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Abstract

This paper studies how well the standard LP relaxation approximates a k-ary constraint satisfaction
problem (CSP) on label set [L]. We show that, assuming the Unique Games Conjecture, it achieves
an approximation within O(k3 · logL) of the optimal approximation factor. In particular we prove the
following hardness result: let I be a k-ary CSP on label set [L] with constraints from a constraint class
C, such that it is a (c, s)-integrality gap for the standard LP relaxation. Then, given an instance H with
constraints from C, it is NP-hard to decide whether,

opt(H) ≥ Ω

(
c

k3 logL

)
, or opt(H) ≤ 4 · s,

assuming the Unique Games Conjecture. We also show the existence of an efficient LP rounding al-
gorithm Round such that a lower bound for it can be translated into a similar (but weaker) hardness
result. In particular, if there is an instance from a permutation invariant constraint class C which is a
(c, s)-rounding gap for Round, then given an instanceH with constraints from C, it is NP-hard to decide
whether,

opt(H) ≥ Ω

(
c

k3 logL

)
, or opt(H) ≤ O

(
(logL)k

)
· s,

assuming the Unique Games Conjecture.

1 Introduction

A k-ary constraint satisfaction problem (CSP) over label set [L] consists of a set of vertices and a set of
k-uniform ordered hyperedges. For each hyperedge there is a constraint specifying the k-tuples of labels to
the vertices in it that satisfy the hyperedge. The goal is to efficiently compute an assignment that satisfies
the maximum number of hyperedges. This general definition includes many problems studied in computer
science and combinatorial optimization such as MAXIMUM CUT, MAX-k-SAT and MAX-k-LIN[q]. In-
vestigating the approximability of these problems has motivated a significant body of research.

One of the well studied methods of approximating a CSP is via the Linear Programming (LP) relaxation
of the corresponding integer program1. For example, in its most basic formulation the LP relaxation gives
a 2-approximation for MAXIMUM CUT and can do no better. On the other hand the seminal work of
Goemans and Williamson [6] gave a 1.13823-approximation for MAXIMUM CUT using a semi-definite
∗An extended abstract of this paper appeared in the Proceedings of The 42nd International Colloquium on Automata, Languages,

and Programming (ICALP 2015).
†Computer Science Department, New York University, USA. Email: khot@cims.nyu.edu. Research supported by NSF
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1We conveniently think of the problem as computing the value of the optimal labeling.
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programming (SDP) relaxation. A matching integrality gap for this relaxation and its strengthening was
shown by Feige and Schechtman [5], and Khot and Vishnoi [9] respectively. Moreover, this approximation
factor was shown to be tight by Khot, Kindler, Mossel, and O’Donnell [8]2, assuming Khot’s Unique Games
Conjecture (UGC) [7]. A similar UGC-tight approximation via an SDP relaxation for the Unique Games
problem itself was given by Charikar, Makarychev and Makarychev [2]. Greatly generalizing these results,
Raghavendra [16] proved that a certain SDP relaxation achieves an approximation factor arbitrarily close
to the optimal for any CSP, assuming the UGC. Raghavendra [16] formalized the connection between an
integrality gap of the SDP relaxation and the corresponding UGC based hardness factor for a given CSP.
For a general k-ary CSP over label set [L], SDP relaxation yields a O

(
Lk
/
Lk
)
-approximation [13], and a

corresponding hardness of approximation was recently shown by Chan [1].
While the above line of research underscores the theoretical importance of SDP relaxations, linear pro-

grams are usually more efficient in practice and are far more widely used as optimization tools. Thus, it is
worthwhile to study how well LP relaxations perform for general classes of problems. In the first such re-
sult, Kumar, Manokaran, Tulsiani, and Vishnoi [11] showed a certain LP relaxation to be optimal for a large
class of covering and packing problems, assuming the UGC. Dalmau and Krokhin [3] and Kun, O’Donnell,
Tamaki, Yoshida, and Zhou [12] independently showed that width-1 (see for e.g. [12] for a formal definition)
CSPs are robustly decided by LP relaxation, i.e. it satisfies almost all hyperedges on an almost satisfiable
instance. In recent work, Dalmau, Krokhin, and Manokaran [4] have, assuming the UGC, classified CSPs
for which the minimization version3 admits a constant factor approximation via the LP relaxation.

In this work we study the linear programming analogue of the problem studied by Raghavendra [16],
i.e. how well the standard LP relaxation approximates a CSP. We prove the following results.

1.1 Our Results

Let C be a class of constraints and let CSP-[C, k, L] be the k-ary constraint satisfaction problems over label
set [L] where each constraint is from the class C. An instance I of CSP-[C, k, L] is a (c, s)-integrality gap
instance if there is a solution to the LP relaxation LP(I) given in Figure 1 with objective value at least c, and
the optimum of I is at most s. The main result of this paper is as follows.

Theorem 1.1. If I is a (c, s)-integrality gap instance of CSP-[C, k, L], then, assuming the Unique Games
Conjecture it is NP-hard to distinguish whether a given instanceH of CSP-[C, k, L] has

opt(H) ≥ Ω

(
c

k3 logL

)
, or opt(H) ≤ 4 · s.

The LP relaxation in Figure 1 is given by a straightforward relaxation of the integer program for the
CSP. The above theorem implies that this basic LP relaxation achieves an approximation factor within a
multiplicative O

(
k3 · logL

)
of the optimal for any CSP-[C, k, L], assuming UGC. Note that Raghaven-

dra [16] proved a stronger result: a transformation from a (c, s)-integrality gap for a certain SDP relaxation
into a (c − ε, s + ε)-UGC hardness gap, which implies that the SDP relaxation essentially achieves the
optimal approximation. We show that the LP relaxation is nearly as good, i.e. up to a multiplicative loss of
O
(
k3 · logL

)
in the approximation. Before this work, the best known bound of Lk−1 was implied by the

results of Serna, Trevisan, and Xhafa [17]. In particular, [17] showed an Lk−1-approximation for any CSP-
[C, k, L] obtained by the basic LP relaxation, generalizing a previous 2k−1-approximation by Trevisan [18]
for the boolean case.

2[8] also assumed the Majority is Stablest conjecture which was later proved by Mossel, O’Donnell, and Oleszkiewicz [15].
3The goal in the minimization version of a CSP is to compute a labeling with the minimum number of unsatisfied constraints.
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Theorem 1.1 has tight dependence on L: for the Unique Games problem (which is a 2-CSP) on label
set [L], the standard LP relaxation has Ω(L) integrality gap (see Appendix A), whereas a very recent result
of Kindler, Kolla, and Trevisan [10] gives an O(L/ logL)-approximate SDP rounding algorithm for any 2-
CSP over label set [L]. The latter improves on a previous O(L log logL/ logL)-approximate SDP rounding
algorithm for Unique Games given in [2].

Our second result pertains to CSPs with a permutation invariant set of constraints. Roughly speaking,
a set of constraints is permutation invariant if it is closed under the permutation of labels on any of the
vertices in the hyperedge. Most of the boolean CSPs such as Max-k-SAT, Max-k-AND, Max-k-XOR etc.
are permutation invariant by definition. On larger label sets, Unique Games and Label Cover are well known
examples of permutation invariant CSPs. We show that there is a simple randomized LP rounding algorithm
such that a weaker version of Theorem 1.1 holds for a corresponding (c, s)-rounding gap, which is an
instance of a permutation invariant CSP with an LP solution of value c on which the rounding algorithm has
an expected payoff at most s. Our rounding algorithm independently rounds each vertex based only on the
LP values associated with it. Thus, a single constraint suffices to capture its rounding gap. In particular, we
prove the following theorem.

Theorem 1.2. Let Ĩ be a single k-ary hyperedge ẽ with a constraint Cẽ as an instance of a permutation
invariant CSP-[C, k, L], which is a (c, s)-rounding gap for the algorithm Round given in Figure 2. Then,
assuming the Unique Games Conjecture it is NP-hard to distinguish whether a given instance H of CSP-
[C, k, L] has

opt(H) ≥ Ω

(
c

k3 logL

)
, or opt(H) ≤ O

(
(logL)k

)
· s.

1.2 Our Techniques

For proving Theorem 1.1, we follow the approach used in earlier works ([16], [11]) of converting an inte-
grality gap instance for the LP relaxation into a UGC-hardness result, which translates the integrality gap
into the hardness factor. This reduction essentially involves the construction of a dictatorship gadget, which
is a toy instance of the CSP-[C, k, L] distinguishing between “dictator” labelings and “far from dictator”
labelings. The construction is illustrated with the following simple example.

Consider an integrality gap instance consisting of just one edge e = (u, v) over label set [L], with the
constraint given by the set Ce ⊆ [L] × [L] of satisfying assignments to (u, v). Let (x, y) be a solution to
the corresponding LP relaxation given in Figure 1. It is easy to see that the x variables corresponding to
u (v) describe a distribution µu (µv) on [L], and y describes a distribution νe on [L] × [L]. Furthermore,
the marginals of νe are µu and µv. Let ν̃e = ρνe + (1 − ρ)(µu × µv), for some parameter ρ. Clearly, the
marginals of ν̃e are also µu and µv.

The vertices of the dictatorship gadget are {u, v} × [L]R where R is some large enough parameter. The
weighted edges are formed as follows. Add an edge between (u, r) and (v, s) with weight ν̃Re (r, s) with
the constraint Ce. Here ν̃Re is the R-wise product distribution of ν̃e, i.e. the measure defined by choosing
r = (r1, . . . , rR) and s = (s1, . . . , sR) such that (ri, si) is sampled independently from ν̃e, for i = 1, . . . , R.

It is easy to see that for any i∗ = 1, . . . , R, over the choice of r and s above, (ri∗ , si∗) ∈ Ce with
probability at least,

ρ
∑
`∈Ce

ye`. (1)

Therefore, the above is the fraction of edges in the dictatorship gadget satisfied by labeling each (u, (r1, . . . , rR))
with ri∗ and each (v, (s1, . . . , sR)) with si∗ . More formally, the expression in (1) is the completeness of the
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dictatorship gadget. Note that this is simply ρ times the objective value of the solution (x, y) to LP(I).
On the other hand, consider a labeling σ to the vertices of the dictatorship gadget. Define functions,

fj(r) := 1{σ((u, r)) = j}, gj(s) := 1{σ((v, s)) = j}, (2)

for j = 1, . . . , L, where 1{A} denotes the indicator of the event A. We assume that the labeling σ is “far
from dictator”, i.e. each of the functions fj and gj are far from dictators. Estimating the weighted fraction
of edges of the dictatorship gadget satisfied by σ entails analyzing expectations of the form,

Eν̃Re
[
fj(r)gj′(s)

]
, (3)

for 1 ≤ j, j′ ≤ L. In the reduction of Raghavendra [16], such expressions essentially correspond to the
payoff yielded by a randomized Gaussian rounding of the SDP solution, under the assumption that σ is far
from a dictator. This is obtained by an application of the Invariance Principle developed by Mossel [14].
The parameter ρ is required to be set to only slightly less than 1 in [16] for the application of the Invariance
Principle.

In our case the expectation in (3) does not a priori correspond to the payoff of any rounding of (x, y).
However, we show that setting ρ ≈ (1/ logL) is sufficient to ensure,

Eν̃e
[
fjgj′

]
≈ E[fj ]E[gj′ ], (4)

when both E[fj ] and E[gj′ ] are non-negligible. The RHS of the above corresponds to the payoff obtained
by assigning u the label j with probability E[fj ], and independently assigning v label j with probability
E[gj ], j = 1, . . . , L. Thus, the fraction of edges of the dictatorship gadget satisfied by σ, i.e its soundness, is
essentially bounded by the optimum of the integrality gap instance. There is a O(logL) loss in the hardness
factor, as the completeness decreases due to the setting of ρ.

The proof of Theorem 1.2 proceeds by using a (c, s)-rounding gap Ĩ for the algorithm Round given in
Figure 2 to construct a CSP instance, with constraints being permutations of Ĩ, which is a

(
c/4, O

(
(logL)k

)
· s
)
-

integrality gap for the corresponding LP relaxation. A subsequent application of Theorem 1.1 with this
integrality gap instance proves Theorem 1.2.

Organization of the Paper

Theorem 1.1 is restated in Section 3 as Theorem 3.1 which states a hardness reduction from Unique Games.
The corresponding Dictatorship Gadget is described in Section 4 and the reduction from Unique Games is
given in Section 5. Theorem 3.2, proved in Section 6 gives the transformation from a rounding gap to an
integrality gap instance, and along with Theorem 3.1 proves Theorem 1.2.

In the next section we define the constraint satisfaction problem and describe their LP relaxation that we
study. The notion of correlated spaces and Gaussian stability bounds used in our reduction and analysis are
also described.

2 Preliminaries

We begin by formally defining a constraint satisfaction problem and then describe the LP relaxation that we
consider.
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2.1 k-ary CSP over label set [L]

Let k ≥ 2 and L ≥ 2 be positive integers. We say that C ⊆ [L]k, C 6= ∅, is a constraint. A collection of
such constraints C is a (k, L)-constraint class, i.e.

C ⊆
(

2[L]
k \ {∅}

)
.

We denote by CSP-[C, k, L] as the class of k-ary constraint satisfaction problems over label set [L], where
each constraint is from the class C. Formally, an instance of I of CSP-[C, k, L] consists of a finite set of
vertices VI , a set of k-uniform ordered hyperedges EI ⊆ V k

I and constraints {Ce ∈ C | e ∈ E}. In
addition, the hyperedges have normalized weights {we ≥ 0}e∈EI satisfying

∑
e∈EI we = 1. A labeling

σ : VI 7→ [L] satisfies the hyperedge e = (v1, . . . , vk) if (σ(v1), . . . , σ(vk)) ∈ Ce.
As an example, 3-SAT is a constraint satisfaction problem with k = 3 over the boolean domain, i.e.

L = 2. The SAT predicate is over 3 variables. Allowing for negations of the boolean variables yields
a constraint class C3−SAT consisting of 8 constraints. Each constraint, being an OR over 3 literals, has 7
satisfying assignments (labelings).

Let us denote the weighted fraction of constraints satisfied by any labeling σ by val(I, σ). The optimum
value of the instance is given by,

opt(I) := max
σ:V 7→[L]

val(I, σ).

2.1.1 Permutation Invariant Constraints

Let πj : [L] 7→ [L], j = 1, . . . , k, be k permutations. For a constraint C ⊆ [L]k, define the [π1, . . . , πk]-
permuted constraint as:

[π1, . . . , πk]C := {(π1(j1), . . . , πk(jk)) | (j1, . . . , jk) ∈ C}. (5)

A (k, L)-constraint class C is said to be permutation invariant if for every k permutations πj : [L] 7→ [L]
(1 ≤ j ≤ k), C ∈ C implies [π1, . . . , πk]C ∈ C. As mentioned earlier, boolean constraint classes such as
k-SAT, k-AND and k-XOR are permutation invariant by definition since they are closed under negation of
variables. For general L, Unique Games and Label Cover are well studied permutation invariant constraint
classes.

2.2 LP Relaxation for CSP-[C, k, L]

The standard linear programming relaxation for an instance I (as defined above) of CSP-[C, k, L] is obtained
as follows. There is a variable xv` for each vertex v ∈ VI and label ` ∈ [L]. For each constraint Ce
corresponding to hyperedge e = (v1, . . . , vk), and tuple ` = (`1, . . . , `k) ∈ [L]k of labels, there is a
variable ye`. In the integral solution these variables are {0, 1}-valued denoting the selection the particular
label or tuple of labels for the corresponding vertex or hyperedge respectively. To ensure consistency they
are appropriately constrained. Allowing the variables to take values in [0, 1], we obtain the LP relaxation
denoted by LP(I) and given in Figure 1.

For a given instance I, let

(x, y) = ({xv`}v∈VI ,`∈[L], {ye`}e∈EI ,`∈[L]k),
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max
∑
e∈EI

we ·
∑
`∈Ce

ye` (6)

subject to,

∀v ∈ VI ,
∑
`∈[L]

xv` = 1 (7)

∀v ∈ VI and,

e = (v1, . . . , vi−1, v, vi+1, . . . , vk) ∈ EI and,

`∗ ∈ [L],
∑

`∈[L]i−1×{`∗}×[L]k−i
ye` = xv`∗ (8)

∀v ∈ VI , ` ∈ [L], xv` ≥ 0. (9)

∀e ∈ EI , ` ∈ [L]k, ye` ≥ 0. (10)

Figure 1: LP Relaxation LP(I) for instance I of CSP-[C, k, L].

be a valid solution to LP(I). On this solution, the objective value of the LP is denoted by lpval(I, (x, y)).
The integrality gap, i.e. how well the LP relaxation approximates the integral optimum on I, is given by,

intgap(I) :=
lpsup(I)

opt(I)
, (11)

where,
lpsup(I) := sup

(x,y)
lpval(I, (x, y)). (12)

A smaller integrality gap – which is always at least 1 – indicates tightness of the LP relaxation. We say that
I is a (c, s)-integrality gap instance if,

lpsup(I) ≥ c, and opt(I) ≤ s. (13)

2.2.1 Smooth LP Solutions

The following shows that the integrality gap is nearly attained by a solution to the LP relaxation which is
discrete in the following sense.

Definition 2.1. Given an instance I of CSP-[C, k, L], a solution (x, y) to LP(I) is δ-smooth if each variable
xv` is at least δL−1 and each variable ye` is at least δL−k, for any δ > 0.

The following lemma is proved in Section 10.

Lemma 2.2. Given an instance I of CSP-[C, k, L], for any δ > 0 and solution (x∗, y∗) to LP(I), there is
an (efficiently computable) δ-smooth solution (x, y) to LP(I) such that,

lpval(I, (x, y)) ≥ (1− δ)lpval(I, (x∗, y∗)). (14)
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In particular, there is a δ-smooth solution (x, y) to LP(I) such that,

lpval(I, (x, y))

opt(I)
≥ (1− δ)intgap(I). (15)

2.3 A Rounding Algorithm for LP

Given an instance I of CSP-[C, k, L] and a solution (x∗, y∗) to LP(I), the rounding algorithm Round is
described in Figure 2. The performance of the algorithm is the expected (weighted) fraction of constraints

Round(I, (x∗, y∗)):

1. Using Lemma 2.2 compute a 0.1-smooth solution (x̂, ŷ) corresponding to (x∗, y∗) satisfying
Equation (14).

2. For each vertex v ∈ VI :

a. Partition [L] into subsets {Svt }Tt=1, where Svi = {` ∈ [L] | (1/2t) < x̂v` ≤ (1/2t−1)}.
Note: T = O(logL), by 0.1-smoothness of (x̂, ŷ).

b. Choose u.a.r t∗v from {t | Svt 6= ∅}.
c. Label v with `∗ chosen u.a.r from Svt∗v .

Figure 2: Rounding Algorithm for LP(I) on instance I of CSP-[C, k, L].

satisfied by this labeling, and is denoted by Roundval(I, (x∗, y∗)). The rounding gap for I and (x∗, y∗) is
given by the following ratio.

RoundGap(I, (x∗, y∗)) :=
lpval(I, (x∗, y∗))

Roundval(I, (x∗, y∗))
. (16)

2.4 Gaussian Stability

We require the following notion of Gaussian stability in our analysis.

Definition 2.3. Let Φ : R 7→ [0, 1] be the cumulative distribution function of the standard Gaussian. For a
parameter ρ, define,

Γρ(µ, ν) = Pr[X ≤ Φ−1(µ), Y ≤ Φ−1(ν)], (17)

where X and Y are two standard Gaussian random variables with covariance matrix
( 1 ρ
ρ 1

)
. For k ≥ 3,

(ρ1, . . . , ρk−1) ∈ [0, 1]k−1, and (µ1, . . . , µk) ∈ [0, 1]k, inductively define,

Γρ1,...,ρk−1
(µ1, . . . , µk) = Γρ1(µ1,Γρ2,...,ρk−1

(µ2, . . . , µk)). (18)

The following key lemma is proved in Section 9.
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Lemma 2.4. Let k ≥ 2 be an integer and T ≥ 2 such that 1 ≥ µi ≥ (1/T ) for i = 1, . . . , k. Then, there
exists a universal constant C > 0 such that for any ε ∈ (0, 1/2],

ρ =
ε

C(k − 1)(log T + log(1/ε))
, (19)

implies,

Γρk−1
(µ1, . . . , µk) ≤ (1 + ε)k−1

k∏
i=1

µi,

where ρk−1 = (ρ, . . . , ρ), is a (k − 1)-tuple with each entry ρ.

2.5 Correlated Spaces

The correlation between two correlated probability spaces is defined as follows.

Definition 2.5. Suppose (Ω(1)×Ω(2), µ) is a finite correlated probability space with the marginal probability
spaces (Ω(1), µ) and (Ω(2), µ). The correlation between these spaces is,

ρ(Ω(1),Ω(2);µ) = sup
{
|Eµ[fg]| | f ∈ L2(Ω(1), µ), g ∈ L2(Ω(2), µ),E[f ] = E[g] = 0;E[f2],E[g2] ≤ 1

}
.

Let (Ω
(1)
i × Ω

(2)
i , µi)

n
i=1 be a sequence of correlated spaces. Then,

ρ(
n∏
i=1

Ω
(1)
i ,

n∏
i=1

Ω
(2)
i ;

n∏
i=1

µi) ≤ max
i
ρ(Ω

(1)
i ,Ω

(2)
i ;µi).

Further, the correlation of k correlated spaces (
∏k
j=1 Ω(j), µ) is defined as follows:

ρ(Ω(1),Ω(2), . . . ,Ω(k);µ) := max
1≤i≤k

ρ

i−1∏
j=1

Ω(j) ×
k∏

j=i+1

Ω(j),Ω(i);µ

 .

The Bonami-Beckner operator is defined as follows.

Definition 2.6. Given a probability space (Ω, µ) and ρ ≥ 0, consider the space (Ω×Ω, µ′) where µ′(x, y) =
(1− ρ)µ(x)µ(y) + ρ1{x = y}µ(x), where 1{x = y} = 1 if x = y and 0 otherwise. The Bonami-Beckner
operator Tρ is defined by,

(Tρf)(x) = E(X,Y )←µ′ [f(Y ) | X = x] .

For product spaces (
∏n
i=1 Ωi,

∏n
i=1 µi), the Bonami-Beckner operator Tρ = ⊗ni=1T

i
ρ, where T iρ is the oper-

ator for the ith space (Ωi, µi).

The influence of a function on a product space is defined as follows.

Definition 2.7. Let f be a function on (
∏n
i=1 Ωi,

∏n
i=1 µi). The influence of the ith coordinate on f is:

Infi(f) = E{xj |j 6=i} [Varxi [f(x1, x2, . . . , xi, . . . , xn)]] .

The following is a folklore upper bound on the sum of influences of smoothed functions, and is proved
as Lemma 1.13 in [19].
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Lemma 2.8. Let f be a function on (
∏n
i=1 Ωi,

∏n
i=1 µi) which takes values in [−1, 1]. Then,

n∑
i=1

Infi(T1−γf) ≤ γ−1, (20)

for any γ ∈ (0, 1].

2.6 Useful Invariance and Correlation Bounds

The following key result in Mossel’s work [14] shall be used in the analysis of our reduction. We restate
Lemma 6.2 of [14].

Lemma 2.9. Let (Ω
(j)
1 , . . . ,Ω

(j)
n )kj=1 be k collections of finite probability spaces such that {

∏k
j=1 Ω

(j)
i | i =

1, . . . , n} are independent. Suppose further that it holds for all i = 1, . . . , n that ρ(Ω
(j)
i : 1 ≤ j ≤ k) ≤ ρ.

Then there exists an absolute constant C such that for any ν ∈ (0, 1),

γ = C
(1− ρ)ν

log (1/ν )
,

and k functions
{
fj ∈ L2(

∏n
i=1 Ω

(j)
i )
}k
j=1

, the following holds,

∣∣∣∣∣∣E
 k∏
j=1

fj

− E

 k∏
j=1

T1−γfj

∣∣∣∣∣∣ ≤ ν
k∑
j=1

√
Var[fj ]

√√√√√Var

∏
j′<j

T1−γfj′
∏
j′>j

fj′

.
In particular, if the functions fj (1 ≤ j ≤ k) take values in [0, 1] then,∣∣∣∣∣∣E

 k∏
j=1

fj

− E

 k∏
j=1

T1−γfj

∣∣∣∣∣∣ ≤ kν.
Our analysis shall also utilize the following multi-linear Gaussian stability bound which follows from

Theorem 1.14 and Proposition 1.15 of [14] (restated as Theorem 8.1) along with the inductive definition of
Γρ1,...,ρk−1

(µ1, . . . , µk). A proof is given in Section 8.

Theorem 2.10. Let (
∏k
j=1 Ω

(j)
i , µi) be a sequence of correlated spaces such that for each i, the probability

of any atom in (
∏k
j=1 Ω

(j)
i , µi) is at least α ≤ 1/2 and such that ρ(Ω

(1)
i , . . . ,Ω

(k)
i ;µi) ≤ ρ for all i. Then

there exists a universal constant C > 0 such that, for every ν > 0, taking

τ =

(
(ν/k)

(
C
k log( 1/α ) log( k/ν )

ν(1−ρ)

))/
k2 , (21)

for functions {fj :
∏n
i=1 Ω

(j)
i 7→ [0, 1]}kj=1 that satisfy: ,

∀j, j′ s.t. 1 ≤ j < j′ ≤ k, {i | Infi(fj) > τ} ∩ {i | Infi(fj′) > τ} = ∅, (22)

the following holds,

E[
k∏
j=1

fj ] ≤ Γρ,...,ρ(E[f1], . . . ,E[fk]) + ν. (23)
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2.7 Unique Games Conjecture

UNIQUEGAMES is the following constraint satisfaction problem.

Definition 2.11. A UNIQUEGAMES instance U consists of a graph GU = (VU , EU ), a label set [R] and a
set of bijections {πe : [R] 7→ [R] | e ∈ EU}. A labeling σ : VU 7→ [R] satisfies an edge e = (u, v) if
πe(σ(v)) = σ(u). The instance is called d-regular if GU is d-regular.

The UNIQUEGAMES problem is: given an instance of UNIQUEGAMES, find an assignment which satis-
fies the maximum fraction of edges. It is easy to see that if there exists an assignment that satisfies all edges,
such an assignment can be efficiently obtained. In other words, the UNIQUEGAMES is easy on satisfiable
instances. This is not known to be true for almost satisfiable instances, and the following conjecture on the
hardness of UNIQUEGAMES on such instances was proposed by Khot [7].

Conjecture 1. For any constant ζ > 0, there is an integer R > 0, such that it is NP-hard, given a regular
instance U of UNIQUEGAMES on label set [R], to decide whether,

YES Case. There is a labeling to the vertices of U which satisfies (1− ζ) fraction of its edges.

NO Case. Any labeling satisfies at most ζ fraction of the edges.

3 Our Results restated

The following is a restatement of Theorem 1.1 as a hardness reduction from UNIQUEGAMES.

Theorem 3.1. Let k ≥ 2 and L ≥ 2 be positive integers. Let I be a (c, s)-integrality gap instance of
CSP-[C, k, L]. Then, there is a reduction from an instance U of UNIQUEGAMES given by Conjecture 1 with
a small enough parameter ζ, to an instanceH of CSP-[C, k, L] such that,

YES Case. If U is a YES instance, then

opt(H) ≥ Ω

(
c

k3 logL

)
.

NO Case. If U is a NO instance, then,
opt(H) ≤ 4 · s.

Theorem 3.1 is obtained by combining the dictatorship gadget constructed in Section 4 with the hard
instance of UNIQUEGAMES. As the name suggests, this gadget distinguishes between labelings defined by a
dictator and those which are not. The dictatorship gadget illustrates the main ideas of the hardness reduction
and is derived from the integrality gap instance I of CSP-[C, k, L], and is also a CSP-[C, k, L] instance.
This notion is the same as defined by Raghavendra [16] and can be converted into a hardness reduction from
UNIQUEGAMES using techniques from Section 6 of [16]. However, to avoid describing the framework of
[16] in detail, we provide a direct hardness reduction proving Theorem 3.1 in Section 5.

Our second result Theorem 1.2 is implied by the following theorem and an application of Theorem 3.1.

Theorem 3.2. Let k ≥ 2 and L ≥ 2 be positive integers. Let Ĩ be an instance of CSP-[C, k, L] consisting
of one hyperedge ẽ and its constraint Cẽ, and (x∗, y∗) be a solution to LP(Ĩ) such that,

lpval(Ĩ, (x∗, y∗)) ≥ Roundval(Ĩ, (x∗, y∗)). (24)
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Then, there exists an instance I whose size depends only onL and k with constraints which are permutations
of Cẽ, and a solution (x, y) to LP(I) such that,

lpval(I, (x, y)) ≥ lpval(Ĩ, (x∗, y∗))
4

, (25)

and,
opt(I) ≤ O

(
(logL)k

)
Roundval(Ĩ, (x∗, y∗)). (26)

Theorem 3.2 is proved in Section 6.

4 Dictatorship Gadget

We begin with the description of some probability spaces defined using solutions to the LP relaxation given
in Figure 1.

4.1 Probability Spaces given by solutions to LP

For a CSP-[C, k, L] instance I and a valid solution (x, y) to LP(I), we define the following useful probability
spaces. For each v ∈ VI , let µv be a probability measure over [L] defined as:

µv(`) = xv`, ∀` ∈ [L]. (27)

Also, define for each hyperedge e = (v1, . . . , vk) ∈ EI , a probability measure νe over [L]k as:

νe(`) = ye`, ∀` ∈ [L]k. (28)

For a parameter ρ ∈ [0, 1] define,

ν̃eρ = ρνe + (1− ρ)
k∏
i=1

µvi . (29)

Therefore, νe = ν̃eρ for ρ = 1. Since (x, y) is a valid solution, it is easy to see that for a hyperedge e and its
ith vertex v, the marginal distribution of νe at the ith coordinate is same as the distribution µv. The same is
true for ν̃eρ for any ρ ∈ [0, 1]. Also, in the notation of Mossel [14], for the probability space (

∏k
i=1[L]; ν̃eρ),

ρ([L], . . . , [L]; ν̃eρ) ≤ ρ, (30)

where ρ([L], . . . , [L]; ν̃eρ) is the correlation of the probability space (
∏k
i=1[L]; ν̃eρ). The above follows from

the definition of ν̃eρ.
Further, we denote by ν̃Reρ the product measure on ([L]R)k, defined as:

ν̃Reρ(r
1, . . . , rk) =

R∏
i=1

ν̃eρ(r
1
i , . . . , r

k
i ), (31)

where rj = (rj1, . . . , r
j
R) ∈ [L]R for j = 1, . . . , k.

11



4.2 Gadget Construction

Let I be a CSP-[C, k, L] instance. From Lemma 2.2, let (x, y) be a δ-smooth solution to LP(I) satisfying
Equation (15) for a parameter δ ∈ [0, 1].

The dictatorship gadget is parametrized by a large enough positive integer R and a correlation ρ ∈ [0, 1]
to be set later. We denote the gadget by D and its set of vertices and hyperedges as VD and HD respectively.
Each hyperedge ê ∈ ED has a constraint Cê from the class C and a normalized positive weight wê.

Vertices. VD := VI × [L]R. Denote by V v
D the set of vertices {(v, r) | r ∈ [L]R} for v ∈ VI . Thus,

VD = ∪v∈VIV v
D.

Hyperedges. Let e = (v1, . . . , vk) ∈ EI . For any (r1, . . . , rk) ∈ ([L]R)k there is a hyperedge ê =
((v1, r1), . . . , (vk, rk)) in ED, with Cê = Ce. The weight wê is given by,

wê = we · ν̃Reρ(r1, . . . , rk). (32)

It is easy to see thatwê is a normalized weight function. For convenience, letED(e) be the set of hyperedges
in D corresponding to e ∈ EI .

The above completes the description of the dictatorship gadget D. The gadget distinguishes between
dictator labelings and labelings far from a dictator, as shown in the YES and NO cases below.

4.3 YES Case

Let us fix i∗ ∈ [R]. Define a labeling σ∗ to VD where,

σ∗((v, (r1, . . . , rR))) = ri∗ , (33)

for each v ∈ VI and (r1, . . . , rR) ∈ [L]R. The following lemma shows that σ∗ is a good labeling.

Lemma 4.1. For σ∗ defined as above,

val(D, σ∗) ≥ ρ · lpval(I, (x, y)).

Proof. Consider any hyperedge e = (v1, . . . , vk) ∈ EI . The (weighted) fraction of hyperedges in ED(e)
satisfied by σ∗ is given by,∑

(r1,...,rk)∈([L]R)k
we · ν̃Reρ(r1, . . . , rk)1{(σ∗((v1, r1)), . . . σ∗((vk, rk))) ∈ Ce},

=
∑

(r1,...,rk)∈([L]R)k
we · ν̃Reρ(r1, . . . , rk)1{(r1(i∗), . . . rk(i∗)) ∈ Ce}, (34)

where rj(i) is the ith coordinate of rj , ∀j = 1, . . . , k. Since (r1(i), . . . rk(i)) is independently chosen for
i = 1, . . . , R, the RHS of Equation (34) can be rewritten as,

we · E(r1,...,rk)∈ν̃eρ [L]k [1{(r1, . . . , rk) ∈ Ce}] ≥ ρ · we ·
∑
`∈Ce

ye`, (35)

where inequality follows from the definition of ν̃eρ. Therefore,

val(D, σ∗) ≥
∑
e∈EI

we · ρ
∑
`∈Ce

ye` = ρ · lpval(I, (x, y)).

12



4.4 NO Case

Let σ be a labeling to VD. For any v ∈ VI define functions fv` : [L]R 7→ [0, 1] for all ` ∈ [L] as,

fv` (r) := 1{σ(v, r) = `}. (36)

It follows that,
E[fv` ] ∈ [0, 1], (37)

and, ∑
`∈[L]

E[fv` ] = 1, (38)

where the expectation is over the product measure µRv . We now set the parameter ρ in the construction of
the dictatorship gadget as follows:

ρ :=
1

C(k − 1)k[k logL+ log(2/ε) + log k]
, (39)

where C is the constant from Lemma 2.4 and ε ∈ [0, 1] is a parameter. The following lemma gives an upper
bound on the value achieved by a non-dictator labeling σ.

Lemma 4.2. For every ε > 0, there is a constant τ > 0 depending only on ε, L, k and δ such that the
following holds. Suppose that for any two vertices u, v ∈ VI and labels `, `′ ∈ [L],

{i ∈ [R] | Infi(fu` ) > τ} ∩ {i ∈ [R] | Infi(fv`′) > τ} = ∅. (40)

Then,
val(D, σ) ≤ 3 · opt(I) + ε. (41)

Proof. For any hyperedge e = (v1, . . . , vk) ∈ EI , the fraction of edges in ED(e) satisfied by σ is,

E(r1,...,rk)←ν̃Reρ [1{(σ((v1, r1)), . . . σ((vk, rk))) ∈ Ce}] ,

= E(r1,...,rk)

 ∑
(`1,...,`k)∈Ce

k∏
j=1

f
vj
`j

(rj)

 =
∑

(`1,...,`k)∈Ce

E(r1,...,rk)

 k∏
j=1

f
vj
`j

(rj)

 . (42)

Consider any fvj`j such that E[f
vj
`j

] ≤ (ε/2)L−k. Call any expectation of products on the RHS of Equation

(42) in which fvj`j occurs a light expectation. Any light expectation is also bounded by (ε/2)L−k. Since,
there are at most Lk expectations in the sum, one can ignore all light expectations on the RHS, losing only an
additive factor of (ε/2) in the upper bound. The remaining expectations are called heavy and are analyzed
as follows.

Since (x, y) is a δ-smooth solution, the construction of the probability space ([L]k; ν̃eρ) implies that
measure of its smallest atom is at least (1− ρ)

(
δL−1

)k. The correlation of this space is also at most ρ. Our
setting of ρ depends only on ε, L and k. Thus, assuming the supposition in the statement of the lemma for
a τ that depends only on L, k, ε and δ, one can apply Theorem 2.10 to obtain,

E

 k∏
j=1

f
vj
`j

 ≤ Γρk−1

(
E
[
fv1`1

]
, . . . ,E

[
fvk`k

])
+ (ε/2)L−k, (43)
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where ρk−1 = (ρ, . . . , ρ) is a (k − 1)-tuple with each entry ρ. Since we assume that all the expectations in
the RHS of the above are at least (ε/2)L−k, by our setting of ρ and Lemma 2.4,

Γρk−1

(
E
[
fv1`1

]
, . . . ,E

[
fvk`k

])
≤
(

1 +
1

k

)k−1 k∏
j=1

E
[
f
vj
`j

]
≤ 3 ·

k∏
j=1

E
[
f
vj
`j

]
. (44)

Combining the above with Equation (43), we obtain that for the heavy expectations on the RHS of Equation
(42),

E

 k∏
j=1

f
vj
`j

 ≤ 3 ·
k∏
j=1

E
[
f
vj
`j

]
+ (ε/2)L−k. (45)

Substituting the above into Equation (42), along with the above observation that the sum of the light expec-
tations is at most (ε/2), we obtain that the fraction of edges in ED(e) satisfied by σ is at most,

3 ·
∑

(`1,...,`k)∈Ce

k∏
j=1

E
[
f
vj
`j

]
+ ε. (46)

The sum in the above expression is simply the probability that the hyperedge e ∈ EI is satisfied when every
vertex v is independently assigned a label ` with probability E[fv` ]. Taking a weighted sum over all e ∈ EI
yields the expected value of this assignment which is at most opt(I). This completes the proof.

5 Hardness Reduction from UNIQUEGAMES

The hardness reduction essentially combines a hard instance of UNIQUEGAMES with the dictatorship gadget
constructed in Section 4. We first give the reduction which parametrized by ε, δ, ρ ∈ [0, 1] to be set later.
This is followed by the analysis of the YES and NO cases, and finally we show that an appropriate setting
of the parameters in the reduction implies Theorem 3.1.

As in Section 4, I is a CSP-[C, k, L] instance and let (x, y) be a δ-smooth solution to LP(I) satisfying
Equation (15). Let U(GU = (VU , EU ), [R], {πe}e∈EU ) be a d-regular instance of UNIQUEGAMES with
parameter ζ > 0 (to be chosen later) as given in Conjecture 1.

The hardness reduction produces an instance H of CSP-[C, k, L] with VH and EH as its vertices and
hyperedges respectively. Each hyperedge ẽ ∈ EH has a constraint Cẽ from the class C and a normalized
positive weight wẽ.

Vertices. VH := VU ×VI × [L]R. Denote by VH(û, v) the set of vertices {(û, v, r) | r ∈ [L]R} for û ∈ VU
and v ∈ VI . Thus, VH = ∪û∈VU ∪v∈VI VH(û, v).

Hyperedges. For convenience we define the following notation. For a bijection π : [R] 7→ [R] and r ∈ [L]R,
let (r ◦ π) ∈ [L]R where,

(r ◦ π)(i) = r(π(i)), ∀i ∈ [R]. (47)

The hyperedges are constructed as follows. Let û ∈ VU and let (v̂1, . . . , v̂k) be a k-tuple of its neighbors in
GU via edges êj = (û, v̂j), j = 1, . . . , k. For each û there are dk such tuples. Let e = (v1, . . . , vk) ∈ EI .
For any (r1, . . . , rk) ∈ ([L]R)k there is a hyperedge ẽ = ((v̂1, v1, (r1 ◦ πê1)), . . . , (v̂k, vk, (rk ◦ πêk))) in
EH, with Cẽ = Ce. The weight wẽ is given by,

wẽ =

(
1

dk |VU |

)
· we · ν̃Reρ(r1, . . . , rk). (48)
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Observe that there are dk|VU | choices of û and a k-tuple of its neighbors. Therefore, wẽ is a product of
three independent probability measures, and is thus a normalized weight function. For convenience, let
EH(û, (v̂1, . . . , v̂k), e) be the set of hyperedges in H corresponding to û ∈ VU , the k-tuple (v̂1, . . . , v̂k) of
its neighbors, and e ∈ EI .

The above completes the construction of the instanceH.

5.1 YES Case

Let σ̂ be a labeling to the vertices of U from the set [R] that satisfies (1 − ζ) fraction of edges. Define a
labeling σ∗ to VH where,

σ∗((û, v, (r1, . . . , rR))) = rσ̂(û), (49)

for each û ∈ VU , v ∈ VI , and (r1, . . . , rR) ∈ [L]R. The following lemma shows that σ∗ is a good labeling.

Lemma 5.1. For σ∗ defined as above,

val(H, σ∗) ≥ ρ · lpval(I, (x, y))− kζ.

Proof. Since σ̂ satisfies at least (1 − ζ) fraction of edges, the fraction of choices of û and a k-tuple of its
neighbors (v̂1, . . . , v̂k) such all of the edges êj = (û, v̂j) (1 ≤ j ≤ k) are satisfied by σ̂ is at least (1− kζ).
Thus, losing an additive factor of kζ we assume this to be true for a fixed choice of û and a k-tuple of its
neighbors (v̂1, . . . , v̂k).

Consider any hyperedge e = (v1, . . . , vk) ∈ EI . The (weighted) fraction of hyperedges inEH(û, (v̂1, . . . , v̂k), e)
satisfied by σ∗ is given by,∑

(r1,...,rk)∈([L]R)k
we · ν̃Reρ(r1, . . . , rk)1

{
(σ∗((v̂1, v1, (r1 ◦ πê1))), . . . , σ∗((v̂k, vk, (rk ◦ πêk)))) ∈ Ce

}
=

∑
(r1,...,rk)∈([L]R)k

we · ν̃Reρ(r1, . . . , rk)1
{

((r1 ◦ πê1)(σ̂(v̂1)), . . . , (rk ◦ πêk)(σ̂(v̂k))) ∈ Ce
}
, (50)

where (rj ◦ πêj )(i) is the ith coordinate of (rj ◦ πêj ), ∀j = 1, . . . , k. Observe that,

(rj ◦ πêj )(σ̂(v̂j)) = rj
(
πêj (σ̂(v̂j))

)
= rj(σ̂(û)),

since σ̂ satisfies all the edges êj = (û, v̂j) (1 ≤ j ≤ k). Also, (r1(i), . . . rk(i)) is independently chosen for
i = 1, . . . , R. Therefore, the RHS of Equation (50) can be rewritten as,

we · E(r1,...,rk)∈ν̃eρ [L]k [1{(r1, . . . , rk) ∈ Ce}] ≥ ρ · we ·
∑
`∈Ce

ye`, (51)

where inequality follows from the definition of ν̃eρ. Summed over all edges e ∈ EI , we obtain that the
fraction of edges corresponding to the our choice of û and (v̂1, . . . , v̂k) is at least,

∑
e∈EI

we · ρ∑
`∈Ce

ye`

 = ρ · lpval(I, (x, y)).

Combining the above with the additive loss of kζ incurred towards the choice of û and (v̂1, . . . , v̂k), we
obtain,

val(H, σ∗) ≥ ρ · lpval(I, (x, y)) − kζ.
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5.2 NO Case

Let σ be any labeling to VD. For any v̂ ∈ VU and v ∈ VI define functions f v̂v` : [L]R 7→ [0, 1] for all ` ∈ [L]
as,

f v̂v` (r) := 1{σ(v̂, v, r) = `}, (52)

so that,
E[f v̂v` ] ∈ [0, 1], (53)

and, ∑
`∈[L]

E[f v̂v` ] = 1, (54)

where the expectation is over the product measure µRv . For γ ∈ [0, 1], let T1−γ be the Bonami-Beckner
operator from Definition 2.6. Given any v̂ ∈ VU define,

Sv̂ :=
⋃
v∈VI
`∈[L]

{i ∈ [R] | Infi(T1−γf v̂v` ) > τ} (55)

By Lemma 2.8,
R∑
i=1

Infi(T1−γf
v̂v
` ) ≤ 1/γ, (56)

for any v̂ ∈ VU , v ∈ VI and ` ∈ [L]. Therefore,

|Sv̂| <
|VI | · L
τγ

. (57)

The following lemma essentially bounds the probability of pairs of vertices with common influential coor-
dinates.

Lemma 5.2. Let û be a vertex chosen u.a.r from VU , and (v̂1, . . . , v̂k) a k-tuple of its neighbors chosen
u.a.r. Let,

η := Pr
û,(v̂1,...,v̂k)

[
∃j, j′ s.t. 1 ≤ j < j′ ≤ k and, πêj (Sv̂j ) ∩ πêj′ (Sv̂j′ ) 6= ∅

]
,

where π(S) = {π(s)|s ∈ S}. Then,

η ≤
4ζ
(
k2L2 |VI |2

)
(γτ)2

. (58)

Proof. Consider the following randomized labeling for the vertices û ∈ VI : with probability 1/2 choose a
uniformly random label from Sû; and with probability 1/2 choose a uniformly random neighbor v̂ of û and
choose a label uniformly at random from πê(Sv̂), where ê = (û, v̂). Now, consider the probability that this
labeling satisfies an edge (û, v̂′) chosen uniformly at random. By regularity of GU , this is same as choosing
a vertex û uniformly at random, and choosing one of its neighbors v̂′ uniformly at random. The neighbor
v̂ used to define the randomized labeling is another of its neighbors chosen independently and uniformly at
random. Thus, v̂ and v̂′ can be thought of as the jth and j′th coordinates of a uniformly random k-tuple
of neighbors of û, for a uniformly random choice j and j′ of indices such that 1 ≤ j < j′ ≤ 1. From the
assumption of the lemma, over the choice of û, v̂ and v̂′, with probability at least η/(k2),

πê(Sv̂) ∩ πê′(Sv̂′) 6= ∅ (59)

16



With a further probability of 1/4, û is labeled by a uniformly chosen label from πê(Sv̂), and v̂′ is labeled by
a uniformly chosen label from Sv̂′ . By the condition in Equation (59), with a further probability of,

1

|Sv̂| |Sv̂′ |
,

this choice satisfies satisfies (û, v̂′). Using Equation (57), this implies that the expected fraction of edges
satisfied is at least,

η(γτ)2

4
(
k2L2 |VI |2

) .
The above is at most ζ and substituting for it proves the lemma.

The parameter ρ is set as follows:

ρ :=
1

C(k − 1)k[k logL+ log(4/ε) + log k]
, (60)

where C is the constant from Lemma 2.4. The following is the main lemma showing the upper bound on
the optimum in the NO case.

Lemma 5.3. For the above setting of ρ, and sufficiently small choice of ζ > 0,

val(H, σ) ≤ 3 · opt(I) + ε.

Proof. For a choice of parameters γ, τ > 0 (which we shall set later) let η be as given in Lemma 5.2. By
averaging we may assume that for at least (1 −√η) fraction of the vertices û ∈ VU , for (1 −√η) fraction
of choices of the k-tuple of its neighbors (v̂1, . . . , v̂k),

∀1 ≤ j < j′ ≤ k, πêj (Sv̂j ) ∩ πêj′ (Sv̂j′ ) = ∅. (61)

We refer to such vertices û as good, and the k-tuples of its neighbors (v̂1, . . . , v̂k) satisfying Equation (61)
as its good k-tuples. Note that the condition in Equation (61) depends on γ and τ . We have the following
intermediate lemma.

Lemma 5.4. For a sufficiently small choice of γ and τ depending on L, k, δ and ε the following holds. For
every choice of a good vertex û and a good k-tuple (v̂1, . . . , v̂k) of its neighbors, the fraction of hyperedges
in EH corresponding to the choice of û and (v̂1, . . . , v̂k) satisfied by σ is at most,

3 ·
∑

e=(v1,...,vk)∈EI

we ·

 ∑
(`1,...,`k)∈Ce

k∏
j=1

E
[
f
v̂jvj
`j

]+ (3ε/4). (62)

Proof. Fix a hyperedge e = (v1, . . . , vk) ∈ EI . The fraction of hyperedges in EH(û, (v̂1, . . . , v̂k), e)
satisfied by σ is,

E(r1,...,rk)←ν̃Reρ [1{(σ((v̂1, v1, (r1 ◦ πê1))), . . . σ((v̂k, vk, (rk ◦ πêk)))) ∈ Ce}] ,

= E(r1,...,rk)

 ∑
(`1,...,`k)∈Ce

k∏
j=1

f
v̂jvj
`j

((rj ◦ πêj ))

 ,
=

∑
(`1,...,`k)∈Ce

E(r1,...,rk)

 k∏
j=1

f
v̂jvj
`j

((rj ◦ πêj ))

 . (63)
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Consider any f v̂jvj`j
such that E[f

v̂jvj
`j

] ≤ (ε/4)L−k. Call any expectation of products on the RHS of Equa-

tion (63) in which f v̂jvj`j
occurs as a light expectation. Any light expectation is also bounded by (ε/4)L−k.

There are at most Lk expectations in the sum. Therefore, losing only an additive factor of (ε/4) in the upper
bound, one can ignore all light expectations on the RHS. The remaining expectations are called heavy and
are analyzed as follows.

Consider a heavy expectation,

E(r1,...,rk)

 k∏
j=1

f
v̂jvj
`j

((rj ◦ πêj ))

 = E(r1,...,rk)

 k∏
j=1

(
f
v̂jvj
`j
◦ πêj

)
(rj)

 . (64)

Note that the correlation of the probability space ([L]k; ν̃eρ) is at most ρ < 1, which depends only on L, k
and ε. Thus, applying Lemma 2.9, there is value of γ depending only on L, k and ε, so that,

E(r1,...,rk)

 k∏
j=1

(
f
v̂jvj
`j
◦ πêj

)
(rj)

 ≤ E(r1,...,rk)

 k∏
j=1

T1−γ

(
f
v̂jvj
`j
◦ πêj

)
(rj)


+ (ε/4)L−k, (65)

where for any f : [L]R and bijection π : [L] 7→ [L],

(f ◦ π)(r) := f(r ◦ π).

Note that the ith coordinate of f corresponds to the π(i)th coordinate of (f ◦ π). Therefore, Equation (61)
implies that for any 1 ≤ j < j′ ≤ k,{

i | Infi
(
T1−γ

(
f
v̂jvj
`j
◦ πêj

))
> τ

}⋂{
i | Infi

(
T1−γ

(
f
v̂j′vj′
`j′

◦ πêj′
))

> τ
}

= ∅ (66)

Since (x, y) is a δ-smooth solution, the construction of the probability space ([L]k; ν̃eρ) implies that measure
of its smallest atom is at least (1− ρ)

(
δL−1

)k, which depends only on ε,δ, L and k. Thus, using Equation
(66) and setting the value of τ depending only on ε,δ, L and k, one can apply Theorem 2.10 to obtain,

E

 k∏
j=1

T1−γ

(
f
v̂jvj
`j
◦ πêj

) ≤ Γρk−1

(
E
[
T1−γ

(
f v̂1v1`1

◦ πêj
)]
, . . . ,E

[
T1−γ

(
f v̂kvk`k

◦ πêk
)])

+ (ε/4)L−k,

where ρk−1 = (ρ, . . . , ρ) is a (k − 1)-tuple with each entry ρ. Note that the application of the Bonami-
Beckner operator does not change the expectation of the above functions, and neither does the permutation
of coordinates as each coordinate is sampled u.a.r from the same distribution. Thus,

E
[
T1−γ

(
f
v̂jvj
`j
◦ πêj

)]
= E

[
f
v̂jvj
`j

]
, (67)

for all 1 ≤ j ≤ k. Therefore, by our assumption, all the expectations in the RHS of the Equation (67) are at
least (ε/4)L−k. Applying Lemma 2.4 along with our setting of ρ and using Equation (67) we obtain,

Γρk−1

(
E
[
T1−γ

(
f v̂1v1`1

◦ πêj
)]
, . . . ,E

[
T1−γ

(
f v̂kvk`k

◦ πêk
)])

≤
(

1 +
1

k

)k−1 k∏
j=1

E
[
f
v̂jvj
`j

]
. (68)
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Combining the above with Equations (67) and (65), we obtain that for the heavy expectations on the RHS
of Equation (63),

E

 k∏
j=1

f
v̂jvj
`j

 ≤ (1 +
1

k

)k−1
·
k∏
j=1

E
[
f
v̂jvj
`j

]
+ (ε/2)L−k, ≤ 3 ·

k∏
j=1

E
[
f
v̂jvj
`j

]
+ (ε/2)L−k

Substituting the above into Equation (63), along with the above observation that the sum of the light expec-
tations is at most (ε/4), we obtain that the weighted fraction of edges in EH corresponding to our choice of
û, (v̂1, . . . , v̂k), and e ∈ I is satisfied by σ is at most,

3 ·
∑

(`1,...,`k)∈Ce

k∏
j=1

E
[
f
v̂jvj
`j

]
+ (3ε/4). (69)

Taking the weighted sum of the above over all hyperedges e ∈ I completes the proof of the Lemma 5.4.

For a good vertex û ∈ VU , at least (1 − √η) fraction of k-tuples of its neighbors are good. Therefore,
losing an additional additive

√
η in the upper bound, we obtain that the weighted fraction of hyperedges in

EH corresponding to the choice of a good vertex û satisfied by σ is at most,

3 · E(v̂1,...,v̂k)

 ∑
e=(v1,...,vk)∈EI

we ·

 ∑
(`1,...,`k)∈Ce

k∏
j=1

E
[
f
v̂jvj
`j

]+
√
η + (3ε/4)

= 3 ·
∑

e=(v1,...,vk)∈EI

we ·

 ∑
(`1,...,`k)∈Ce

k∏
j=1

Ev̂
[
E
[
f
v̂vj
`j

]]+
√
η + (3ε/4), (70)

where Ev[.] is the expectation over a random neighbor v̂ of û. In the above, the sum over the hyperedges
e ∈ I is simply the expected number of hyperedges satisfied when each vertex v ∈ VI is independently
assigned the label ` with probability

Ev̂
[
E
[
f v̂v`

]]
.

This is at most opt(I). Moreover, at least (1 −√η) fraction of the vertices û are good. Therefore, with an
additional loss of

√
η in the upper bound we obtain,

val(H, σ) ≤ 3 · opt(I) + 2
√
η + (3ε/4). (71)

Choosing ζ to be small enough so that 2
√
η ≤ (ε/4) completes the proof of the lemma.

5.3 Proof of Theorem 3.1

Note that opt(I) ≥ L−k, and since (x, y) is a δ-smooth solution to LP(I) satisfying Equation (15), one can
choose δ = 1/2, and ζ small enough so that Lemma 5.1 implies,

opt(H) ≥ ρ · lpsup(I)

4
, (72)

in the YES case.
Also, choosing ε = L−k, Lemma 5.3 implies,

opt(H) ≤ 4 · opt(I), (73)

in the NO Case. Observing that this setting of ε implies ρ = Ω
(

1
/(
k3 logL

))
proves Theorem 3.1.
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6 From a Rounding Gap to an Integrality Gap

Let Ĩ be the instance of CSP-[C, k, L] consisting of one hyperedge ẽ = (ṽ1, . . . , ṽk) with a constraint Cẽ,
and (x∗, y∗) be the solution to LP(Ĩ), as given in Theorem 3.2. This section provides the construction of the
integrality gap instance I, followed by the description of the solution (x, y) to LP(I), and the bound on the
optimum of I, as desired in Theorem 3.2.

6.1 Construction of I

For each vertex ṽ of the hyperedge ẽ, let {S ṽt | t = 1, . . . , T} be the corresponding partition of [L]
constructed by Round(Ĩ, (x∗, y∗)). We say that a permutation π : [L] 7→ [L] respects the partition {St}Tt=1

if,
` ∈ St ⇔ π(`) ∈ St,

for all ` ∈ [L] and t = 1, . . . , T . It is easy to see that there are exactly
∏r
t=1 (|St|!) of such permutations.

The following is a randomized construction of I. Here n is a parameter to be set later depending only on L
and k.

Vertices. Let Vj := {vji | i = 1, . . . , n}, for j = 1, . . . , k be k layers of vertices. The vertex set is their
union, i.e., VI = ∪kj=1Vj .

Hyperedges. For every (i1, . . . , ik) ∈ [n]k there is a hyperedge e = (v1i1 , . . . , vkik). The constraint Ce
is chosen independently at random as follows. Choose a {S ṽjt }Tt=1 respecting permutation πj uniformly at
random, and independently for j = 1, . . . , k, and let,

Ce = [π1, . . . , πk]Cẽ. (74)

Assign to each of the nk hyperedges in I the same weight n−k.

6.2 LP Solution for I

Let us first create (x̃, ỹ) as solution to to the relaxation LP1(Ĩ), given in Section 7. Let (x̂, ŷ) be the 0.1-
smooth solution constructed in Step 1 of Round(Ĩ, (x∗, y∗)). For each ` ∈ [L]k let,

ỹẽ` =
ŷẽ`
2
. (75)

For each vertex ṽj (1 ≤ j ≤ k) in Ĩ, and ` ∈ [L] such that ` ∈ S ṽt , let,

x̃ṽj` =
(

1
/

2t
)
. (76)

Observe that x̃ṽj` ≥ (1/2)x̂ṽj`. Along with Equation (75) this implies that (x̃, ỹ) is a valid solution to
LP1(Ĩ). Furthermore,

lpval1(Ĩ, (x̃, ỹ)) =
lpval(Ĩ, (x̂, ŷ)

2
, (77)

where lpval1 is as defined in Section 7. A solution (x′, y′) to the relaxation LP1(I) is constructed as follows.
Let e = (v1, . . . , vk) be a hyperedge in I, where vj ∈ Vj (1 ≤ j ≤ k). The corresponding constraint
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Ce is given by [π1, . . . , πk]Cẽ where πj respects the partition {S ṽjt }Tt=1, for j = 1, . . . , k. For each ` =

(`1, . . . , `k) let `
′
= (π−11 (`1), . . . , π

−1
k (`k)), so that,

`
′ ∈ Cẽ ⇔ ` ∈ [π1, . . . , πk]Cẽ = Ce, (78)

and let,
y′
e`

= ỹ
ẽ`
′ . (79)

Essentially, the LP variables corresponding to the hyperedges are permuted according to the sequence of
permutations used in constructing the hyperedge. On the other hand, since the permutations πj respects
{S ṽjt }Tt=1 (1 ≤ j ≤ k), the variables corresponding to the vertices do not change. Formally, for each v ∈ Vj
(1 ≤ j ≤ k) and ` ∈ [L],

x′v` = x̃ṽj`. (80)

Note that for a given t ∈ {1, . . . , T}, for all ` ∈ S
ṽj
t , x′v` has the same value. Along with the fact that

the permutations πj used to construct Ce respect {S ṽjt }Tt=1 (1 ≤ j ≤ k), this implies that (x′, y′) is a valid
solution to LP1(I). From the construction of Ce we have,∑

`∈Ce

y′
e`

=
∑
`
′∈Cẽ

ỹ
ẽ`
′ = lpval1(Ĩ, (x̃, ỹ)). (81)

Since each hyperedge in I has the same normalized weight, we obtain,

lpval1(I, (x′, y′)) = lpval1(Ĩ, (x̃, ỹ)) =
lpval(Ĩ, (x̂, ŷ))

2
≥ 0.9lpval(Ĩ, (x∗, y∗))

2

≥ lpval(Ĩ, (x∗, y∗))
4

, (82)

where the second last inequality follows from the fact that (x̂, ŷ) is 0.1-smooth solution corresponding to
(x∗, y∗) and Lemma 2.2. Applying Lemma 7.1 to Equation (82) yields a solution (x, y) to LP(I) such that,

lpval(I, (x, y)) ≥ lpval(Ĩ, (x∗, y∗))
4

. (83)

6.3 Bound on opt(I)

Consider a fixed labeling σ : VI 7→ [L]. We shall estimate the number of hyperedges in I satisfied by σ over
the random choice of the constraints as given in the construction of I, and show that this does not deviate
much from the expectation, except with very low probability. A further application of union-bound yields
the desired upper bound.

Let e = (v1, . . . , vk) ∈ EI , where vj ∈ Vj for j = 1, . . . , k. Let tj ∈ {1, . . . , T} be such that
σ(vj) ∈ S

ṽj
tj

for j = 1, . . . , k. Let pe be the probability over the choice of Ce that σ satisfies e.

Lemma 6.1. Either pe = 0 or pe ≥ L−k.

Proof. It is easy to see that, k∏
j=1

S
ṽj
tj

⋂Cẽ = ∅ ⇔ ∀(π1, . . . πk) s.t. πj respects {S ṽjt }Tt=1, j = 1, . . . , k,

σ does not satisfy [π1, . . . , πk]Cẽ. (84)
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Thus, if the LHS of Equation (84) holds for e, then pe = 0. Otherwise, with probability at least,

k∏
j=1

∣∣∣S ṽjtj ∣∣∣−1 ≥ L−k,
over the choice of {πj}kj=1, (σ(v1), . . . , σ(vk)) ∈ Ce.

We also have the following lemma.

Lemma 6.2.
pe ≤ T k · Roundval(Ĩ, (x∗, y∗)). (85)

Proof. If pe = 0 then the lemma is trivially true. Otherwise, from the Equation (84), S ṽjtj 6= ∅, for j =
1, . . . , k. By the randomized construction of Ce, it can be seen that pe is the probability that (`1, . . . , `k) ∈
Cẽ, when `j is chosen independently and u.a.r from S

ṽj
tj

. This is same as the probability that the algorithm
Round(Ĩ, (x∗, y∗)) satisfies ẽ, after choosing the index tj for ṽj in Step 2b for j = 1, . . . , k. Since this
choice is made with probability at least T−k, the lemma follows.

The following key lemma gives the desired bound on the probability that the number hyperedges satisfied
is much larger than expected.

Lemma 6.3. For any ε ∈ (0, 1), there is a value of n depending only on L, k, and ε, such that,

Pr [Weighted fraction of hyperedges in I satisfied by σ > (1 + ε)R] < L−kn,

where R := T k · Roundval(Ĩ, (x∗, y∗)), and the probability is taken over the choice of the constraints Ce,
e ∈ EI .

Proof. We may assume that,
|{e ∈ EI | pe > 0}| ≥ nk · R, (86)

otherwise the lemma follows trivially as each edge has weight n−k. Since Cẽ 6= ∅, it can be seen from the
description of Round in Figure 2 that,

Roundval(Ĩ, (x∗, y∗)) ≥ T−kL−k, (87)

which along with Equation (86), Lemma 6.1, and the setting ofR implies,∑
e∈EI

pe ≥ nkL−2k. (88)

Observe that the choice ofCe and therefore the event that e is satisfied by σ is independent for all hyperedges.
Therefore, applying the Chernoff bound we have,

Pr

|{e | e satisfied by σ}| > (1 + ε)
∑
e∈EI

pe

 < exp

(
−ε2 ·

∑
e∈EI pe

3

)
. (89)

Choosing n large enough depending only on L, k and ε and substituting in the above from Equation (88)
completes the proof of the lemma.

22



Let us fix ε = 1/2. Note that from the description of Round in Figure 2, T = O (logL). Observing that
the number of vertices in I is nk and the total number of labelings of its vertices is Lkn, applying the union
bound to Lemma 6.3 yields the bound on opt(I).

Lemma 6.4. For a large enough value of n depending only on L and k, there exists an instance I whose
constraints are permutations of Cẽ such that,

opt(I) = O
(

(logL)k
)
Roundval(Ĩ, (x∗, y∗)). (90)

7 Relaxation LP1

Figure 3 gives an alternate LP relaxation, LP1 for CSP-[C, k, L], in which the constraints with equality in
LP are further relaxed. Let lpval1(I, (x, y)) denote the objective value of LP1(I) on the solution (x, y),

max
∑
e∈EI

we ·
∑
`∈Ce

ye` (91)

subject to,

∀v ∈ VI ,
∑
`∈[L]

xv` ≤ 1 (92)

∀v ∈ VI and,

e = (v1, . . . , vi−1, v, vi+1, . . . , vk) ∈ EI and,

`∗ ∈ [L],
∑

`∈[L]i−1×{`∗}×[L]k−i
ye` ≤ xv`∗ (93)

∀v ∈ VI , ` ∈ [L], xv` ≥ 0. (94)

∀e ∈ EI , ` ∈ [L]k, ye` ≥ 0. (95)

Figure 3: LP Relaxation LP1(I) for instance I of CSP-[C, k, L].

and lpsup1(I) its supremum over all (x, y). The following lemma states that with regards to the optimum
objective value, LP and LP1 are equivalent.

Lemma 7.1. For any instance I of CSP-[C, k, L], if (x′, y′) is a solution to LP1(I), then there exists a
solution (x, y) to LP(I) such that,

lpval(I, (x, y)) ≥ lpval1(I, (x′, y′)). (96)

In particular,
lpsup1(I) = lpsup(I).

23



Proof. Let (x′, y′) be as given in the statement of the lemma. We can make tight all the constraints given by
Equation (92) by choosing some ` ∈ [L] and if needed increase xv` so that

∑
`∈[L] x

′
v` = 1 for each v ∈ VI .

Now, let e = (v1, . . . , vk), t ∈ [k] and `∗t ∈ [L] such that,∑
`∈[L]t−1×{`∗t }×[L]k−t

y′
e`
< x′vt`∗t

The above implies that, ∑
`∈[L]k

y′
e`
<
∑
`∈[L]

x′vt`

Since the RHS of the above equals 1 for each v1, . . . , vk, this further implies that for each i ∈ [k] there is
`∗i ∈ [L] such that, ∑

`∈[L]i−1×{`∗i }×[L]k−i
y′
e`
< x′vt`∗i (97)

Let `∗ = (`∗1, . . . , `
∗
k). The variable y′

e`∗
can be increase so that (97) becomes tight for at least one i ∈ [k].

The above procedure can continue by increasing the {y′e`} variables till all the constraints given by
Equation (93) become tight in which case we obtain a solution for the relaxation LP(I). Since the variables
are only increased this preserves the objective value.

8 Proof of Theorem 2.10

We shall require the following bi-linear Gaussian stability bound as shown in [14] (as Theorem 1.14 and
Proposition 1.15).

Theorem 8.1. Let (Ω
(1)
i ×Ω

(2)
i , µi) be a sequence of correlated spaces such that for each i, the probability

of any atom in (Ω
(1)
i ×Ω

(2)
i , µi) is at least α ≤ 1/2 and such that ρ(Ω

(1)
i ,Ω

(2)
i ;µi) ≤ ρ for all i. Then there

exists a universal constant C such that, for every ν > 0, taking

τ = ν

(
C

log( 1/α ) log( 1/ν )
ν(1−ρ)

)
,

for functions f :
∏n
i=1 Ω

(1)
i 7→ [0, 1] and g :

∏n
i=1 Ω

(2)
i 7→ [0, 1] that satisfy,

min(Infi(f), Infi(g)) ≤ τ,

for all i, we have,
E[fg] ≤ Γρ(E[f ],E[g]) + ν.

The proof of Theorem 2.10 uses the following lemma on the influences of a product of functions, proved
in [14] (as Lemma 6.5).

Lemma 8.2. Let f1, . . . , fk : Ωn 7→ [0, 1]. Then for all i = 1, . . . , n:

Infi

 k∏
j=1

fj

 ≤ k k∑
j=1

Infi(fj). (98)
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Define for each j = 1, . . . , k − 1,

f>j :=
k∏

j′=j+1

fj′ . (99)

We have the following lemma.

Lemma 8.3. For all j = 1, . . . , k − 1,

min(Infi(fj), Infi(f>j)) ≤ k2τ, (100)

for any i = 1, . . . , n.

Proof. Suppose Infi(fj) > k2τ . Then, Equation (22) implies that Infi(fj′) < τ for all j′ = j + 1, . . . , k.
Using Lemma 8.2 along with the definition of f>j yields Infi(f>j) ≤ k2τ .

On the other hand, if Infi(f>j) > k2τ , then – again by Lemma 8.2 – there must be some j′ ∈ {j +
1, . . . , k} such that Infi(fj′) > τ , and thus Equation (22) implies Infi(fj) ≤ τ .

With the setting of τ as given in (21), recursively applying Theorem 8.1 to E[f>j ] for j = 1, . . . , k − 1
we obtain,

E

 k∏
j=1

fj

 = E [f1f>1]

≤ Γρ(E[f1],E[f>1]) + (ν/k)

≤ Γρ(E[f1],Γρ(E[f2],E[f>2]) + (ν/k)) + (ν/k)

≤ Γρ(E[f1],Γρ(E[f2],E[f>2])) + (2ν/k)

≤
...

≤ Γρ,...,ρ(E[f1], . . . ,E[fk]) + ν, (101)

where the last inequality is obtained by collecting the (k − 1) error terms outside which sum up to ((k −
1)ν/k) ≤ ν.

9 Proof of Lemma 2.4

Let ψ(t) := (1/
√

2π)e−t
2/2 denote the probability density function of a standard Gaussian random variable;

Φ(t) be its cumulative distribution function and let Φ̃(t) be the probability that a standard Gaussian random
variable is at least t, i.e. Φ̃(t) = 1 − Φ(t) = Φ(−t). The following lemma (proved as Lemma A.1 in [2])
shows useful bounds on these functions.

Lemma 9.1. For every t > 0
t · ψ(t)

t2 + 1
< Φ̃(t) <

ψ(t)

t
; (102)

and therefore, for every p ≥ 2,
Φ̃−1(1/p) ≤ c

√
log(p), (103)

for some universal constant c > 0.
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For our analysis we shall need bounds for the Gaussian stability Γρ(µ, ν) (see Definition 2.3). Note
that since ρ ∈ [0, 1], Γρ(µ, ν) ≥ µν. The following lemma shows that the Gaussian random variables in
Equation (17) can be truncated while essentially preserving the LHS.

Lemma 9.2. Let T ≥ 2 and µ, ν ≥ 1/T . Then,
(i) Φ−1(µ),Φ−1(ν) ≥ −c

√
log T .

(ii) Fix any δ ∈ (0, 1] and let,
κ := c

√
2 log T + log(3/δ), (104)

a := min{Φ−1(µ), κ} and, b := min{Φ−1(ν), κ}. (105)

Then,
Pr[−κ ≤ X ≤ a, Y ≤ b] ≥ (1− δ)Γρ(µ, ν),

where X and Y are standard Gaussian random variables with correlation ρ ∈ [0, 1]. Here, c is the constant
from Lemma 9.1.

Proof. (i) From Equation (103) of Lemma 9.1, we have Φ̃−1(1/T ) ≤ c
√

log T . Since µ ≥ 1/T , Φ−1(µ) ≥
Φ−1(1/T ) = −Φ̃−1(1/T ). Thus, Φ−1(µ) ≥ −c

√
log T , and similarly for ν.

(ii) From Equation (103) of Lemma 9.1,

Φ̃ (κ) ≤ δ

3T 2
.

Observe that,

Γρ(µ, ν) = Pr[X ≤ Φ−1(µ), Y ≤ Φ−1(ν)],

≤ Pr[−κ ≤ X ≤ a, Y ≤ b] + Pr[X < −κ] + Pr[X > κ] + Pr[Y > κ],

= Pr[−κ ≤ X ≤ a, Y ≤ b] + 3Φ̃ (κ) ,

≤ Pr[−κ ≤ X ≤ a, Y ≤ b] +
δ

T 2
, (106)

and that,

Γρ(µ, ν) ≥ µν ≥ 1

T 2
,

which completes the proof of the lemma.

Using the above lemma, we prove the following key upper bound on Gaussian stability.

Lemma 9.3. Let T ≥ 2 and 1 ≥ µ, ν ≥ (1/T ). There is a universal constant C > 0 such that, for any
ε ∈ (0, 1/2],

ρ =
ε

C(log T + log(1/ε))
, (107)

implies,
Γρ(µ, ν) ≤ (1 + ε)µν.

Proof. Applying Lemma 9.2 shows that letting,

κ = c
√

2 log T + log(12/ε), (108)
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and the corresponding values of a and b as given in Equation (105), yields,

Pr[−κ ≤ X ≤ a, Y ≤ b] ≥ (1− ε/4)Γρ(µ, ν), (109)

where X and Y are standard Gaussian random variables with correlation ρ ∈ [0, 1]. We have the following
lemma (proved below).

Lemma 9.4. Setting ρ as given in Equation (107) implies,

Pr[−κ ≤ X ≤ a, Y ≤ b] ≤ (1 + ε/2)µν. (110)

Combining Equations (109) and (110) we obtain,

Γρ(µ, ν) ≤ (1 + ε/2)

(1− ε/4)
µν ≤ (1 + ε)µν, (111)

using the fact that (1 + ε/2) ≤ (1 − ε/4)(1 + ε) for ε ∈ (0, 1/2], thus completing the proof of Lemma
9.3.

Proof. (of Lemma 9.4) Since X and Y are ρ-correlated, Y = ρX +
√

1− ρ2Z, where Z is a standard
Gaussian random variable independent of X . Thus,

Y ≤ b ⇔ ρX +
√

1− ρ2Z ≤ b ⇔ Z ≤ b− ρX√
1− ρ2

. (112)

Therefore,

Pr[−κ ≤ X ≤ a, Y ≤ b]

= Pr

[
−κ ≤ X ≤ a, Z ≤ b− ρX√

1− ρ2

]
,

≤ Pr

[
−κ ≤ X ≤ a, Z ≤ b+ ρκ√

1− ρ2

]
(since |X| ≤ κ),

= Pr [−κ ≤ X ≤ a] Pr

[
Z ≤ b+ ρκ√

1− ρ2

]
. (113)

Observing that Pr [−κ ≤ X ≤ a] ≤ µ and Pr [Z ≤ b] ≤ ν, application of Lemma 9.5 proved below com-
pletes the proof of Lemma 9.4.

Lemma 9.5. For the above setting of parameters the following holds.

Pr

[
Z ≤ b+ ρκ√

1− ρ2

]
≤
(

1 +
ε

2

)
Pr [Z ≤ b] .

Proof. For convenience let,

b′ =
b+ ρκ√
1− ρ2

,
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which implies,

|b′ − b| =

∣∣∣∣∣ b+ ρκ√
1− ρ2

− b

∣∣∣∣∣ ,
=

∣∣∣∣∣b+ ρκ− b
√

1− ρ2√
1− ρ2

∣∣∣∣∣ ,
≤

∣∣∣b− b√1− ρ2
∣∣∣+ ρκ√

1− ρ2

≤ |b|(1−
√

1− ρ2) + ρκ√
1− ρ2

≤ |b|(1− (1− ρ2)) + ρκ√
1− ρ2

=
|b|ρ2 + ρκ√

1− ρ2
(114)

We consider the following two cases.

Case 1: |b| < 10. This implies that,
Pr [Z ≤ b] ≥ c∗, (115)

where c∗ is an absolute constant. On the other hand observe that |b| ≤ κ and thus, ρ, ρκ and |ρ2b| can be
made small enough by the choice of the constant C in Lemma 9.3 so that,∣∣Pr

[
Z ≤ b′

]
− Pr [Z ≤ b]

∣∣ ≤ ∣∣b′ − b∣∣ ≤ (εc∗)/2. (116)

Combining Equations (115) and (116) proves the lemma for this case.

Case 2: |b| ≥ 10. In this case, using Equation (114), choosing the constant C to be large enough we can
ensure that,

sign(b) = sign(b′).

In particular, the above implies that,

b∗ := arg max
x∈[b,b′]

ψ(x)⇒ b∗ ∈ {b, b′}. (117)

Thus, ∣∣Pr
[
Z ≤ b′

]
− Pr [Z ≤ b]

∣∣ =
∣∣Φ(b′)− Φ(b)

∣∣ ≤ |b′ − b|ψ(b∗). (118)

Diving the above by Φ(b) we obtain,∣∣∣∣Φ(b′)− Φ(b)

Φ(b)

∣∣∣∣ ≤ |b′ − b|ψ(b∗)

Φ(b)

≤ |b′ − b|ψ(b∗)

Φ̃(|b|)

≤ (b2 + 1)|b′ − b|ψ(b∗)

|b| · ψ(|b|)
, (119)
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where the second last inequality follows from the fact that Φ(b) ≥ Φ̃(|b|) for |b| > 0, and the last inequality
follows from the bound lower bound in Equation (102). Note that,

|b′2 − b2| =

∣∣∣∣∣∣
(

b+ ρκ√
1− ρ2

)2

− b2
∣∣∣∣∣∣ ≤ |bρ|

2 + 2|bκρ|+ |ρκ|2

1− ρ2
. (120)

Since |b| ≤ κ, by our setting of ρ in Equation (107) and κ in Equation (108), choosing a large enough value
of C we ensure that the RHS of Equation (120) is at most 1/4. From the definition of b∗, this implies,

ψ(b∗)

ψ(|b|)
≤ e1/8 ≤ 5/4. (121)

Further, for |b| > 10, from Equation (114), we have,

(b2 + 1)|b′ − b|
|b|

≤ 2|b||b′ − b| ≤ 2|b|2ρ2 + 2|b|ρκ√
1− ρ2

(122)

Observe that by a large enough choice of C, both |b|2ρ2 and |b|ρκ can be bounded from the above by ε/20,
and

√
1− ρ2 be made least 4/5 yielding,

(b2 + 1)|b′ − b|
|b|

≤ ε

4
. (123)

Combining the above with Equations (121) and (119) gives us,∣∣Φ(b′)− Φ(b)
∣∣ ≤ (ε

2

)
Φ(b), (124)

which completes the proof of the lemma.

We are ready to prove Lemma 2.4 which is restated as follows.

Lemma 9.6. Let k ≥ 2, T ≥ 2, and 1 ≥ µi ≥ (1/T ) for i = 1, . . . , k. Then for any ε ∈ (0, 1/2], setting,

ρ =
ε

(k − 1)C(log T + log(1/ε))
, (125)

implies,

Γρk−1
(µ1, . . . , µk) ≤ (1 + ε)k−1

k∏
i=1

µi,

where ρk−1 = (ρ, . . . , ρ), is a (k − 1)-tuple with each entry ρ. In Equation (125), C is the constant from
Lemma 9.3.

Proof. The proof proceeds via induction on k. For k = 2, Lemma 9.3 yields the proof. Assume that the
lemma holds for (k − 1) ≥ 2. For k, we have by definition (Equation (18)),

Γρk−1
(µ1, . . . , µk) = Γρ(µ1,Γρk−2

(µ2, . . . , µk)). (126)

Let us define,
ρ′ :=

ε

(k − 2)C(log T + log(1/ε))
.
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Since 0 ≤ ρ < ρ′, from the inductive definition in Equation (18) and an application of Lemma 9.7 it is easy
to see that,

Γρk−2
(µ2, . . . , µk) ≤ Γρ′k−2

(µ2, . . . , µk), (127)

where ρ′
k−2

is a (k − 2)-tuple with each entry ρ′. Applying the inductive hypothesis for (k − 2) we obtain,

Γρ′k−2
(µ2, . . . , µk) ≤ (1 + ε)k−2

k∏
i=2

µi,

which in conjunction with Equation (127) gives us,

Γρk−2
(µ2, . . . , µk) ≤ (1 + ε)k−2

k∏
i=2

µi. (128)

Since ρ ≥ 0, it is easy to see that,

Γρk−2
(µ2, . . . , µk) ≥

k∏
i=2

µi ≥
(

1

T

)k−1
. (129)

Further µ1 ≥ (1/T ), and applying the Lemma 9.3 to the RHS of Equation (126), we obtain,

Γρk−1
(µ1, . . . , µk) ≤ (1 + ε)µ1Γρk−2

(µ2, . . . , µk)

≤ (1 + ε)µ1 · (1 + ε)k−2
k∏
i=2

µi By Equation (128),

= (1 + ε)k−1
k∏
i=1

µi, (130)

which completes the inductive step.

Lemma 9.7. For µ, ν ∈ [0, 1], and 1 ≤ ρ < ρ′ ≤ 1,

Γρ(µ, ν) ≤ Γρ′(µ, ν).

Proof. (Sketch) The lemma is obtained by differentiating Γρ(µ, ν) with respect to ρ and showing that it is
non-negative in the range [0, 1). We omit the details.

10 Proof of Lemma 2.2

Proof. Given a solution (x∗, y∗), construct a valid δ-smooth solution (x, y) as follows:

ye` = (1− δ)y∗
e`

+ δL−k, ∀e ∈ E, ` ∈ [L]k, (131)

and,
xv` = (1− δ)x∗v` + δL−1, ∀v ∈ V, ` ∈ [L]. (132)
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It is easy to see that the objective value decreases by at most a multiplicative factor of δ. By the definition
of lpval(I) and since the set of all valid solutions to LP(I) is a closed set, there must be a solution (x∗, y∗)
such that,

lpval(I, (x∗, y∗)) = lpsup(I). (133)

We use (x∗, y∗) to construct (x, y) as above which yields,

lpval(I, (x, y)) ≥ (1− δ)lpsup(I),

proving Equation (15).
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A LP Integrality Gap for UNIQUEGAMES

A simple probabilistic construction shows that for anyL ≥ 2 and δ > 0, there is a (1, (1 + δ)/L)-integrality
gap for the standard LP relaxation of UNIQUEGAMES on label set [L].

Our randomized instance is on the n-vertex clique with uniform and normalized edge weights, where the
bijective constraint for each edge is chosen uniformly and independently at random. Consider a solution to
the LP relaxation in which xv` = 1/L for each vertex v and label `, and ye` = 1/L for each edge e = (u, v)
and ` = (`u, `v) which is a satisfying assignment for the bijective constraint Ce. It is easy to see that this is
a feasible solution with an LP objective of 1.

On the other hand, any fixed labeling to the vertices satisfies an edge independently with probability
1/L, over the choice of the

(
n
2

)
constraints. Thus, by Chernoff bound, the probability that a given labeling

satisfies more than (1 + δ)/L fraction of edges is at most,

p∗ := exp
(
−δ

2n(n− 1)

6L

)
.

Since the total number of possible labeling is Ln, we can choose n large enough (depending only on L and
δ) so that p∗Ln < 1, ensuring the existence of the desired integrality gap.
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