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Abstract

We study the approximability of constraint satisfaction problems (CSPs) by linear
programming (LP) relaxations. We show that for every CSP, the approximation ob-
tained by a basic LP relaxation, is no weaker than the approximation obtained using
relaxations given by Ω

(
log n

log log n

)
levels of the Sherali-Adams hierarchy on instances of

size n.
It was proved by Chan et al. [FOCS 2013] that any polynomial size LP extended

formulation is no stronger than relaxations obtained by a super-constant levels of the
Sherali-Adams hierarchy. Combining this with our result also implies that any poly-
nomial size LP extended formulation is no stronger than the basic LP.

Using our techniques, we also simplify and strengthen the result by Khot et al.
[STOC 2014] on (strong) approximation resistance for LPs. They provided a necessary
and sufficient condition under which Ω(log log n) levels of the Sherali-Adams hierar-
chy cannot achieve an approximation better than a random assignment. We simplify
their proof and strengthen the bound to Ω

(
log n

log log n

)
levels.

1 Introduction

Given a finite alphabet [q] = {0, . . . , q− 1} and a predicate f : [q]k → {0, 1}, an instance
of the problem MAX k-CSP( f ) consists of (say) m constraints over a set of n variables
x1, . . . , xn taking values in the set [q]. Each constraint Ci is of the form f (xi1 + bi1 , . . . , xik +
bik) for some k-tuple of variables (xi1 , . . . xik) and bi1 , . . . , biq ∈ [q], and the addition is taken
to be modulo q. We say an assignment σ to the variables satisfying the constraint Ci if
Ci(σ(xi1), . . . , σ(xik)) = 1. Given an instance Φ of the problem, the goal is to find an as-
signment σ to the variables satisfying as many constraints as possible. The approximability
of the MAX k-CSP( f ) problem has been extensively studied for various predicates f (see
e.g., [27] for a survey), and special cases include several interesting and natural problems
such as MAX 3-SAT, MAX 3-XOR and MAX-CUT.

A topic of much recent interest has been the efficacy of Linear Programming (LP) and
Semidefinite Programming (SDP) relaxations. For a given instance Φ of MAX k-CSP( f ),
let OPT(Φ) denote the fraction of constraints satisfied by an optimal assignment, and let
FRAC(Φ) denote the value of the convex (LP/SDP) relaxation for the problem. Then, the
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performance guarantee of this algorithm is given by the integrality gap which equals the
supremum of FRAC(Φ)

OPT(Φ)
, over all instances Φ.

The study of unconditional lower bounds for general families of LP relaxations was initi-
ated by Arora, Bollobás and Lovász [2] (see also [3]). They studied the Lovász-Schrijver
[22] LP hierarchy and proved lower bounds on the integrality gap for Minimum Vertex
Cover (their technique also yields similar bounds for MAX-CUT). De la Vega and Kenyon-
Mathieu [12] and Charikar, Makarychev and Makarychev [11] proved a lower bound of
2− o(1) for the integrality gap of the LP relaxations for MAX-CUT given respectively by
Ω(log log n) and nΩ(1) levels of the Sherali-Adams LP hierarchy [26]. Several follow-up
works have also shown lower bounds for various other special cases of the MAX k-CSP
problem, both for LP and SDP hierarchies [1, 25, 30, 24, 6, 4].

A recent result by Chan et al. [7] shows a connection between strong lower bounds for the
Sherali-Adams hierarchy, and lower bounds on the size of LP extended formulations for
the corresponding problem. In fact, their result proved a connection not only for a lower
bound on the worst case integrality gap, but for the entire approximability curve. We say that
Φ is (c, s)-integrality gap instance for a relaxation of MAX k-CSP( f ), if we have FRAC(Φ) ≥ c
and OPT(Φ) < s. They showed that for any fixed t ∈N, if there exist (c, s)-integrality gap
instances of size n for the relaxation given by t levels of the Sherali-Adams hierarchy, then
for all ε > 0 and sufficiently large N, there exists a (c − ε, s + ε) integrality gap instance
of size (number of variables) N, for any linear extended formulation of size at most Nt/2.
They also give a tradeoff (described later) when t is a function of n, which was recently
improved by Kothari et al. [19].

We strengthen the above results by showing that for all c, s ∈ [0, 1], (c, s)-integrality gap
instances for a “basic LP” can be used to construct (c− ε, s + ε) integrality gap instances
for Ωε

(
log n

log log n

)
levels of the Sherali-Adams hierarchy. The basic LP uses only a subset

of the constraints in the relaxation given by k levels of the Sherali-Adams hierarchy for
MAX k-CSP( f ). In particular, this shows that a lower bound on the integrality gap for
the basic LP, implies a similar lower bound on the integrality gap of any polynomial size
extended formulation. We note that both the above results and our result apply to all f , q
and all c, s ∈ [0, 1].

Comparison with (implications of) Raghavendra’s UGC hardness result. A remark-
able result by Raghavendra [23] shows that a (c, s)-integrality gap instance for a “basic
SDP” relaxation of MAX k-CSP( f ) implies hardness of distinguishing instances Φ with
OPT(Φ) < s from instances with OPT(Φ) ≥ c, assuming the Unique Games Conjecture
(UGC) of Khot [14]. The basic SDP considered by Raghavendra involves moments for
all pairs of variables, and all subsets of variables included in a constraint. The basic LP
we consider is weaker than this SDP and does not contain the positive semidefiniteness
constraint.

Combining Raghavendra’s result with known constructions of integrality gaps for Unique
Games by Raghavendra and Steurer [24], and by Khot and Saket [15], one can obtain a
result qualitatively similar to ours, for the mixed hierarchy. In particular, a (c, s) integrality
gap for the basic SDP implies a (c− ε, s + ε) integrality gap for Ω((log log n)1/4) levels of
the mixed hierarchy.

Note however, that the above result is incomparable to our result, since it starts with
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stronger hypothesis (a basic SDP gap) and yields a gap for the mixed hierarchy as op-
posed to the Sherali-Adams hierarchy. While the above can also be used to derive lower
bounds for linear extended formulations, one needs to start with an SDP gap instance to
derive an LP lower bound. The basic SDP is known to be provably stronger than the basic
LP for several problems including various 2-CSPs. Also, for the worst case f for q = 2, the
integrality gap of the basic SDP is O(2k/k) [10], while that of the basic LP is 2k−1.

A recent result by Khot and Saket [16] shows a connection between the integrality gaps
for the basic LP and those for the basic SDP. They prove that, assuming the UGC, a
(c, s) integrality gap instance for the basic LP implies an NP-hardness of distinguish-
ing instances Φ with OPT(Φ) ≥ Ω

(
c

k3·log(q)

)
from instances with OPT(Φ) ≤ 4s. Their

result also shows that a (c, s) integrality gap instance for the basic LP can be used to
produce a

(
Ω
(

c
k3·log(q)

)
, 4s
)

integrality gap instance for the basic SDP, and hence for

Ω((log log n)1/4) levels of the mixed hierarchy.

Other related work. The power of the basic LP for solving valued CSPs to optimality has
been studied in several previous works. These works consider the problem of minimizing
the penalty for unsatisfied constraints, where the penalties take values in Q ∪ {∞}. Also,
they study the problem not only in terms of single predicate f , but rather in terms of the
constraint language generated by a given set of (valued) predicates.

It was shown by Thapper and Živný [28] that when the penalties are finite-valued, if the
problem of finiding the optimum solution cannot be solved by the basic LP, then it is NP-
hard. Kolmogorov, Thapper and Živný [18] give a characterization of CSPs where the
problem of minimizing the penalty for unsatisfied constraints can be solved exactly by the
basic LP. Also, a recent result by Thapper and Živný [29] shows the valued CSP problem
for a constraint language can be solved to optimality by a bounded number of levels of
the Sherali-Adams hierarchy if and only if it can be solved by a relaxation obtained by
augmenting the basic LP with contraints implied by three levels of the Sherali-Adams
hierarchy. However, the above works only consider the case when the LP gives an exact
solution, and do not focus on approximation.

The techniques from [11] used in our result, were also extended by Lee [21] to prove a
hardness for the Graph Pricing problem. Kenkre et al. [13] also applied these to show the
optimality of a simple LP-based algorithm for Digraph Ordering.

Our results

Our main result is the following.

Theorem 1.1 Let f : [q]k → {0, 1} be any predicate. Let Φ0 be a (c, s) integrality gap instance
for basic LP relaxation of MAX k-CSP ( f ). Then for every ε > 0, there exists cε > 0 such that
for infinitely many N ∈ N, there exist (c− ε, s + ε) integrality gap instances of size N for the LP
relaxation given by cε · log N

log log N levels of the Sherali-Adams hierarchy.

Combining the above with the connection between Sherali-Adams gaps and extended for-
mulations by Chan et al. [7] yields the following corollary. The improved tradeoff by
Kothari et al. [19] gives a better exponent for log N than 3/2.
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Corollary 1.2 Let f : [q] → {0, 1} be any predicate. Let Φ0 be a (c, s) integrality gap instance
for basic LP relaxation of MAX k-CSP ( f ). Then for every ε > 0, there exists cε > 0 such that
for infinitely N ∈ N, there exist (c− ε, s + ε) integrality gap instances of size N, for every linear
extended formulation of size at most exp

(
cε · (log N)3/.2

(log log N)1/2

)
.

As an application of our methods, we also simplify and strengthen the approximation
resistance results for LPs proved by Khot et al. [17]. They studied predicates f : {0, 1}k →
{0, 1} and provided a necessary and sufficient condition for the predicate to be strongly
approximation resistant for the Sherali-Adams LP hierarchy. We say a predicate is strongly
approximation resistant if for all ε > 0, it is hard to distinguish instances Φ for which∣∣∣OPT(Φ)−Ex∈{0,1}k [ f (x)]

∣∣∣ ≤ ε from instances with OPT(Φ) ≥ 1 − ε. In the context
of the Sherali-Adams hierarchy, they showed that when this condition is satisfied, there
exist instances Φ satisfying

∣∣∣OPT(Φ)−Ex∈{0,1}k [ f (x)]
∣∣∣ ≤ ε and FRAC(Φ) ≥ 1− ε, where

FRAC(Φ) is the value of the relaxation given by Oε(log log n) levels of the Sherali-Adams
hierarchy. We strengthen their result (and provide a simpler proof) to prove the following.

Theorem 1.3 Let f : {0, 1}k → {0, 1} be any predicate satisfying the condition for strong ap-
proximation resistance for LPs, given by [17]. Then for every ε > 0, there exists cε > 0 such that
infinitely many N ∈N, there exists an instance Φ of MAX k-CSP( f ) of size N, satisfying∣∣∣∣OPT(Φ)− E

x∈{0,1}k
[ f (x)]

∣∣∣∣ ≤ ε FRAC(Φ) ≥ 1− ε ,

where FRAC(Φ) is the value of the relaxation given by cε · log N
log log N levels of the Sherali-Adams

hierarchy.

As before, the above theorem also yields a corollary for extended formulations.

Proof overview and techniques

The gap instance. The construction of our gap instances is inspired by the construction
by Khot et al. [17]. They gave a generic construction to prove integrality gaps for any
approximation resistant predicate (starting from certificates of hardness in form of certain
“vanishing measures”), and we use similar ideas to give a construction which can start
from a basic LP integrality gap instance as a certificate, to produce a gap instance for a
large number of levels. This construction is discussed in Section 5.

Given an integrality gap instance Φ0 on n0 variables, we treat this as a “template” (as in
Raghavendra [23]) and generate a random instance using this. Concretely, we generate a
new instance Φ on n0 sets of n variables each. To generate a contraint, we sample a ran-
dom constraint C0 ∈ Φ0, and pick a variable randomly from each of the sets correspond-
ing to variables in C0. Thus, the instances generated are n0-partite random hypergraphs,
with each edge being generated according to a specified “type” (indices of sets to chose
vertices from). Previous instances of gap constructions for LP and SDP hierarchies were
(hyper)graphs generated according to the model Gn,p. However, properties of random Gn,p
hypergraphs easily carry over to our instances, and we collect these properties in Section 3.
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The above construction ensures that if the instance Φ0 does not have an assignment satisfy-
ing more than an s fraction of the constraints, then OPT(Φ) ≤ s + ε with high probability.
Also, it is well-known that providing a good LP solution to the relaxation given by t lev-
els of the Sherali-Adams hierarchy is equivalent to providing distributions DS on [q]S for
all sets of variables S with |S| ≤ t, such that the distributions are consistent restricted to
subsets i.e., for all S with |S| ≤ t and all T ⊆ S, we have DS|T = DT. Thus, in our case,
we need to produce such consistent local distributions such that the expected probability
that a random constraint C ∈ Φ is satisfied by the local distribution on the set of variables
involved in C (which we denote as SC) is at least c− ε.

Local distributions from local structure. Most works on integrality gaps for CSPs utilize
the local structure of random hypergraphs to produce such distributions. Since the girth
of a sparse random hypergraph is Ω(log n), any induced subgraph on o(log n) vertices is
simply a forest. In case the induced (hyper)graph GS on a set S is a tree, there is an easy
distribution to consider: simply choose an arbitrary root and propagate down the tree by
sampling each child conditioned on its parent. It is also easy to see that for T ⊆ S, if the
induced (hyper)graph GT is a subtree of GS, then the distributions DS and DT produced as
above are consistent.

The extension of this idea to forests requires some care. One can consider extending the
distribution to forests by propagating independently on each tree in the forest. However,
if for T ⊆ S GT is a forest while GS is a tree, then a pair of vertices disconnected in GT will
have no correlation in DT but may be correlated in DS. This was handled, for example, in
[17] by adding noise to the propagation and using a large ball B(S) around S to define DS.
Then, if two vertices of T are disconnected in B(T) but connected in B(S), then they must
be at a large distance from each other. Thus, because of the noise, the correlation between
them (which is zero in DT) will be very small in DS. However, correcting approximate
consistency to exact consistency incurs a cost which is exponential in the number of levels
(i.e., the sizes of the sets), which is what limits the results in [17, 12] to O(log log n) levels.
This also makes the proof a bit more involved since it requires a careful control of the errors
in consistency.

Consistent partitioning schemes. We resolve the above consistency issue by first parti-
tioning the given set S into a set of clusters, each of which have diameter ∆H = o(log n) in
the underlying hypergraph H. Since each cluster has bounded diameter, it becomes a tree
when we add all the missing paths between any two vertices in the cluster. We then prop-
agate independently on each cluster (augmented with the missing paths). This preserves
the correlation between any two vertices in the same cluster, even if the path between them
was not originally present in GS.

Of course, the above plan requires that the partition obtained for T ⊆ S, is consistent with
the restriction to T of partition obtained for the set S. In fact, we construct distributions
over partitions {PS}|S|≤t, which satisfy the consistency property PS|T = PT. These dis-
tributions over partitions, which we call consistent partitioning schemes, are constructed in
Section 4.

In addition to being consistent, we require that the partitioning scheme cuts only a small
number of edges in expectation, since these contribute to a loss in the LP objective. We
remark that such low-diameter decompositions (known as separating and padded decom-
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positions) have been used extensively in the theory metric embeddings (see e.g., [20] and
the references therein). The only additional requirement in our application is consistency.

We obtain the decompositions by proving the (easy) hypergraph extensions the results of
Charikar, Makarychev and Makarychev [9], who exhibit a metric which is similar to the
shortest path metric on graphs at small distances, and has the property that its restriction
to any subset of size at most nε′ (for an appropriate ε′ < 1) is `2 embeddable. This is
proved in Section 3. We then use these in Section 4 to construct the consistent partitioning
schemes as described above, by applying a result of Charikar et al. [8] giving separating
decompositions for finite subsets of `2.

We remark that it is the consistency requirement of the partitioning procedure that limits
our results to O

(
log n

log log n

)
levels. The separation probability in the decomposition proce-

dure grows with the dimension of the `2 embedding, while (to the best of our knowledge)
dimension reduction procedures seem to break consistency.

2 Preliminaries

We use [n] to denote the set {1, . . . , n}. The only exception is [q], where we overload this
notation to denote the set {0, . . . , q− 1}, which corresponds to the the alphabet for the
Constraint Satisfaction Problem under consideration. We use DS and PS to denote proba-
bility distributions over (assignments to or partitions of) a set S. For T ⊆ S, the notation
DS|T is used to denote the restriction (marginal) of the distribution DS to the set T (and
similarly for PS|T).

2.1 Constraint Satisfaction Problems

Definition 2.1 Let [q] denote the set {0, . . . , q− 1}. For a predicate f : [q]k → {0, 1}, an instance
Φ of MAX k-CSPq ( f ) consists of a set of variables {x1, . . . , xn} and a set of constraints C1, . . . , Cm
where each constraint Ci is over a k-tuple of variables {xi1 , . . . , xik} and is of the form

Ci ≡ f (xi1 + bi1 , . . . , xik + bik)

for some bi1 , . . . , bik ∈ [q], where the addition is modulo q. For an assignment σ : {x1, . . . , xn} 7→
[q], let sat(σ) denote the fraction of constraints satisfied by σ. The maximum fraction of constraints
that can be simultaneously satisfied is denoted by OPT(Φ), i.e.

OPT(Φ) = max
σ:{x1,...,xn}7→[q]

sat(σ).

For a constraint C of the above form, we use xC to denote the tuple of variables (xi1 , . . . , xik)
and bC to denote the tuple (bi1 , . . . , bik). We then write the constraint as f (xC + bC). We also
denote by SC the set of indices {i1, . . . , ik} of the variables participating in the constraint C.

2.2 The LP Relaxations for Constraint Satisfaction Problems

Below we present various LP relaxations for the MAX k-CSPq ( f ) problem that are relevant
in this paper.
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We start with the level-t Sherali-Adams relaxation. The intuition behind it is the following.
Note that an integer solution to the problem can be given by an assignment σ : [n] → [q].
Using this, we can define {0, 1}-valued variables x(S,α) for each S ⊆ [n], 1 ≤ |S| ≤ t
and α ∈ [q]S, with the intended solution x(S,α) = 1 if σ(S) = α and 0 otherwise. We
also introduce a variable x(∅,∅), which equals 1. We relax the integer program and allow
variables to take real values in [0, 1]. Now the variables {x(S,α)}α∈[q]S give a probability
distribution DS over assignments to S. We can enforce consistency between these local
distributions by requiring that for T ⊆ S, the distribution over assignments to S, when
marginalized to T, is precisely the distribution over assignments to T i.e., DS|T = DT. The
relaxation is shown in Figure 1.

maximize E
C∈Φ

 ∑
α∈[q]k

f (α · bC) · x(SC ,α)


subject to

∑
α∈[q]S
α|T=β

x(S,α) = x(T,β) ∀T ⊆ S ⊆ [n], |S| ≤ t, ∀β ∈ [q]T

x(S,α) ≥ 0 ∀S ⊆ [n], |S| ≤ t, ∀α ∈ [q]S

x(∅,∅) = 1

Figure 1: Level-t Sherali-Adams LP for MAX k-CSPq ( f )

The basic LP relaxation is a reduced form of the above relaxation where only those vari-
ables x(S,α) are included for which S = SC is the set of CSP variables for some constraint
C. The consistency constraints are included only for singleton subsets of the sets SC. Note
that the all the constraints for the basic LP are implied by the relaxation obtained by level
k of the Sherali-Adams hierarchy.

maximize E
C∈Φ

 ∑
α∈[q]k

f (α + bC) · x(SC ,α)


subject to

∑
j∈[q]

x(i,b) = 1 ∀i ∈ [n]

∑
α∈[q]SC
α(i)=b

x(SC ,α) = x(i,b) ∀C ∈ Φ, i ∈ SC, b ∈ [q]

x(SC ,α) ≥ 0 ∀C ∈ Φ, ∀α ∈ [q]SC

Figure 2: Basic LP relaxation for MAX k-CSPq ( f )

For an LP/SDP relaxation of MAX k-CSPq, and for a given instance Φ of the problem, we
denote by FRAC(Φ) the LP/SDP (fractional) optimum. A relaxation is said to have a (c, s)-
integrality gap if there exists a CSP instance Φ such that FRAC(Φ) ≥ c and OPT(Φ) < s.
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2.3 Hypergraphs

An instance Φ of MAX k-CSP defines a natural associated hypergraph H = (V, E) with
V being the set of variables in Φ and E containing one k-hyperedge for every constraint
C ∈ Φ. We remind the reader of the familiar notions of degree, paths, and cycles for the
case of (k-uniform) hypergraphs:

Definition 2.2 Let H = (V, E) be a hypergraph.

- For a vertex v ∈ V, the degree of the vertex v is defined to be the number of distinct hyper-
edges containing it.

- A simple path P is a finite alternate sequence of distinct vertices and distinct edges starting
and ending at vertices, i.e.,, P = v1, e1, v2, . . . , vl , el , vl+1, where vi ∈ V ∀i ∈ [l + 1] and
ei ∈ E ∀i ∈ [l]. Furthermore, ei contains vi, vi+1 for each i. Here l is called the length of the
path P. All paths discussed in this paper will be simple paths.

- A sequence C = (v1, e1, v2, . . . , vl , el , v1) is called a cycle of length l if the initial segment
v1, e1, . . . , vl is a (simple) path, el+1 6= ei for all i ∈ [l], and v1 ∈ el . For a path P (or cycle
C), we use V(P) (or V(C)) to denote the set of vertices all the vertices that occurs in the edges,
i.e., the set {v : (∃i ∈ [h])(v ∈ ei)}, where e1, . . . , eh are the edges included in P (or C).

- For a given hypergraph H, the length of the smallest cycle in H is called the girth of H.

To observe the difference the notions of cycle in graphs and hypergraphs, it is instructive
to consider the following example: let u, v be two distinct vertices in a k-uniform hyper-
graph for k ≥ 3, and let e1, e2 be two distinct hyperedges both containing u and v. Then
u, e1, v, e2, u is a cycle of length 2, which cannot occur in a graph.

We shall also need the following notion of the closure of a set S ⊆ V in a given hypergraph
H, defined by [11] for the case of graphs. A stronger notion of closure was also considered
by [4].

Definition 2.3 For a given hypergraph H and R ∈N, and a set S ⊆ V(H), we denote by clR(S)
the R-closure of S obtained by adding all the vertices in all the paths of length at most R connecting
two vertices of S, i.e.,

clR(S) = S ∪
⋃

P:P is a path in H
P connects u,v∈S

|P|≤R

V(P) .

For ease of notation, we use cl(S) to denote cl1(S).

3 Properties of random hypergraphs

We collect here various properties of the hypergraphs corresponding to our integrality gap
instances. The gap instances we generate contain several disjoint collections of variables.
Each constraint in the instance has a specified “type”, which specifies which of the col-
lections each of the participating k variables much be sampled from. The constraint is
generated by randomly sampling each of the k variables, from the collections specified by
its type. This is captured by the generative model described below.
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In the model below and in the construction of the gap instance, the parameter n0 should
be thought of as constant, while the parameters n and m should be though of a growing to
infinity. We will choose m = γ · n for γ = Ok,q(1).

Definition 3.1 Let n0, k ∈ N with k ≥ 2. Let m, n > 0 and let Γ be a distribution on [n0]
k.

We define a distribution Hk (m, n, n0, Γ) on k-uniform n0-partite hypergraphs with m edges and
N = n0 · n vertices, divided in n0 sets X1, . . . , Xn0 of size n each. A random hypergraph H ∼
Hk (m, n, n0, Γ) is generated by sampling m random hyperedges independently as follows:

- Sample a random type (i1, . . . , ik) ∈ [n0]k from the distribution Γ.

- For all j ∈ [k], sample vij independently and uniformly in Xij .

- Add the edge ei =
{

vi1 , . . . , vik

}
to H.

Note that as specified above, the model may generate a multi-hypergraph. However, the
number of such repeated edges is likely to be small, and we will bound these, and in fact
the number of cycles of size o(log n) in Lemma 3.5.

We will study the following metrics (similar to the ones defined in [9]) in this section:

Definition 3.2 Given a hypergraph H with vertex set V, we define two metrics dH
µ (·, ·), ρH

µ (·, ·)
on V as

dH
µ (u, v) := 1− (1− µ)2·dH(u,v) and ρH

µ (u, v) :=

√
2 · dH

µ (u, v) + µ

1 + µ
,

for u 6= v, where dH(·, ·) denotes the shortest path distance in H.

The goal of this section is to prove the following result about the local `2-embeddability of
the metric ρµ. The proof of the theorem heavily uses results proved in [3] and [11].

Theorem 3.3 Let H′ ∼ Hk (m, n, n0, Γ) with m = γ · n edges and let ε > 0. Then for large
enough n, with high probability (at least 1− ε, over the choice of H′), there exists δ > 0, constant
c = c(k, γ, n0, ε), θ = θ(k, γ, n0, ε) and a subhypergraph H ⊂ H′ with V(H) = V(H′) satisfying
the following:

- H has girth g ≥ δ · log n.

- |E(H′) \ E(H)| ≤ ε ·m.

- For all t ≤ nθ , for µ ≥ c · log t+log log n
log n , for all S ⊆ V(H′) with |S| ≤ t, the metric ρH

µ

restricted to S is isometrically embeddable into the unit sphere in `2,

To prove the above theorem, we will use the local structure of random (hyper)graphs. We
first prove that with high probability random hypergraphs (sampled fromHk (m, n, n0, Γ))
can be modified by removing a few edges to a hypergraph whose girth is Ω(log n) and
the degree of the resulting hypergraph is bounded. The following lemma shows a possible
trade-off between the degree of the hypergraph vs the number of edges required to be
removed.
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Lemma 3.4 Let H′ ∼ Hk (m, n, n0, Γ) be a random hypergraph with m = γ · n edges. Then for
any ε > 0, with probability 1− ε the exists a sub-hypergraph H with V(H) = V(H′) such that
∀u ∈ V(H), degH(u) ≤ 100 · log

( n0
ε

)
· k · γ and |E(H′) \ E(H)| ≤ ε ·m.

Proof: By linearity of expectation, the expected degree of any vertex v in H′ is at most
k · γ,. Let D = 100 · log

( n0
ε

)
· k · γ. Let S be the set of all vertices u such that degH′(u) > D.

Let ES be the set of all hyperedges with one vertex in S. We shall take E(H) = E(H′) \ ES.
Note that for any u ∈ V(H′), P [u ∈ S] = P [degH′(u) ≥ D] ≤ exp(−D/4) by a Chernoff-
Hoeffding bound. We use this to bound the expected number of edges deleted.

E [ES] ≤ ∑
u∈V(H′)

E
[
deg(u) · 1{u∈S}

]
= ∑

u∈V(H′)
E [deg(u) | u ∈ S] ·P [u ∈ S]

≤ ∑
u∈V(H′)

E [deg(u) | u ∈ S] · exp (−D/4)

≤ ∑
u∈V(H′)

(D + kγ) · exp (−D/4)

≤ (n · n0) · 2D · exp (−D/4) .

The penultimate inequality uses the independence of the hyper-edges in the generation
process, which gives E [degH′(u) | degH′(u) ≥ D] ≤ D + E [degH′(u)]. From our choice
of the parameter D, we get that E [ES] ≤ ε2 · γ · n = ε2 · m. Thus, the number of edges
deleted is at most ε ·m with probability at least 1− ε.

The following lemma shows that the expected number of small cycles in random hyper-
graph is small.

Lemma 3.5 Let H ∼ Hk (m, n, n0, Γ) be a random hypergraph and for l ≥ 2, let Zl(H) denote
the number of cycles of length at most l in H. For m, n and k such that k2 · (m/n) > 1, we have

E
H∼Hk(m,n,n0,Γ)

[Zl(H)] ≤
(

k2 · m
n

)2l
.

Proof: Let the vertices of H correspond to the set [n0]× [n]. Suppose we contract the set
of [n0]× {j} vertices into a single vertex j ∈ [n] to get a random multi-hypergraph H′ on
vertex set [n]. An equivalent way to view the sampling to H′ is: for each i ∈ [m], the i-th
hyperedge ei of H′ is sampled by independently sampling k vertices (with replacement)
uniformly at random from [n]. Note that the sampling of H′ is independent of Γ in the
definition of Hk (m, n, n0, Γ). Clearly, a cycle of length at most l in H produces a cycle of
length at most l in H′. Hence, suffices to bound the expected number of cycles in H′

Given any pair (u′, v′) of vertices of H′, for u′ 6= v′, the probability of the pair (u′, v′)
belonging together in some edge of H′ is at most mk2

n2 . Consider a given h-tuple of vertices
u = (ui1 , · · · uih). Note that we require that edges participating in a cycle be distinct. So,
the probability that u is part of a cycle in H′, i.e., there exists distinct edges ej ∈ H′ for

j ∈ [h] such that uij , uij+1 ∈ ej for j ∈ [h− 1], and ui1 , uih ∈ eh is at most
(

mk2

n2

)h
. As a result,

expected number of cycles of length h in H′ is bounded above by:(
n
h

)(
mk2

n2

)h

≤ nh
(

mk2

n2

)h

=
(

k2 · m
n

)h

10



From the geometric form of the bound, it follows that expected number of cycles of length

at most l in H′ is at most (
k2·mn )

l+1

(k2·mn )−1
<
(
k2 · m

n

)2l .

Using the above lemma, it is easy to show that one can remove all small cycles in a random
hypergraph by deleting only a small number of edges.

Corollary 3.6 Let H ∼ Hk (m, n, n0, Γ) be a random hypergraph with m = γ · n for γ > 1 and
k ≥ 2. Then, there exists δ = δ(γ) > 0 such that with probability 1− n−1/6, all cycles of length
at most δ · log n in H can be removed by deleting at most n2/3 edges.

Proof: As above, let Zl denote the number of cycles of length at most l. With the choice of
m, n, and k, we have k2 · m

n ≥ 2. By Lemma 3.5, E [Zl ] ≤
(
k2 · m

n

)2l . Since m = γ · n, there
exists a g = δ · log n such that E [Zl ] ≤

√
n. By Markov’s inequality, P

[
Zl ≥ n2/3] ≤ n−1/6.

Thus, with probability 1− n−1/6, one can remove all cycles of length at most δ · log n by
deleting at most n2/3 edges.

One can also extend the analysis in [3] to show that the hypergraphs are locally sparse i.e.,
the number of edges contained in a small set of vertices is small. For a hypergraph H and
a set S ⊆ V(H), we use E(S) to denote the edges contained in the set S.

Definition 3.7 We say that S ⊆ V(H) is η-sparse if |E(S)| ≤ |S|
k−1−η . We call an k-uniform

hypergraph H on N vertices to be (τ, η)-sparse if all subsets S ⊂ V(H), |S| ≤ τ · |V(H)|, S is
η-sparse. We call H to be η-sparse if it is (1, η)-sparse, i.e., all subsets of vertices of H are sparse.

We note here that while this notion of sparsity is a generalization of that considered in [3],
it is also identical to the notions of expansion considered in works in proof complexity (see
e.g., [5]) and later in works on integrality gaps [1, 6, 4]. We prove that random hypergraphs
generated with our model are locally sparse:

Lemma 3.8 Let η < 1/4 and m = γ · n for γ > 1. Then for τ ≤ 1
n0
·
(

1
e·k3k ·γ

)1/η
the following

holds:

P
H∼Hk(m,n,n0,Γ)

[H is not (τ, η)-sparse] ≤ 3 ·
(

k3k · γ
nη/4

)1/k

.

We note that we will require the sparsity η to be Ok,γ(1/(log n)). This gives sparsity only
for sublinear size sets, as compared to sets of size Ω(n) in previous works where η is a
constant. For the proof of the lemma, we follow an approach similar to that of Lemma 3.5:
we collapse the vertices of H of the form [n0]× {j} to vertex j ∈ [n] to construct H′, and
thus reducing the problem to random multi-hypergraph form a random multipartite hy-
pergraph. The rest proof of the lemma is along the lines of several known proofs [1, 6] and
we defer the details to Appendix A.

Charikar et al. [9] prove an analogue of Theorem 3.3 for metrics defined on locally-sparse
graphs. In fact, they use a consequence of sparsity, which they call `-path decomposability.
To this end, we define the incidence graph1 associated with a hypergraph, on which we will
apply their result.

1This is the same notion as the constraint-variable graph considered in various works on lower bounds for
CSPs.
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Definition 3.9 Let H = (V(H), E(H)) be a k-uniform hypergraph. We define its incidence graph
as the bipartite graph GH defined on vertex sets V(H) and E(H), and edge set E defined as

E := {(v, e) | v ∈ V(H), e ∈ E(H), v ∈ e} .

Note that for any u, v ∈ V(H), we have dGH (u, v) = 2 · dH(u, v). We prove that for a locally
sparse hypergraph H, its incidence graph GH is also locally sparse.

Lemma 3.10 Let H be a k-uniform (τ, η)-sparse hypergraph on N vertices with m = γ · n hyper-
edges. Then the incidence graph GH is (τ′, η′) sparse for τ′ = τ/k·(1+γ) and η′ = η/(1+η).

Proof: Let τ′ = τ/k·(1+γ) and let GH be the incidence graph with N + m = (1 + γ) · N
vertices. Let G′ be is the densest subgraph of GH, among all subgraphs of size at most
τ′ · (N + m). Let the vertex set of G′ be V ′ ∪ E′ where V ′ ⊆ V(H) and E′ ⊆ E(H), and let
the edge-set be E ′. There cannot be any isolated vertices in G′ since removing those will
only increase the density.

Let S ⊆ V(H) be the set of all vertices contained in all edges in E′ i.e.,
S := {v ∈ V(H) | ∃e ∈ E′ s.t. v ∈ e}. Note that V ′ ⊆ S, since there are no isolated
vertices, and E′ ⊆ E(S), where E(S) denotes the set of hyperedges contained in S.

By our choice of parameters, |S| ≤ k · |E′| ≤ k · τ′ · (N + m) ≤ τ · N. Thus, using the
sparsity of H, we have ∣∣E′∣∣ ≤ |E(S)| ≤ |S|

k− 1− η
.

Also, since each hyperedge of E′ can include at most k vertices in S, and since each edge in
E ′ is incident on a vertex in V ′, we have

|S| −
∣∣V ′∣∣ ≤ k ·

∣∣E′∣∣− ∣∣E ′∣∣ .

Combining the two inequalities gives

(k− 1− η) ·
∣∣E′∣∣ ≤ ∣∣V ′∣∣+ k ·

∣∣E′∣∣− ∣∣E ′∣∣ ⇒
∣∣E ′∣∣ ≤ (1 + η) ·

∣∣E′∣∣+ ∣∣V ′∣∣ .

Hence, we get that |E ′| ≤ |V′|+|E′|
(1−η′) for η′ = η

(1+η)
.

Charikar et al. [9] defined the following structural property of a graph.

Definition 3.11 ([9]) A graph G is `-path decomposable if every 2-connected subgraph G′ of G,
such that G′ is not an edge, contains a path of length ` such that every vertex of the path has degree
at most 2 in G′.

The above property was also implicitly used by Arora et al. ([3]), who proved the following
(see Lemma 2.12 in [3]):

Lemma 3.12 Let ` > 0 be an integer and 0 < η < 1
3`−1 < 1. Let G be a η-sparse graph with

girth g > `. Then G is `-path decomposable.
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Recall that we defined the metrics dµ and ρµ on H as (for u 6= v) :

dH
µ (u, v) := 1− (1− µ)2·dH(u,v) and ρH

µ (u, v) :=

√
2 · dH

µ (u, v) + µ

1 + µ
,

For a graph G, we define the following two metrics, for u 6= v:

dG
µ (u, v) := 1− (−1)dG(u,v)(1− µ)dG(u,v) and ρG

µ (u, v) :=

√
2 · dG

µ (u, v) + µ

1 + µ
.

We note that if H is a hypergraph and GH is its incidence graph, then the metrics dGH
µ and

ρGH
µ restricted to V(H), coincide with the metrics dµ and ρµ defined on H. Charikar et al.

proved the following theorem (see Theorem 5.2) in [11].

Theorem 3.13 ([11]) Let G be a graph on n′ vertices with maximum degree D. Let t <
√

n′
and ` > 0 be such that for t′ = D`+1 · t, every subgraph of G on at most t′ vertices is `-path
decomposable. Also, let µ, t and ` satisfy the relation (1− µ)`/9 ≤ µ

2(t+1) . Then for every subset S
of at most t vertices there exists a mapping ψS from S to unit sphere in `2 such that all u, v ∈ S:

‖ψS(u)− ψS(v)‖2 = ρG
µ (u, v) .

We use this theorem to prove the main theorem of the section.

Proof of Theorem 3.3: Let H′ ∼ Hk (m, n, n0, Γ) with m = γ · n hyperedges and N = n0 · n
vertices. Given ε > 0, from Lemma 3.4 we have that with high probability at least 1− ε/2,
there exists H1 such that the maximum degree of H1 is at most D = 100 · log

(
2n0

ε

)
· k · γ

with |E(H′) \ E(H1)| ≤ (ε/2) ·m.

Using Corollary 3.6 we also have that there exists δ > 0, such that with probability at
least 1 − ε/4 (for large enough n) H′ has a sub-hypergraph H2 with g ≥ δ · log n and
|E(H′) \ E(H2)| ≤ (ε/4) ·m. By Lemma 3.8, there exists η = Ωn0,k,γ,ε(1/(log n)) such that
H′ is (τ, η)-sparse with probability at least 1− ε/4, for τ ≥ n−1/4.

Hence with probability 1− ε, we have that H = (V(H′), E(H1) ∩ E(H2)) satisfies:

- Degree of H is bounded above by D.

- H is (τ, η)-sparse (for τ ≥ n−1/4 and η = Ωn0,k,γ,ε(1/(log n)).

- Girth of H is at least g > δ · log n.

- |E(H′) \ E(H)| ≤ ε ·m.

We now show that the metric ρH
µ is locally `2 embeddable.

Let G = GH be the incidence graph for the hypergraph H. Note that N ≤ |V(G)| ≤
N · (1 + γ) and degree of G is also bounded by D. Since a cycle in G is also a cycle in H,
the girth of G is at also least g ≥ δ · log n.

By Lemma 3.10, we have G is ( τ
k(1+γ)

, η
1+η )-sparse. By Lemma 3.12, any subgraph of G

on at most τ
k(1+γ)

· (N + m) vertices is `-path decomposable for any ` ≤ min{g, 1/(4η)}.
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Since D = 100 · kγ · log(2n0/ε), there exists `0 = Ωk,γ,n0,ε(log n) such that D`0+1 ≤ n1/6.
We choose ` = min {g, 1/(4η), `0}.
Let µ0 be the smallest µ such that exp (−µ`/9) ≤ µ

2(t+1) (note that 1
µ · exp (−µ`/9) is de-

creasing in µ). Since we must have µ ≥ 1/`, there exists a µ0 satisfying

µ0 ≤
9
`
· (ln(2(t + 1)) + ln `) .

From our choice of `, there exist constants c = c(k, γ, n0, ε) and θ = θ(k, γ, n0, ε) < 1/2
such that µ0 ≤ c · log t+log log n

log n < 1 when t ≤ nθ . Then, for any µ ∈ [µ0, 1), we have

(1− µ)`/9 ≤ exp(−µ`/9) ≤ µ
2(t+1) .

We can now apply Theorem 3.13 to construct the embedding. Given any subset S of V(H)
of size at most t ≤ nθ , note that S is also a subset of V(G). Moreover, we have t ≤ nθ ≤
(N + m)1/2. Also, we have t · D`+1 ≤ n1/2 · n1/6 = n2/3 ≤ τ

k(γ+1) · (N + m). Thus, any

subgraph of G on t · D`+1 vertices is `-path decomposable.

Thus, when µ ≥ µ0, by Theorem 3.13 there exists a mapping ψS from S to the unit sphere,
such that for all u, v ∈ S, we have

‖ψS(u)− ψS(v)‖2 = ρG
µ (u, v) = ρH

µ (u, v) ,

where the last equality uses the fact that for all u, v ∈ V(H), ρH
µ (u, v) = ρG

µ (u, v) since
dG(u, v) = 2 · dH(u, v).

4 Decompositions of hypergraphs from local geometry

We will construct the Sherali-Adams solution by partitioning the given subset of vertices
in to trees, and then creating a natural distribution over satisfying assignments on trees.
We define below the kind of partitions we need.

Definition 4.1 Let X be a finite set. For a set S, let PS denote a distribution over partitions of S.
For T ⊆ S, let PS|T be the distribution over partitions of T obtained by restricting the partitions in
PS to the set T. We say that a collection of distributions {PS}|S|≤t forms a consistent partitioning
scheme of order t, if

∀S ⊆ X, |S| ≤ t and ∀T ⊆ S PT = PS|T .

In addition to being consistent as described above, we also require the distributions to
have small probability of cutting the edges for the hypergraphs corresponding to our CSP
instances. We define this property below.

Definition 4.2 Let H = (V, E) be a k-uniform hypergraph. Let {PS}|S|≤t be a consistent parti-
tioning scheme of order t for the vertex set V, with t ≥ k. We say the scheme {PS}|S|≤t is ε-sparse
for H if

∀e ∈ E P
P∼Pe

[P 6= {e}] ≤ ε .

In this section, we will prove that the hypergraphs arising from random CSP instances
admit sparse and consistent partitioning schemes. Recall that for a hypergraph H, we
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define (Theorem 3.2) the metrics dH
µ and ρH

µ as:

dH
µ (u, v) := 1− (1− µ)2·dH(u,v) and ρH

µ (u, v) :=

√
2 · dH

µ (u, v) + µ

1 + µ
,

Lemma 4.3 Let H = (V, E) be k-uniform hypergraph and let dµ be the metric as defined above.
Let H be such that for all sets S ⊆ V with |S| ≤ t, the metric induced on ρµ on S is isometrically
embeddable into `2. Then, there exists ε ≤ 10k · √µ · t and ∆H = O(1/µ) such that H admits
an ε-sparse consistent partitioning scheme of order t, with each partition consisting of clusters of
diameter at most ∆H in H.

We use the following result of Charikar et al. [8] which shows that low-dimensional met-
rics have good separating decompositions with bounded diameter i.e., decompositions which
have a small probability of separating points at a small distance.

Theorem 4.4 ([8]) Let W be a finite collection of points in Rd and let ∆ > 0 be given. Then there
exists a distribution P over partitions of W such that

- ∀P ∈ Supp(P), each cluster in P has `2 diameter at most ∆.

- For all x, y ∈W

P
P∼P

[P separates x and y] ≤ 2
√

d · ‖x− y‖2
∆

.

We also need the observation that the partitions produced by the above theorem are con-
sistent, assuming the set S considered above lie in a fixed bounded set (using a trivial
modification of the procedure in [8]). For the sequel, we use B(x, δ) to denote the `2 ball
around x of radius δ and BH(u, r) to denote a ball of radius r around a vertex u ∈ V(H).
Thus,

B(x, δ) := {y | ‖x− y‖2 ≤ δ} and BH(u, r) := {v ∈ V | dH(u, v) ≤ r} .

The balls B(S, δ) and BH(S, r) are defined similarly.

Claim 4.5 Let S and T be sets such that T ⊆ S. Let WS = {wu}u∈S and WT = {w′u}u∈T be
`2-embeddings of S and T satisfying ϕ(WT) ⊆ WS ⊆ B(0, R0) ⊂ Rd, for some unitary trans-
formation ϕ and R0 > 0. Let PS and PT be distributions over partitions of S and T respectively,
induced by partitions on WS and WT as given by Theorem 4.4. Then

PS|T = PT .

Proof: The claim follows simply by considering (a trivial modification of) the algorithm
of [8]. For a given set W and a parameter ∆, they produce a partition using the following
procedure:

- Let W ′ = W.

- Repeat until W ′ = ∅
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– Pick a random point x in B(W, ∆/2) according to the Haar measure. Let Cx =
B(x, ∆/2) ∩W ′.

– If Cx 6= ∅, set W ′ = W ′ \ Cx. Output Cx as a cluster in the partition.

[8] show that the above procedure produces a distribution over partitions satisfying the
conditions in Theorem 4.4. We simply modify the procedure to sample a random point
x in B(0, R0 + ∆/2) instead of B(S, ∆/2). This does not affect the separation probability
of any two points, since the only non-empty clusters are still produced by the points in
B(S, ∆/2).

Let P be a partition of S produced by the above procedure when applied to the point set
WS, and let P′ be a random partition produced when applied to the point set ϕ(WT). It is
easy to see from the above procedure that the distribution PT is invariant under a unitary
transformation of WT. By coupling the random choice of a point in B(0, R0 + ∆/2) chosen
at each step in the procedures applied to WS and ϕ(WT) ⊆ WS, we get that P(T) = P′ i.e.,
the partition P restricted to T equals P′. Thus, we get PS|T = PT.

We can use the above to prove Lemma 4.3.

Proof of Lemma 4.3: Given a set S, let WS be an `2 embedding of the metric ρµ restricted
to S. Since, |S| ≤ t, we can assume WS ∈ Rt. We apply partitioning procedure of Charikar
et al. from Theorem 4.4 with ∆ = 1/2. From the definition of the metric ρH

µ , we get that
there exists a ∆H = O(1/µ) such that ρH

u,v ≤ 1/2 ⇒ dH(u, v) ≤ ∆H. Moreover, for u, v
contained in an edge e, we have that ρµ(u, v) ≤

√
5µ and hence the probability that u and

v are separated is at most 10
√

µ · t. Thus, the probability that any vertex in e is separated
from u is at most 10k · √µ · t.
Finally, for any S ⊆ T, if WS and WT denote the corresponding `2 embeddings, by the
rigidity of `2 we have that for ϕ(WT) ⊆ WS for some unitary transformation ϕ. Thus, by
Claim 4.5, we get that this is a consistent partitioning scheme of order t.

5 The Sherali-Adams Integrality Gaps construction

5.1 Integrality Gaps from the Basic LP

Recall that the basic LP relaxation for MAX k-CSPq ( f ) as given in Fig. 2. In this section, we
will prove Theorem 1.1. We recall the statement below.

Theorem 1.1 Let f : [q]k → {0, 1} be any predicate. Let Φ0 be a (c, s) integrality gap instance
for basic LP relaxation of MAX k-CSP ( f ). Then for every ε > 0, there exists cε > 0 such that
for infinitely many N ∈ N, there exist (c− ε, s + ε) integrality gap instances of size N for the LP
relaxation given by cε · log N

log log N levels of the Sherali-Adams hierarchy.

Let Φ0 be a (c, s) integrality gap instance for the basic LP relaxation for MAX k-CSPq ( f )
with n0 variables and m0 constraints. We use it to construct a new integrality gap instance
Φ. The construction is similar to the gap instances constructed by Khot et al. [17] discussed
in the next section. However, we describe this construction first since it’s simpler. The
procedure for constructing the instance Φ is described in Fig. 3.
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Given: A (c, s) gap instance Φ0 on n0 variables, for the basic LP.
Output: An instance Φ with N = n · n0 variables and m constraints.

The variables are divided into n0 sets X1, . . . , Xn0 , one for each variable in Φ0. We
generate m constraints independently at random as follows:

1. Sample a random constraint C0 ∼ Φ0. Let SC0 = {i1, . . . , ik} ⊆ [n0] denote the
set of variables in this constraint.

2. For each j ∈ [k], sample a random variable xij ∈ Xij .

3. Add the constraint f ((xi1 , . . . , xik) + bC0) to the instance Φ.

Figure 3: Construction of the gap instance Φ

Soundness

We first prove that no assignment satisfies more than s + ε fraction of constraints for the
above instance.

Lemma 5.1 For every ε > 0, there exists γ = γ(ε, n0, q) such that for an instance Φ generated
by choosing at least γ · n constraints independently at random as above, we have with probability
1− exp (−Ω(n)), OPT(Φ) < s + ε.

Proof: Fix an assignment σ ∈ [q]N . We will first consider E [satΦ (σ)] for a randomly
generated Φ as above.

E
Φ
[satΦ (σ)] = E

C0∈Φ0
E

xi1∈Xi1

· · · E
xik
∈Xik

[ f (σ(xi1) + bi1 , . . . , σ(xik) + bik)]

= E
C0∈Φ0

E
Z1,...Zn0

[ f (ZC0 + bC0)] ,

where for each i ∈ [n0], Zi is an independent random variable with the distribution

P [Zi = b] := E
x∈Xi

[
1{σ(x)=b}

]
,

and ZC0 denotes the collection of variables in the constraint C0 i.e., ZC0 = {Zi}i∈SC0
. Thus,

the random variables Z1, . . . , Zn0 define a random assignment to the variables in Φ0, which
gives, for any σ

E
Φ
[satΦ (σ)] = E

C0∈Φ0
E

Z1,...Zn0

[ f (ZC0 + bC0)] < s .

Consider a randomly added constraint C to the instance Φ. We have that

P [C(σ) = 1] = E
Φ
[satΦ(σ)] < s ,
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for any fixed σ over a random choice of the constraint C. Thus, for an instance Φ with m
independently and randomly generated constraints, we have

P
Φ
[satΦ(σ) ≥ s + ε] ≤ P

Φ

[
satΦ(σ) ≥ E

Φ
[satΦ(σ)] + ε

]
= P

Φ

[
E

C∈Φ

[
1{C(σ)=1}

]
≥ E

Φ
[satΦ(σ)] + ε

]
≤ exp

(
−Ω(ε2 ·m)

)
.

Taking a union bound over all assignments, we get

P
Φ
[∃σ satΦ(σ) ≥ s + ε] ≤ qn·n0 · exp

(
−ε2 ·m

)
,

which is at most exp (−Ω(n)) for m = O(((log q)/ε2) · n · n0).

Completeness

To prove the completeness, we first observe that the instance Φ as constructed above is
also a gap instance for the basic LP. We will then “boost” this hardness to many levels of
the Sherali-Adams hierarchy.

Lemma 5.2 For every ε > 0, there exists γ = γ(ε) such that for an instance Φ generated by choos-
ing at least γ · n constraints independently at random as above, with probability 1− exp (−Ω(n))
there exist distributions DSC over [q]SC for each C ∈ Φ, and distributions Di over [q] for each
variable xi ∈ [n · n0], satisfying

- For all C ∈ Φ and all i ∈ SC, DSC |{i} = Di.

- The distributions satisfy EC∈Φ Eα∼DSC
[ f (α + bC)] ≥ c− ε

10 .

Proof: For each C0 ∈ Φ0 and each j ∈ [n0], let D(0)
SC0

and D(0)
j denote the basic LP solution

satisfying

D(0)
SC0 |j

= D(0)
j ∀C0 ∈ Φ0 ∀j ∈ SC0 and E

C0∈Φ0
E

α∼D(0)
SC0

[ f (α + bC0)] ≥ c .

Each constraint C ∈ Φ is sampled according to some constraint C0 ∈ Φ0, and we take
DSC := D(0)

SC0
for the corresponding contraint C0 ∈ Φ0. Also, each variable xi for i ∈ [n0 · n],

belongs to one of the sets Xj for j ∈ [n0], and we take Di := D(0)
j for the corresponding

j ∈ [n0].

The consistency of the distributions follows immediately from the construction of the in-
stance Φ. Let C ∈ Φ be any constraint and let C0 be the corresponding constraint in Φ0. If
SC0 = (j1, . . . , jk), then SC = (i1, . . . , ik) where each ir ∈ {jr} × [n] for all r ∈ [k]. Thus, for
any r ∈ [k],

DSC |ir = D(0)
SC0 |jr

= D(0)
jr = Dir .
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To bound the objective value, we again consider its expectation over a randomly generated
instance Φ. Let C be a random constraint added to Φ. Then, if we define DSC as above for
this constraint, we have

E
C

E
α∈DSC

[ f (α + bC)] = E
C0∈Φ0

E
α∼D(0)

[ f (α + bC0)] ≥ c .

Thus, the expected contribution of each constraint is at least c. The probability that
the average of m constraints deviates by at least ε/10 from the expectation, is at most
exp

(
−Ω(ε2 ·m)

)
. There exists γ = O(1/ε2) such that for m ≥ γ · n, the probability is at

most exp(−Ω(n)).

To construct local distributions for the Sherali-Adams hierarchy, we will consider (a slight
modification) the hypergraph H corresponding to the instance Φ. We first show that dis-
tributions on edges of this hypergraph can be consistently propagated in a tree, provided
they agree on intersecting vertices.

For a set U ⊆ V(H) in a hypergraph H, recall that cl(U) includes all paths of lengths at
most 1 between any two vertices in U. Thus, E(cl(U)) = {e ∈ E | |e ∩U| ≥ 2}. Note
that Lemma 5.2 implies that edges forming a tree in H satisfy the hypothesis of Lemma 5.3
below.

Lemma 5.3 Let H = (V, E) be a k-uniform hypergraph. Let U ⊆ V and let the set of edges
E(cl(U)) form a tree. For each e ∈ E(cl(U)), let De be a distribution on [q]e such that for any
u ∈ U and e1, e2 ∈ E(cl(U)) such that e1 ∩ e2 = {u}, we have De1|u = De2|u = Du. Then,

- there exists a distribution DU on [q]U such that DU|e∩U = De|e∩U for all e ∈ E(U).

- If U′ ⊆ U is such that the edges in E(cl(U′)) form a subtree of E(cl(U)), then DU|U′ =

DU′ .

Proof: We define the distribution by starting with an arbitrary edge and traversing the
tree in an arbitrary order. Let e1, . . . , er be a traversal of the edges in E(cl(U)) such that for
all i,

∣∣(∪j<iej
)
∩ ei

∣∣ = 1. Let U0 = ∪j<iej be the set of vertices for which we have already
sampled an assignment and let ei be the next edge in the traversal, with u being the unique
vertex in ei ∩U0. We sample an assignment to the vertices in e, conditioned on the value
for the vertex u. Formally, we extend the distribution DU0 to U0 ∪ e by taking, for any
α ∈ [q]U0∪e

DU0∪e(α) = DU0(α(U0)) ·
De(α(e))
De|u(α(u))

= DU0(α(U0)) ·
De(α(e))
Du(α(u))

.

The above process defines a distribution Dcl(U) on cl(U), with

Dcl(U)(α) =
∏e∈E(U)De(α(e))

∏u∈cl(U)

(
Du(α(u))

)deg(u)−1
.

In the above expression, we use deg(u) to denote the degree of vertex u in tree formed by
the edges in E(cl(U)) i.e., deg(u) = |{e ∈ E(cl(U)) | u ∈ e}|. We then define the distribu-
tion DU as the marginalized distribution Dcl(U)|U i.e.,

DU(α) = ∑
β∈[q]cl(U)

β(U)=α

Dcl(U)(β) .
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Note that the distributionDcl(U) and hence also the distributionDU are independent of the
order in which we traverse the edges in E(cl(U)). Also, since the above process samples
each edge according to the distribution De, we have that for any e ∈ E(U), Dcl(U)|e = De.
Thus, also for any e ∈ E(U), DU|e∩U = De|e∩U .

Let U′ ⊆ U be any set such that E(cl(U′)) forms a subtree of E(cl(U)). Then there exists
a traversal e1, . . . , er, and i ∈ [r] such that ej ∈ E(cl(U′)) ∀j ≤ i and ej /∈ E(cl(U′)) ∀j >
i. However, the distribution defined by the partial traversal e1, . . . , ei is precisely Dcl(U′).
Thus, we get that Dcl(U)| cl(U′) = Dcl(U′) which implies DU|U′ = DU′ .

We can now prove the completeness for our construction using consistent decompositions.

Lemma 5.4 Let ε > 0 and let Φ be a random instance of MAX k-CSPq ( f ) generated by choosing

γ · n constraints independently at random as above. Then, there is a t = Ωε,k,n0

(
log n

log log n

)
, such

that with probability 1− ε over the choice of Φ, there exist distributions {DS}|S|≤t satisfying:

- For all S ⊆ V with |S| ≤ t, DS is a distribution on [q]S.

- For all T ⊆ S ⊆ V with |S| ≤ t, DS|T = DT.

- The distributions satisfy

E
C∈Φ

E
αC∼DSC

[ f (αC + bC)] ≥ c− ε .

Proof: By Theorem 3.3, we know that there exists δ such that with probability 1− ε/4,
after removing a set of constraints CB of size at most (ε/4) · m, we can assume that the
remaining instance has girth at least g = δ · log n. Also, there exists θ, c > 0 such that for
all t ≤ nθ , the metric ρH

µ restricted to any set S of size at most t embeds isometrically into

the unit sphere in `2, for all µ ≥ c · log t+log log n
log n .

We choose µ = 2c · log log n
log n and t = ε2

400k2 · 1
µ so that

µ ≥ c · log t + log log n
log n

and
√

µ · t ≤ ε

20k
.

Thus, by Lemma 4.3, H admits an (ε/2)-sparse partitioning scheme of order t with each
cluster in the partition having diameter at most ∆H = O(1/µ). Let {PS}|S|≤t denote this
partitioning scheme.

Given a set S, the distribution DS is a convex combination of several distributions DS,P,
corresponding to different partitions P sampled from PS. We describe the distribution DS
by giving the procedure to sample an α ∈ [q]S. Given the set S with |S| ≤ t:

- Sample a partition P = (U1, . . . , Ur) from the distribution PS.

- For each set Ui, consider the set C (Ui) obtained by including the vertices contained
in all the edges in the shortest path between all u, v ∈ Ui. Note that since Ui has
diameter at most ∆H in H, C (Ui) is connected and in fact C (U) = cl∆H (U). Also,
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since the each vertex in an included path is within distance at most ∆H/2 of an end-
point, and Ui has diameter at most ∆H, we know that the diameter of C (Ui) is at
most 2 · ∆H. Hence, C (Ui) is a tree. Finally, we must have cl(C (Ui)) = C (Ui) since
any additional path of length 1 would create a cycle of length at most 2 · ∆H + 1.

Thus, by Lemma 5.2 and Lemma 5.3 (with probability at least 1− ε/4) there exists a
distribution DC(Ui) for each Ui, satisfying DC(Ui)|e = De for all e ∈ E (C (Ui)). Here,
De are the distributions given by Lemma 5.2, which form a solution to the basic LP
for Φ, with value at least c− ε/4. For each Ui, define the distribution

D′Ui
:= DC(Ui)|Ui

.

- Sample α ∈ [q]S according to the distribution

DS,P := D′U1
× · · · × D′Ur

.

Thus, we have

DS := E
P=(U1,...,Ur)∼PS

[
r

∏
i=1
D′Ui

]
,

where the distributions D′Ui
are defined as above.

We first prove the distributions are consistent on intersections i.e., DS|T = DT for any
T ⊆ S. Note that by Lemma 4.3, the distributions PS and PT satisfy PS|T = PT. Each
partition (U1, . . . , Ur) also produces a partition T. For ease of notation, we assume that the
first (say) r′ clusters have non-empty intersection with S. Let Vi = Ui ∩ T for 1 ≤ i ≤ r′

(Vi = ∅ for i > r′). Then, we have

DS|T = E
P=(U1,...,Ur)∼PS

[
r

∏
i=1
D′Ui |Vi

]
= E

P=(U1,...,Ur)∼PS

[
r′

∏
i=1
DC(Ui)|Vi

]

= E
P=(U1,...,Ur)∼PS

[
r′

∏
i=1
DC(Vi)|Vi

]

= E
P′=(V1,...,Vr′ )∼PT

[
r′

∏
i=1
DC(Vi)|Vi

]

The second to last equality above uses the fact that C (Vi) is a subtree of C (Ui) and thus
DC(Ui)|C(Vi) = DC(Vi) by Lemma 5.3. The last equality uses the fact that PS|T = PT by
Lemma 4.3.

We now argue that the LP solution corresponding to the above distributions {DS}|S|≤t has
value at least c− ε. Recall that the value of the LP solution is given by

E
C∈Φ

E
α∼DSC

[ f (α + bC)] .

Consider any constraint C in Φ, with the corresponding set of variables SC and the corre-
sponding hyperedge e. When defining the distributionDSC , we will partition SC according
to the distribution PSC . By Lemma 4.3 and our choice of parameters

P
P∼PSC

[P 6= {SC}] ≤ 10k ·
√

µ · t ≤ ε

2
.
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For a constraint set which is not in the deleted set CB, if the edge e corresponding to the
constraint C is not split by a partition P sampled according to PSC , then by Lemma 5.3
DSC ,P = DSC . Here, DSC is the distribution given by Lemma 5.2. Since f is Boolean, we
have that for C /∈ CB,

E
α∼DSC

[ f (α + bC)] ≥ E
α∼DSC

[ f (α + bC)]−
ε

2
.

Using Lemma 5.2 again, we get

E
C∼Φ

E
α∼DSC

[ f (α + bC)] ≥ E
C∼Φ

[(
1− 1{C∈CB}

)
·
(

E
α∼DSC

[ f (α + bC)]−
ε

2

)]
≥ E

C∼Φ
E

α∼DSC

[ f (α + bC)]−
ε

2
− E

C∼Φ

[
1{C∈CB}

]
≥ c− ε

4
− ε

2
− ε

4
≥ c− ε ,

where the penultimate inequality uses the fact that the fraction of constraints in the initially
deleted set CB is at most ε/4 (for large enough n).

5.2 Integrality Gaps for resistant predicates

Let f : {0, 1}k → {0, 1} be a boolean predicate and let ρ( f ) = f−1(1)
2k be the fractions of

satisfying assignments to f . Then f is approximation resistant if it is hard to distinguish
the MAX-CSP instances on f between which are at least 1− o(1) satisfiable vs which are at
most ρ( f ) + o(1) satisfiable.

In [17] the authors introduce the notion of vanishing measure (on a polytope defined by
f ) and use it to characterize a variant of approximation resistance, called strong approxi-
mation resistance, assuming the Unique Games conjecture. They also show gave a weaker
notion of vanishing measures, which they used to characterize strong approximation resis-
tance for LP hierarchies. In particular, they proved that when the condition in their charac-
terization is satisfied, there exists a (1− o(1), ρ( f ) + o(1)) integrality gap for O(log log n)
levels of Sherali-Adams hierarchy for predicates f . Here, we show that using Theorem 1.1,
their result can be simplified and strengthened 2 to O

(
log n

log log n

)
levels.

Let us first recall some useful notation defined by Khot et al. [17] before we define the
notion of vanishing measure:

Definition 5.5 For a predicate f : {0, 1}k → {0, 1}, let C( f ) be the convex polytope of first
moments (biases) of distributions supported on satisfying assignments of f i.e.,

C( f ) :=
{

ζ ∈ Rk | ∀i ∈ [k], ζi = E
α∼ν

[(−1)αi ] , Supp(ν) ⊆ f−1(1)
}

.

2The LP integrality gap result of Khot et al. is in fact slightly stronger than stated above. They show that
LP value is at least 1 − o(1) while there is no integer solution achieving a value outside the range [ρ( f ) −
o(1), ρ( f ) + o(1)]. It is easy to see that the same also holds for the instance constructed here.
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For a measure Λ on C( f ), S ⊆ [k], b ∈ {0, 1}S and permutation π : S → S, let ΛS,π,b denote
the induced measure on RS by considering vectors with coordinates

{
(−1)bπ(i) · ζπ(i)

}
i∈S

, where
ζ ∼ Λ.

We recall below the definition of vanishing measure for LPs from [17] (see Definition 1.3) :

Definition 5.6 A measure Λ on C( f ) is called vanishing (for LPs) if for every 1 ≤ t ≤ k, the
following signed measure

E
|S|=t

E
π:S→S

E
b∈{0,1}t

[(
t

∏
i=1

(−1)bi

)
· f̂ (S) ·ΛS,π,b

]

is identically 0. We say f has a vanishing measure if there exists a vanishing measure Λ on C( f ).

In particular, they prove the following theorem:

Theorem 5.7 Let f : {0, 1}k → {0, 1} be a k-ary boolean predicate that has a vanishing measure.
Then for every ε > 0, there is a constant cε > 0 such that for infinitely may N ∈ N, there exists
an instance Φ of MAX k-CSP( f ) on N variables satisfying the following:

- OPT(Φ) ≤ ρ( f ) + ε.

- The optimum for the LP relaxation given by cε · log log N levels of Sherali-Adams hierarchy
has FRAC(Φ) ≥ 1−O(k ·

√
ε).

Combining this with our Theorem 1.1 already gives us the following stronger result:

Corollary 5.8 Let f : {0, 1}k → {0, 1} be a k-ary boolean predicate that has a vanishing measure.
Then for every ε > 0, there is a constant cε > 0 such that for infinitely may N ∈ N, there exists
an instance Φ of MAX k-CSP( f ) on N variables satisfying the following:

- All integral assignment of Φ satisfies at most ρ( f ) + ε fraction of constraints.

- The LP relaxation given by cε · log N
log log N levels of Sherali-Adams hierarchy has FRAC(Φ) ≥

1−O(k
√

ε).

However, note that to apply Theorem 1.1, one only needs a gap for the basic LP, which
is much weaker requirement than the O(log log N)-level gap given by Theorem 5.7. We
observe below that the gap for the basic LP follows very simply from the construction by
Khot et al. [17]. One can then directly use this gap for applying Theorem 1.1 instead of
going through Theorem 5.7.

Khot et al. [17] use the probabilistic construction given in Fig. 4, for a given ε > 0. The
construction actually requires Λ to be a vanishing measure over the polytope Cδ( f ) :=
(1− δ) · C( f ), for δ =

√
ε. However, since Cδ( f ) is simply a scaling of C( f ), a vanishing

measure over C( f ) also gives a vanishing measure over Cδ( f ). Note that each ζ0 ∈ C( f )
corresponds to a distribution ν0 supported in f−1(1). For each ζ ∈ Cδ, let ζ0 = 1

1−δ · ζ be
the point in C( f ) with distribution ν0. Then the distribution ν = (1− δ) · ν0 + δ ·Uk (where
Uk denotes the uniform distribution on {0, 1}k) satisfies ∀i ∈ [k]Eα∼ν [(−1)αi ] = ζi.
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Let n0 = d 1
ε e. Partition the interval [0, 1] into n0 + 1 disjoint intervals I0, I1, . . . , In0

where I0 = {0} and Ii = (i−1/n0, i/n0] for 1 ≤ i ≤ n0. For each interval Ii, let Xi be a
collection of n variables (disjoint from all Xj for j 6= i).
Generate m constraints independently according to the following procedure:

- Sample ζ ∼ Λ.

- For each j ∈ [k], let ij be the index of the interval which contains |ζ(j)|. Sample
uniformly a variable yj from the set Xj.

- If ζ(j) < 0, then negate yj. If ζ(j) = 0, then negate yj w.p. 1
2 .

- Introduce the constraint f on the sampled k tuple of literals.

Figure 4: Sherali-Adams integrality gap instance for vanishing measure

They show for a sufficiently large constant γ, an instance Φ with m = γ · n constraints
satisfies with high probability, that for all assignments σ, |satΦ(σ)− ρ( f )| ≤ ε (see Lemma
4.4 in [17]). The proof is similar to that of of Lemma 5.1.

Additionally, we need the following claim from [17] (see Claim 4.7 there), which allows
one to “round” coordinates of the vectors ζ ∈ Cδ( f ) to the end-points of the intervals
I0, . . . , In0 . This ensures that any two variables in the same collection Xi have the same
bias. The proof of the claim follows simply from a hybrid argument. We include it in the
appendix for completeness.

Claim 5.9 Let ζ ∈ Cδ( f ) and let ν be the corresponding distribution supported in f−1(1) such
that for all i ∈ [k], we have ζi = Eα∼ν [(−1)αi ]. Let t1, . . . , tk ∈ [0, 1] be such that for all i ∈ [k],
|ti − |ζi|| ≤ ε for ε < δ/2. Then there exists a distribution ν′ on {0, 1}k such that∥∥ν− ν′

∥∥
1 = O(k · (ε/δ)) and ∀i ∈ [k], E

α∼ν′
[(−1)αi ] = sign(ζi) · ti .

We can now use the above to give a simplified proof of Corollary 5.8.

Proof of Corollary 5.8: Here we exhibit a solution of the basic LP Fig. 2 for the instance
given in Fig. 4. For each variable yj coming from the set Xj for j ∈ {0, 1, . . . , n0}, we set
the bias tj of the variable to be the rightmost point of the interval Ij i.e., set x(yj,−1) =

1
2 ·
(

1− i
n0

)
and x(yj,1) =

1
2 ·
(

1 + i
n0

)
.

For each constraint C of the form f (yi1 + b1, . . . , yik + bk), let ζ(C) ∈ Cδ( f ) be the point
used to generate it, and let ν(C) denote the corresponding distribution on {0, 1}k. By
Claim 5.9, there exists a distribution ν′(C) such that ‖ν(C)− ν′(C)‖1 = O(kε/δ) and such
that the biases of the literals satisfy Eα∼ν′(C) [(−1)αj ] = sign(ζ j) · tij , where tij denotes the
bias for the interval to which yij belongs. When tij 6= 0, we negate a variable only when

sign(ζ j) < 0. Thus, we have Eα∼ν′(C)

[
(−1)αj+bj

]
= tij , which is consistent with the bias

given by the singleton variables x(yij ,1)
and x(yij ,−1). We thus define the local distribution

on the set SC as DSC(α) = (ν′(C))(α + bC).
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For all C ∈ Φ, since ζ(C) ∈ Cδ( f ), we have that Eα∼ν(C) [ f (α)] ≥ 1 − δ. Also, since
‖ν(C)− ν′(C)‖1 = O(kε/δ), we get that Eα∼ν′(C) [ f (α)] ≥ 1− δ−O(kε/δ). Thus, we have
for all C ∈ Φ, Eα∼DSC

[ f (α + bC)] ≥ 1− δ−O(kε/δ). Taking δ =
√

ε proves the claim.

5.3 Lower bounds for LP extended formulations

A connection between LP integrality gaps for the Sheral-Adams hierarchy, and lower
bounds on the size of LP extended formulations, was established by Chan et al. [7]. They
proved the following:

Theorem 5.10 ([7]) Let k, q ∈ N and f : [q]k → {0, 1} be given. Let r : N → N be a function
such that the relaxation obtained by r(n) levels of the Sherali-Adams hierarchy cannot achieve a
(c, s) approximation for instances of MAX k-CSPq ( f ) on n variables. Then, for all large enough n,
no LP extended formulation of size n(r(n))2

can achieve a (c, s) approximation on instances of size
N, where N ≤ n10·r(n)

Combining the above with Theorem 1.1 and taking r(n) = Ω
(

log n
log log n

)
yields Corol-

lary 1.2.

Corollary 1.2 Let f : [q] → {0, 1} be any predicate. Let Φ0 be a (c, s) integrality gap instance
for basic LP relaxation of MAX k-CSP ( f ). Then for every ε > 0, there exists cε > 0 such that
for infinitely N ∈ N, there exist (c− ε, s + ε) integrality gap instances of size N, for every linear
extended formulation of size at most exp

(
cε · (log N)3/.2

(log log N)1/2

)
.

Acknowledgements

We thank Chandra Chekuri, Subhash Khot and Yury Makarychev for helpful discussions,
and Rishi Saket for pointers to references. This research was supported by supported by
the National Science Foundation under award number CCF-1254044.

References

[1] Michael Alekhnovich, Sanjeev Arora, and Iannis Tourlakis. Towards strong nonap-
proximability results in the Lovasz-Schrijver hierarchy. In Proceedings of the 37th ACM
Symposium on Theory of Computing, pages 294–303, 2005. 2, 11

[2] Sanjeev Arora, Béla Bollobás, and László Lovász. Proving integrality gaps without
knowing the linear program. In Proceedings of the 43rd IEEE Symposium on Foundations
of Computer Science, pages 313–322. IEEE, 2002. 2

[3] Sanjeev Arora, Béla Bollobás, László Lovász, and Iannis Tourlakis. Proving integrality
gaps without knowing the linear program. Theory of Computing, 2(2):19–51, 2006. 2, 9,
11, 12

[4] Boaz Barak, Siu On Chan, and Pravesh K. Kothari. Sum of squares lower bounds
from pairwise independence. In Proceedings of the 47th ACM Symposium on Theory of
Computing, pages 97–106, New York, NY, USA, 2015. ACM. 2, 8, 11

25



[5] Eli Ben-Sasson. Expansion in Proof Complexity. PhD thesis, Hebrew University, 2001.
11

[6] Siavosh Benabbas, Konstantinos Georgiou, Avner Magen, and Madhur Tulsiani. SDP
Gaps from Pairwise Independence. Theory of Computing, 8(1):269–289, 2012. 2, 11

[7] Siu On Chan, James Lee, Prasad Raghavendra, and David Steurer. Approximate con-
straint satisfaction requires large LP relaxations. In Proceedings of the 54th IEEE Sym-
posium on Foundations of Computer Science, pages 350–359. IEEE, 2013. 2, 3, 25

[8] Moses Charikar, Chandra Chekuri, Ashish Goel, Sudipto Guha, and Serge Plotkin.
Approximating a finite metric by a small number of tree metrics. In Proceedings of the
39th IEEE Symposium on Foundations of Computer Science, pages 379–388, 1998. 6, 15, 16

[9] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Local global trade-
offs in metric embeddings. In Proceedings of the 48th IEEE Symposium on Foundations of
Computer Science, 2007. 6, 9, 11, 12

[10] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal al-
gorithms for maximum constraint satisfaction problems. In Proceedings of the 18th
ACM-SIAM Symposium on Discrete Algorithms, pages 62–68, 2007. 3

[11] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Integrality gaps for
Sherali-Adams relaxations. In Proceedings of the 41st ACM Symposium on Theory of
Computing, 2009. 2, 3, 8, 9, 13

[12] Wenceslas Fernandez de la Vega and Claire Kenyon-Mathieu. Linear programming
relaxations of maxcut. In Proceedings of the 18th ACM-SIAM Symposium on Discrete
Algorithms, pages 53–61, 2007. 2, 5

[13] Sreyash Kenkre, Vinayaka Pandit, Manish Purohit, and Rishi Saket. On the approx-
imability of digraph ordering. In Algorithms - ESA 2015 - 23rd Annual European Sym-
posium, Patras, Greece, September 14-16, 2015, Proceedings, pages 792–803, 2015. 3

[14] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the
34th ACM Symposium on Theory of Computing, pages 767–775, 2002. 2

[15] Subhash Khot and Rishi Saket. SDP integrality gaps with local `1-embeddability. In
Proceedings of the 50th IEEE Symposium on Foundations of Computer Science, 2009. 2

[16] Subhash Khot and Rishi Saket. Approximating CSPs using LP relaxation. In Proceed-
ings of the 42nd International Colloquium on Automata, Languages and Programming, 2015.
3

[17] Subhash Khot, Madhur Tulsiani, and Pratik Worah. A characterization of strong ap-
proximation resistance. In Proceedings of the 46th ACM Symposium on Theory of Com-
puting, pages 634–643. ACM, 2014. 4, 5, 16, 22, 23, 24

[18] Vladimir Kolmogorov, Johan Thapper, and Stanislav Živný. The power of linear pro-
gramming for general-valued CSPs. SIAM Journal on Computing, 44(1):1–36, 2015. 3

[19] Pravesh Kothari, Raghu Meka, and Prasad Raghavendra. Personal Communication,
2016. 2, 3

26



[20] Robert Krauthgamer, James R Lee, Manor Mendel, and Assaf Naor. Measured de-
scent: A new embedding method for finite metrics. Geometric & Functional Analysis
GAFA, 15(4):839–858, 2005. 6

[21] Euiwoong Lee. Hardness of graph pricing through generalized max-dicut. In Pro-
ceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, pages
391–399. ACM, 2015. 3

[22] L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0-1 optimization.
SIAM J. on Optimization, 1(12):166–190, 1991. 2

[23] Prasad Raghavendra. Optimal algorithms and inapproximability results for every
CSP? In STOC, pages 245–254, 2008. 2, 4

[24] Prasad Raghavendra and David Steurer. Integrality gaps for strong SDP relaxations
of unique games. In Proceedings of the 50th IEEE Symposium on Foundations of Computer
Science, 2009. 2

[25] Grant Schoenebeck. Linear level Lasserre lower bounds for certain k-CSPs. In Pro-
ceedings of the 49th IEEE Symposium on Foundations of Computer Science, 2008. 2

[26] Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations between the con-
tinuous and convex hull representations for zero-one programming problems. SIAM
J. Discrete Math., 3(3):411–430, 1990. 2

[27] Johan Håstad. On the Efficient Approximability of Constraint Satisfaction Problems.
In Surveys in Combinatorics, volume 346, pages 201–222. Cambridge University Press,
2007. 1

[28] Johan Thapper and Stanislav Živný. The complexity of finite-valued CSPs. In Proceed-
ings of the 45th ACM Symposium on Theory of Computing, pages 695–704. ACM, 2013.
3

[29] Johan Thapper and Stanislav Živný. The power of Sherali-Adams relaxations for
general-valued CSPs. arXiv preprint arXiv:1606.02577, 2016. 3

[30] Madhur Tulsiani. CSP gaps and reductions in the Lasserre hierarchy. In Proceedings of
the 41st ACM Symposium on Theory of Computing, 2009. 2

A Omitted proofs from Section 3 and Section 5

Lemma 3.8 Let η < 1/4 and m = γ · n for γ > 1. Then for τ ≤ 1
n0
·
(

1
e·k3k ·γ

)1/η
the following

holds:

P
H∼Hk(m,n,n0,Γ)

[H is not (τ, η)-sparse] ≤ 3 ·
(

k3k · γ
nη/4

)1/k

.

Proof: As in the proof of Lemma 3.5, given a random hypergraph H, we construct a hy-
pergraph H′ ( by contracting all the vertices in [n0]× {j} to j ∈ [n] ).
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Consider a subset of vertices S ⊆ V(H) and let S′ ⊆ V(H′) be the corresponding contracted
set in H′. Since each edge in H corresponds to an edge in H′ (counting multiplicities), we
have

|E(S)| ≥ |S|
k− 1− η

⇒
∣∣E(S′)∣∣ ≥ |S|

k− 1− η
≥ |S′|

k− 1− η
.

Thus, it suffices to show that H′ is (τ′, η)-sparse for τ′ = τ · n0, since |S′| ≤ τ · N =
(τ · n0) · n. Given any multiset in [n]k, the probability that it corresponds to an edge in H′

is at most (k!) · (m/nk). Thus, the probability that there exists a set T of size at most τ′ · n,
containing at least |T| /(k− 1− η) edges (counting multiplicities) is at most

τ′·n
∑
h=1

(
n
h

)
·
(

hk

r

)
·
(

k! ·m
nk

)r

,

where r = h
k−1−η . Note that we also need to consider h = 1 as edges in H′ correspond to

multisets of size k, and so may not have all distinct vertices. Simplifying the above using
(a

b) ≤
( a·e

b

)b and k! ≤ kk gives

τ′·n
∑
h=1

(
n
h

)
·
(

hk

r

)
·
(

k! ·m
nk

)r

≤
τ′·n
∑
h=1

(n · e
h

)h
·
(

hk · e
r

)r

·
(

kk ·m
nk

)r

=
τ′·n
∑
h=1

(
ek−η · (k− 1− η) · kk · γ ·

(
h
n

)η)h/(k−1−η)

≤
τ′·n
∑
h=1

(
k3k · γ ·

(
h
n

)η)h/(k−1−η)

Let θ = η/(2k). We divide the above summation in two parts and first consider

τ′·n
∑

h=nθ

(
k3k · γ ·

(
h
n

)η)h/(k−1−η)

≤
τ′·n
∑

h=nθ

(
k3k · γ ·

(
τ′
)η
)nθ/(k−1−η)

≤ 2 · exp
(
−nθ

k

)
≤ 2 · k

nθ
,

for τ′ ≤
(
e · k3k · γ

)−1/η . Considering the first half of the summation, we get

nθ

∑
h=1

(
k3k · γ ·

(
h
n

)η)h/(k−1−η)

≤ nθ ·
(

k3k · γ
n(1−θ)·η

)1/k

≤
(

k3k · γ
nη/4

)1/k

= k3 · γ1/k · n−θ/2 .

Combining the two bounds gives that the probability is at most 3k3 · γ1/k · n−θ/2, which
equals the desired bound.
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Claim 5.9 Let ζ ∈ Cδ( f ) and let ν be the corresponding distribution supported in f−1(1) such
that for all i ∈ [k], we have ζi = Eα∼ν [(−1)αi ]. Let t1, . . . , tk ∈ [0, 1] be such that for all i ∈ [k],
|ti − |ζi|| ≤ ε for ε < δ/2. Then there exists a distribution ν′ on {0, 1}k such that∥∥ν− ν′

∥∥
1 = O(k · (ε/δ)) and ∀i ∈ [k], E

α∼ν′
[(−1)αi ] = sign(ζi) · ti .

Proof: Let rj = sign(ζ j) · tj be the desired bias of the jth coordinate. Then,
∣∣ζ(j)− rj

∣∣ ≤ ε for
all j ∈ [k] We construct a sequence of distributions ν0, . . . , νk such that ν0 = ν and νk = ν′.
In νj, the biases are (r1, . . . , rj, ζ j+1, . . . , ζk).

The biases in ν0 satisfy the above by definition. We obtain νj from νj−1 as,

νj = (1− τj) · νj−1 + τj · Dj ,

where Dj is the distribution in which all bits, except for the jth one, are set independently
according to their biases in νj−1. For the jth bit, we set it to sign(rj− ζ j) (if rj− ζ(j) = 0, we
can simply proceed with νj = νj−1). The biases for all except for the jth bit are unchanged.
For the jth bit, the bias now becomes rj if

rj = (1− τj) · ζ j + τj · sign(rj − ζ j) =⇒ τj · (sign(rj − ζ j)− rj) = (1− τj) · (rj − ζ j) .

Since ζ ∈ Cδ( f ), we know that
∣∣sign(rj − ζ(j))− rj

∣∣ ≥ δ/2. Also,
∣∣rj − ζ(j))

∣∣ ≤ ε by
assumption. Thus, we can choose τj = O(ε/δ) which gives that

∥∥νj − νj−1
∥∥

1 = O(ε/δ).
The final bound then follows by triangle inequality.
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