give an explicit non-malleable code
in the 2-split state model with rate n−Ω(1).

Finally, the work of Aggarwal et. al [ADKO15], has a construction which “achieves” a constant
rate non-malleable code in the 2-split-state model. However, recently the author found an error
in their proof (we briefly discuss the error in Appendix A), and thus this result does not hold.
Currently, only non-malleable codes of rate n−Ω(1) can be deduced from their work.

1.1 Our Results

We obtain improved results in all of the above problems. First, we have the following theorem
which gives improved constructions of seeded non-malleable extractors.

Theorem 1.7. There exists a constant C > 1 such that for any n, k ∈ N and 0 < ǫ < 1 with
k ≥ C(log n+ log log(1/ǫ) log(1/ǫ)), there is an explicit strong seeded (k, ǫ) non-malleable extractor
{0, 1}n × {0, 1}d → {0, 1}m with d = C(log n+ log log(1/ǫ) log(1/ǫ)) and m ≥ k/4.

5



Combined with the protocol in [DW09], this gives the following theorem.

Theorem 1.8. There exists a constant 0 < α < 1 such that for any n, k ∈ N and security
parameter s ≤ αk/ log k, there is an explicit two-round privacy amplification protocol with entropy
loss O(logn+ s), in the presence of an active adversary.

Combined with the techniques in [BADTS16], we obtain the following theorem which gives
improved constructions of two-source extractors.

Theorem 1.9. For every constant ǫ > 0 there exists a constant c > 1 and an explicit two-source
extractor Ext : ({0, 1}n)2 → {0, 1} for min-entropy k ≥ c logn log log n, with error ǫ.

As a corollary, we obtain the following improved constructions of Ramsey graphs.

Corollary 1.10. For every large enough integer N there exists a (strongly) explicit construction
of a K-Ramsey graph on N vertices with K = (logN)O(log log logN)

Next we give an improved construction of a non-malleable two-source extractor.

Theorem 1.11. There exists a constant 0 < γ < 1 and a non-malleable two-source extractor for
(n, (1− γ)n) sources with error 2−Ω(n/ log n) and output length Ω(n).

We give an algorithm to efficiently sample from the pre-image of this extractor, and together
with the connection in [CG14b], we obtain the following theorem.

Theorem 1.12. For any n ∈ N there exists an explicit non-malleable code with efficient en-
coder/decoder in the 2-split-state model with block length 2n, rate Ω(1/ log n) and error = 2−Ω(n/ log n).

Finally, we use the non-malleable 10-source extractor in [CZ14] to obtain the following theorem.

Theorem 1.13. For every constant ǫ > 0 there exists a constant c > 1 and an explicit ten-source
extractor Ext : ({0, 1}n)10 → {0, 1} for min-entropy k ≥ c log n, with error ǫ.

Independent Work. Independent of our work, and using different techniques, Cohen [Coh16d]
obtained similar results for seeded non-malleable extractors and two-source extractors. Specifi-
cally, he constructed seeded non-malleable extractors for seed length and min-entropy O(logn) +
log(1/ǫ)polylog log(1/ǫ), that outputs Ω(k) bits. He also constructed two-source extractors for
min-entropy log npolylog log n.

1.2 Overview of The Constructions and Techniques

Here we give a brief overview of our constructions and the techniques. Both our constructions of
seeded non-malleable extractor and seedless non-malleable extractor follow the high level framework
of recent constructions [CGL16, Coh16b, Coh16c, CL16, Coh16a]. Specifically, we first obtain a
small advice such that with high probability the untampered advice is different from the tampered
version. The short size of the advice guarantees that even conditioned on the fixing of the advice,
the seed and the source (or different sources) are still independent and have high min-entropy. We
then use an improved correlation breaker with advice to obtain the output. Informally, given the
advice, the correlation breaker does a series of computations using the inputs; and the output is
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guaranteed to be close to uniform given the tampered output, if the advice is different from the
tampered advice.

Take the seeded non-malleable extractor for example. It is well known that to achieve error ǫ,
one can use an advice of length O(log(n/ǫ)) (or even smaller, as shown in [Coh16a]), and length
Ω(log(1/ǫ)) is necessary. Moreover, this only costs O(log(n/ǫ)) bits in the seed and O(log(n/ǫ))
entropy in the source. We now turn to the part of the correlation breaker with advice. This part
is going to follow the recent developments in [CL16, Coh16a], where (non-malleable) independence
preserving mergers are used to construct the correlation breaker with advice. Specifically, let us
briefly recall what is done in [CL16]. There, given the advice of length L, we first use an additional
O(log(n/ǫ)) bits to create a matrix of L rows, such that each row corresponds to a bit in the advice
and each is uniform (but may be correlated with other rows). The property guaranteed is that on
the bit that is different in the advice and the tampered advice, the corresponding row in the matrix
is uniform even conditioned on the corresponding row in the tampered version of the matrix. Then,
using the rest of the bits from the seed, we merge the matrix into one final row, while keeping this
independence.

In [CL16], the construction first uses a basic merger, which uses O(l log(m/ǫ)) random bits
to merge a matrix of l rows, each row having length m. Then, one chooses a particular l and
applies the basic merger to the initial matrix of L rows, merging l rows each time. This takes
logL/ log l steps. Each step one needs to use fresh random bits. However, since there is also
a tampered seed, if each time we use the same number of fresh random bits, then they may
already contain no entropy given the previously leaked tampered seeds. Therefore, in [CL16], each
time the number of fresh random bits used is at least twice as large as the number of random
bits used in the previous step. This means the number of random bis needed is going to grow
exponentially, and eventually we need 2O(logL/ log l)l log(m/ǫ) random bits. A simple calculation
shows that to minimize this quantity, we should choose l such that log l =

√
logL and this gives us

2O(
√
logL) log(m/ǫ) = 2O(

√
log log(n/ǫ)) log(m/ǫ) bits needed.

In this paper, we improve the merger in [CL16]. From the above discussion, one can see that if
somehow we can get around the bottleneck of doubling the length of the random bits used each time,
then ideally we would just need O(l logL/ log l log(m/ǫ)) random bits. This quantity is minimized
when l is a constant (e.g., 2) and this gives us O(logL log(m/ǫ)) = O(log log(n/ǫ)) log(m/ǫ) random
bits, which is much better than the previous one. How do we achieve this? Recall that previously
the reason why we need to double the length of the random bits used each time, is that previously
used bits from the tampered version can leak information about the current random bits of the
untampered seed. If we can prevent this from happening, then we will be done. In other words,
what we now need is to guarantee that each time the new random bits used in the seed is (close to)
independent of the random bits previously used in the tampered version. Our crucial observation is
that this is exactly a “look-ahead” property, and can be achieved by using alternating extraction.

This motivates the following construction. Let the source be X and the seed be Y . After
obtaining the advice, take a small slice Y1 of Y and use Y1 to extract a small uniform output Z
from X. Use Z and Y (which still has a lot of entropy) to do an alternating extraction and output
logL + 1 random variables Ri. One can show that conditioned on the fixing of Z, these random
variables are all deterministic functions of Y , and each Ri is close to uniform conditioned on the
previous ones and the previous tampered ones (i.e., they satisfy the look-ahead property). Now, we
can use R1 and X (which, again, still has a lot of entropy) to create the initial matrix of L rows,
and then subsequently each time use a new Ri to merge this matrix.

7



The above construction almost achieves what we want, except one problem. The problem is that
the basic merger, which uses alternating extraction itself, only outputs say 0.2m bits if originally
each row has m bits (think of the non-malleable extractor case, which can output at most k/2 bits if
the min-entropy is k). Thus, if we simply repeat the merging step for logL steps, then the length of
the output will decrease to 2−O(logL)m; and for this to be meaningful we would need m ≥ 2O(logL),
which would make m and also the min-entropy k become at least poly(L) = polylog(n/ǫ). This
is too large for our goal. Thus, we modify this construction so that we can compensate for the
loss of output length each time. Specifically, after obtaining the advice, we first take a small slice
Y1 of Y and use Y1 to extract a small uniform output Z from X. Note that conditioned on the
fixing of Y1, Z is a deterministic function of X. Now we take a slightly larger slice Y2 of Y , and
a slice Z2 of Z. Note that given (Y1, Y2), Y still has a lot of entropy. Similarly, given (Y1, Z2),
Z still has a lot of entropy. We will now first use Z2 and Y to do an alternating extraction and
output 2 logL+ 1 random variables Ri. We will also use Y2 and Z to do an alternating extraction
and output logL + 1 random variables Si. One can show that conditioned on (Y1, Z), all the Ri

are deterministic functions of Y , and satisfy the look-ahead property. Similarly, conditioned on
(Y1, Y2), all the Si are deterministic functions of X, and satisfy the look-ahead property. We now
use S0 and R0 (the first blocks in the sequences) to obtain the initial matrix, which conditioned on
the fixing of R0 is a deterministic function of S0. Then, we repeat the merging for logL steps. Each
step we will use two Ri’s and one Si. Consider a particular step i. We first use R2i−1 to merge the
matrix, reducing the number of rows to a half. Note that conditioned on the fixing of R2i−1, the
output is a deterministic function of Si−1. We then use each row of the output as a seed to extract
from R2i. Now conditioned on the previous matrix, the new output is a deterministic function of
R2i. Finally, we use each row of the new output as a seed to extract from Si. Conditioned on
the fixing of R2i, the output becomes a deterministic function of Si, and by choosing the length
of each Si to be larger than 2m we can restore the length of each row in the matrix to m. This
whole process still preserves the independence between the matrix and the tampered version of the
matrix. We can thus repeat the process until we obtain the final output. Note that for all the
alternating extraction, we can control the length of Z and Si, so that the number of random bits
used is smaller than O(log(n/ǫ)). We also need to set ǫ to be slightly smaller than the error we want
to achieve. Careful calculations show that we can achieve the seed length and entropy requirement
in Theorem 1.7. By setting the parameters correctly, we can also ensure that the whole process
described above does not consume much entropy, thus we can use the final output to extract from
the original source and output Ω(k) bits.

The non-malleable two-source extractor follows essentially the same construction, except we
now know that both sources already have min-entropy (1 − γ)n. Thus, we can afford to set the
error parameter to be 2−Ω(n/ logn).

Efficient sampling. The above non-malleable two-source extractor implies a non-malleable code
in the 2-split-state model with rate Ω(1/ log n). However, to obtain an efficient encoder, we need
to find a way to efficiently sample uniformly from the pre-image of any given output. Since the
construction of the non-malleable two-source extractor is complicated and involves multi steps of
alternating extraction etc., it appears that the sampling procedure may also be complicated. Indeed,
in [CGL16] the sampling procedure consists of a series of carefully designed steps to “invert” each
intermediate extraction step. Here, we show that in fact we can significantly simplify the sampling
procedure. In fact, we are going to treat most of the details in the construction of the non-malleable
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two-source extractor as a black box, and all we need are two ingredients from [CGL16]: First, a
seeded extractor IExt : {0, 1}n × {0, 1}d → {0, 1}m with d = O(log(n/ǫ)) and m = Ω(d), such
that for any fixed output s and any fixed seed r, one can efficiently uniformly sample from the
pre-image (this is because for any fixed seed, the output is a linear function of the input source),
and the pre-image always has the same size. Second, to obtain the advice, first we take a small
slice X1 of the source X, and a small slice Y1 of the source Y . Both slices have size 3γn (assuming
both sources have min-entropy (1 − γ)n). We take the inner product of X1 and Y1, and use the
output to sample Ω(n/ log n) coordinates from the Reed-Solomon encodings of both the rest part
of X and the rest part of Y . The advice α is obtained by concatenating X1, Y1 and the sampled
coordinates. Now we slightly modify the non-malleable two-source extractor in the following way.
We will take two other slices Y2 and Y3 of Y , with the guarantee that each has high min-entropy
conditioned on previously leaked information, and the total length of (Y1, Y2, Y3) is less than n/2
(but still Ω(n)). Similarly we take another slice X2 of X, which has high min-entropy conditioned
on previously leaked information, and the total length of (X1, X2) is less than n/2 (but still Ω(n)).
Given the advice, we use (X2, Y2) to run the non-malleable two source extractor described above,
and obtain an output V . We then compute the final output W = IExt(Y3, V ). The non-malleable
two-source extractor guarantees that V is close to uniform given the tampered version, and this
will be preserved in W .

Given any output W , we now briefly describe how to efficiently uniformly sample from the
pre-image. We first uniformly generate (X1, Y1, X2, Y2) and the advice α. From these things we
can compute the output V . Note that here we are treating the details in the construction of the
non-malleable two-source extractor as a black box. Now, given V and W , by the property of IExt we
can efficiently sample Y3, and the pre-image always has the same size. Finally, we need to sample
the rest parts of X and Y , given the variables we have obtained and α. For this step, we note that
once we have (X1, Y1), we know the coordinates of the Reed-Solomon codes that we sampled, and
these give us a system of linear equations. Note that we have at least n/2 free variables in both X
and Y , thus by setting the length of the advice appropriately (which is Ω(n)) we can ensure that
there are more variables in the system of equations than the number of equations. Therefore we
can efficiently sample the pre-image by inverting the system of linear equations. Further note that
the encoding matrix of the Reed-Solomon code has the property that regardless of the positions of
the coordinates, as long as the number of sampled coordinates is the same, the encoding matrix
always has the same rank. Thus the pre-image also has the same size regardless of the positions
of the coordinates sampled. Therefore, altogether we can efficiently uniformly sample from the
pre-image.

Independent source extractor. A corollary of the work of Ben-Aroya et. al [BADTS16] is that
if one can construct seeded t-non-malleable extractor for some constant t with error ǫ, seed length
and min-entropy O(log(n/ǫ)), then one also gets an explicit two-source extractor for min-entropy
O(logn). The two-source extractor outputs one bit with any constant error. In this paper we show
that we can reduce the task of constructing such seeded non-malleable extractor to the task of
constructing non-malleable two-source extractors for (n, (1− γ)n) sources with error 2−Ω(n), where
γ is any constant.

To see this, suppose we have such a non-malleable two-source extractor, then we can construct
a seeded non-malleable extractor roughly as follows. Let the seed be Y and the source be X. First,
we can take a small slice of Y and use it as a seed in an extractor, to convert X into a close to
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uniform string. Let the result be X̄. Then, as usual, we obtain an advice α such that α 6= α′ with
high probability, where α′ is the tampered version of α. Now, we take a small slice Y2 of Y , and
a small slice X2 of X̄, with the guarantee that both slices have entropy rate > 1/2. We take the
inner product of (X2, Y2), and use this output as an extractor to convert both X̄ and Y back into
nearly uniform strings (the reason why we can do this is that the inner product is a two-source
extractor strong in both sources). Let the outputs be X̃ and Ỹ . We can now append α to both X̃
and Ỹ . By setting the lengths appropriately we obtain two independent (conditioned on the fixing
of previous random variables) (m, (1 − γ)m) sources, where m = O(log(n/ǫ)) as long as both X
and Y have min-entropy at least C log(n/ǫ) for some constant C > 1. We know that with high
probability both sources will be different than their tampered version, thus we can now apply the
non-malleable two-source extractor to get an output with error ǫ.

The above construction is just for one tampering function, but we can use an argument similar to
that used in [Li13a, Coh15] to gradually increase the resilience, until eventually the extractor works
for t tampering functions. This puts an O(t2) factor on the seed length and entropy requirement,
which is still a constant if t is a constant.

Clearly, the approach described above works not just for non-malleable extractors with optimal
error, but works for any non-malleable extractor. Thus our non-malleable two-source extractor
directly implies a two-source extractor for (n,O(logn log log n)) sources. The approach also ex-
tends naturally to the case of non-malleable (s + 1)-source extractor, which would give a seeded
non-malleable extractor for s independent sources. Thus, we can use the non-malleable 10-source
extractor with optimal error in [CZ14], which gives a seeded non-malleable extractor for 9 indepen-
dent sources. Together with the construction in [BADTS16] this gives an explicit extractor for 10
independent (n,O(logn)) sources, which outputs one bit with any constant error.

Organization. The rest of the paper is organized as follows. We give some preliminaries in
Section 2. We then define alternating extraction in Section 3, and non-malleable independence
preserving merger in Section 4. In Section 5 we construct the new correlation breaker with advice.
In Section 6 we present the seeded non-malleable extractor. In Section 7 we present non-malleable
two-source extractors and non-malleable codes in the two-split-state model. Section 8 gives con-
structions of t-non-malleable extractors and applications to independent source extractors. Finally
we conclude with some discussions and open problems in Section 9.

2 Preliminaries

We often use capital letters for random variables and corresponding small letters for their instanti-
ations. Let |S| denote the cardinality of the set S. For ℓ a positive integer, Uℓ denotes the uniform
distribution on {0, 1}ℓ. When used as a component in a vector, each Uℓ is assumed independent of
the other components. All logarithms are to the base 2.

2.1 Probability distributions

Definition 2.1 (statistical distance). LetW and Z be two distributions on a set S. Their statistical
distance (variation distance) is

∆(W,Z)
def
= max

T⊆S
(|W (T )− Z(T )|) = 1

2

∑

s∈S
|W (s)− Z(s)|.
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We say W is ε-close to Z, denoted W ≈ε Z, if ∆(W,Z) ≤ ε. For a distribution D on a set S
and a function h : S → T , let h(D) denote the distribution on T induced by choosing x according
to D and outputting h(x).

Lemma 2.2. For any function α and two random variables A,B, we have ∆(α(A), α(B)) ≤
∆(A,B).

2.2 Somewhere Random Sources and Extractors

Definition 2.3 (Somewhere Random sources). A source X = (X1, · · · , Xt) is (t × r) somewhere-
random (SR-source for short) if each Xi takes values in {0, 1}r and there is an i such that Xi is
uniformly distributed.

Definition 2.4. (Seeded Extractor) A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a strong (k, ε)-
extractor if for every source X with min-entropy k and independent Y which is uniform on {0, 1}d,

(Ext(X,Y ), Y ) ≈ε (Um, Y ).

2.3 Average conditional min-entropy

Definition 2.5. The average conditional min-entropy is defined as

H̃∞(X|W ) = − log
(
Ew←W

[
max
x

Pr[X = x|W = w]
])

= − log
(
Ew←W

[
2−H∞(X|W=w)

])
.

Lemma 2.6 ([DORS08]). For any s > 0, Prw←W [H∞(X|W = w) ≥ H̃∞(X|W )− s] ≥ 1− 2−s.

Lemma 2.7 ([DORS08]). If a random variable B has at most 2ℓ possible values, then H̃∞(A|B) ≥
H∞(A)− ℓ.

2.4 Prerequisites from previous work

Sometimes it is convenient to talk about average case seeded extractors, where the source X has
average conditional min-entropy H̃∞(X|Z) ≥ k and the output of the extractor should be uniform
given Z as well. The following lemma is proved in [DORS08].

Lemma 2.8. [DORS08] For any δ > 0, if Ext is a (k, ǫ) extractor then it is also a (k+log(1/δ), ǫ+δ)
average case extractor.

For a strong seeded extractor with optimal parameters, we use the following extractor con-
structed in [GUV09].

Theorem 2.9 ([GUV09]). For every constant α > 0, and all positive integers n, k and any ǫ > 0,
there is an explicit construction of a strong (k, ǫ)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with
d = O(logn+ log(1/ǫ)) and m ≥ (1− α)k. In addition, for any ǫ > 2−k/3 this gives a strong (k, ǫ)
average case extractor with m ≥ k/2.

Theorem 2.10 ([CG88]). For every 0 < m < n there is an explicit two-source extractor IP :
{0, 1}n×{0, 1}n → {0, 1}m based on the inner product function, such that if X,Y are two indepen-
dent (n, k1) and (n, k2) sources respectively, then
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(IP(X,Y ), X) ≈ǫ (Um, X) and (IP(X,Y ), Y ) ≈ǫ (Um, Y ),

where ǫ = 2−
k1+k2−n−m−1

2 .

We need the following explicit construction of seedless non-malleable extractors in [CZ14].

Theorem 2.11. There exists a constant δ > 0 and an explicit (k, ǫ)-seedless non-malleable extractor
for 10 independent sources CZExt : ({0, 1}n)10 → {0, 1}m with k = (1 − δ)n, ǫ = 2−Ω(n) and
m = Ω(k).

The following standard lemma about conditional min-entropy is implicit in [NZ96] and explicit
in [MW97].

Lemma 2.12 ([MW97]). Let X and Y be random variables and let Y denote the range of Y . Then
for all ǫ > 0, one has

Pr
Y

[
H∞(X|Y = y) ≥ H∞(X)− log |Y| − log

(
1

ǫ

)]
≥ 1− ǫ.

We also need the following lemma.

Lemma 2.13. [Li13a] Let (X,Y ) be a joint distribution such that X has range X and Y has
range Y. Assume that there is another random variable X ′ with the same range as X such that
|X −X ′| = ǫ. Then there exists a joint distribution (X ′, Y ) such that |(X,Y )− (X ′, Y )| = ǫ.

Lemma 2.14. [BIW04] Assume that Y1, Y2, · · · , Yt are independent random variables over {0, 1}n
such that for any i, 1 ≤ i ≤ t, we have |Yi − Un| ≤ ǫ. Let Z = ⊕t

i=1Yi. Then |Z − Un| ≤ ǫt.

3 Alternating Extraction

An important ingredient in our construction is the following alternating extraction protocol, which
was first introduced in [DP07], and then used a lot in constructions related to extractors (e.g.,
[DW09, Li13a]).

Alternating Extraction. Assume that we have two parties, Quentin and Wendy. Quentin
has a source Q, Wendy has a source W . Also assume that Quentin has a uniform random seed S1

(which may be correlated with Q). Suppose that (Q,S1) is kept secret from Wendy and W is kept
secret from Quentin. Let Extq, Extw be strong seeded extractors with optimal parameters, such as
that in Theorem 2.9. Let s be an integer parameter for the protocol. For some integer parameter
ℓ > 0, the alternating extraction protocol is an interactive process between Quentin and Wendy
that runs in ℓ steps.

In the first step, Quentin sends S1 to Wendy, Wendy computes R1 = Extw(W,S1). She sends
R1 to Quentin and Quentin computes S2 = Extq(Q,R1). In this step R1, S2 each outputs s bits.
In each subsequent step i, Quentin sends Si to Wendy, Wendy computes Ri = Extw(W,Si). She
replies Ri to Quentin and Quentin computes Si+1 = Extq(Q,Ri). In step i, Ri, Si+1 each outputs
s bits. Therefore, this process produces the following sequence:

S1, R1 = Extw(W,S1), S2 = Extq(Q,R1), · · · , Sℓ = Extq(Q,Rℓ−1), Rℓ = Extw(W,Sℓ).
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Quentin: Q,S1 Wendy: X

S1

S1−−−−−−−−−−−−−→
R1←−−−−−−−−−−−−− R1 = Extw(X,S1)

S2 = Extq(Q,R1)
S2−−−−−−−−−−−−−→
R2←−−−−−−−−−−−−− R2 = Extw(X,S2)

· · ·
Sℓ = Extq(Q,Rt−1)

St−−−−−−−−−−−−−→
Rℓ = Extw(X,St)

Figure 1: Alternating Extraction.

Look-Ahead Extractor. Now we can define our look-ahead extractor. Let Y = (Q,S1) be a
seed, the look-ahead extractor is defined as

laExt(W,Y ) = laExt(W, (Q,S1))
def
= R1, · · · , Rℓ.

The following lemma is a special case of Lemma 6.5 in [CGL16].

Lemma 3.1. Let W be an (nw, kw)-source and W ′ be a random variable on {0, 1}nw that is arbi-
trarily correlated with W . Let Y = (Q,S1) such that Q is a (nq, kq)-source, S1 is a uniform string
on s bits, and Y ′ = (Q′, S′1) be a random variable arbitrarily correlated with Y , where Q′ and S′1
are random variables on nq bits and s bits respectively. Let Extq,Extw be strong seeded extractors
that extract s bits from sources with min-entropy k with error ǫ and seed length s. Suppose (Y, Y ′)
is independent of (W,W ′), and kw, kq > k+2ℓs+2 log(1ǫ ). Let laExt be the look-ahead extractor de-
fined above using Extq,Extw, and (R1, · · · , Rℓ) = laExt(W,Y ), (R′1, · · · , R′ℓ) = laExt(W ′, Y ′). Then
for any 0 ≤ j ≤ ℓ− 1, we have

(Y, Y ′, {R1, R
′
1, · · · , Rj , R

′
j}, Rj+1) ≈ǫ1 (Y, Y ′, {R1, R

′
1, · · · , Rj , R

′
j}, Us),

where ǫ1 = O(ℓǫ).

4 Non-Malleable Independence Preserving Merger

We now describe the notion of non-malleable independence preserving merger, introduced in [CL16]
based on the notion of independence preserving merger introduced in [CS16]. For simplicity we
assume here we only have one adversary, which will be enough for our applications.

Definition 4.1. A (L, d′, ε)-NIPM : {0, 1}Lm × {0, 1}d → {0, 1}m1 satisfies the following property.
Suppose

• X,X′ are random variables, each supported on boolean L ×m matrices s.t for any i ∈ [L],
Xi = Um,

• {Y,Y′} is independent of {X,X′}, s.t Y,Y′ are each supported on {0, 1}d and H∞(Y) > d′,
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• there exists an h ∈ [L] such that (Xh,X
′
h) = (Um,X′h),

then

|(L, d′, ε)-NIPM((X,Y), (L, d′, ε)-NIPM(X′,Y′)−Um1 , (L, d
′, ε)-NIPM(X′,Y′)| 6 ǫ.

We have the following construction and theorem.
L-Alternating Extraction We extend the previous alternating extraction protocol by letting

Quentin have access to L sources Q1, . . . , QL (instead of just Q) which have the same length. Now
in the i’th round of the protocol, he uses Qi to produce the r.v Si = Extq(Qi, Ri). More formally,
the following sequence of r.v’s is generated: S1, R1 = Extw(W,S1), S2 = Extq(Q2, R1), . . . , RL−1 =
Extw(W,Sℓ−1), SL = Extq(QL, RL−1).

The NIPM is now constructed as follows. Let S1 be a slice of X1 with length O(log(d/ε)), then
run the L-alternating extraction described above with (Q1, . . . , QL) = (X1, . . . ,XL) and W = Y.
Finally output SL.

Theorem 4.2 ([CL16]). There exists a constant c > 0 such that for all integers m, d, d′, L > 0 and
any ǫ > 0, with m > 4cL log(d/ǫ), d′ > 4cL log(m/ǫ), the above construction NIPM : ({0, 1}m)ℓ ×
{0, 1}d → {0, 1}m1 has output length m1 ≥ 0.2m, such that if the following conditions hold:

• X,X′ are random variables, each supported on boolean L ×m matrices s.t for any i ∈ [L],
Xi = Um,

• {Y,Y′} is independent of {X,X′}, s.t Y,Y′ are each supported on {0, 1}d and H∞(Y) > d′,

• there exists an h ∈ [L] such that (Xh,X
′
h) = (Um,X′h),

then

|NIPM((X,Y),NIPM((X′,Y′),Y,Y′ −Um1 ,NIPM((X′,Y′),Y,Y′| 6 Lǫ.

5 Correlation Breaker with Advice

We now use the non-malleable independence preserving merger to construct an improved correlation
breaker with advice. A correlation breaker, as its name suggests, uses independent randomness
to break the correlations between several correlated random variables. A prototype correlation
breaker was first constructed implicitly in the author’s work [Li13a], and then later strengthened
and formally defined in [Coh15]. A correlation breaker with advice additionally uses some string
as an advice. This object was first introduced and used without its name in [CGL16], and then
explicitly defined in [Coh16b]. We have the following definition.

Definition 5.1 (Correlation breaker with advice). A function

AdvCB : {0, 1}n × {0, 1}d × {0, 1}a → {0, 1}m

is called a (k, ε)-correlation breaker with advice if the following holds. Let Y, Y ′ be d-bit random
variables such that Y is uniform. Let X,X ′ be n-bit random variables with H∞(X) ≥ k, such that
(X,X ′) is independent of (Y, Y ′). Then, for any pair of distinct a-bit strings α, α′,
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(AdvCB(X,Y, α),AdvCB(X ′, Y ′, α′)) ≈ε (U,AdvCB(X
′, Y ′, α′)).

In addition, we say that AdvCB is strong if

(AdvCB(X,Y, α),AdvCB(X ′, Y ′, α′), Y, Y ′) ≈ε (U,AdvCB(X
′, Y ′, α′), Y, Y ′).

For our construction we need the following flip-flop extraction scheme. The flip-flop function was
constructed by Cohen [Coh15] using alternating extraction, based on a previous similar construction
of the author [Li13a]. Subsequently, it was used in the construction of non-malleable extractors
by Chattopadhyay, Goyal and Li [CGL16]. The flip-flop function is a basic version of correlation
breaker, and (informally) uses an independent source X to break the correlation between two r.v’s
Y and Y′, given an advice bit. We now describe this more formally.

Theorem 5.2 ([Coh15, CGL16]). There exists a constant c5.2 such that for all n > 0 and any
ǫ > 0, there exists an explicit function flip-flop : {0, 1}n × {0, 1}d → {0, 1}m, m = 0.4k, satisfying
the following: Let X be an (n, k)-source, and X′ be a random variable on n bits arbitrarily correlated
with X. Let Y be an independent uniform seed on d bits, and Y′ be a random variable on d bits
arbitrarily correlated with Y. Suppose (X,X′) is independent of (Y,Y′). If k, d > C5.2 log(n/ǫ),
then for any bit b,

|flip-flop(X,Y, b),Y,Y′ −Um,Y,Y′| 6 ǫ.

Furthermore, for any bits b, b′ with b 6= b′,

|flip-flop(X,Y, b), flip-flop(X′,Y′, b′),Y,Y′ −Um, flip-flop(X′,Y′, b′),Y,Y′| 6 ǫ.

We construct a correlation breaker such that X,X ′, Y, Y ′ are all on d bits such that H∞(X) ≥
0.9d and H∞(Y ) ≥ 0.9d. Using the above ingredients, our construction of the correlation breaker
with advice is given below. For simplicity, when we say a strong seeded extractor for min-entropy
k, we mean a strong average case seeded extractor for average conditional min-entropy k.

• Fix an error parameter ǫ′ to be chosen later. Let s be an integer such that s ≥ max{c log(d/ǫ′), 8c log(3s/ǫ′)}
where c is the maximum of the hidden constant in the seed length of the optimal seeded ex-
tractor in Theorem 2.9, and the two constants c, c5.2 in Theorem 4.2 and Theorem 5.2.

• Let Ext be a strong seeded extractor which uses r = c log(3s/ǫ′) random bits to extract from
an (3s, 2c log(3s/ǫ′)) source and outputs r = c log(3s/ǫ′) bits with error ǫ′, from Theorem 2.9.

• Let Extw, Extq be strong seeded extractors which use s bits to extract from a (d, 4s) source
and outputs 3s bits with error ǫ′.

• Let Ext′ be a strong seeded extractor which uses r = c log(3s/ǫ′) random bits to extract from
an (3s, 1.5s) source and outputs s bits with error ǫ′, from Theorem 2.9.

• Let Ext′′ be a strong seeded extractor which uses s ≥ c log(d/ǫ′) random bits to extract from
a (d, 0.15d) source and outputs 0.1d bits with error ǫ′.

• Let IP be the two source extractor from Theorem 2.10, set up to extract from two 0.3d-bit
sources and output 0.05d bits.
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1. Let ℓ = log a.2 Let X1 be a slice of X with length 0.3d, and Y1 be a slice of Y with length
0.3d. Compute Z = IP(X1, Y1).

Using Z, Y as Q,W (and S1 is a small slice of Q) and Extw,Extq as the extractors, run
alternating extraction between Z and Y for 2ℓ + 1 steps, and output R0, R1, R2, · · · , R2ℓ =
laExt(Y, Z), where each Ri has 3s bits. Similarly, using Z,X as Q,W (and S1 is a small slice
of Q) and Extw,Extq as the extractors, run alternating extraction between Z and X for ℓ+1
steps, and output S0, S1, S2, · · · , Sℓ = laExt(X,Z), where each Si has 3s bits.

2. Use S0, R0, α to obtain an a × s matrix V 0, where for any i ∈ [a], V 0
i = flip-flop(S0, R0, αi)

and outputs s bits.

3. For j = 1, . . . , ℓ do the following. Merge the matrix V j−1 two rows by two rows: Note

that V j−1 has a/2j−1 rows, for i = 1, . . . , a/2j , compute V
j−1
i = NIPM(V j−1

2i−1, V
j−1
2i , R2j−1)

which outputs r bits, and Ṽ j−1
i = Ext(R2j , V

′j−1
i ) which has r bits. Finally compute V j

i =

Ext′(Sj , Ṽ
j−1
i ) which has s bits.

4. Compute V̂ = Ext′′(X,Extw(Y, V
ℓ)).

We now have the following lemma.

Lemma 5.3. There exists a constant C > 1 such that for any 0 < ǫ < 1/2 and any a, d ∈ N

such that d ≥ C log a log(da/ǫ), there is an explicit construction of a function AdvCB : {0, 1}d ×
{0, 1}d × {0, 1}a → {0, 1}d/10 that satisfies the following. Let Y, Y ′ be d-bit random variables such
that H∞(Y ) ≥ 0.9d, and X,X ′ be d-bit random variables with H∞(X) ≥ 0.9d. Assume that (X,X ′)
is independent of (Y, Y ′). Then, for any pair of distinct a-bit strings α, α′,

(AdvCB(X,Y, α),AdvCB(X ′, Y ′, α′), Y, Y ′) ≈ε (U,AdvCB(X
′, Y ′, α′), Y, Y ′).

Proof. We show that with appropriately chosen parameters s, ǫ′ the above construction gives the
desired correlation breaker with advice. We will use letters with prime to denote all the corre-
sponding random variables produced by running the same algorithm on (X ′, Y ′) instead of (X,Y ).
Note that both X1 and Y1 has min-entropy at least 0.2d. Thus by Theorem 2.10 we have that

(Z,X1)− (U,X1) ≤ 2−Ω(d) and (Z, Y1)− (U, Y1) ≤ 2−Ω(d).

We now fix (Y1, Y
′
1), and conditioned on this fixing (Z,Z ′) is a deterministic function of (X1, X

′
1),

thus independent of (Y, Y ′). Moreover, Z is close to uniform and the average conditional min-
entropy of Y is at least 0.9d− 2× 0.3d = 0.3d.

Now by Lemma 3.1, as long as 0.3d ≥ 4s+2(2ℓ+1)3s+2 log( 1
ǫ′ ) and 0.05d ≥ 4s+2(2ℓ+1)3s+

2 log( 1
ǫ′ ), we have that for any 0 ≤ j ≤ 2ℓ− 1,

(Z,Z ′, {R0, R
′
0, · · · , Rj , R

′
j}, Rj+1) ≈O(ℓǫ′) (Z,Z

′, {R0, R
′
0, · · · , Rj , R

′
j}, Us).

By a hybrid argument and the triangle inequality, we have that

(Z,Z ′, R0, R
′
0, · · · , R2ℓ, R

′
2ℓ) ≈O(ℓ2ǫ′) (Z,Z

′, Us, R
′
0, · · · , Us, R

′
2ℓ),

2Without loss of generality we assume that a is a power of 2. Otherwise add 0 to the string until the length is a
power of 2.
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where each Us is independent of all the previous random variables (but may depend on later random
variables). From now on, we will proceed as if eachRj+1 is uniform given (Z,Z ′, {R0, R

′
0, · · · , Rj , R

′
j}),

since this only adds O(ℓ2ǫ′) to the final error.
Note that conditioned on the fixing of (Z,Z ′), we have that {(Ri, R

′
i), i = 0, . . . , 2ℓ} is a deter-

ministic function of (Y, Y ′), thus independent of (X,X ′).
By symmetry, we can repeat the above argument while switching the role of X and Y . Specif-

ically, we can fix (X1, X
′
1), and conditioned on this fixing (Z,Z ′) is a deterministic function of

(Y1, Y
′
1), thus independent of (X,X ′). Moreover, Z is close to uniform and the average conditional

min-entropy of X is at least 0.9d− 2× 0.3d = 0.3d.
Now again by Lemma 3.1, as long as 0.3d ≥ 4s+ 2(ℓ+ 1)3s+ 2 log( 1

ǫ′ ) and 0.05d ≥ 4s+ 2(ℓ+
1)3s+ 2 log( 1

ǫ′ ), we have that for any 0 ≤ j ≤ ℓ− 1,

(Z,Z ′, {S0, S
′
0, · · · , Sj , S

′
j}, Sj+1) ≈O(ℓǫ′) (Z,Z

′, {S0, S
′
0, · · · , Sj , S

′
j}, Us).

By a hybrid argument and the triangle inequality, we have that

(Z,Z ′, S0, S
′
0, · · · , Sℓ, S

′
ℓ) ≈O(ℓ2ǫ′) (Z,Z

′, Us, S
′
0, · · · , Us, S

′
ℓ),

where each Us is independent of all the previous random variables (but may depend on later random
variables). From now on, we will proceed as if each Sj+1 is uniform given (Z,Z ′, {S0, S

′
0, · · · , Sj , S

′
j}),

since this only adds O(ℓ2ǫ′) to the final error.
Note that now conditioned on the fixing of (Z,Z ′), we have that {(Si, S

′
i), i = 0, . . . , ℓ} is a

deterministic function of (X,X ′), thus independent of (Y, Y ′). Therefore, we can conclude that
conditioned on the fixing of (X1, X

′
1, Y1, Y

′
1 , Z, Z

′), we have that {(Ri, R
′
i), i = 0, . . . , 2ℓ} is a de-

terministic function of (Y, Y ′), and {(Si, S
′
i), i = 0, . . . , ℓ} is a deterministic function of (X,X ′),

thus they are independent. Moreover each Ri and Si is close to uniform given the previous random
variables.

We now have the following claim.

Claim 5.4. For all i ∈ [a] we have that

∣∣V 0
i − Us

∣∣ 6 ǫ′.

Furthermore, there exists an i ∈ [a] such that

∣∣(V 0
i , V

′0
i , R0, R

′
0)− (Us, V

′0
i , R0, R

′
0)
∣∣ 6 ǫ′.

Indeed, since α 6= α′ there exists an i ∈ [a] such that αi 6= α′i. Thus by Theorem 5.2, and
noticing that 3s ≥ C5.2 log(3s/ǫ

′), the claim follows. Furthermore, notice that now conditioned
on the fixing of (R0, R

′
0), (V

0, V ′0) is a deterministic function of (S0, S
′
0), and thus independent of

{(Ri, R
′
i), i = 1, . . . , 2ℓ}. We now have the following claim.

Claim 5.5. Assume that for some j ≤ ℓ, we have that for all i,
∣∣∣(V j

i , {R0, R
′
0, · · · , R2j , R

′
2j})− (Us, {R0, R

′
0, · · · , R2j , R

′
2j)

∣∣∣ 6 ǫj .

Furthermore there exists an i such that
∣∣∣(V j

i , V
′j
i , {R0, R

′
0, · · · , R2j , R

′
2j})− (Us, V

′j
i , {R0, R

′
0, · · · , R2j , R

′
2j)

∣∣∣ 6 ǫj .
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Then for all i, we have that

∣∣∣(V j+1
i , {R0, R

′
0, · · · , R2(j+1), R

′
2(j+1)})− (Us, {R0, R

′
0, · · · , R2(j+1), R

′
2(j+1)})

∣∣∣ 6 2(ǫj + 2ǫ′).

Furthermore there exits an i such that
∣∣∣(V j+1

i , V ′j+1
i , {R0, R

′
0, · · · , R2(j+1), R

′
2(j+1)})− (Us, V

′j+1
i , {R0, R

′
0, · · · , R2(j+1), R

′
2(j+1)})

∣∣∣ 6 2(ǫj+2ǫ′).

To see the claim, we focus on the index i where the corresponding row V j
i is close to uniform

given V ′ji . The properties of the other rows can be obtained using similar and simpler arguments.
Notice that conditioned on the fixing of {R0, R

′
0, · · · , R2j , R

′
2j}, we have that (V j , V ′j) is a deter-

ministic function of (S0, S
′
0, · · · , Sj , S

′
j), and thus independent of (R2j+1, R

′
2j+1). Furthermore, by

the property of the look-ahead extractor, we know that R2j+1 is uniform. Now by Theorem 4.2,
and noticing that s ≥ 8c log(3s/ǫ′), we know that whenever the NIPM merges the two rows in
which one row of V j is uniform given the corresponding row of V ′j , the output obtained from V j

will be uniform given the output obtained from V ′j . Thus, there exists an i such that

∣∣∣(V j
i , V

′j
i , R2j+1, R

′
2j+1)− (Ur, V ′

j
i , R2j+1, R

′
2j+1)

∣∣∣ 6 2ǫj + 2ǫ′.

Now we fix (R2j+1, R
′
2j+1), and conditioned on this fixing (V

j
, V ′

j
) is a deterministic function of

(S0, S
′
0, · · · , Sj , S

′
j), and thus independent of (R2(j+1), R

′
2(j+1)). Moreover now again by the property

of the look-ahead extractor, we know that R2(j+1) is uniform. Therefore, we can first fix V ′
j
i and

then Ṽ ′
j
i = Ext(R′2(j+1), V

′j
i ). Conditioned on this fixing we have that V

j
i is still uniform, and that

R2(j+1) has average conditional min-entropy at least 3s − r = 3s − c log(3s/ǫ′) ≥ 23c log(2s/ǫ′).
Therefore, by Theorem 2.9 we have that

∣∣∣(Ṽ j
i , Ṽ

′j
i , V

j
i , V

′j
i )− (Ur, Ṽ ′

j
i , V

j
i , V

′j
i )
∣∣∣ ≤ ǫ′.

Now we can fix (V
j
i , V

′j
i ) and conditioned on this fixing, (Ṽ j

i , Ṽ
′j
i ) is a deterministic function

of (R2(j+1), R
′
2(j+1)), and thus independent of (Sj+1, S

′
j+1). Thus we can first fix Ṽ ′

j
i and then

V ′j+1
i = Ext′(S′j+1, Ṽ

′j
i ). Note that after this fixing Ṽ j

i is still close to uniform, moreover the
average conditional min-entropy of Sj+1 is at least 3s− s = 2s. Thus by Theorem 2.9 we have that

∣∣∣(V j+1
i , V ′j+1

i , Ṽ j
i , Ṽ

′j
i )− (Us, V

′j+1
i , Ṽ j

i , Ṽ
′j
i )
∣∣∣ ≤ ǫ′.

Note that conditioned on the fixing of (Ṽ j
i , Ṽ

′j
i ), we have that (V j+1

i , V ′j+1
i ) is a deterministic

function of (Sj+1, S
′
j+1), and thus independent of (R2(j+1), R

′
2(j+1)). Since we have fixed all the

{R0, R
′
0, · · · , R2j , R

′
2j} before, by adding all the errors we obtain that

∣∣∣(V j+1
i , V ′j+1

i , {R0, R
′
0, · · · , R2(j+1), R

′
2(j+1)})− (Us, V

′j+1
i , {R0, R

′
0, · · · , R2(j+1), R

′
2(j+1)})

∣∣∣ 6 2(ǫj+2ǫ′).

Now note that by the end of the iteration of step 3, V ℓ has only one row. From Claim 5.5 we
see that (by solving the recursion of the errors)
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∣∣∣(V ℓ, V ′ℓ, {R0, R
′
0, · · · , R2ℓ, R

′
2ℓ})− (Us, V

′ℓ, {R0, R
′
0, · · · , R2ℓ, R

′
2ℓ})

∣∣∣ 6 10aǫ′.

Note that conditioned on the fixing of X1, Y1, X
′
1, Y

′
1 , {R0, R

′
0, · · · , R2ℓ, R

′
2ℓ}, we have that

(V ℓ, V ′ℓ) is a deterministic function of (X,X ′), and thus independent of (Y, Y ′). Furthermore
the average conditional min-entropy of Y is at least 0.9d−2×0.3d−2(2ℓ+1)3s = 0.3d− (12ℓ+6)s.
Thus we can first fix V ′ℓ and then Extw(Y, V

′ℓ), and conditioned on this fixing we have that V ℓ is
still close to uniform and independent of Y , and the average conditional min-entropy of Y is at
least 0.3d− (12ℓ+ 9)s. Now as long as 0.3d− (12ℓ+ 9)s ≥ 4s, by Theorem 2.9 we have that

∣∣∣Extw(Y, V ℓ),Extw(Y
′, V ′ℓ), V ℓ, V ′ℓ)− (U3s,Extw(Y

′, V ′ℓ), V ℓ, V ′ℓ})
∣∣∣ 6 ǫ′.

Finally, notice that conditioned on the further fixing of V ℓ, V ′ℓ, we have that (Extw(Y, V ℓ),Extw(Y, V
′ℓ))

is a deterministic function of (Y, Y ′), and thus independent of (X,X ′). Furthermore the average
conditional min-entropy of X is at least 0.9d − 2 × 0.3d − 2(ℓ + 1)3s = 0.3d − (6ℓ + 6)s. Thus
we can first fix Extw(Y

′, V ′ℓ)l and then V̂ ′ = Ext′′(X ′,Extw(Y, V ′ℓ)), and conditioned on this fixing
we have that Extw(Y, V

ℓ) is still close to uniform and independent of X, and the average condi-
tional min-entropy of X is at least 0.3d − (6ℓ + 6)s − 0.1d = 0.2d − (6ℓ + 6)s. Thus as long as
0.2d− (6ℓ+ 6)s ≥ 0.15d, Theorem 2.9 we have that

∣∣∣V̂ , V̂ ′,Extw(Y, V
ℓ),Extw(Y

′, V ′ℓ))− (U0.1d, V̂ ′,Extw(Y, V
ℓ),Extw(Y

′, V ′ℓ))
∣∣∣ 6 ǫ′.

Note that now conditioned on the fixing of (Extw(Y, V
ℓ),Extw(Y

′, V ′ℓ)), we have that (V̂ , V̂ ′) is
a deterministic function of (X,X ′), and thus independent of (Y, Y ′). Therefore by adding back all
the errors we obtain

∣∣∣V̂ , V̂ ′, Y, Y ′)− (U0.1d, V̂ ′, Y, Y
′)
∣∣∣ 6 ǫ1,

where ǫ1 = (10a+ 2)ǫ′ +O(ℓ2ǫ′) + 2−Ω(d).
Next, in order for all the entropy requirement to hold, we need the following conditions.

s ≥ max{c log(d/ǫ′), 8c log(3s/ǫ′)}, and 0.05d ≥ 4s+ 2(2ℓ+ 1)3s+ 2 log(
1

ǫ′
)

0.3d− (12ℓ+ 9)s ≥ 4s, and 0.2d− (6ℓ+ 6)s ≥ 0.15d.

The above conditions are satisfied if the following conditions are satisfied.

d ≥ 240(ℓ+ 1)s, and s ≥ 8c log(d/ǫ′).

Under this condition, we see that 2−Ω(d) ≤ ǫ′, and since ℓ = log a we have that ℓ2 = O(a). Thus
the total error is ǫ1 = O(a)ǫ′. Therefore, to make ǫ1 = ǫ, we can set ǫ′ = ǫ/(c′a) for some constant
c′ > 0. We can now set s = 9c log(d/ǫ′) = 9c log(c′da/ǫ), and the conditions are satisfied as long as
d ≥ Cℓ log(da/ǫ) = C log a log(da/ǫ) for some constant C > 1.

19



6 The Seeded Non-Malleable Extractor

In this section we construct our improved seeded non-malleable extractor. First we need the
following advice generator from [CGL16]

Theorem 6.1 ([CGL16]). There exist a constant c > 0 such that for all n > 0 and any ǫ > 0,
there exists an explicit function AdvGen : {0, 1}n × {0, 1}d → {0, 1}L with L = c log(n/ǫ) satisfying
the following: Let X be an (n, k)-source, and Y be an independent uniform seed on d bits. Let
Y ′ be a random variable on d bits s.t Y ′ 6= Y , and (Y, Y ′) is independent of X. Then with
probability at least 1 − ǫ, AdvGen(X,Y ) 6= AdvGen(X,Y ′). Moreover, there is a deterministic
function g such that AdvGen(X,Y ) is computed as follows. Let Y1 be a small slice of Y with length
O(log(n/ǫ)), compute Z1 = Ext(X,Y1) where Ext is an optimal seeded extractor from Theorem 2.9
which outputs O(log(n/ǫ)) bits. Finally compute Y2 = g(Y, Z1) which outputs O(log(1/ǫ)) bits and
let AdvGen(X,Y ) = (Y1, Y2).

The construction of the non-malleable extractor is as follows.

• Let ǫ′ = ǫ/10. Assume k ≥ 6d.

• Let Ext be a strong seeded extractor from Theorem 2.9, which uses O(log(n/ǫ′)) bits to extract
from an (n, k/3) source and outputs k/4 bits with error ǫ′.

• Let Ext′ be a strong seeded extractor from Theorem 2.9, which uses O(log(n/ǫ′)) bits to
extract from an (n, k) source and outputs d bits with error ǫ′.

• Let AdvGen be the advice generator from Theorem 6.1, with error ǫ′.

• Let AdvCB be the correlation breaker with advice from Lemma 5.3, with error ǫ′.

1. Compute AdvGen(X,Y ) with error ǫ′. Specifically, first compute X1 = Ext′(X,Y1), except
now it outputs Z = Ext(X,Y1) with d bits. Let Z1 be a slice of Z with O(log(n/ǫ′)) bits
and as in Theorem 6.1, compute Y2 = g(Y, Z1) which outputs O(log(1/ǫ′)) bits and let
AdvGen(X,Y ) = (Y1, Y2) = α.

2. Compute V = AdvCB(Y, Z, α) which outputs d/10 bits.

3. Output W = Ext(X,V ) which outputs k/4 bits

We now have the following theorem.

Theorem 6.2. There exists a constant C > 1 such that for any n, k ∈ N and 0 < ǫ < 1 with
k ≥ C(log n+ log log(1/ǫ) log(1/ǫ)), there is an explicit construction of a strong seeded (k, ǫ) non-
malleable extractor {0, 1}n × {0, 1}d → {0, 1}m with d = C(log n + log log(1/ǫ) log(1/ǫ)) and m ≥
k/4.

Proof. Again, we use letters with prime to denote random variables produced with (X,Y ′) instead
of (X,Y ). First note that by Theorem 2.9, we have that

(Z, Y1) ≈ǫ′ (Ud, Y1).
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We will now proceed as if Z is uniform given Y1, since this only adds error ǫ′. We now fix
(Y1, Y

′
1). Note that conditioned on this fixing, (Z,Z ′) is a deterministic function of X, and thus

independent of (Y, Y ′). Moreover by Lemma 2.12 with probability 1 − ǫ′, the min-entropy of Y is
at least d − O(log(n/ǫ′)). Now we fix (Z1, Z

′
1), and note that conditioned on this fixing, (Y2, Y

′
2)

is a deterministic function of (Y, Y ′), and thus independent of (X,Z,Z ′). Moreover again by by
Lemma 2.12 with probability 1−ǫ′, the min-entropy of Z is at least d−O(log(n/ǫ′)). Finally we fix
(Y2, Y

′
2). Note that conditioned on this fixing, (Y, Y ′) is still independent of (X,Z,Z ′). Moreover

by Lemma 2.12 with probability 1− ǫ′, the min-entropy of Y is at least d−O(log(n/ǫ′)). Also note
that by Theorem 6.1, with probability at least 1 − ǫ′ over the fixing of (Y1, Z1, Y2, Y

′
1 , Z

′
1, Y

′
2), we

have that α = (Y1, Y2) 6= (Y ′1 , Y
′
2) = α′. Thus, as long as d ≥ C log(n/ǫ′) for some constant C > 1,

altogether we can conclude that with probability at least 1− 4ǫ′, we have that

• α 6= α′, where α, α′ each has a = c log(n/ǫ′) bits.

• X is still independent of (Y, Y ′), and (Z,Z ′) is a deterministic function of X.

• H∞(Y ) ≥ 0.9d and H∞(Z) ≥ 0.9d.

Thus, as long as d ≥ C ′ log a log(da/ǫ′) where C ′ is the constant in Lemma 5.3, we have that

(V, V ′, Z, Z ′) ≈ǫ′ (U, V
′, Z, Z ′).

Note that conditioned on the fixing of (Z,Z ′), we have that (V, V ′) is a deterministic function
of (Y, Y ′), and thus independent of X. Moreover the average conditional min-entropy of X is at
least k − 2d ≥ 2k/3. Thus now we can first fix V ′ and then W ′ = Ext(X,V ′). Note that after this
fixing X and (Y, Y ′, V ) are still independent. Moreover V is still close to uniform and the average
conditional min-entropy of X is at least 2k/3− k/4 > k/3. Thus by Theorem 2.9 we have that

(W,W ′, V, V ′) ≈ǫ′ (U,W
′, V, V ′).

Note that conditioned on the fixing of (V, V ′), we have that (W,W ′) is a deterministic function
of X, thus independent of (Y, Y ′). Therefore by adding back all the errors we get that

(W,W ′, Y, Y ′) ≈7ǫ′ (U,W
′, Y, Y ′).

Since ǫ′ = ǫ/10 we have that

(W,W ′, Y, Y ′) ≈ǫ (U,W
′, Y, Y ′).

Now let’s decide the seed length d. We need to have that

d ≥ C log(n/ǫ′) and d ≥ C ′ log a log(da/ǫ′),

where a = c log(n/ǫ′) and ǫ′ = ǫ/10. Since our new non-malleable extractor is better than the
construction in [CGL16], which has seed length d = O(log2(n/ǫ′)), we can first assume that d =
O(log2(n/ǫ)) and we will use the inequality d ≥ C ′ log a log(da/ǫ′) to compute the minimum d and
verify the condition that d = O(log2(n/ǫ′)) does hold.

In this case, we see that log(da/ǫ′) = log(O(log3(n/ǫ′)/ǫ′)) = O(log log(n/ǫ′) + log(1/ǫ′)), and
log a = O(log log(n/ǫ′)). Thus we need

d ≥ C1((log log(n/ǫ
′))2 + log log(n/ǫ′) log(1/ǫ′))
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for some constant C1 > 1.
Note that if ǫ′ < 1/n, then log log(n/ǫ′) = O(log log(1/ǫ′)) and thus (log log(n/ǫ′))2 < log log(n/ǫ′) log(1/ǫ′);

and if ǫ′ ≥ 1/n then (log log(n/ǫ′))2 < log n. Thus we have

(log log(n/ǫ′))2 < log n+ log log(n/ǫ′) log(1/ǫ′).

Now consider log log(n/ǫ′) log(1/ǫ′). We have that

log log(n/ǫ′) log(1/ǫ′) ≤ log(log n log(1/ǫ′)) log(1/ǫ′) = (log log n+ log log(1/ǫ′)) log(1/ǫ′).

Now if ǫ′ < 2− logn/ log logn, then we have that log log(1/ǫ′) > log logn− log log log n > 0.5 log log n.
Thus in this case we have that

log log(n/ǫ′) log(1/ǫ′) ≤ 3 log log(1/ǫ′) log(1/ǫ′).

On the other hand, if ǫ′ ≥ 2− log n/ log logn, then we have that

log logn log(1/ǫ′) ≤ log n.

Thus combining the two cases we have that

log log(n/ǫ′) log(1/ǫ′) ≤ log n+ 3 log log(1/ǫ′) log(1/ǫ′).

Altogether we have

(log log(n/ǫ′))2 + log log(n/ǫ′) log(1/ǫ′) ≤ 3 log n+ 6 log log(1/ǫ′) log(1/ǫ′).

Thus, it suffices to set

d = O(logn+ log log(1/ǫ′) log(1/ǫ′)) = O(logn+ log log(1/ǫ) log(1/ǫ)).

7 Non-Malleable Two-Source Extractor and Non-Malleable Code

Formally, non-malleable codes are defined as follows.

Definition 7.1. [ADKO15] Let NMk denote the set of trivial manipulation functions on k-bit
strings, which consists of the identity function I(x) = x and all constant functions fc(x) = c,
where c ∈ {0, 1}k. Let E : {0, 1}k → {0, 1}m be an efficient randomized encoding function, and
D : {0, 1}m → {0, 1}k be an efficient deterministic decoding function. Let F : {0, 1}m → {0, 1}m be
some class of functions. We say that the pair (E,D) defines an (F , k, ǫ)-non-malleable code, if for
all f ∈ F there exists a probability distribution G over NMk, such that for all x ∈ {0, 1}k, we have

|D(f(E(x)))−G(x)| ≤ ǫ.

Remark 7.2. The above definition is slightly different form the original definition in [DPW10].
However, [ADKO15] shows that the two definitions are equivalent.

We will mainly be focusing on the following family of tampering functions in this paper.
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Definition 7.3. Given any ℓ > 1, let Sℓn denote the tampering family in the ℓ-split-state-model,
where the adversary applies ℓ arbitrarily correlated functions h1, · · · , hℓ to ℓ separate, n-bit parts
of string. Each hi can only be applied to the i-th part individually.

Note that although the functions h1, · · · , hℓ can be correlated, their correlation does not depend
on the original codewords. Thus, they are a convex combination of independent functions, applied
to each part of the codeword. Thus, without loss of generality, hereafter we may assume that each
hi is an independent function acting on the i-th part of the codeword individually. In this paper
we will mainly consider the case of ℓ = 2, i.e., the two-split-state model.

The following theorem was proved by Cheraghchi and Gursuswami [CG14b], which establishes
a connection between seedless non-malleable extractors and non-malleable codes.

Theorem 7.4. Let nmExt : {0, 1}n × {0, 1}n → {0, 1}m be a polynomial time computable seedless
2-non-malleable extractor at min-entropy n with error ǫ. Then there exists an explicit non-malleable
code with an efficient decoder in the 2-split-state model with block length = 2n, rate = m

2n and error
= 2m+1ǫ.

Using the non-malleable extractor, the non-malleable code in the 2-split-state model is con-
structed as follows: For any message s ∈ {0, 1}m, the encoder Enc(s) outputs a uniformly random
string from the set nmExt−1(s) ⊂ {0, 1}2n. For any codeword c ∈ {0, 1}2n, the decoder Dec outputs
nmExt(c). Thus, for the encoder to be efficient we need to be able to efficiently uniformly sample
from the pre-image of any output of the extractor. We will now first describe our construction of
the non-malleable extractor and then show how to efficiently uniformly sample from the pre-image.

7.1 The construction and the analysis of the extractor

We have the following construction of a non-malleable two-source extractor for two (n, (1 − γ)n)
sources, where 0 < γ < 1 is some constant. First we need the following construction of an
“invertible” linear seeded extractor.

Theorem 7.5. There exists a constant 0 < α < 1 such that for any n ∈ N and 2−αn < ǫ < 1 there
exists a linear seeded strong extractor IExt : {0, 1}n×{0, 1}d → {0, 1}0.3d with d = O(log(n/ǫ)) and
the following property. If X is a (n, 0.9n) source and R is an independent uniform seed on {0, 1}d,
then

|(IExt(X,R), R)− (U0.3d, R)| ≤ ǫ.

Furthermore for any s ∈ {0, 1}0.3d and any r ∈ {0, 1}d, |IExt(·, r)−1(s)| = 2n−0.3d.

To prove the theorem we need the following definitions and theorems.

Definition 7.6 (Averaging sampler [Vad04]). A function Samp : {0, 1}r → [n]t is a (µ, θ, γ) av-
eraging sampler if for every function f : [n] → [0, 1] with average value 1

n

∑
i f(i) > µ, it holds

that

Pr
i1,...,it←Samp(UR)

[
1

t

∑

i

f(i) < µ− θ

]
≤ γ.

Samp has distinct samples if for every x ∈ {0, 1}r, the samples produced by Samp(x) are all distinct.
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Theorem 7.7 ([Vad04]). Let 1 ≥ δ ≥ 3τ > 0. Suppose that Samp : {0, 1}r → [n]t is an (µ, θ, γ)
averaging sampler with distinct samples for µ = (δ − 2τ)/ log(1/τ) and θ = τ/ log(1/τ). Then for
every δn-source X on {0, 1}n, the random variable (Ur, XSamp(Ur)) is (γ+2−Ω(τn))-close to (Ur,W )
where for every a ∈ {0, 1}r, the random variable W |Ur=a is (δ − 3τ)t-source.

Theorem 7.8 ([Vad04]). For every 0 < θ < µ < 1, γ > 0, and n ∈ N, there is an explicit (µ, θ, γ)
averaging sampler Samp : {0, 1}r → [n]t that uses

• t distinct samples for any t ∈ [t0, n], where t0 = O( 1
θ2

log(1/γ)), and

• r = log(n/t) + log(1/γ)poly(1/θ) random bits.

We can now prove Theorem 7.5.

Proof of Theorem 7.5. Given the source X and the seed R, we construct the extractor IExt as
follows. Set δ = 0.9 and τ = 0.1. Set µ = (δ − 2τ)/ log(1/τ), θ = τ/ log(1/τ) and γ = ǫ/4.
Now by Theorem 7.8 there is an explicit (µ, θ, γ) averaging sampler Samp : {0, 1}r → [n]t that
uses t distinct samples for any t ∈ [t0, n], where t0 = O( 1

θ2
log(1/γ)) = O(log(1/ǫ)) and r =

log(n/t) + log(1/γ)poly(1/θ) = logn + O(log(1/ǫ)). We will set t = 0.9d + 1 and r = 0.1d. Note
that by setting the hidden constant in d = O(log(n/ǫ)) to be big enough and α to be small enough
we can ensure that 0.9d+1 ∈ [t0, n], and r ≤ 0.1d. Thus such a sampler can indeed be constructed.

We now take a slice of 0.1d bits from R and let R = (R1, R2), where R2 has 0.9d bits. We use
R1 to sample t = 0.9d + 1 distinct bits from X, and let the sampled bits be X ′. By Theorem 7.7
we know that (R1, X

′) is ǫ/4 + 2−Ω(n)-close to (R1,W ) where conditioned on any fixing of R1, W
is a 0.6t ≥ 0.5d source. We will now proceed as if (R1, X

′) is (R1,W ), since this only adds error
ǫ/4 + 2−Ω(n).

Next we fix R1, and note that conditioned on this fixing, X ′ is a deterministic function of X,
and thus independent of R2. Further X ′ has entropy rate 0.6. We now take R2 and let R′2 be R2

padding with a 1 at the end, thus R′2 also has t = 0.9d+ 1 bits and has min-entropy 0.9d. Finally
we compute the output IExt(X,R) to be the last 0.3d bits of R′2 ·X ′, where the operation is in the
field F2t . By the leftover hash lemma we know that

|(IExt(X,R), R2)− (U,R2)| ≤ 2 · 2−0.1d.
Since r ≤ 0.1d we have that 2−0.1d < γ = ǫ/4. Since conditioned on the fixing of R2 we have

that IExt(X,R) is a deterministic function of X, by adding back all the errors we get

|(IExt(X,R), R)− (U,R)| ≤ ǫ/4 + ǫ/4 + 2−Ω(n).

By setting α to be small enough we can ensure the total error is at most ǫ, thus we have

|(IExt(X,R), R)− (U,R)| ≤ ǫ.

Moreover, for any fixing of the seed R = r, the function IExt(X, r) is a linear function in X
because it first selects t bits from X and then performs the operation R′2 · X ′, which is a linear
function since the field is F2t . Finally, the pre-image size for any fixed seed is the same since first,
the pre-image size of X ′ is always 2t−0.3d because R′2 is a fixed non-zero field element, and then
given X ′ to get X it is enough to put any bits for the un-sampled part of X.

We now have the following construction. Let (X,Y ) be two independent (n, (1− γ)n) source.
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• Let 0 < γ < α < β < 1/70 be two constants to be chosen later.

• Let IP be the inner product two-source extractor from Theorem 2.10.

• Let AdvCB be the correlation breaker with advice from Lemma 5.3 with error ǫ = 2−Ω(n/ logn).

• Let IExt be the invertible linear seeded extractor form Theorem 7.5.

1. Let n1 = αn. Divide X into X = (X1, X2) such that X1 has n1 bits and X2 has n2 = (1−α)n
bits. Similarly divide Y into Y = (Y1, Y2) such that Y1 has n1 bits and Y2 has n2 = (1− α)n
bits.

2. Compute Z = IP(X1, Y1) which outputs r = Ω(n) ≤ αn/2 bits.

3. Let F be the finite field F2logn . Let n0 =
n2

log n . Let RS : Fn0 → F
n be the Reed-Solomon code

encoding n0 symbols of F to n symbols in F (we slightly abuse the use of RS to denote both
the code and the encoder). Thus RS is a [n, n0, n − n0 + 1]n error correcting code. Let X ′2
be X2 written backwards, and similarly Y ′2 be Y2 written backwards. Let X2 = RS(X ′2) and
Y 2 = RS(Y ′2).

4. Use Z to sample r/ logn distinct symbols from X2 (i.e., use each log n bits to sample a
symbol), and write the symbols as a binary string X̃2. Note that X̃2 has r bits. Similarly,
use Z to sample r/ logn distinct symbols from Y 2 and obtain a binary string Ỹ2 with r bits.

5. Let α̃ = X1 ◦ Y1 ◦ X̃2 ◦ Ỹ2. Divide X2 into X2 = (X3, X4, X5) such that X3 has n3 = βn bits,
X4 has n4 = 30βn bits and X5 has n5 = (1−α−31β)n bits. Similarly divide Y2 = (Y3, Y4, Y5)
such that Y3 has n3 bits, Y4 has n4 bits and Y5 has n5 bits.

6. Compute V = AdvCB(X3, Y3, α̃) which outputs d = n3/10 = βn/10 bits.

7. Finally compute W = IExt(Y4, V ) which outputs Ω(d) < d/2 bits.

We now have the following theorem.

Theorem 7.9. There exists a constant 0 < γ < 1 and a non-malleable two-source extractor for
(n, (1− γ)n) sources with error 2−Ω(n/ log n) and output length Ω(n).

Proof. We show that the above construction is such a non-malleable two-source extractor. As usual,
we will use letters with prime to denote random variables produced from (X ′, Y ′). Without loss of
generality we assume that X 6= X ′. The case where Y 6= Y ′ can be handled in the same way by
symmetry.

First we argue that with probability 1−2−Ω(n/ log n) over α̃, α̃′, we have that α̃ 6= α̃′. To see this,
note that if X1 6= X ′1 or Y1 6= Y ′1 then α̃ 6= α̃′. Otherwise, since X 6= X ′ we must have X2 6= X ′2.
Thus by the property of the RS code we know that X2 and Y 2 must differ in at least n−n0 > 0.9n
symbols. Also, since X1 = X ′1 and Y1 = Y ′1 we have Z = Z ′. Now if α ≥ 3γ then both X1 and Y1
has min-entropy rate at least 2/3, thus by Theorem 2.10 we know that

(Z,X1) ≈2−Ω(n) (Ur, X1).
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We can now fix X1, and conditioned on this fixing Z is a deterministic function of Y , thus
independent of X2. Therefore now we can use Z to sample from X2. If Z is uniform then by a
Chernoff bound we know that

Pr[X̃2 6= X̃ ′2] ≥ 1− 2−r/ logn = 1− 2−Ω(n/ logn).

Thus the total probability that α̃ 6= α̃′ is at least 1− 2−Ω(n/ logn) − 2−Ω(n) = 1− 2−Ω(n/ logn).
Moreover, by choosing α < β/50, we can ensure that r ≤ αn < βn/50. Now by Lemma 2.12 we

know that conditioned on the fixing of (α̃, α̃′), with probability 1−2−Ω(n), we have that H∞(X3) ≥
βn− γn− αn− 3r ≥ 0.9βn and similarly H∞(Y3) ≥ 0.9βn. Moreover (X,X ′) and (Y, Y ′) are still
independent.

Now we will use Lemma 5.3. Note that the length of the advice string is a = 2αn+ 2r ≤ 3αn,
and X3, Y3 each has βn bits. Thus by choosing the error ǫ = 2−Ω(n/ logn) appropriately we can
ensure that

βn ≥ C log a log(βna/ǫ),

where C is the constant in Lemma 5.3. When this condition holds, by Lemma 5.3 we have that

(V, V ′, Y3, Y
′
3) ≈ǫ (Ud, V

′, Y3, Y
′
3).

We now fix (Y3, Y
′
3). Note that conditioned on this fixing, (V, V ′) is a deterministic function of

(X,X ′), and thus independent of (Y, Y ′). Moreover the average conditional min-entropy of Y4 is at
least n4 − γn− αn− 2r− βn ≥ n4 − 2αn− βn. Note that n4 = 30βn. Thus by choosing α < β/50
we can ensure that (by Lemma 2.12) with probability 1− 2−Ω(n), Y4 has min-entropy rate at least
0.95.

Now we can fix V ′ and then W ′. Note that conditioned on this fixing, V is still close to
uniform, and independent of Y4. Furthermore since the length of W ′ is at most d/2 = βn/20, again
by Lemma 2.12 we have that with probability 1 − 2−Ω(n), Y4 has min-entropy rate at least 0.9.
Thus now by Theorem 7.5 we have that

(W,V ) ≈2−Ω(n) (U, V ).

Note that conditioned on the fixing of V , W is a deterministic function of Y . Since we have
already fixed (V ′,W ′), by adding back all the errors we get that

(W,W ′, X,X ′) ≈2−Ω(n/ logn) (U,W ′, X,X ′).

7.2 Efficiently sampling algorithm and the non-malleable code

We now show that given an output of the non-malleable two-source extractor, we can efficiently
uniformly sample from the pre-image of this output. First we have the following main lemma.

Lemma 7.10. Given any arbitrary fixing of (X1, X̃2, X3, Y1, Ỹ2, Y3,W ), there is an efficient proce-
dure to uniformly sample from the pre-image (X,Y ). Moreover, for any fixing of (X1, X̃2, X3, Y1, Ỹ2, Y3,W ),
the pre-image has the same size.

26



Proof. Assume that we are given (X1, X̃2, X3, Y1, Ỹ2, Y3,W ) = (x1, x̃2, x3, y1, ỹ2, y3, w) for arbitrary
(x1, x̃2, x3, y1, ỹ2, y3, w). We need to sample from the corresponding (X4, X5, Y4, Y5). First we can
compute z = IP(x1, y1) which tells us what symbols of the RS codes are sampled. Next, we can
compute v = AdvCB(x3, y3, α̃) where α̃ = x1 ◦ y1 ◦ x̃2 ◦ ỹ2. Now note that W = IExt(Y4, V ),
therefore by Theorem 7.5 we can efficiently and uniformly sample the pre-image of w, which is Y4,
by inverting a system of linear equations. Also, Theorem 7.5 guarantees that for any (v, w) the
pre-image has the same size.

Now once we have sampled Y4 = y4, we will continue to sample (X4, X5, Y5). Since these
are different bits in (X,Y ) than the bits we have already obtained, they can almost be sampled
arbitrarily, except they need to satisfy the linear constraints imposed by the RS codes: Ỹ2 = y2
and X̃2 = x2. We first look at the Y part. Note that Ỹ2 = y2 gives us r/ logn ≤ αn/(2 log n) <
n/(4 log n) equations in the field F2logn . Also note that now (Y1, Y3, Y4) are fixed and Y5 are the
variables. Since the length of Y5 is n5 = n − αn − βn − 30βn > n/2 (as β < 1/70), this gives us
at least n/(2 logn) variables in the field F2logn . Finally, note that when we encode Y2 using the RS

code, we encode it as RS(Y ′2) where Y ′2 is Y2 written backwards. Thus the coefficient matrix of the
equations with variables in Y5 is

G =




1 1 · · · 1
α1 α2 · · · αs
...

...
. . .

...
αt
1 αt

2 · · · αt
s




where s = r/ log n, t = n5/ log n, and α1, . . . , αs are distinct field elements of F2logn .
Note that t = n5/ logn > n/(2 log n) > r/ logn = s, thus all the columns in the matrix are

linearly independent, and the kernel of the matrix has dimension exactly t− s for any α1, . . . , αs.
Therefore, we can efficiently sample Y5 by inverting the system of linear equations, and moreover
for any fixing of (Y1, Y3, Y4, Z) = (y1, y3, y4, z) the pre-image always has the same size.

The argument for sampling the X part is exactly the same, except now X has more variables
((X4, X5)) than Y .

We now have the following main theorem.

Theorem 7.11. Given any output W = w of the non-malleable two-source extractor, there is an
efficient procedure to uniformly sample from the pre-image (X,Y ).

Proof. The sampling procedure is as follows. We first uniformly randomly generate (X1, X̃2, X3, Y1, Ỹ2, Y3) =
(x1, x̃2, x3, y1, ỹ2, y3), then we use Lemma 7.10 to generate (X,Y ). By Lemma 7.10, for any fixing of
(X1, X̃2, X3, Y1, Ỹ2, Y3,W ), the pre-image has the same size. Thus indeed this procedure uniformly
samples from the pre-image (X,Y ).

Combining Theorem 7.4, Theorem 7.9, and Theorem 7.11, we immediately obtain the following
theorem.

Theorem 7.12. For any n ∈ N there exists an explicit non-malleable code with efficient en-
coder/decoder in the 2-split-state model with block length 2n, rate Ω(1/ log n) and error = 2−Ω(n/ log n).
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8 t-Non-Malleable Extractors and Applications to Independent
Source Extractors

In this section, we extend our results to the case of t tampering functions, and use them to obtain
improved results of independent source extractors.

We first prove that any s-source non-malleable extractor with sufficiently small error must be
a strong s-source non-malleable extractor. Formally, we have

Theorem 8.1. Suppose nmExt : ({0, 1}n)s → {0, 1}m is an s-source non-malleable extractor with
error ǫ for min-entropy k. Then for any k′ ≥ k, nmExt is a strong s-source non-malleable extractor
for min-entropy k′ with error 22m(ǫ+ 2k+1−k′).

Proof. Let X1, · · · , Xs be independent (n, k′) sources and X ′1 = f1(X1), · · · , X ′s = fs(Xs) where
for each i, fi : {0, 1}n → {0, 1}n is a deterministic function such that at least one of them has
no fixed point. Consider any i. Let X<i = (X1, · · · , Xi−1), X>i = (Xi+1, · · · , Xs) and similarly
X ′<i = (X ′1, · · · , X ′i−1), X ′>i = (X ′i+1, · · · , X ′s). Now for any (z, z′) ∈ ({0, 1}m)2, define the set of
bad y’s for (z, z′) to be

Bz,z′ = {y :
∣∣Pr[nmExt(X<i, y,X>i) = z, nmExt(X ′<i, fi(y), X

′
>i) = z′]− 2−m Pr[nmExt(X ′<i, fi(y), X

′
>i) = z′]

∣∣ > ǫ.}
We have the following claim.

Claim 8.2. For any (z, z′), we have |Bz,z′ | < 2k+1.

Suppose not, then define

B+
z,z′ = {y : Pr[nmExt(X<i, y,X>i) = z, nmExt(X ′<i, fi(y), X

′
>i) = z′]−2−m Pr[nmExt(X ′<i, fi(y), X

′
>i) = z′] > ǫ.}

and

B−z,z′ = {y : Pr[nmExt(X<i, y,X>i) = z, nmExt(X ′<i, fi(y), X
′
>i) = z′]−2−m Pr[nmExt(X ′<i, fi(y), X

′
>i) = z′] < −ǫ.}

We have that either |B+
z,z′ | ≥ 2k or |B−z,z′ | ≥ 2k. Without loss of generality assume that

|B+
z,z′ | ≥ 2k. Then, let Y be the uniform distribution over B+

z,z′ . We have that Y is an (n, k) source,
but

Pr[(nmExt(X<i, Y,X>i, nmExt(X ′<i, fi(Y ), X ′>i)) = (z, z′)]− Pr[(Um, nmExt(X ′<i, fi(Y ), X ′>i)) = (z, z′)]

=
∑

y∈B+
z,z′

Pr[Y = y] Pr[(nmExt(X<i, y,X>i, nmExt(X ′<i, fi(y), X
′
>i)) = (z, z′)]

− 2−m
∑

y∈B+
z,z′

Pr[Y = y] Pr[nmExt(X ′<i, fi(y), X
′
>i) = z′]

=
∑

y∈B+
z,z′

Pr[Y = y](Pr[(nmExt(X<i, y,X>i, nmExt(X ′<i, fi(y), X
′
>i)) = (z, z′)]

− 2−m Pr[nmExt(X ′<i, fi(y), X
′
>i) = z′])

>ǫ,
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which contradicts the fact that nmExt is a non-malleable extractor.
Now let B = ∪z,z′Bz,z′ , we have that |B| ≤ 22m2k+1. Thus, we now have that

∣∣(nmExt(X1, · · · , Xs), nmExt(X ′1, · · · , X ′s), Xi, X
′
i)− (Um, nmExt(X ′1, · · · , X ′s), Xi, X

′
i)
∣∣

=
∑

y∈{0,1}n
Pr[Xi = y]

∣∣(nmExt(X<i, y,X>i, nmExt(X ′<i, fi(y), X
′
>i))− (Um, nmExt(X ′<i, fi(y), X

′
>i))

∣∣

≤Pr[Xi ∈ B] · 1 + Pr[Xi /∈ B]22mǫ

≤22m(ǫ+ 2k+1−k′)

We now have the following lemma.

Lemma 8.3. Suppose that there exists a constant γ > 0 and an explicit construction of a strong
non-malleable s-source extractor nmExt : ({0, 1}n)s → {0, 1}m for (n, (1 − 2γ)n) sources which
outputs Ω(n) bits with error 2−Ω(n). Then given any t ∈ N there is an explicit function AdvCB :
({0, 1}n)s × {0, 1}a → {0, 1}m with m = Ω(a) and the following property.

Let X1, · · · , Xs be s independent uniform strings on n bits, and α, α1, · · · , αt be t + 1 strings
on a bits such that ∀j ∈ [t], α 6= αj. Let Xj

i , i ∈ [s], j ∈ [t] be random variables on n bits such

that (X1 = (X1, {Xj
1 , j ∈ [t]}), · · · , Xs = (Xs, {Xj

s , j ∈ [t]})) are independent (i.e., each Xj
i only

depends on Xi). Let Z = AdvCB(X1, · · · , Xs, α) and Zj = AdvCB(Xj
1 , · · · , X

j
s , αj) for any j ∈ [t].

Then as long as n ≥ 2(t+ 1)2a/γ, we have that ∀i ∈ [s],

∣∣(Z, {Z1, · · · , Zt}, Xi)− (Um, {Z1, · · · , Zt}, Xi)
∣∣ ≤ ts2−Ω(a).

We construct the function AdvCB as follows. Let Ext be an optimal seeded extractor from
Theorem 2.9 that uses O(log(n/ǫ)) bits to extract from an (n, k) source and output 0.9k bits.

1. ∀i ∈ [s], let Vi be a slice of Xi with length a/γ.

2. Repeat the following step for t times: ∀i ∈ [s], let Ṽi = Vi◦α. ComputeR = nmExt(Ṽ1, · · · , Ṽs).
Then ∀i ∈ [s], compute V ′i = Ext(Xi, R) and outputs a/γ bits. Finally ∀i ∈ [s], let Vi = V ′i .

3. Output R from the last step, i.e., the computation of V ′i = Ext(Xi, R) and Vi = V ′i in the
above iteration can be omitted for the t’th execution.

We now prove the lemma.

Proof. We prove the function AdvCB described above is the desired function. We will use letters
with superscript j to denote random variables produced from (Xj

i , i ∈ [s]) and αj . By fixing
additional randomness, without loss of generality we can assume that ∀i ∈ [s], we have that
∀j ∈ [t], Xj

i is a deterministic function of Xi. We will use induction to prove the following claim.

Claim 8.4. At the beginning of the ℓ’th iteration, conditioned on the fixing of previous random
variables (produced in previous rounds), we have that

• X1, · · · , Xs are still independent.
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• ∀j ∈ [t], Vi is a deterministic function of Xi and V j
i is a deterministic function of Xj

i .

• ∀i ∈ [s], the average conditional min-entropy of Xi is at least n− (ℓ− 1)(t+ 1)a/γ.

At the end of the ℓ’th iteration, we have that ∀i and any S ⊆ [t] with |S| = ℓ,

∣∣∣(R, {Rj , j ∈ S}, Vi, {V j
i , j ∈ S})− (Um, {Rj , j ∈ S}, Vi, {V j

i , j ∈ S})
∣∣∣ ≤ ℓs2−Ω(a).

To prove the claim, first note that since nmExt is a strong non-malleable s-source extractor
(n, (1 − 2γ)n) sources with error 2−Ω(n), it is also a strong non-malleable s-source extractor for
average conditional min-entropy (1− γ)n with error 2−Ω(n), by Lemma 2.6.

For the base case where ℓ = 1, clearly at the beginning of the first iteration, X1, · · · , Xs are
independent. Further, ∀i ∈ s, Vi is a deterministic function of Xi and V j

i is a deterministic function

of Xj
i , ∀j ∈ [t]. Also the min-entropy of each Xi is at least n. Now note that each Ṽi has min-

entropy rate at least (a/γ)/(a+ a/γ) > 1− γ, and Ṽi 6= Ṽ j
i for any j ∈ [t]. Thus the claim follows

by the assumption that nmExt is a strong non-malleable s-source extractor.
We next assume the claim holds for ℓ and show that it holds for ℓ+1. The first three properties

can be directly verified. We now prove the last property. Consider any set S ⊆ [t] with |S| = ℓ+1.
Pick any j0 ∈ S and let S′ = S \ {j0}. By the claim we know that at the end of iteration ℓ, we
have that ∀i ∈ [s],

∣∣∣(R, {Rj , j ∈ S′}, Vi, {V j
i , j ∈ S′})− (Um, {Rj , j ∈ S′}, Vi, {V j

i , j ∈ S′})
∣∣∣ ≤ ℓs2−Ω(a).

Consider any i ∈ [s]. We now fix (Vi, {V j
i , j ∈ S′}). Note that all these random variables

are deterministic functions of (Xi, {Xj
i , j ∈ S′}), which are in turn deterministic functions of Xi.

Thus conditioned on this fixing, X1, · · · , Xs are still independent. Also note that conditioned on
this fixing, (R, {Rj , j ∈ S′}) is a deterministic function of ({Vh, h 6= i}, {V j

h , h 6= i, j ∈ S′}), and
therefore independent of Xi and its derived random variables. Thus, we can further fix all the
remaining {V j

i , j ∈ [t]} without affecting (R, {Rj , j ∈ S′}). Note that now the average conditional
min-entropy of Xi is at least n− ℓ(t+ 1)a/γ − (t+ 1)a/γ = n− (ℓ+ 1)(t+ 1)a/γ.

Now we have that R is still close to uniform given {Rj , j ∈ S′}. We now fix all {Rj , j ∈ S′}
and then all {V ′ji = Ext(Xi, R

j), j ∈ S′}. Note that fixing {Rj , j ∈ S′} does not affect Xi,

and conditioned on the fixing of all {Rj , j ∈ S′}, we have that {V ′ji = Ext(Xi, R
j), j ∈ S′} is a

deterministic function of (Xi, {Xj
i , j ∈ S′}), which are in turn deterministic functions of Xi. Now

the average conditional min-entropy of Xi is at least n−(ℓ+1)(t+1)a/γ−ℓa/γ ≥ n−(t+1)2a/γ >
n/2. Thus by Theorem 2.9 (and noticing that R is still close to uniform and independent of Xi)
we have

|(V ′i , R)− (Um, R)| ≤ 2−Ω(a).

Note that given R, V ′i is again a deterministic function of Xi. Thus (ignoring the ℓs2−Ω(a) for
now) we have the following inequality.

∣∣∣(V ′i , R, {Rj , j ∈ S′}, {V ′ji , j ∈ S′}, {V j
i , j ∈ [t]})− (Um, R, {Rj , j ∈ S′}, {V ′ji , j ∈ S′}, {V j

i , j ∈ [t]})
∣∣∣ ≤ 2−Ω(a).
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Furthermore, conditioned on the fixing of (R, {Rj , j ∈ S′}, {V ′ji , j ∈ S′}, {V j
i , j ∈ [t]}), V ′i is a

deterministic function of Xi and therefore independent of {Xh, h 6= i}. Thus, we can also fix all
the other {V j

h , j ∈ [t], h 6= i} without affecting the inequality. Thus we obtain the following.

∣∣∣(V ′i , {V ′ji , j ∈ S′}, {V j
h , j ∈ [t], h ∈ [s]})− (Um, {V ′ji , j ∈ S′}, {V j

h , j ∈ [t], h ∈ [s]})
∣∣∣ ≤ 2−Ω(a).

Using the same argument, we can also show that conditioned on the fixing of ({V ′ji , j ∈
S′}, {V j

h , j ∈ [t], h ∈ [s]}), V ′j0i is a deterministic function of Xj0
i , which in turn is a determin-

istic function of Xi. However, we don’t know if V ′j0i is close to uniform, and it may be correlated
with V ′i .

We can repeat the above argument for any i ∈ [s], thus we obtain the following conclusion.

• ∀i ∈ [s], we have

∣∣∣(V ′i , {V ′ji , j ∈ S′}, {V j
h , j ∈ [t], h ∈ [s]})− (Um, {V ′ji , j ∈ S′}, {V j

h , j ∈ [t], h ∈ [s]})
∣∣∣ ≤ 2−Ω(a).

• Further, ∀i ∈ [s], conditioned on the fixing of ({V ′ji , j ∈ S′}, {V j
h , j ∈ [t], h ∈ [s]}), we have

that (V ′i , V
′j0
i ) is a deterministic function of Xi.

Now fix ({V ′ji , j ∈ S′}, {V j
h , j ∈ [t], h ∈ [s]}). Note that conditioned on this fixing, X1, · · · , Xs

are still independent. Thus (V ′i , V
′j0
i ) are also independent. By the fact that nmExt is a strong

non-malleable s-source extractor, we have that ∀i ∈ [s],

∣∣∣(R,Rj0 , V ′i , V
′j0
i )− (Um, Rj0 , V ′i , V

′j0
i )

∣∣∣ ≤ 2−Ω(a).

Since we have fixed all the ({V ′ji , j ∈ S′}) before, and each new (Rj , j ∈ S′) is now a deterministic

function of ({V ′ji , j ∈ S′}), by adding back all the errors we also have that

∣∣∣(R, {Rj , j ∈ S}, V ′i , {V ′ji , j ∈ S})− (Um, {Rj , j ∈ S}, V ′i , {V ′ji , j ∈ S})
∣∣∣ ≤ (ℓ+ 1)s2−Ω(a).

Note that at the end of iteration we replace Vi with V ′i , so the claim holds and the theorem is
proved.

We now have the following theorem.

Theorem 8.5. Suppose there is a constant γ > 0 and an explicit non-malleable (s + 1)-source
extractor for (n, (1 − γ)n) sources with error 2−Ω(n) and output length Ω(n). Then there is a
constant C > 0 such that for any 0 < ǫ < 1 with k ≥ Ct2 log(n/ǫ), there is an explicit strong seeded
t-non-malleable extractor for s independent (n, k) sources with seed length d = Ct2 log(n/ǫ), error
O(tsǫ) and output length Ω(log(1/ǫ)).

The construction of the seeded non-malleable extractor for s independent (n, k) sources is as
follows. Let the sources be X1, · · · , Xs and the seed be Y .
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• Let Ext : {0, 1}n×{0, 1}d′ → {0, 1}m be an optimal seeded extractor from Theorem 2.9, which
uses d1 = O(log(n/ǫ)) random bits to extract from (n, k) sources and output m = 0.9k bits.

• Let Ext1,Ext2 be optimal seeded extractors from Theorem 2.9.

• Let IP be the inner product two-source extractor from Theorem 2.10.

• Let AdvCB be the correlation breaker with advice from Lemma 8.3.

• Let AdvGen be the advice generator from Theorem 6.1.

1. Take a small slice Y1 of Y with length d1 = O(log(n/ǫ)), for every i ∈ [s], compute Zi =
Ext′(Xi, Y1) which outputs 0.9k bits.

2. Use Z1 and X to compute AdvGen(X,Y ). Specifically, as in Theorem 6.1, take a small
slice Z1 of Z1 with length d2 = O(log(n/ǫ)) and compute Y2 = g(Y, Z1) which outputs
d3 = O(log(1/ǫ)) bits. Let AdvGen(X1, Y ) = (Y1, Y2) = α. Note that the length of the advice
is a = d1 + d3 = O(log(n/ǫ)). We choose the hidden constant to be big enough such that the
term 2−Ω(a) in Lemma 8.3 is at most ǫ.

3. Let d4 = max{d2, d1 + d3}. Take a slice of Y3 of Y with length d5 = 3(t + 1)d4, and a slice
Z3 of Z with length d5 = 3td4. Compute R = IP(Y3, Z3).

4. Compute Ỹ = Ext1(Y,R) which outputs m1 = 0.5d bits, and Z̃1 = Ext2(Z1, R) which outputs
m1 bits. For i = 2, · · · , s, truncate each Zi to Z̃i with m1 bits.

5. Output V = AdvCB(Ỹ , Z̃1, · · · , Z̃s, α).

Proof. Suppose we have t tampered seeds Y j = fj(Y ), j ∈ [t], where each fj has no fixed points.
We will use letters with superscript j to denote random variables obtained from (Y j , X1, · · · , Xs).
First, by Theorem 2.9, we have that for any i ∈ [s],

|(Zi, Y1)− (U, Y1)| ≤ ǫ.

Since conditioned on the fixing of Y1, each Zi is a deterministic function of Xi and thus inde-
pendent, we have

|(Z1, · · · , Zs, Y1)− (U, · · · , U, Y1)| ≤ sǫ.

We will now proceed as if (Z1, · · · , Zs) are uniform and independent, given Y1. Take any j ∈ [t],

by Theorem 6.1, we know that with probability 1− ǫ over the fixing of (Y1, Z1, Y2, Y
j
1 , Z

j
1, Y

j
2 ), we

have α 6= αj . Thus, with probability 1− tǫ over the fixing of H = (Y1, Z1, Y2, {Y j
1 , Z

j
1, Y

j
2 , j ∈ [t]}),

we have that ∀j, α 6= αj . Furthermore, notice that conditioned on the fixing of H, we have that
(Y, {Y j , j ∈ [t]} and (Z1, {Zj

1 , j ∈ [t]}) are still independent, the average conditional min-entropy
of Y3 is at least d5 − (t + 1)(d1 + d3) ≥ 2(t + 1)d4, and the average conditional min-entropy
of Z3 is at least d5 − (t + 1)d2 ≥ 2(t + 1)d4. Also note that the fixing of H does not affect
Z2, {Zj

2 , j ∈ [t]}, · · · , Zs, {Zj
s , j ∈ [t]}.

Now by Theorem 2.10, we have that

|(R, Y3)− (U, Y3)| ≤ ǫ.
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Note that conditioned on the fixing of (Y3, {Y j
3 , j ∈ [t]}), (R, {Rj , j ∈ [t]}) is a deterministic

function of (Z3, {Zj
3 , j ∈ [t]}), and thus independent of (Y, {Y j , j ∈ [t]}). Moreover R is close

to uniform and the average conditional min-entropy of Y is at least d − (t + 1)(d1 + d3 + d5) =
d − O(t2 log(n/ǫ)). Thus by taking C to be large enough we have that d− O(t2 log(n/ǫ)) > 2d/3.
Thus by Theorem 2.9 we have that

|(Ỹ , R)− (U,R)| ≤ ǫ.

Note that conditioned on the further fixing of (R, {Rj , j ∈ [t]}), (Ỹ , {Ỹ j , j ∈ [t]}) is a determin-
istic function of (Y, {Y j , j ∈ [t]}). Thus we can further fix (Z3, {Zj

3 , j ∈ [t]}) without affecting the
above inequality. Similarly, we also have

|(R,Z3)− (U,Z3)| ≤ ǫ.

Note that conditioned on the fixing of (Z3, {Zj
3 , j ∈ [t]}), (R, {Rj , j ∈ [t]}) is a deterministic

function of (Y3, {Y j
3 , j ∈ [t]}, and thus independent of (Z1, {Zj

1 , j ∈ [t]}. Moreover R is close to
uniform and the average conditional min-entropy of Z1 is at least 0.9k − (t+ 1)(d2 + d5) = 0.9k −
O(t2 log(n/ǫ)). Thus by taking C to be large enough we have that 0.9k − O(t2 log(n/ǫ)) > 2d/3.
Thus by Theorem 2.9 we have that

|(Z̃1, R)− (U,R)| ≤ ǫ.

Note that conditioned on the further fixing of (R, {Rj , j ∈ [t]}), (Z̃1, {Z̃j
1 , j ∈ [t]}) is a determin-

istic function of (Z1, {Zj
1 , j ∈ [t]}). Thus we can further fix (Y3, {Y j

3 , j ∈ [t]}) without affecting the

above inequality. Note that none of these affects Z2, {Zj
2 , j ∈ [t]}, · · · , Zs, {Zj

s , j ∈ [t]}. Therefore,

combining the above we have that with probability 1−O(tǫ) over the fixing of H̄ = (H,Z3, {Zj
3 , j ∈

[t]}, R, {Rj , j ∈ [t]}, Y3, {Y j
3 , j ∈ [t]}),

• ∀j, α 6= αj .

• (Ỹ , {Ỹ j , j ∈ [t]}), (Z̃1, {Z̃j
1 , j ∈ [t]}), · · · , (Z̃s, {Z̃j

s , j ∈ [t]}) are independent.

• (Ỹ , Z̃1, · · · , Z̃s) ≈O(sǫ) (Um1 , · · · , Um1).

Next, using Theorem 8.1, we see that the non-malleable (s+1)-source extractor is also a strong
non-malleable (s+1)-source extractor for (n, (1−γ/2)n) sources with error 22m

′

(2−Ω(n)+21−γn/2),
where m′ is the output length of the extractor. By truncating the output if necessary, we can
ensure that m′ = Ω(n) and 22m

′

(2−Ω(n)+21−γn/2) = 2−Ω(n). Thus the non-malleable (s+1)-source
extractor is also a strong non-malleable (s + 1)-source extractor for (n, (1 − γ/2)n) sources with
error 2−Ω(n) and output length Ω(n).

We now apply Lemma 8.3. First ignoring the error, and note that the length of each (Ỹ , Z̃1, · · · , Z̃s)
is 0.5d where d = Ct2 log(n/ǫ), and the length of advice is a = O(log(n/ǫ)). By choosing the con-
stant C large enough we can ensure that 0.5d ≥ 2(t + 1)2a/(γ/4). Therefore by Lemma 8.3, we
have that the output has length Ω(log(1/ǫ)), and ∀i,

∣∣(V, {V 1, · · · , V t}, Xi)− (Um, {V 1, · · · , V t}, Xi)
∣∣ ≤ t(s+ 1)ǫ.

Adding back all the errors we see that the construction is a seeded t-non-malleable extractor
for s independent (n, k) sources with error O(tsǫ) and output length Ω(log(1/ǫ)).
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The above construction and theorem can also be easily generalized to the case where we do
not have non-malleable s + 1-source extractors with asymptotically optimal error. For example,
suppose to get error ǫ the non-malleable s + 1-source extractor needs (f(ǫ), (1 − γ)f(ǫ)) sources
for some function f (note that f(ǫ) is at least O(log(1/ǫ)), then all we need to change is that
in Lemma 8.3, the size of each Vi should become O(log n + f(ǫ)). Since the length of the advice
is always going to be O(log(n/ǫ)), this ensures that each time when we apply the non-malleable
(s + 1)-source extractor, the sources have entropy rate at least 1 − γ and error ǫ. Now the same
analysis in Theorem 8.5 goes through, as long as k, d ≥ Ct2(log n + f(ǫ)). Thus, we have the
following theorem.

Theorem 8.6. Suppose there is a function f , a constant γ > 0 and an explicit non-malleable
(s+1)-source extractor for (f(ǫ), (1−γ)f(ǫ)) sources with error ǫ and output length Ω(f(ǫ)). Then
there is a constant C > 0 such that for any 0 < ǫ < 1 with k ≥ Ct2(log n + f(ǫ)), there is an
explicit strong seeded t-non-malleable extractor for s independent (n, k) sources with seed length
d = Ct2(log n+ f(ǫ)), error O(tsǫ) and output length Ω(f(ǫ)).

The constructions and theorems can also be extended to the case of t-non-malleable extractors
for s independent sources, we omit the details for now.

We now combine Theorem 8.5 and Theorem 8.6 with known constructions of non-malleable
s-source extractors to obtain seeded t-non-malleable extractors. By combining Theorem 8.6 and
Theorem 7.9, we have the following theorem (note that here f(ǫ) = O(log(1/ǫ) log log(1/ǫ)).

Theorem 8.7. There exists a constant C > 1 such that for any t ∈ N, 0 < ǫ < 1 and k ≥
Ct2(log n + log(1/ǫ) log log(1/ǫ)), there is an explicit strong seeded t-non-malleable extractor for
(n, k) sources with seed length d = Ct2(log n+log(1/ǫ) log log(1/ǫ)), output length Ω(log(1/ǫ) log log(1/ǫ))
and error O(tǫ).

Next, we use the following theorem proved by Chattopadhyay and Zuckerman [CZ14].

Theorem 8.8 ([CZ14]). There is a constant 0 < γ < 1 and an explicit non-malleable 10-source
extractor for (n, (1− γ)n) sources with error 2−Ω(n) and output length Ω(n).

Combining this theorem with Theorem 8.5, we have the following theorem.

Theorem 8.9. There exists a constant C > 1 such that for any t ∈ N, 0 < ǫ < 1 and k ≥
Ct2(log(n/ǫ)), there is an explicit strong seeded t-non-malleable extractor for 9 independent (n, k)
sources with seed length d = Ct2(log(n/ǫ)), output length Ω(log(1/ǫ)) and error O(tǫ).

By using improved somewhere random condensers as samplers and following the framework in
[CZ16], Ben-Aroya et. al [BADTS16] proved the following theorem.

Theorem 8.10. [BADTS16] Suppose there is a function f and an explicit strong seeded t-non-
malleable extractor for s independent (n, k′) sources with seed length and entropy requirement d =
k′ = f(t, ǫ), then there for every constant ǫ > 0 exist constants t = t(ǫ), c = c(ǫ) and an explicit
extractor Ext : ({0, 1}n)s → {0, 1} for s independent (n, k) sources with k ≥ f(t, 1/nc) and error ǫ.

Remark 8.11. The original construction in [BADTS16] is just for two sources, but it extends
directly to any s sources just by treating s− 1 sources as one source.
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We can now use above theorems to get improved constructions of independent source extractors.
For example, combining the above theorem with Theorem 8.7, we immediately obtain the following
theorem.

Theorem 8.12. For every constant ǫ > 0 exists a constant c > 1 and an explicit two-source
extractor Ext : ({0, 1}n)2 → {0, 1} for min-entropy k ≥ c logn log log n, with error ǫ.

Using Theorem 8.9 instead, we obtain the following theorem.

Theorem 8.13. For every constant ǫ > 0 exists a constant c > 1 and an explicit ten-source
extractor Ext : ({0, 1}n)10 → {0, 1} for min-entropy k ≥ c log n, with error ǫ.

9 Conclusions and Open Problems

Previous work in the literature have established connections between seeded non-malleable ex-
tractors and two-source extractors, and connections between non-malleable two-source (or multi-
source) extractors and non-malleable codes in the split-state model. In this paper we further
established connections between seeded non-malleable extractors and non-malleable two-source
extractors. Thus, all these four objects are closely related to each other. Using improved inde-
pendence preserving mergers, we give improved constructions of seeded non-malleable extractors,
two-source extractors, non-malleable two-source extractors and non-malleable codes in the two-
split-state model. These constructions are quite close to optimal (in terms of the entropy require-
ment). Thus, the obvious open problem is to achieve optimal constructions for all of them, i.e.,
seeded non-malleable extractor with seed length and entropy O(log(n/ǫ)), non-malleable two-source
extractor for entropy (1−γ)n with error 2−Ω(n) and output length Ω(n). In turn, these will give ex-
plicit two-source extractors for O(logn) min-entropy (with one bit output and any constant error),
and constant-rate non-malleable codes in the two-split-state model.

On the other hand, all recent constructions of two-source extractors follow the framework of
[CZ16], and thus the error is either 1/poly(n) or any constant. So far, negligible error can only
be achieved by using three sources [Li15b], or two-sources when the min-entropy is at least 0.49n
[Bou05]. Constructing two-source extractors with smaller error, for smaller min-entropy is an
interesting open problem, and seems to require new ideas.
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A The error in [ADKO15]

The error in [ADKO15] appears in the proof of Theorem 26 (Section 5.3), which reduces two look-
ahead tampering to a t-split tampering. Specifically, to prove Equation (9) there one needs to argue
about the quantity H∞(Li|Vari) = H∞(Li|Z1, · · · , Zi−1). The claim is that H∞(Li|Z1, · · · , Zi−1) ≥
n/2 because Li is a uniform string on n bits, and the size of (Z1, · · · , Zi−1) is at most n/2. However,
this is not true. The only thing one can make sure is that the size of (h1(U

(1), Z1), · · · , hi−1(U (i−1), Zi−1))
is at most n/2, as written in the proof. But these are functions of (Z1, · · · , Zi−1) and only output
partial information. By examining the definition of {Zi}, one can see that each Zi has m · 2m bits,
thus the size of (Z1, · · · , Zi−1) can be up to tm2m. Therefore, in order to make sure this is less
than n/2, one needs n ≥ 2tm2m in the theorem, rather than n ≥ 2tm as currently written.

We note that at this time, it is still not clear whether the proof can be fixed.
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