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Abstract

Approximating the eigenvalues of a Hermitian operator can be solved by a quantum logspace algo-
rithm. We introduce the problem of approximating the eigenvalues of a given matrix in the context of
classical space-bounded computation. We show that:

• Approximating the second eigenvalue of stochastic operators (in a certain range of parameters) is
BPL–complete, and,

• We show a BPL algorithm that approximates any eigenvalue of a stochastic and Hermitian operator
with constant accuracy.

The last result falls short of achieving the polynomially-small accuracy that the quantum algorithm
achieves. Thus, at our current state of knowledge, for stochastic and Hermitian operators we can achieve
polynomially-small accuracy with quantum logspace algorithms, constant accuracy with probabilistic
logspace algorithms, and no non-trivial result is known for deterministic logspace algorithms. The quan-
tum algorithm also has the advantage of working over arbitrary, possibly non-stochastic Hermitian oper-
ators.

Our work raises several challenges. First, a derandomization challenge, trying to achieve a determin-
istic algorithm approximating eigenvalues with some non-trivial accuracy. Second, a de-quantumization
challenge trying to decide whether the quantum logspace model is strictly stronger than the classical
probabilistic model or not. It also casts the probabilistic and quantum space-bounded models as prob-
lems in linear algebra with differences between operators that are symmetric, stochastic or both. We
therefore believe the problem of approximating the eigenvalues of a graph is not only natural and impor-
tant by itself, but also important for understanding the relative power of deterministic, probabilistic and
quantum logspace computation.
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1 Introduction

A graph G can be associated with a linear operator A that describes a random walk on G. The operator A
takes an especially simple form when G is undirected:

If G is regular and undirected then A is symmetric and has a complete basis of orthonormal eigenvectors
with real eigenvalues. In other words, there exists a unitary basis under which A is diagonal with real
eigenvalues �i on the diagonal.

If G is undirected but not necessarily regular, then A is diagonalizable with real eigenvalues, i.e., the pic-
ture is the same as before except that the basis is not necessarily unitary.1

If G is directed then A does not necessarily have a full basis of eigenvectors. In this case A (like any
other linear operator) can be brought to its canonical Jordan Normal Form, where there exists a basis
under which A is block-diagonal and each block has an eigenvalue � on the main diagonal and 1 on
the diagonal above it. For each �-block there exists exactly one eigenvector with eigenvalue �. The
number of blocks with eigenvalue � is the geometrical multiplicity of � and equals the dimension of
the �-eigenspace. The number of times � appears on the main diagonal is the algebraic multiplicity
of � and equals the multiplicity of � as a root of the characteristic polynomial of A.

Thus, even though directed graphs do not have a full set of eigenvectors they still have a full set of
eigenvalues. The eigenvalues of a stochastic matrix are always bounded by 1, and the all-one vector is a 1

eigenvector. The Perron Frobenius theorem tells us that if the graph is strongly connected and a-periodic
then the 1-eigenvector is unique. If the graph is periodic with a period h then there are h complex eigenvalues
corresponding to the h different h-roots of unity.

In the paper we show that the problem of estimating the magnitude of the second eigenvalue of a stochas-
tic operator is BPL–complete. More precisely, we define the following promise problem:

Definition 1.1 (SecondEV ). The input is a stochastic matrix A of dimension n with possibly complex
eigenvalues �

1

, . . . ,�n. We have the promise that �
1

= 1 and �
2

2 R. Also, |�n|  . . .  |�
3

|  1� 2

n .

No instances : �
2

� 1� 1

n .

Yes instances : �
2

 1� 2

n .

And we prove:

Theorem 1.1. SecondEV is BPL–complete.

This raises several immediate questions:

• Is it possible to approximate in BPL the second eigenvalue of a general (not necessarily stochastic or
non-negative) operator?

• Does the problem stay BPL–hard when the graph is undirected?

• How difficult is it to approximate all the spectrum of an operator? What accuracy can we achieve?
1If G is undirected and irregular, then the adjacency matrix Ã is symmetric (because the graph is undirected) but the transition

matrix A = D�1Ã, where F is the diagonal out-degree matrix, is not symmetric. Yet, consider the matrix L = D�1/2ÃD�1/2.
L is symmetric and thus has an eigenvector basis with real eigenvalues. A = D�1/2LD1/2 is conjugate to L and thus is diagonal-
izable and has the same eigenvalues. As A is stochastic its eigenvalues are in the range [�1, 1].
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1.1 The bigger picture

Derandomization is a major challenge of theoretical computer science. In the space-bounded model, Nisan
[13] constructed a pseudo-random generator (PRG) against logarithmic space-bounded non-uniform algo-
rithms that uses seed length O(log

2 n). Using that he showed BPL is contained in the class having si-
multaneously polynomial time and O(log

2 n) space. Saks and Zhou [18] showed BPL is contained in
DSPACE(log1.5 n). Reingold [14] showed undirected st-connectivity (which was shown to be in RL by [1])
already belongs to L. These results seem to indicate that randomness does not add additional power to the
model and many conjecture that in fact BPL = L. Yet, we currently do not know a PRG with seed length
o(log2 n), nor a general derandomization result that simultaneously uses o(log2 n) space and polynomial
time.

One can look up and ask which upper bounds we know on BPL. We then know the following:

NC1 ✓ L ✓ RL ✓ NL ✓ DET ✓ NC2 ✓ DSPACE(O(log

2 n)),

where DET is the class of languages that are NC1 Turing-reducible to the problem intdet of computing the
determinant of an integer matrix (see [3] for a definition of DET). As it turns out, many important problems
in linear algebra, such as inverting a matrix, or equivalently, solving a set of linear equations are in DET,
and often complete for it (see, e.g., [3]). The fact that NL ✓ DET is due to [3] who showed that the directed
connectivity problem, STCON is reducible to intdet. DET ✓ NC2 follows from Csansky’s algorithm [4]
for the parallel computation of the determinant. In addition to the above we also know that BPL ✓ DET
(e.g., using the fact that matrix powering is DET complete).

While matrix powering is complete for DET, approximating matrix powering of stochastic matrices
is in BPL. To see that, assume A represents a stochastic matrix. Then one can approximate Ak

[s, t] by
estimating the probability a random walk over A starting at s reaches t after k steps.2 Conversely, it is
possible to convert a BPL machine to a stochastic operator A such that the probability the machine moves
from s to t in k steps is Ak

[s, t].3 Thus, approximating matrix-powering of stochastic operators is complete
for BPL.

We now deviate from the classical picture we had so far and consider a quantum space-bounded model.
In 1999, Watrous [22] defined the model of quantum logspace computation, and proved several facts on it.
The definition was modified several times, see, [21]. Roughly speaking, a language is in BQL if there exists
an L–uniform family of quantum circuits solving the language with only O(log n) qubits. The quantum
circuits are over some universal basis of gates (e.g., CNOT, HAD, T) plus intermediate measurements (that
in particular may simulate a stream of random coins). For details we refer the reader to [21, 19]. The works
of Watrous, van Melkebeek and Watson showed that BQL is also contained in NC2.

Recently, it was shown in [19], building on an earlier work by [10], that it is possible to approximate the
singular value decomposition (SVD) of a given linear operator in BQL. This also implies that it is possible
to approximately invert a matrix in BQL. A natural question left open by this work is:

Open problem: Is it possible to approximate the SVD of an arbitrary linear operator already in BPL?
The problem is also open for Hermitian operators where singular values and eigenvalues coincide (up to
their sign). In fact, the question is still open even when the operator is the transition matrix arising from a
walk on a regular, undirected graph.

2For completeness we include a proof of this in Appendix A. We also extend the class for which this works to matrices with
negative or complex entries as long as their infinity norm is at most 1.

3This reduction is standard and appears in many papers, e.g., already in [13]. We also employ such a reduction, see Subsection
3.1 in this paper.
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Thus, somewhat surprisingly, we see that the deterministic/probabilistic/quantum space-bounded classes
and the class DET are capable of doing some sort of linear algebra on corresponding operators. Namely,

• In DET we can compute exactly the determinant which is the product of all eigenvalues as well as
the product of all singular values. We can also solve matrix powering. Both problems are complete in
DET. With that we can approximately invert an operator or perform the SVD decomposition.

In a sense, DET is an exact computation of the spectrum (e.g., in terms of the characteristic polyno-
mial) of an arbitrary linear operator.

• BQL is capable of approximating the whole singular value decomposition of any operator. This is
somewhat equivalent to saying that BQL is capable of approximating the eigenvalues of Hermitian
operators.

• BPL is capable of approximating matrix powering, and second eigenvalue of a stochastic operator,
and both problems are complete in BPL.

We do not know yet whether we can approximate the whole spectrum even for undirected graphs (that
correspond to operators that are both stochastic and Hermitian, in the regular case) and we discuss it
next.

• In L we do not know how to do any of the above, but Reingold showed L is capable of solving
USTCON, i.e., connectivity on undirected graphs.

Next we will see that on undirected graphs we can approximate in BPL arbitrary eigenvalues to within
constant accuracy. We remark that in BQL we can do the same to arbitrary Hermitian operators and with
polynomially-good accuracy.

1.2 Approximating arbitrary eigenvalues of undirected graphs in BPL

We define the following promise problem:

Definition 1.2 (EV↵,�). The input is a stochastic, Hermitian matrix A, � 2 [�1, 1] and ↵ < �.

Yes instances : There is an eigenvalue �i of A such that |�i � �|  ↵.

No instances : All eigenvalues of A are �–far from �.

One way to design a BPL algorithm for the problem is by “de-quantumizing” the quantum algorithm.4

The BQL algorithm solves the above problem for any Hermitian operator A whose eigenvalues are ⌧–
separated, for, say, ⌧ = n�c, ↵ =

⌧
4

and � = 2↵. That is, the quantum algorithm can handle any polyno-
mially small accuracy. With such accuracy one can turn the solution of the promise problem to a procedure
approximating the whole spectrum.

We develop a BPL algorithm that follows the main idea of the quantum algorithm, and in that sense we
de-quantumize the quantum algorithm, but we achieve much worse parameters. Specifically, we prove that
the promise problem EV↵,� belongs to BPL, for constant parameters ↵ < �. On the one hand the result
is disappointing because the quantum algorithm does so much better and can handle polynomially small
gaps. On the other hand, we remark that we do not know how to achieve even constant approximation with
a deterministic logspace algorithm.

4We remark that Ben-Or and Eldar [2] recently de-quantumized the SVD quantum algorithm and obtained a classical probabilis-
tic algorithm for inverting matrices that achieves the state of the art running time, using a completely new approach that is derived
from the quantum algorithm. We would like to do the same in the space-bounded model.
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1.3 Our technique

The usual way of describing the quantum algorithm is that it applies quantum phase estimation on the com-
pletely mixed state. The completely mixed state is a uniform mixture of the pure states that are formed from
the eigenvectors of A, and on each such eigenvector, the quantum phase estimation estimates the correspond-
ing eigenvalue. Thus, if the procedure can be run in (quantum) logarithmic space, we essentially sample a
random eigenvector/eigenvalue pair, and from that we can approximately get the SVD decomposition of A.

Another (less standard) way of viewing the quantum algorithm is that it manipulates the eigenvalues of
an input matrix A without knowing the decomposition of A to eigenvectors and eigenvalues. This can be
done using the simple fact that if �

1

, . . . ,�n are the roots of the characteristic polynomial of A, and if p is
an arbitrary univariate polynomial, then p(�

1

), . . . , p(�n) are the roots of the characteristic polynomial of
the matrix p(A). The probability the algorithm measures � is proportional to Tr (p(A)), where p is a shift of
the Fejér kernel by � (see, e.g., [11, Chapter 2]). Applying p on A amplifies the eigenvalues that are close to
� to a value close to 1, and damps eigenvalues far from � close to 0. Thus, Tr (p(A)) approximately counts
the number of eigenvalues close to �.

We would like to follow the same approach but with a probabilistic algorithm rather than a quantum one.
We say a matrix A is simulatable if a probabilistic logspace algorithm can approximate Ak

[s, t] for any k
polynomial in n and with polynomially-small accuracy (see Definition 2.2 for the exact details). From the
discussion above it is clear that if A is the transition matrix of a (directed or undirected) graph then A is
simulatable (see Lemma 2.1). We remark that in the appendix we show that even non-stochastic matrices
A with negative or complex entries are simulatable as long as A has infinity norm at most 1, namely, those
matrices A for which all rows i 2 [n] have `

1

norm at most 1,
P

j |A[i, j]|  1.
If A is simulatable and the coefficients of p(x) =

P

i cix
i are not too large (i.e., only polynomially large

in n), then we can approximate in BPL the matrix p(A) =

P

i ciA
i. In particular, we can also approximate

Tr (p(A)). By taking p to be a threshold polynomial with degree logarithmic in n (that guarantees the size
of the coefficients ci is polynomial in n) and a threshold around �, we can solve EV↵,�(A) for constants
↵ < � (see Section 4).

There are many other possible candidate functions for a threshold polynomial p. However, we prove
in Theorem 4.4 that no polynomial can do significantly better than a threshold polynomial. The reason
the quantum algorithm works better is because it is able to take p up to some polynomial degree (rather
than logarithmic degree) not worrying about the (quite large) size of the coefficients, thus leading to much
better accuracy. The quantum algorithm also has the advantage that it works for any normal operator A, not
necessarily stochastic or simulatable.

Thus, the algorithm we give for EV↵,� is simple: Approximate Tr (p(A)) to a simple logarithmic degree
polynomial p. Nevertheless, we believe it features a new component that has not been used before by
probabilistic space-bounded algorithms. An algorithm that takes a random walk on a graph and takes a
decision based on the walk length and connectivity properties of the graph (as, e.g., [1]) works with some
power of the input matrix A. More generally, such an algorithm can work with a convex combination of
powers of the input matrix (by probabilistically choosing which power to take). The algorithm we present
utilizes arbitrary (positive or negative) combinations of matrix powers and we believe it is a crucial feature
of the solution. We are not aware of previous BPL algorithms using such a feature.

The approach above does not work for approximating the eigenvalues of a directed graph G. It is still
true that the resulting operator A is stochastic and therefore simulatable. Also, it remains true that if � is
an eigenvalue of A (i.e., a root of the characteristic polynomial) then p(�) is a root of p(A). However,
since A is not Hermitian, the eigenvalues � of A may be complex and we do not know how to control p(�)
when p may have both negative and positive coefficients. The reason why we manage to prove Theorem
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1.1 for arbitrary stochastic operators, is that in the special case of the second eigenvalue (and when the first
eigenvalue is known) we can amplify with a polynomial having only positive coefficients, and then we can
control the complex eigenvalues.

1.4 A short discussion

At our current state of knowledge, the problem of approximating the eigenvalues of an undirected graph
separates deterministic, probabilistic and quantum complexity: In BQL we can solve it with polynomially-
small accuracy, in BPL with constant accuracy and in L we do not know how to solve it at all. Thus it poses
several challenges:

• First, there is the natural question of whether one can approximate eigenvalues in BPL with better
accuracy. A positive answer would imply BPL approximations to many important linear algebra
problems that are currently only known to be in NC2. A negative answer would imply a separation
between BQL and BPL [6].

• Second, it raises the natural question of derandomization. Can one design a deterministic algorithm
approximating eigenvalues to constant accuracy?

We believe the solution of this problem is not only important by itself, but may also shed new light on
the strengths and weaknesses of the space-bounded model, and the relative strengths of the deterministic,
probabilistic and quantum models of space-bounded computation.

It is also interesting to compare the BPL–complete promise problem SecondEV that we get with the
RL–complete promise problem given in [15]. First, following [12, 9] they define �⇡(G) to be the second
largest eigenvalue of A ˜A, where ˜A[i, j] = ⇡(j)A[j,i]

⇡(i) and ⇡ is the stationary distribution of a random walk on
G. Then, they define the promise problem POLY-MIXING S-T CONNECTIVITY to be:

Input : (G, s, t, 1k) where G = (V,E) is an out-regular directed graph, s, t 2 V , and k 2 N.

Yes instances : �⇡(G)  1� 1

k , and ⇡(s),⇡(t) � 1

k .

No instances : There is no path from s to t in G.

Notice that the problem is made RL–complete by forcing the condition that in No instances there is no
path from s to t. The main difference between the two promise problems is that in Section 3 the spectral
gap is defined with respect to the eigenvalues of the transition operator A (i.e., the roots of its characteristic
polynomial) whereas in [15], the spectral gap is defined with respect to a normalized inner product space,
and the normalization is with respect to the unknown stationary distribution ⇡, which is, by itself, a major
component of the solution.

2 Preliminaries

2.1 Space bounded probabilistic computation

A deterministic space-bounded Turing machine has three semi-infinite tapes: an input tape (that is read-
only); a work tape (that is read-write) and an output tape (that is write-only and uni-directional). The space
complexity of the machine is the number of cells on the work tape. The running time of a space-bounded
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Turing machine with s(n) � log n space complexity is bounded by 2

O(s(n)) time. A probabilistic space-
bounded Turing machine is similar to the deterministic machine (and in particular we require it always halts
within 2

O(s(n)) time) except that it can also toss random coins. One convenient way to formulate this is by
adding a fourth semi-infinite tape, the random-coins tape, that is read-only, uni-directional and is initialized
with perfectly uniform bits. We are only concerned with bounded-error computation: We say a language is
accepted by a probabilistic Turing machine if for every input in the language the acceptance probability is
at least 2/3, and for every input not in the language it is at most 1/3. As usual, the acceptance probability
can be amplified as long as there is some non-negligible gap between the acceptance probability of yes and
no instances.

Definition 2.1. A language is in BPSPACE(s(n)) if it is accepted by a probabilistic space bounded TM
with space complexity s(n). BPL = [cBPSPACE(c log n).

2.2 Simulatable families of matrices

Often we are interested in approximating a value (e.g., an entry in a matrix with integer values or the whole
matrix) with a probabilistic machine. More precisely, assume there exists some value u = u(x) 2 R that is
determined by the input x 2 {0, 1}n. We say a probabilistic TM M(x, y) (", �)–approximates u(x) if:

8x2{0,1}n Pr

y
[|M(x, y)� u(x)| � "]  � (1)

A random walk on a graph G (or its transition matrix A) can be simulated by a probabilistic logspace
machine. As a consequence, a probabilistic logspace machine can approximate powers of A well. Here
we try to extend this notion to arbitrary linear operators A, not necessarily stochastic. We say a matrix A
is simulatable if any power of it can be approximated by a probabilistic algorithm running in small space.
Formally:

Definition 2.2. We say that a family of matrices A is simulatable if there exists a probabilistic algorithm
that on input A 2 A of dimension n with kAk  poly(n), k 2 N, s, t 2 [n], runs in space O(log

nk
"� ) and

(", �)–approximates Ak
[s, t].

In Appendix A we give for completeness a proof that:

Lemma 2.1. The family of transition matrices of (directed or undirected) graphs is simulatable.

We say kAk1  c if for every i 2 [n],
P

j |A[i, j]|  c. In the same Appendix we also show:

Lemma 2.2. The family of real matrices with infinity norm at most 1 is simulatable.

3 A new canonical problem for probabilistic space-bounded classes

We define the following promise problem:

Definition 3.1 (The promise problem SecondEV↵,�). The input is 0  ↵ < � < 1 and a stochastic matrix
A of dimension n with possibly complex eigenvalues �

1

, . . . ,�n. We have the promise that �
1

= 1 and
�
2

2 R. Also, |�n|  . . .  |�
3

|  1� �.

No instances : �
2

� 1� ↵.

Yes instances : �
2

 1� �.

In what follows, we shall see that this problem captures the hardness of probabilistic computation in
logarithmic space.
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((s, 0), 1)

((s, 0), 2)((t, T + 1), 1)

((t, T + 1), 2)

Figure 1: An example for G00 with T = 3.

3.1 Reducing Turing machines to graphs

Let M be a probabilistic space-bounded TM that accepts some language L with c log n space and T = nc

time. Fix an input x. Let G = (V,E) be the configuration graph of G on x, s the initial configuration and t
the unique accepting configuration.

Define the layered configuration graph G0
= (V 0, E0

). V 0
= V ⇥ {1, . . . , T + 1}, i.e., G0 has T + 1

layers, each layer containing |V | vertices. There is an outgoing edge from vertex (i, `) in layer `  T to
vertex (j, `+ 1) in layer `+ 1 if and only if (i, j) 2 E. Without loss of generality, any vertex (i, `) in layer
`  T has at least one neighbor in layer `+ 1.

Next, we define a graph G00
= G00

(M,x) that contains two copies of G0 with some additional edges and
has two strongly connected components if and only if s is not connected to t in G. Formally, the vertex set
of G00 is V 00

= {(v0, k) | v0 2 V 0, k 2 {1, 2}}. The edges E00 of G00 are as follows:

• For every (a, b) 2 E0 and k 2 {1, 2}, ((a, k), (b, k)) 2 E00.

• For every r 6= t, r 2 V and k 2 {1, 2}, (((r, T + 1), k), ((s, 1), k)) 2 E00.

• (((t, T + 1), 1), ((s, 1), 2)) 2 E0 and (((t, T + 1), 2), ((s, 1), 1)) 2 E00.

See Figure 1.
Let A be the transition matrix of G00 and note that it is stochastic. We claim:

Lemma 3.1. Let p = p(M,x) = AT
[s, t] denote the probability that M accepts x. Let ! be a primitive

(T + 1)-th root of unity. The eigenvalues of A are
n

0,!k, (1� 2p)
1

T+1!k | 0  k  T
o

.

Proof. Denote W = A†. It is known that the eigenvalues of A and W coincide. Let v be any eigenvector of
W with eigenvalue � 6= 0.

Claim 3.1. For every s 6= j 2 V , v[((j, 1), 1)] = v[((j, 1), 2)] = 0

Proof. The in-degree of ((j, 1), 1), (j, 1), 2) is zero and � 6= 0.
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Denote v[((s, 1), 1)] = x and v[((s, 1), 2)] = y.

Claim 3.2. For every j 2 V and ` � 0, W `�1

[j, s] is the probability M reaches j after taking `�1 random
steps from s. Then,

v[((j, `), 1)] =

x

�`�1

W `�1

[j, s]

v[((j, `), 2)] =

y

�`�1

W `�1

[j, s].

Proof. The proof is by induction. The case of ` = 1 was already covered. Assume the claim holds for ` and
fix a vertex ((j, `+ 1), 1). Then:

(Wv)[((j, `+ 1), 1)] =

X

k:(k,j)2E

v[((k, `), 1)] · 1

d
out

(k)

=

X

k:(k,j)2E

x

�`�1

W `�1

[k, s] · 1

d
out

(k)
(Hypotesis)

=

x

�`�1

W `
[j, s].

As Wv = �v, the claim for ((j, `+ 1), 1) follows. The other claim is similar.

Finally, the equation Wv = �v for the vertices ((s, 1), 1) and ((s, 1), 2) give us two equations. The
equation for the vertex ((s, 1), 1) is

(Wv)[((s, 1), 1)] =

X

j 6=s

v[((j, T + 1), 1)] + v[((t, T + 1), 2)].

As
P

j2V v[((j, T + 1), 1)] = (1�p)x
�T and v[((t, T + 1), 2)] = py

�T , we get the equation

�x =

(1� p)x

�T
+

py

�T
. (2)

Similarly, the equation for the vertex ((s, 1), 2) is

�y =

(1� p)y

�T
+

px

�T
. (3)

Adding the two equations we get:

�(x+ y) =

1

�T
(x+ y).

If x 6= �y we must have �T+1

= 1. If x = �y Equation (2) and Equation (3) are the same and give
�T+1x = (1 � 2p)x. Since x 6= 0 (otherwise the whole vector v is zero) we have �T+1

= 1 � 2p. Hence,
all the eigenvalues belong to the declared set.

Finally, we notice that for x = �y and � such that �T+1

= 1 � 2p we can build a corresponding
eigenvector, and similarly for 6= �y and � s.t. �T+1

= 1 we may take x = y and the equations work.
Hence, the eigenvalues are exactly the given set.
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3.2 An RL–hard problem

In this subsection we show that SecondEV↵,� with ↵ = 0 and � =

1

n , that is – distinguishing between the
case that the eigenvalue 1 has algebraic multiplicity 2 and the case that the second eigenvalue is 1

n–far from
1, is RL–hard. We stress that we only prove RL-hardness and we do not know how to solve SecondEV

0, 1n
in RL. We prove:

Theorem 3.2. SecondEV
0, 1n

is RL–hard.

Proof. Let L 2 RL and let M be the probabilistic space-bounded TM that accepts it. Given an input x, let
G,G0, G00,! and p be as above. If x 2 L then without loss of generality 2⇡2

T  p < 1

2

and otherwise p = 0.
The dimension of the matrix is n = 2(T + 1)|V |.

Let A be the transition matrix of G00 of dimension n and consider B =

1

2

A +

1

2

In⇥n. By Lemma 3.1,

the eigenvalues of B are
n

1

2

, 1
2

+ !k, 1
2

+

1

2

(1� 2p)
1

T+1!k | 0  k  T
o

. For 0  k  T , denote

�k =

1

2

+

1

2

(1� 2p)
1

T+1!k

µk =

1

2

+

1

2

!k.

First, note that |µk|2 can be expressed as some constant independent of k plus 1

2

cos

⇣

2⇡k
T+1

⌘

. Similarly, |�k|2

can be expressed as some constant independent of k plus (1�2p)
1

T+1

2

cos

⇣

2⇡k
T+1

⌘

. For k > 0, cos
⇣

2⇡k
T+1

⌘

is
maximized at the lowest angle, i.e., at k = 1. Thus, for k 6= 0, |µk|  |µ

1

| and |�k|  |�
1

|. By inspection,
µ
0

= 1, �
0

=

1

2

+

1

2

(1� 2p)
1

T+1 and |�
1

|  |µ
1

|  1� ⇡2

2T 2 . One can verify that:

• If p � 2⇡2

T then �
0

 1� ⇡2

2T 2  1� 1

n , so all eigenvalues but µ
0

are at most 1� 1

n in magnitude.

• If p = 0 then �
0

= 1, so all eigenvalues but µ
0

and �
0

are at most 1� 1

n in magnitude.

B then satisfies the promise of SecondEV
0, 1n

. It is well-known that A can be computed using logarithmic
space and so can B. Hence, the reduction is a logspace reduction.

3.3 A BPL–complete problem

While we do not know how to solve SecondEV
0, 1n

in RL, we do know how to solve it in BPL. In fact we
can do it for even stricter parameters. Specifically, we show that SecondEV↵,� with ↵ =

1

n and � =

2

n is
BPL–complete. We first show:

Lemma 3.3. SecondEV 1
n , 2n

is in BPL.

Proof. Let A be the input to the promise problem and set m = 4n log n. We then have:

Claim 3.3. If A is a Yes instance then Tr (Am
)  1 +

1

n7 .

Proof. Tr (Am
) =

Pn
k=1

�m
k . 5 Then:

|Tr (Am
)| =

�

�

�

�

�

n
X

k=1

�m
k

�

�

�

�

�

 1 +

n
X

k=2

|�k|m  1 + n

✓

1� 2

n

◆m

.

5This equation is true even when A is not diagonalizable. The �k are the roots of the characteristic polynomial. To see that, write
A in its Jordan Normal Form, A = V JV �1 where the eigenvalues of A, �1, . . . ,�n, lie on the diagonal of J . Am = V JmV �1

so Tr (Am) = Tr (Jm) and since J is triangular, the diagonal of Jm is �m
1 , . . . ,�m

n .

9



Using the fact that
�

1� 2

n

�m  e�2m/n
= e�8 logn

=

1

n8 , the claim thus follows.

Claim 3.4. If A is a No instance then Tr (Am
) � 1 +

1

n5 .

Proof. By the reversed triangle inequality:

|Tr (Am
)| � 1 + �m

2

�

�

�

�

�

�

n
X

k=3

�m
k

�

�

�

�

�

� 1 +

✓

1� 1

n

◆m

� n

✓

1� 2

n

◆m

.

By the inequality
�

1� x
n

�n � e�x
⇣

1� x2

n

⌘

we have that
�

1� 1

n

�m � 1

n4

⇣

1� 4 logn
n

⌘

. Now, since

n
�

1� 2

n

�m  1

n7 we overall conclude that |Tr (Am
)| � 1 +

1

n5 .

Approximating Tr (Am
) well with high probability can be done in logarithmic space. By Lemma 2.2 and

simple composition of logspace reductions, we can (

1

n8 ,
1

3

)–approximate Tr (Am
) and decide the promise

problem using O(log n) space.

The main result is the converse direction that the problem is BPL–complete.

Lemma 3.4. Let L 2 BPL. Then, L is logspace reducible to SecondEV 1
n , 2n

.

Proof. Let L 2 BPL and fix an input x. Let M,G,G0, G00,!, p be as before. Let A and B =

1

2

A+

1

2

In⇥n

be as in the proof for Theorem 3.2. One can verify that:

• If p � 2⇡2

T then �
0

 1� ⇡2

2T 2  1� 2

n , so all eigenvalues but µ
0

are at most 1� 2

n in magnitude.

• If p  1

4T then �
0

� 1

2

+

1

2

�

1� 1

2T

�

1
T � 1 � 1

3T 2 � 1 � 1

n , so all eigenvalues but µ
0

and �
0

are at
most 1� 2

n in magnitude. The second inequality is derived from the fact that
�

1� x
2

�x � 1� 2x2

3

for
small x > 0.

Without loss of generality, p can be taken to be either larger than 2⇡2

T or smaller than 1

4T (by simple BPL
amplification arguments), so B satisfies the promise of SecondEV 1

n , 1n
.

4 Approximating eigenvalues with constant accuracy

In this section we prove:

Theorem 4.1. There exists a probabilistic algorithm that on input a stochastic matrix B with real eigenval-
ues in [0, 1], constants � > ↵ > 0 and � 2 [0, 1] such that:

• There are d eigenvalues �i satisfying |�� �i|  ↵,

• All other eigenvalues �i satisfy |�� �i| � �,

outputs d with probability at least 2/3. Furthermore the algorithm runs in probabilistic space O(log n).

We remark that Theorem 4.1 covers the case of transition matrices of undirected graphs. As mentioned
earlier, a transition matrix A of an undirected graph has an eigenvector basis with real eigenvalues in the
range [�1, 1]. Taking B =

1

2

A+

1

2

In⇥n we get a stochastic matrix with eigenvalues in the range [0, 1], and
whose eigenvectors are in a natural one-to-one correspondence with A’s eigenvalues.
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Proof. (Of Theorem 4.1) The input to the algorithm is n,B,�,↵,�. We assume the existence of a univariate
polynomial p(x) =

PM
i=0

cix
i with the following properties:

• p has a sharp peak around �, i.e., p(x) � 1 � ⌘ for x 2 [� � ↵,� + ↵] and p(x)  ⌘ for x 2
[0, 1] \ (�� �,�+ �), where ⌘ = ⌘(n) = n�2.

• p can be computed in L. Formally, M = deg(p) and |ci| are at most poly(n) and for every i, ci can
be computed (exactly) by a deterministic Turing machine that uses O(log n) space.

In the next subsection we show how to obtain such a polynomial p with M = 32(� � ↵)�2

log n and
|ci|  2

O(M).
Choose " = 1

n and � =

1

3

. Set "0 = " ·2�2M and �0 = � ·2�M . The output of the algorithm is the integer
closest to

R =

M
X

i=0

ci · TP(B,n, i, "0, �0)

where TP is the probabilistic algorithm guaranteed by Lemma 2.2 that ("0, �0)–approximates Tr (Bi
).

It is easy to check that:

Claim 4.1. Pr[|R� Tr (p(B))| � "]  �.

As Tr (p(B)) =

Pn
i=1

p(�i), Pr[|R �
Pn

i=1

p(�i)| � "]  �. However, p(�i) is large when �i is ↵–
close to � and small when it is �–far from �, and we are promised that all eigenvalues �i are either ↵–close
or �–far from �. Thus,

|Tr (p(B))� d|  n⌘.

Altogether, except for probability �, |R�d|  "+n⌘  1

3

, and the nearest integer closest to R is d. The
correctness follows. It is also straightforward to check that the space complexity is O(log(n"�1��1

)) =

O(log n).

The constant accuracy we achieve is far from being satisfying. The matrix B has n eigenvalues in the
range [0, 1], so the average distance between two neighboring eigenvalues is 1/n. Thus, the assumption that
there is an interval of length ��↵ with no eigenvalue is often not true. The desired accuracy we would like
to get is o(1/n). Having such accuracy would enable outputting an approximation of the whole spectrum of
B, using methods similar to those in [19], thus getting a true classical analogue to the quantum algorithm in
[19]. However, we do not know how to achieve subconstant accuracy. The question whether better accuracy
is possible in BPL is one of the main questions raised by this work.

4.1 Using the symmetric threshold functions

There are several natural candidates for the function p above. In this subsection we use the threshold function
to obtain such a function p. For � =

k
M for some integers k and M , define:

p�(x) =

M
X

i=k

✓

M

i

◆

xi(1� x)M�i.

p� approximates well the threshold function Th�(x) : [0, 1] ! {0, 1} that is one for x � � and zero
otherwise. Specifically, using the Chernoff bound, we obtain:

11



Lemma 4.2. Let x 2 [0, 1]. p�(x) approximates Th�(x) over [0, 1] with accuracy (⇠("))Mx, where " =

��x
x and ⇠(") = e"

(1+")1+" .

As a polynomial in x, p�(x) =

PM
i=0

cix
i with ci = (�1)

i
Pi

j=�M

�

M
j

��

M�j
i�j

�

(�1)

j and therefore

|ci| 
Pi

j=�M

�

M
j

��

M�j
i�j

�

 M
�

M
M/2

�

2

= 2

O(M). Furthermore, ci can be computed (exactly) by a de-
terministic Turing machine that uses O(M) space by simply running through the loop over j, each time
updating the current result by (�1)

j
�

M
j

��

M�j
i�j

�

.
To obtain our polynomial p, define p as the difference between the threshold polynomial around �+�

and the threshold polynomial around ���,

p(x) = p���

(x)� p�+�

(x)

where M = 32(� � ↵)�2

log n and � = (↵+ �)/2. It is easy to check that:

Lemma 4.3. p(x) � 1� n�2 for every x that is ↵–close to � (i.e., |x� �| < ↵) and p(x)  n�2 for every
x that is �–far from � (i.e., |x� �| � �).

4.2 The limitation of the technique

In this subsection, we prove the accuracy of the above technique cannot be enhanced merely by choosing
a different polynomial p. Approximating threshold functions by a polynomial is well-studied and well
understood (see, for example, [17, 8, 5] and references therein). However, we need to adapt this work to
our needs because we have an additional requirement that the magnitude of the polynomial’s coefficients is
small.

We start by formalizing the properties of p that were useful to us. We say that P = {p�,n}�2[0,1],n2N is
a family of polynomials if for every � 2 [0, 1] and n 2 N, p�,n is a univariate polynomial with coefficients
in R.

Definition 4.1 (Small family). Let P be a family of polynomials and fix � 2 [0, 1]. For every n 2 N, write
p�,n(x) =

P

deg(p�,n)
i=0

c�,n,ix
i. We say the family is s(n)–small if,

• deg(p�,n)  2

s(n),

• For every 0  i  deg(p�,n), |c�,n,i|  2

s(n), and

• There exists a deterministic Turing machine running in space s(n) that outputs c�,n,0, . . . , c�,n,deg(p�,n).

Definition 4.2 (Distinguisher family). Let P be a family of polynomials and fix n 2 N. Given ↵ < � in
(0, 1) and ⌘ < 1/2, we say the family is (↵,�, ⌘)–distinguisher for � 2 [0, 1] if,

• For every x 2 [0, 1] that is ↵–close to �, p�,n(x) 2 [1� ⌘, 1], and

• For every x 2 [0, 1] that is �–far from �, p�,n(x) 2 [0, ⌘].

Theorem 4.4. Let ↵,�,�, ⌘ be such that ↵  �, � = o(1), ⌘ = o(n�1

) and � + �  1

2

. Then there is no
(↵,�, ⌘)–distinguisher family for � that is O(log n)–small.

12



Proof. Assume there exists such a family {p�,n}�2[0,1],n2N with s(n) = c0 log n. We first show that we can
assume p has logarithmic degree. Let r�,n(x) be the residual error of truncating p�,n(x) after c log n terms,
for c that will soon be determined. Also, without loss of generality, assume x 2 [0, 1) is bounded away from
1. Then:

r�,n(x) 
deg(p�,n)
X

i=c logn+1

|c�,n,i| · xi  nc0 · x
c logn

1� x
 1

1� x
nc0�c log(1/x).

So, by taking c = d c
0
+2�log(1�x)
log(1/x) e we obtain r�,n(x)  n�2.

We now show that O(log n)–degree polynomials cannot decay around � fast enough. Assume to the
contrary that there exists such a distinguisher family, so |p�,n(x)| < n�1 for x 2 [�+ �, 1]. The following
lemma states that if a function has a small value on an interval, than it cannot be too large outside it. Namely,

Lemma 4.5. [20, Theorem 2.9.11] Let Tn(x) be the Chebyshev polynomial (of the first kind) of degree n.
Then, if the polynomial Pn(x) =

Pn
i=0

cix
i satisfies the inequality |Pn(x)|  L on the segment [a, b] then

at any point outside the segment we have

|Pn(x)|  L ·
�

�

�

�

Tn

✓

2x� a� b

b� a

◆

�

�

�

�

.

For properties of the Chebyshev polynomials see [16, Chapter 1.1]. We mention a few properties that

we use. An explicit representation of Tn(x) is given by Tn(x) =

(

x�
p
x2�1

)

n
+

(

x+
p
x2�1

)

n

2

. |Tn(�x)| =
|Tn(x)| and Tn is monotonically increasing for x > 1. Also,

|Tn(1 + �)| 
⇣

1 + � +
p

(1 + �)2 � 1

⌘n


⇣

1 + 4

p
�
⌘n

 e4n
p
�  2

8n
p
� (4)

for 0  �  1. Then:

|p�,n(�)|  n�1 ·
�

�

�

Tc·logn

⇣

����1

����+1

⌘

�

�

�

= n�1 ·
�

�

�

Tc·logn

⇣

1 +

2�
1����

⌘

�

�

�

By |Tn(x)| = |Tn(�x)|
 n�1 · |Tc·logn(1 + 4�)| By the monotonicity of Tn(x) for x > 1 and �+ �  1

2

By Equation (4) |p�,n(�)|  n�1

2

32c
p
� logn  n�1+32c

p
� . As � = o(1) for n large enough we have

|p�,n(�)|  n�1/2, contradicting the fact that |p�,n(�)| � 1� n�1.

We note that for values very close to 1, polynomials of higher degrees are useful, and indeed better ap-
proximations are possible. In particular, one can separate a 1 eigenvalue from 1� 1

n by using the polynomial
xn

2 .
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A Simulatable matrices

Lemma A.1. The family of transition matrices of (directed or undirected) graphs is simulatable.

Proof. (of Lemma 2.1) Let G = (V,E) be a graph with n vertices and let A be its transition matrix. Let
k 2 N, s, t 2 [n] and �, " > 0. Consider the algorithm that on input k, s, t, takes T independent random
walks of length k over G starting at vertex s. The algorithm outputs the ratio of walks that reach vertex t. Let
Yi be the random value that is 1 if the i-th trial reached t and 0 otherwise. Then, for every i, E[Yi] = Ak

[s, t].
Also, Y

1

, . . . , YT are independent. By Chernoff,

Pr[| 1
T

T
X

i=1

Yi �Ak
[s, t]| � "]  2e�2"2T

Taking T = poly("�1, log ��1

), the error probability (i.e., getting an estimate that is " far from the cor-
rect value) is at most �. Altogether, the algorithm runs in space O(log(Tnk|E|)) = O(log(nk"�1

) +

log log ��1

), assuming |E| = poly(n, k).

We say kAk1  c if for every i 2 [n],
P

j |A[i, j]|  c. We show:

Lemma A.2. The family of real matrices with infinity norm at most 1 is simulatable.

Proof. (of Lemma 2.2) We prove the result to real matrices, with positive or negative entries, as long as they
have bounded infinity norm. By generalizing the sign of an entry to its phase, the result easily applies to
complex matrices as well.

Let A be a real matrix of dimension n such that kAk1  1. Let di(A) =

P

j |A[i, j]|.Let k 2 N,
s, t 2 [n] and �, " > 0. Note that:

Ak
[s, t] =

n
X

i1=1

n
X

i2=1

· · ·
n
X

ik�1=1

A[s, i
1

] ·A[i
1

, i
2

] · . . . ·A[ik�1

, t]

=

n
X

i1=1

n
X

i2=1

· · ·
n
X

ik�1=1

|A[s, i
1

]|
ds(A)

· |A[i
1

, i
2

]|
di1(A)

· . . . · |A[ik�1

, t]|
dik�1(A)

· p (A, hs, i
1

, i
2

, . . . , ik�1

, ti) ,
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where

p (A, hs, i
1

, i
2

, . . . , ik�1

, ti) =
ds(A) · di1(A) · . . . · dik�1(A)

sgn (A[s, i
1

] ·A[i
1

, i
2

] · . . . ·A[ik�1

, it])
.

Consider the algorithm that on input k, s, t, takes T independent random walks of length k over G
starting from vertex s. Iterating over all random walks, the algorithm approximates 1

T

P

i y(i), where y(i) =
p(A, i) if the walk i reached t, and 0 otherwise. Correspondingly, let Yi be the random value that is p(A, i)
if the i’th walk reached t and 0 if it did not. Then,

E[Yi] =
n
X

i1=1

n
X

i2=1

· · ·
n
X

ik�1=1

A[s, i
1

] ·A[i
1

, i
2

] · . . . ·A[ik�1

, t] · p(A, hs, i
1

, . . . , ik�1

, ti) = Ak
[s, t].

Denote the algorithm’s outcome by M(k, s, t). As in Lemma 2.1, and using the fact that |p(A, i)|  1,
the algorithm can (", �)–approximates E[Yi] by choosing T which is poly("�1, log ��1

). Following the
same analysis as of Lemma 2.1, the algorithm runs in O(log nk"�1

+ log log ��1

) space. We conclude that
A is simulatable.
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