
On approximating the eigenvalues of stochastic matrices in
probabilistic logspace

Dean Doron, Amir Sarid, and Amnon Ta-Shma

The Blavatnik School of Computer Science
Tel-Aviv University

Israel 69978

September 6, 2016

Abstract

We show that approximating the second eigenvalue of stochastic operators is BPL–complete, thus
giving a natural problem complete for this class. We also show that approximating any eigenvalue of a
stochastic and Hermitian operator with constant accuracy can be done in BPL.

This work together with related work on the subject reveals a picture where the various space-
bounded classes (e.g., probabilistic logspace, quantum logspace and the class DET) can be characterized
by algebraic problems (such as approximating the spectral gap) where, roughly speaking, the difference
between the classes lies in the kind of operators they can handle (e.g., stochastic, Hermitian or arbitrary).

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 120 (2016)

1 Introduction

Derandomization is a major challenge of theoretical computer science. In the time-bounded model there
are conditional results showing that BPP = P under certain plausible assumptions ([22, 13] to cite a few).
Showing BPP = P would immediately give deterministic polynomial-time algorithms to many central
problems which currently are not known to be in P such as polynomial identity testing and polynomial
factorization over arbitrary finite fields (see, e.g., [16]).

In the space-bounded model there are also conditional results showing that BPL = L under certain
plausible assumptions [15]. However, in the space-bounded model there are also unconditional results,
showing partial derandomization of the probabilistic classes. Nisan [20] constructed a pseudorandom gen-
erator (PRG) against logarithmic space-bounded non-uniform algorithms that use seed length O(log2 n).
Using that he showed BPL is contained in the class having simultaneously polynomial time and O(log2 n)
space [21]. Saks and Zhou [27] showed BPL is contained in DSPACE(log1.5 n). Many conjecture that, in
fact, BPL = L.

There are not too many natural problems in BPL that are not known to be in L. Aleliunas et al. [1]
showed that undirected st-connectivity is in RL, and many natural problems reduce (via logspace reductions)
to undirected connectivity [18, 2], but in a seminal result Reingold [23] showed undirected st-connectivity
already belongs to L. To our knowledge, there are no other natural languages in BPL that are not known to
be in L.

In this paper we show that the problem of approximating the spectral gap of a stochastic matrix is BPL–
complete. Estimating the spectral gap is a natural problem, interesting in its own right and captured a lot of
attention in graph theory, numerical linear algebra and quantum computation. We also believe the fact it is
BPL–complete contributes to the related work done on the problem, which we discuss later on.

The eigenvalues of a linear operatorA are the roots of its characteristic polynomial p(λ) = det(λI−A).
Any linear operator has a full set of eigenvalues, even though it may not have a full set of eigenvectors.
The eigenvalues of a stochastic matrix are always bounded by 1, and the all-one vector is a 1-eigenvector.
Also, the Perron Frobenius theorem tells us that if a graph is strongly connected and aperiodic then the
1-eigenvector of its transition matrix is unique. If the graph is periodic with a period h then its transition
matrix has h complex eigenvalues corresponding to the h different h-roots of unity. We now present the
problem more formally:

Definition 1.1 (The promise problem SecondEVα,β). The input is 0 ≤ α < β < 1 and a stochastic matrix
A of dimension n with possibly complex eigenvalues λ1, . . . , λn. We have the promise that λ1 = 1 and
λ2 ∈ R. Also, |λn| ≤ . . . ≤ |λ3| ≤ 1− β.

No instances : λ2 ≥ 1− α.

Yes instances : λ2 ≤ 1− β.

We prove:

Theorem 1.1. For every non-negligible ζ, SecondEVζ,2ζ is in BPL and SecondEV 1
n
, 2
n

is BPL–complete.

We also consider the problem of estimating specific eigenvalues and not only the spectral gap. We
define:

Definition 1.2 (EVα,β). The input is a stochastic, Hermitian matrix A, λ ∈ [−1, 1] and α < β.

Yes instances : There is an eigenvalue λi of A such that |λi − λ| ≤ α.

1

No instances : All eigenvalues of A are β–far from λ.

We prove:

Theorem 1.2. For every constants α < β, the promise problem EVα,β belongs to BPL.

1.1 Our technique

We wish to approximate eigenvalues of a given linear operator A whose spectrum is contained in [0, 1]. We
manipulate the eigenvalues of the input matrix A, without knowing the decomposition of A to eigenvectors
and eigenvalues, by using the simple fact that if λ1, . . . , λn are the roots of the characteristic polynomial of
A, and if p is an arbitrary univariate polynomial, then p(λ1), . . . , p(λn) are the roots of the characteristic
polynomial of the matrix p(A). The core idea is then to take a polynomial p with a sharp peak around
λ ∈ [0, 1] (namely, a polynomial for which p(x) is large around λ and small for values far from λ) and
estimate Tr (p(A)). Applying p on A amplifies the eigenvalues that are close to λ and damps eigenvalues
that are far from λ and so approximating Tr (p(A)) approximately counts the number of eigenvalues close
to λ. We are therefore left with the problem of approximating the entries of p(A) in BPL.

Approximating matrix powering of stochastic matrices is in BPL. To see that, assume A is a stochastic
matrix. Then, one can approximate Ak[s, t] by estimating the probability a random walk over A starting
at s reaches t after k steps. We say a matrix A is simulatable if a probabilistic logspace algorithm can
approximate Ak[s, t] for any k polynomial in n and with polynomially-small accuracy (see Definition 2.3
for the exact details). We show that even non-stochastic matrices A with negative or complex entries are
simulatable as long as A has infinity norm at most 1, namely, those matrices A for which all rows i ∈ [n]
have `1 norm at most 1,

∑
j |A[i, j]| ≤ 1.

IfA is simulatable and the coefficients of p(x) =
∑

i cix
i are not too large (i.e., only polynomially large

in n), then we can approximate in BPL the matrix p(A) =
∑

i ciA
i. In particular, we can also approximate

Tr (p(A)). By taking an appropriate polynomial p (see Section 4.1) we can solve EVα,β for constants
α < β (see Section 4). We remark that there are many possible candidate polynomials p with a peak around
λ. However, in Theorem 4.4 we prove that no polynomial can do significantly better than the one we use.

While the algorithm is simple, we believe it features a new component that has not been used before
by probabilistic space-bounded algorithms. An algorithm that takes a random walk on a graph and takes a
decision based on the walk length and connectivity properties of the graph (as, e.g., [1]) works with some
power of the input matrix A. More generally, such an algorithm can work with a convex combination of
powers of the input matrix (by probabilistically choosing which power to take). The algorithm we present
in this paper utilizes arbitrary (positive or negative) combinations of matrix powers and we believe it is a
crucial feature of the solution. We are not aware of previous BPL algorithms using such a feature.

The approach outlined above does not work for approximating the eigenvalues of directed graphs. It is
still true that the resulting operator A is stochastic and therefore simulatable. Also, it remains true that if λ
is an eigenvalue of A (i.e., a root of the characteristic polynomial) then p(λ) is a root of p(A). However, the
eigenvalues λ of A may be complex and we do not know how to control p(λ) when p has both negative and
positive coefficients.1

1The reason why we manage to prove Theorem 1.1 for arbitrary stochastic operators, is that in the special case of the second
eigenvalue (and when the first eigenvalue is known) we can amplify with a polynomial having only positive coefficients, and then
we can control the complex eigenvalues.

2

1.2 Subsequent and related work

One can also study the problem of approximating the spectral gap (or the whole spectrum) of Hermitian
matrices. An even harder problem is that of approximating the singular values (or the singular value decom-
position – SVD) of arbitrary linear operators.2

In 1999, Watrous [32] defined the model of quantum logspace computation, and proved several facts on
it. The definition was modified several times, see, [31]. Roughly speaking, a language is in BQL if there ex-
ists an L–uniform family of quantum circuits solving the language with only O(log n) qubits. The quantum
circuits are over some universal basis of gates (e.g., CNOT, HAD, T) plus intermediate measurements (that
in particular may simulate a stream of random coins). For details we refer the reader to [31, 28]. In [28],
building on an earlier work [11], it is shown that it is possible to approximate the SVD (and in particular
the spectral gap) in BQL, with polynomially-small accuracy (for exact details see [28, Theorem 1.2]). This
readily shows one can approximately invert a well-conditioned matrix in BQL.

Recently, Fefferman and Lin [9] showed (using Marriott-Watrous amplification) that the result also holds
for the model without intermediate measurements. Furthermore, they proved that matrix inversion is in fact
complete for BQL. They also addressed the problem of approximating the minimal eigenvalue of a positive
semi-definite Hermitian matrix and proved that this problem is complete for BQL as well. In this view,
roughly speaking, BPL is equivalent to approximating a specific eigenvalue of stochastic matrices, while
BQL is equivalent to approximating a specific eigenvalue of Hermitian matrices.

There is a corresponding phenomenon regarding the whole spectrum of operators. In BQL one can
approximate the singular values of any operator, and the eigenvalues of any Hermitian operator, with
polynomially-small accuracy. In contrast, the results of this paper show that in BPL one can approximate
the eigenvalues of any Hermitian and stochastic operator, but only with constant accuracy.

We remark that the usual way of describing the quantum algorithm for eigenvalue approximation is
that it applies quantum phase estimation on the completely mixed state. The completely mixed state is a
uniform mixture of the pure states that are formed from the eigenvectors ofA, and on each such eigenvector,
the quantum phase estimation estimates the corresponding eigenvalue. Thus, if the procedure can be run
in (quantum) logspace, we essentially sample a random eigenvector/eigenvalue pair, and from that we can
approximately get the SVD of A.

Another way of looking at the quantum algorithm (which becomes apparent when one computes the ac-
ceptance probability of the measurement done in the algorithm) is that the algorithm approximates Tr (p(A))
for p being a shift of the Fejér kernel (see, e.g., [12, Chapter 2]). The Fejér Kernel is a high-degree poly-
nomial with a sharp peak around the shift. Thus, the quantum algorithm also uses a similar framework to
the one used in this paper (in fact, the quantum algorithm preceded this paper and motivated the approach
we take here). The reason the quantum algorithm achieves polynomially-small accuracy and bypasses the
impossibility result of Section 4.2 is because it is able to take p up to some polynomial degree (rather than
logarithmic degree), not worrying about the quite large size of the coefficients, thus leading to much better
accuracy.

In another direction, Le Gall [17] recently showed that given the transition matrix A of a weighted,
undirected graph, and a vector b, one can approximately solve the linear system Ax = b in BPL with
polynomially-small accuracy.3 Le Gall’s technique uses our framework. In fact, the polynomial used by
Le Gall falls within the framework of the impossibility result proved in Section 4.2, and indeed he does not
approximate specific eigenvalues but rather the (pseudo) inverse of the whole linear system.

2This problem is harder since for normal matrices eigenvalues are almost in one to one correspondence with singular values.
3Le Gall’s result is a bit more general and applies to the pseudo-inverse of the Laplacian of any weighted, undirected graph.

3

It is also interesting to compare the BPL–complete promise problem SecondEV that we get with the
RL–complete promise problem given in [24]. First, following [19, 10] they define λπ(G) to be the second
largest eigenvalue of AÃ, where Ã[i, j] = π(j)A[j,i]

π(i) and π is the stationary distribution of a random walk on
G. Then, they define the promise problem POLY-MIXING S-T CONNECTIVITY to be:

Input : (G, s, t, 1k) where G = (V,E) is an out-regular directed graph, s, t ∈ V , and k ∈ N.

Yes instances : λπ(G) ≤ 1− 1
k , and π(s), π(t) ≥ 1

k .

No instances : There is no path from s to t in G.

Notice that the problem is made RL–complete by forcing in the No instances the condition that there is
no path from s to t. The main difference between POLY-MIXING S-T CONNECTIVITY and SecondEV is
that in SecondEV the spectral gap is defined with respect to the eigenvalues of the transition operator A
(i.e., the roots of its characteristic polynomial) whereas in [24] the spectral gap is defined with respect to a
normalized inner product space, and the normalization is with respect to the unknown stationary distribution
π, which is, by itself, a major component of the solution.

1.3 Open problems and the bigger picture

The following chain of containments is well known:

NC1 ⊆ L ⊆ RL ⊆ NL ⊆ DET ⊆ NC2 ⊆ DSPACE(O(log2 n)),

where DET is the class of languages that are NC1 Turing-reducible to the problem intdet of computing the
determinant of an integer matrix (see [3] for a definition of DET). As it turns out, many important problems
in linear algebra, such as inverting a matrix, or equivalently, solving a set of linear equations are in DET,
and often complete for it (see, e.g., [3]). The fact that NL ⊆ DET is due to [3] who showed that the directed
connectivity problem, STCON is reducible to intdet. DET ⊆ NC2 follows from Csansky’s algorithm [4]
for the parallel computation of the determinant. In addition to the above we also know that BPL ⊆ DET
(e.g., using the fact that matrix powering is DET complete). The work of Watrous [32] shows that BQL is
also contained in NC2.

It is well known that matrix powering is complete for DET. We also saw that approximating matrix pow-
ering of stochastic matrices is in BPL. Conversely, it is possible to convert a BPL machine to a stochastic
operator A such that the probability the machine moves from s to t in k steps is Ak[s, t].4 Thus, approx-
imating matrix-powering of stochastic operators is complete for BPL. The essence of this paper is to find
a corresponding decision problem that is BPL–complete. Roughly speaking, the results of this paper, and
those described in the previous subsection, show that:

• The promise problem of approximating the spectral gap of stochastic operators (with a real second
eigenvalue) is BPL–complete, and,

• The promise problem of approximating the spectral gap of Hermitian operators is BQL–complete.
4This reduction is standard and appears in many papers, e.g., already in [20]. We also employ such a reduction, see Subsection

3.1 in this paper.

4

Finally, note that exactly computing the coefficients of the characteristic polynomial is complete for DET
[3]. Having these coefficients, one can approximate the roots of the characteristic polynomial to within an
arbitrary accuracy.

Thus, there are several natural open problems that are still wide open:

• Is it sill BPL–hard to approximate the spectral gap of stochastic and Hermitian operators (i.e., undi-
rected graphs)? Alternatively, can one find a deterministic logspace algorithm solving the problem?
We remark that while Reingold’s algorithm [23] uses the spectral gap to solve undirected connectivity,
his algorithm does not approximate the spectral gap of the given undirected graph.

• Is it possible to approximate in BPL the second eigenvalue of a general (not necessarily stochastic or
non-negative) operator?

• More generally, is it possible to approximate the SVD of an arbitrary linear operator already in BPL?
A positive answer would imply BPL approximations to many problems in linear algebra that are
currently only known to be in NC2. A negative answer would imply a separation between BQL
and BPL [6]. In fact, the problem is also open for Hermitian operators, where singular values and
eigenvalues coincide (up to their sign).

We believe that the message emerging from this discussion is that, somewhat surprisingly, the determin-
istic/probabilistic/quantum space-bounded classes can be characterized by linear-algebraic promise prob-
lems that approximate the exact computation that can be done in DET. The different classes differ in the
type of linear operators they can handle. As such, their relationship to the class DET is similar to the re-
lationship between BPP, that can approximate the permanent function [14], and the class #P that solves it
exactly [30].

We believe this view is not only important by itself (by giving algorithms approximating natural prob-
lems in linear algebra), but may also shed new light on the strengths and weaknesses of the deterministic,
probabilistic and quantum models of space-bounded computation.

2 Preliminaries

2.1 Space bounded probabilistic computation

A deterministic space-bounded Turing machine has three semi-infinite tapes: an input tape (that is read-
only); a work tape (that is read-write) and an output tape (that is write-only and uni-directional). The space
complexity of the machine is the number of cells on the work tape. The running time of a space-bounded
Turing machine with s(n) ≥ log n space complexity is bounded by 2O(s(n)) time. A probabilistic space-
bounded Turing machine is similar to the deterministic machine (and in particular we require it always halts
within 2O(s(n)) time) except that it can also toss random coins. One convenient way to formulate this is by
adding a fourth semi-infinite tape, the random-coins tape, that is read-only, uni-directional and is initialized
with perfectly uniform bits. We are only concerned with bounded-error computation: We say a language is
accepted by a probabilistic Turing machine if for every input in the language the acceptance probability is
at least 2/3, and for every input not in the language it is at most 1/3. As usual, the acceptance probability
can be amplified as long as there is some non-negligible gap between the acceptance probability of yes and
no instances.

Definition 2.1. A language is in BPSPACE(s(n)) if it is accepted by a probabilistic space bounded TM
with space complexity s(n). BPL = ∪cBPSPACE(c log n).

5

We say a language is accepted by a probabilistic Turing machine with one-sided error if for every input
in the language the acceptance probability is at least 1/2, and for every input not in the language we always
reject.

Definition 2.2. A language is in RSPACE(s(n)) if it is accepted by a probabilistic space bounded TM with
one-sided error and space complexity s(n). RL = ∪cRSPACE(c log n).

2.2 Simulatable families of matrices

Often we are interested in approximating a value (e.g., an entry in a matrix with integer values or the whole
matrix) with a probabilistic machine. More precisely, assume there exists some value u = u(x) ∈ R that is
determined by the input x ∈ {0, 1}n. We say a probabilistic TM M(x, y) (ε, δ)–approximates u(x) if:

∀x∈{0,1}n Pr
y

[|M(x, y)− u(x)| ≥ ε] ≤ δ (1)

A random walk on a graph G (or its transition matrix A) can be simulated by a probabilistic logspace
machine. As a consequence, a probabilistic logspace machine can approximate powers of A well. Here
we try to extend this notion to arbitrary linear operators A, not necessarily stochastic. We say a matrix A
is simulatable if any power of it can be approximated by a probabilistic algorithm running in small space.
Formally:

Definition 2.3. We say that a family of matrices A is simulatable if there exists a probabilistic algorithm
that on input A ∈ A of dimension n with ‖A‖ ≤ poly(n), k ∈ N, s, t ∈ [n], runs in space O(log nk

εδ) and
(ε, δ)–approximates Ak[s, t].

In the appendix we give for completeness a proof that:

Lemma 2.1. The family of transition matrices of (directed or undirected) graphs is simulatable.

We say ‖A‖∞ ≤ c if for every i ∈ [n],
∑

j |A[i, j]| ≤ c. We also show:

Lemma 2.2. The family of real matrices with infinity norm at most 1 is simulatable.

3 A new canonical problem for probabilistic space-bounded classes

Recall our definition for SecondEVα,β:

Definition 3.1. The input is 0 ≤ α < β < 1 and a stochastic matrixA of dimension n with possibly complex
eigenvalues λ1, . . . , λn. We have the promise that λ1 = 1 and λ2 ∈ R. Also, |λn| ≤ . . . ≤ |λ3| ≤ 1− β.

No instances : λ2 ≥ 1− α.

Yes instances : λ2 ≤ 1− β.

In what follows, we shall see that this problem captures the hardness of probabilistic computation in
logarithmic space.

6

((s, 0), 1)

((s, 0), 2)((t, T + 1), 1)

((t, T + 1), 2)

Figure 1: An example for G′′ with T = 3.

3.1 Reducing Turing machines to graphs

Let M be a probabilistic space-bounded TM that accepts some language L with c log n0 space and T = nc0
time. Fix an input x. Let G = (V,E) be the configuration graph of G on x, s the initial configuration and t
the unique accepting configuration.

Define the layered configuration graph G′ = (V ′, E′). V ′ = V × {1, . . . , T + 1}, i.e., G′ has T + 1
layers, each layer containing |V | vertices. There is an outgoing edge from vertex (i, `) in layer ` ≤ T to
vertex (j, `+ 1) in layer `+ 1 if and only if (i, j) ∈ E. Without loss of generality, any vertex (i, `) in layer
` ≤ T has at least one neighbor in layer `+ 1.

Next, we define a graph G′′ = G′′(M,x) that contains two copies of G′ with some additional edges and
has two strongly connected components if and only if s is not connected to t in G. Formally, the vertex set
of G′′ is V ′′ = {(v′, k) | v′ ∈ V ′, k ∈ {1, 2}}. The edges E′′ of G′′ are as follows:

• For every (a, b) ∈ E′ and k ∈ {1, 2}, ((a, k), (b, k)) ∈ E′′.

• For every r ∈ V , r 6= t and k ∈ {1, 2}, (((r, T + 1), k), ((s, 1), k)) ∈ E′′.

• (((t, T + 1), 1), ((s, 1), 2)) ∈ E′′ and (((t, T + 1), 2), ((s, 1), 1)) ∈ E′′.

See Figure 1.
Let A be the transition matrix of G′′ and note that it is stochastic. We claim:

Lemma 3.1. Let p = p(M,x) = AT [s, t] denote the probability that M accepts x. Let ω be a primitive
(T + 1)-th root of unity. The eigenvalues of A are

{
0, ωk, (1− 2p)

1
T+1ωk | 0 ≤ k ≤ T

}
.

Proof. Denote W = A†. It is known that the eigenvalues of A and W coincide. Let v be any eigenvector of
W with eigenvalue λ 6= 0.

Claim 3.1. For every s 6= j ∈ V , v[((j, 1), 1)] = v[((j, 1), 2)] = 0

Proof. The in-degree of ((j, 1), 1), (j, 1), 2) is zero and λ 6= 0.

7

Denote v[((s, 1), 1)] = x and v[((s, 1), 2)] = y.

Claim 3.2. For every j ∈ V and ` ≥ 0, W `−1[j, s] is the probability M reaches j after taking `−1 random
steps from s. Then,

v[((j, `), 1)] =
x

λ`−1
W `−1[j, s]

v[((j, `), 2)] =
y

λ`−1
W `−1[j, s].

Proof. The proof is by induction. The case of ` = 1 was already covered. Assume the claim holds for ` and
fix a vertex ((j, `+ 1), 1). Then:

(Wv)[((j, `+ 1), 1)] =
∑

k:(k,j)∈E

v[((k, `), 1)] · 1

dout(k)

=
∑

k:(k,j)∈E

x

λ`−1
W `−1[k, s] · 1

dout(k)
(Hypotesis)

=
x

λ`−1
W `[j, s].

As Wv = λv, the claim for ((j, `+ 1), 1) follows. The other claim is similar.

Finally, the equation Wv = λv for the vertices ((s, 1), 1) and ((s, 1), 2) give us two equations. The
equation for the vertex ((s, 1), 1) is

(Wv)[((s, 1), 1)] =
∑
j 6=s

v[((j, T + 1), 1)] + v[((t, T + 1), 2)].

As
∑

j∈V v[((j, T + 1), 1)] = (1−p)x
λT

and v[((t, T + 1), 2)] = py
λT

, we get the equation

λx =
(1− p)x
λT

+
py

λT
. (2)

Similarly, the equation for the vertex ((s, 1), 2) is

λy =
(1− p)y
λT

+
px

λT
. (3)

Adding the two equations we get:

λ(x+ y) =
1

λT
(x+ y).

If x 6= −y we must have λT+1 = 1. If x = −y Equation (2) and Equation (3) are the same and give
λT+1x = (1 − 2p)x. Since x 6= 0 (otherwise the whole vector v is zero) we have λT+1 = 1 − 2p. Hence,
all the eigenvalues belong to the declared set.

Finally, we notice that for x = −y and λ such that λT+1 = 1 − 2p we can build a corresponding
eigenvector, and similarly for 6= −y and λ s.t. λT+1 = 1 we may take x = y and the equations work.
Hence, the eigenvalues are exactly the given set.

8

3.2 An RL–hard problem

In this subsection we show that SecondEVα,β with α = 0 and β = 1
n , that is – distinguishing between the

case that the eigenvalue 1 has algebraic multiplicity 2 and the case that the second eigenvalue is 1
n–far from

1, is RL–hard. We stress that we only prove RL-hardness and we do not know how to solve SecondEV0, 1
n

in RL. We prove:

Theorem 3.2. SecondEV0, 1
n

is RL–hard.

Proof. Let L ∈ RL and let M be the probabilistic space-bounded TM that accepts it. Given an input x of
length n0, let G,G′, G′′, ω and p be as above. If x ∈ L then without loss of generality 2π2

T ≤ p < 1
2 and

otherwise p = 0. G′′ has n = 2(T + 1)|V | = poly(n0) vertices. Note that |V | ≥ T .
Let A be the transition matrix of G′′ of dimension n and consider B = 1

2A + 1
2In×n. By Lemma 3.1,

the eigenvalues of B are
{

1
2 ,

1
2 + ωk, 1

2 + 1
2(1− 2p)

1
T+1ωk | 0 ≤ k ≤ T

}
. For 0 ≤ k ≤ T , denote

λk =
1

2
+

1

2
(1− 2p)

1
T+1ωk

µk =
1

2
+

1

2
ωk.

First, note that

|µk|2 =
1

2
+

1

2
cos

(
2πk

T + 1

)
.

Similarly, |λk|2 can be expressed as some constant independent of k plus (1−2p)
1

T+1

2 cos
(

2πk
T+1

)
. For k > 0,

cos
(

2πk
T+1

)
is maximized at the lowest angle, i.e., at k = 1. Thus, for k 6= 0, |µk| ≤ |µ1| and |λk| ≤ |λ1|.

By inspection, µ0 = 1, λ0 = 1
2 + 1

2(1− 2p)
1

T+1 and |λ1| ≤ |µ1| ≤ 1− π2

2T 2 . One can verify that:

• If p ≥ 2π2

T then λ0 ≤ 1− π2

2T 2 ≤ 1− 1
n , so all eigenvalues but µ0 are at most 1− 1

n in magnitude.

• If p = 0 then λ0 = 1, so all eigenvalues but µ0 and λ0 are at most 1− 1
n in magnitude.

B then satisfies the promise of SecondEV0, 1
n

. It is well-known that A can be computed using logarithmic
space and so can B. Hence, the reduction is a logspace reduction.

3.3 A BPL–complete problem

While we do not know how to solve SecondEV0, 1
n

in RL, we do know how to solve it in BPL. In fact we
can do it for even stricter parameters. Specifically, we show that SecondEVζ,2ζ , for every non-negligible ζ,
is in BPL, and that SecondEV 1

n
, 2
n

is BPL–complete. We begin with:

Lemma 3.3. Let 0 < ζ ≤ 1
2 . Then, SecondEVζ,2ζ can be solved using O(log n+ log 1

ζ) space.

Proof. Let A be the input to the promise problem and set m such that (1− ζ)m = 1
n2 . Note that m ≤ 2 lnn

ζ .
We then have:

Claim 3.3. If A is a Yes instance then Tr (Am) ≤ 1 + 1
n3 .

9

Proof. Tr (Am) =
∑n

k=1 λ
m
k .5 Then:

|Tr (Am)| =

∣∣∣∣∣
n∑
k=1

λmk

∣∣∣∣∣ ≤ 1 +
n∑
k=2

|λk|m ≤ 1 + n (1− 2ζ)m .

Using the fact that (1− 2ζ)m ≤ (1− ζ)2m and (1− ζ)2m = 1
n4 , the claim thus follows.

Claim 3.4. If A is a No instance then Tr (Am) ≥ 1 + 1
n2 − 1

n3 .

Proof. By the reversed triangle inequality:

|Tr (Am)| ≥ 1 + λm2 −

∣∣∣∣∣
n∑
k=3

λmk

∣∣∣∣∣ ≥ 1 + (1− ζ)m − n (1− 2ζ)m .

Again, by (1− 2ζ)m ≤ (1− ζ)2m we have that (1− ζ)m − n(1− 2ζ)m ≥ (1− ζ)m − n(1− ζ)2m. Now,
since (1− ζ)m = 1

n2 we overall conclude that |Tr (Am)| ≥ 1 + 1
n2 − 1

n3 .

Approximating Tr (Am) well with high probability can be done in logarithmic space. By Lemma 2.2 and
simple composition of logspace reductions, we can (1

n4 ,
1
3)–approximate Tr (Am) and decide the promise

problem using O(log nm) space.

The main result is the converse direction that the problem for ζ = 1
n is BPL–complete.

Lemma 3.4. Let L ∈ BPL. Then, L is logspace reducible to SecondEV 1
n
, 2
n

.

Proof. Let L ∈ BPL and fix an input x of length n0. Let M,G,G′, G′′, ω, p, n,A,B be as as in the proof
for Theorem 3.2. One can verify that:

• If p ≥ 2π2

T then λ0 ≤ 1− π2

2T 2 ≤ 1− 2
n , so all eigenvalues but µ0 are at most 1− 2

n in magnitude.

• If p ≤ 1
4T then λ0 ≥ 1

2 + 1
2

(
1− 1

2T

) 1
T ≥ 1 − 1

3T 2 ≥ 1 − 1
n , so all eigenvalues but µ0 and λ0 are at

most 1− 2
n in magnitude. The second inequality is derived from the fact that

(
1− x

2

)x ≥ 1− 2x2

3 for
small x > 0.

Without loss of generality, p can be taken to be either larger than 2π2

T or smaller than 1
4T (by simple BPL

amplification arguments), so B satisfies the promise of SecondEV 1
n
, 1
n

.

4 Approximating eigenvalues with constant accuracy

In this section we prove:

Theorem 4.1. There exists a probabilistic algorithm that gets as an input a stochastic matrix B with real
eigenvalues in [0, 1], constants β > α > 0 and λ ∈ [0, 1] such that:

• There are d eigenvalues λi satisfying |λ− λi| ≤ α,

5This equation is true even when A is not diagonalizable. To see that, write A in its Jordan Normal Form, A = V JV −1 where
the eigenvalues of A, λ1, . . . , λn, lie on the diagonal of J . Am = V JmV −1 so Tr (Am) = Tr (Jm) and since J is triangular, the
diagonal of Jm is λm1 , . . . , λmn .

10

• All other eigenvalues λi satisfy |λ− λi| ≥ β,

and outputs d with probability at least 2/3. Furthermore the algorithm runs in probabilistic spaceO(log n).

We remark that Theorem 4.1 covers the case of transition matrices of undirected graphs, whose spectrum
is contained in [−1, 1].6 Taking B = 1

2A+ 1
2In×n we get a stochastic matrix with eigenvalues in the range

[0, 1], and whose eigenvectors are in a natural one-to-one correspondence with A’s eigenvalues.

Proof. (Of Theorem 4.1) The input to the algorithm is n,B, λ, α, β. We assume the existence of a univariate
polynomial p(x) =

∑M
i=0 cix

i with the following properties:

• p has a sharp peak around λ, i.e., p(x) ≥ 1 − η for x ∈ [λ − α, λ + α] and p(x) ≤ η for x ∈
[0, 1] \ (λ− β, λ+ β), where η = η(n) = n−2.

• p can be computed in L. Formally, M = deg(p) and |ci| are at most poly(n) and for every i, ci can
be computed (exactly) by a deterministic Turing machine that uses O(log n) space.

In the next subsection we show how to obtain such a polynomial p with M = 32(β − α)−2 log n and
|ci| ≤ 2cM for some constant c ≥ 1.

Choose ε = 1
n and δ = 1

3 . Set ε′ = ε · 2−2cM and δ′ = δ · 2−cM . The output of the algorithm is the
integer closest to

R =
M∑
i=0

ci · TP(B,n, i, ε′, δ′),

where TP is the probabilistic algorithm guaranteed by Lemma 2.2 that (ε′, δ′)–approximates Tr (Bi).
It is easy to check that:

Claim 4.1. Pr[|R− Tr (p(B))| ≥ ε] ≤ δ.

As Tr (p(B)) =
∑n

i=1 p(λi), Pr[|R −
∑n

i=1 p(λi)| ≥ ε] ≤ δ. However, p(λi) is large when λi is α–
close to λ and small when it is β–far from λ, and we are promised that all eigenvalues λi are either α–close
or β–far from λ. Thus,

|Tr (p(B))− d| ≤ nη.

Altogether, except for probability δ, |R − d| ≤ ε + nη ≤ 1
3 , and the nearest integer closest to R is d. The

correctness follows. It is also straightforward to check that the space complexity is O(log(nε−1δ−1)) =
O(log n).

The constant accuracy we achieve is far from being satisfying. The matrix B has n eigenvalues in the
range [0, 1], so the average distance between two neighboring eigenvalues is 1/n. Thus, the assumption that
there is an interval of length β−α with no eigenvalue is often not true. The desired accuracy we would like
to get is o(1/n). Having such accuracy would enable outputting an approximation of the whole spectrum of
B, using methods similar to those in [28], thus getting a true classical analogue to the quantum algorithm in
[28]. However, we do not know how to achieve subconstant accuracy. The question whether better accuracy
is possible in BPL is one of the main questions raised by this work.

6If G is undirected and irregular, then the adjacency matrix Ã is symmetric (because the graph is undirected) but the transition
matrix A = D−1Ã, where D is the diagonal degree matrix, is not symmetric. Yet, consider the matrix L = D−1/2ÃD−1/2. L is
symmetric and thus has an eigenvector basis with real eigenvalues. A = D−1/2LD1/2 is conjugate to L and is thus diagonalizable
and has the same eigenvalues. As A is stochastic its eigenvalues are in the range [−1, 1].

11

4.1 Using the symmetric threshold functions

There are several natural candidates for the function p above. In this subsection we use the threshold function
to obtain such a function p. For λ = k

M for some integers k and M , define:

pλ(x) =
M∑
i=k

(
M

i

)
xi(1− x)M−i.

pλ approximates well the threshold function Thλ(x) : [0, 1] → {0, 1} that is one for x ≥ λ and zero
otherwise. Specifically, using the Chernoff bound, we obtain:

Lemma 4.2. Let x ∈ [0, 1]. pλ(x) approximates Thλ(x) over [0, 1] with accuracy (ξ(ε))Mx, where ε =
λ−x
x and ξ(ε) = eε

(1+ε)1+ε .

As a polynomial in x, pλ(x) =
∑M

i=0 cix
i with ci = (−1)i

∑i
j=λM

(
M
j

)(
M−j
i−j
)
(−1)j and therefore

|ci| ≤
∑i

j=λM

(
M
j

)(
M−j
i−j
)
≤ M

(
M
M/2

)2
= 2O(M). Furthermore, ci can be computed (exactly) by a de-

terministic Turing machine that uses O(M) space by simply running through the loop over j, each time
updating the current result by (−1)j

(
M
j

)(
M−j
i−j
)
.

To obtain our polynomial p, define p as the difference between the threshold polynomial around λ+ ∆
and the threshold polynomial around λ−∆,

p(x) = pλ−∆(x)− pλ+∆(x)

where M = 32(β − α)−2 log n and ∆ = (α+ β)/2. It indeed holds that:

Lemma 4.3. p(x) ≥ 1− n−2 for every x that is α–close to λ (i.e., |x− λ| < α) and p(x) ≤ n−2 for every
x that is β–far from λ (i.e., |x− λ| ≥ β).

Proof. We show that pλ+∆ approximates Thλ+∆ for x ≥ λ + β and x ≤ λ + α, and pλ−∆ approximates
Thλ−∆ for x ≥ λ− α and x ≤ λ− β. Specifically, the following bounds hold:

pλ−∆(x) pλ+∆(x) p(x)

0 ≤ x ≤ λ− β ≤ n−2/2 ≥ 0 ≤ n−2

λ− β < x < λ− α ? ≤ n−2/2 ?
λ− α ≤ x ≤ λ+ α ≥ 1− n−2/2 ≤ n−2/2 ≥ 1− n−2

λ+ α < x < λ+ β ≥ 1− n−2/2 ? ?
λ+ β ≤ x ≤ 1 ≤ 1 ≥ 1− n−2/2 ≤ n−2

Let us show that the second column is correct. For |x − (λ + ∆)| ≥ (β − α)/2 and ε = λ+∆−x
x , the

approximation error is (ξ(ε))Mx, and if ε > 0,

(ξ(ε))Mx ≤ e−
ε2

ε+2
Mx ≤ e−

(x−(λ+∆))2

λ+∆+x
M

≤ e−(x−(λ+∆))2M/2 ≤ n−2/2,

and if −1 < ε ≤ 0,

(ξ(ε))Mx ≤ e−ε
2Mx/2 ≤ e−(x−(λ+∆))2M/2 ≤ n−2/2.

Similar calculations also holds for the other entries. Hence, p(x) = pλ−∆(x) − pλ+∆(x) satisfies the
required conditions.

12

4.2 The limitation of the technique

In this subsection, we prove the accuracy of the above technique cannot be enhanced merely by choosing
a different polynomial p. Approximating threshold functions by a polynomial is well-studied and well
understood (see, for example, [26, 8, 5] and references therein). However, we need to adapt this work to
our needs because we have an additional requirement that the magnitude of the polynomial’s coefficients is
small.

We start by formalizing the properties of p that were useful to us. We say that P = {pλ,n}λ∈[0,1],n∈N is
a family of polynomials if for every λ ∈ [0, 1] and n ∈ N, pλ,n is a univariate polynomial with coefficients
in R.

Definition 4.1 (Small family). Let P be a family of polynomials and fix λ ∈ [0, 1]. For every n ∈ N, write
pλ,n(x) =

∑deg(pλ,n)
i=0 cλ,n,ix

i. We say the family is s(n)–small if,

• deg(pλ,n) ≤ 2s(n),

• For every 0 ≤ i ≤ deg(pλ,n), |cλ,n,i| ≤ 2s(n), and

• There exists a deterministic Turing machine running in space s(n) that outputs cλ,n,0, . . . , cλ,n,deg(pλ,n).

Definition 4.2 (Distinguisher family). Let P be a family of polynomials and fix n ∈ N. Given α < β in
(0, 1) and η < 1/2, we say the family is (α, β, η)–distinguisher for λ ∈ [0, 1] if,

• For every x ∈ [0, 1] that is α–close to λ, pλ,n(x) ∈ [1− η, 1], and

• For every x ∈ [0, 1] that is β–far from λ, pλ,n(x) ∈ [0, η].

Theorem 4.4. Let α, β, λ, η be such that α ≤ β, β = o(1), η = o(n−1) and λ + β ≤ 1
2 . Then there is no

(α, β, η)–distinguisher family for λ that is O(log n)–small.

Proof. Assume there exists such a family {pλ,n}λ∈[0,1],n∈N with s(n) = c′ log n. We first show that we can
assume p has logarithmic degree. Let rλ,n(x) be the residual error of truncating pλ,n(x) after c log n terms,
for c that will soon be determined. Also, without loss of generality, assume x ∈ [0, 1) is bounded away from
1. Then:

rλ,n(x) ≤
deg(pλ,n)∑
i=c logn+1

|cλ,n,i| · xi ≤ nc
′ · x

c logn

1− x
≤ 1

1− x
nc
′−c log(1/x).

So, by taking c = d c
′+2−log(1−x)

log(1/x) e we obtain rλ,n(x) ≤ n−2.
We now show that O(log n)–degree polynomials cannot decay around λ fast enough. Assume to the

contrary that there exists such a distinguisher family, so |pλ,n(x)| < n−1 for x ∈ [λ+ β, 1]. The following
lemma states that if a function has a small value on an interval, then it cannot be too large outside it. Namely,

Lemma 4.5. [29, Theorem 2.9.11] Let Td(x) be the Chebyshev polynomial (of the first kind) of degree d.
Then, if the polynomial Pd(x) =

∑d
i=0 cix

i satisfies the inequality |Pd(x)| ≤ L on the segment [a, b] then
at any point outside the segment we have

|Pd(x)| ≤ L ·
∣∣∣∣Td(2x− a− b

b− a

)∣∣∣∣ .
13

For properties of the Chebyshev polynomials see [25, Chapter 1.1]. We mention a few properties that we

use. An explicit representation of Td(x) is given by Td(x) =
(x−
√
x2−1)

d
+(x+

√
x2−1)

d

2 . |Td(−x)| = |Td(x)|
and Td is monotonically increasing for x > 1. Also,

|Td(1 + δ)| ≤
(

1 + δ +
√

(1 + δ)2 − 1
)d
≤
(

1 + 4
√
δ
)d
≤ e4d

√
δ ≤ 28d

√
δ (4)

for 0 ≤ δ ≤ 1. Then:

|pλ,n(λ)| ≤ n−1 ·
∣∣∣Tc·logn

(
λ−β−1
−λ−β+1

)∣∣∣ By Lemma 4.5, considering the interval [λ+ β, 1].

= n−1 ·
∣∣∣Tc·logn

(
1 + 2β

1−λ−β

)∣∣∣ By |Td(x)| = |Td(−x)|.
≤ n−1 · |Tc·logn(1 + 4β)| By the monotonicity of Td(x) for x > 1 and λ+ β ≤ 1

2 .

By Equation (4), |pλ,n(λ)| ≤ n−1232c
√
β logn ≤ n−1+32c

√
β . As β = o(1) for n large enough we have

|pλ,n(λ)| ≤ n−1/2, contradicting the fact that |pλ,n(λ)| ≥ 1− n−1.

We note that for values very close to 1, polynomials of higher degrees are useful, and indeed better ap-
proximations are possible. In particular, one can separate a 1 eigenvalue from 1− 1

n by using the polynomial
xn

2
.

5 Acknowledgements

The first and third authors were supported by the Israel science Foundation grant no. 994/14 and by the
United States – Israel Binational Science Foundation grant no. 2010120. The third author was also supported
by the Blavatnik Fund.

A preliminary version of this paper appeared in [7] but without the BPL–completeness and RL–hardness
of approximating the second eigenvalue of a stochastic operator.

We thank François Le Gall for interesting discussions.

References

[1] Romas Aleliunas, Richard M. Karp, R.J. Lipton, Laszlo Lovasz, and C. Rackoff. Random walks,
universal traversal sequences, and the complexity of maze problems. In Foundations of Computer
Science, 1979., 20th Annual Symposium on, pages 218–223, Oct 1979.

[2] Carme Alvarez and Raymond Greenlaw. A compendium of problems complete for symmetric loga-
rithmic space. Computational Complexity, 9(2):123–145, 2000.

[3] Stephen A. Cook. A taxonomy of problems with fast parallel algorithms. Information and Control,
64(1–3), 1985. International Conference on Foundations of Computation Theory.

[4] L. Csansky. Fast parallel matrix inversion algorithms. SIAM Journal of Computing, 5(6):618–623,
1976.

[5] Ilias Diakonikolas, Parikshit Gopalan, Ragesh Jaiswal, Rocco A Servedio, and Emanuele Viola.
Bounded independence fools halfspaces. SIAM Journal on Computing, 39(8):3441–3462, 2010.

14

[6] Dean Doron and Amnon Ta-Shma. On the de-randomization of space-bounded approximate counting
problems. Information Processing Letters, 2015.

[7] Dean Doron and Amnon Ta-Shma. On the problem of approximating the eigenvalues of graphs in
probabilistic logspace. In Automata, Languages, and Programming. Springer, 2015.

[8] Alexandre Eremenko and Peter Yuditskii. Uniform approximation of sgn(x) by polynomials and entire
functions. Journal d’Analyse Mathématique, 101(1):313–324, 2007.

[9] Bill Fefferman and Cedric Yen-Yu Lin. A complete characterization of unitary quantum space. arXiv
preprint arXiv:1604.01384, 2016.

[10] James Allen Fill. Eigenvalue bounds on convergence to stationarity for nonreversible markov chains,
with an application to the exclusion process. The annals of applied probability, pages 62–87, 1991.

[11] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems of
equations. Phys. Rev. Lett., 103:150502, Oct 2009.

[12] K. Hoffman. Banach Spaces of Analytic Functions. Dover Books on Mathematics Series. Dover
Publications, Incorporated, 2007.

[13] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: Derandomizing
the XOR lemma. In Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Comput-
ing, STOC ’97, pages 220–229, New York, NY, USA, 1997. ACM.

[14] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation algorithm for the
permanent of a matrix with nonnegative entries. J. ACM, 51(4):671–697, Jul 2004.

[15] Adam R Klivans and Dieter Van Melkebeek. Graph nonisomorphism has subexponential size proofs
unless the polynomial-time hierarchy collapses. SIAM Journal on Computing, 31(5):1501–1526, 2002.

[16] Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. Equivalence of polynomial identity testing and
deterministic multivariate polynomial factorization. In 2014 IEEE 29th Conference on Computational
Complexity (CCC), pages 169–180. IEEE, 2014.

[17] François Le Gall. Solving Laplacian Systems in Logarithmic Space. ArXiv e-prints, August 2016.

[18] Harry R. Lewis and Christos H. Papadimitriou. Symmetric space-bounded computation. Theoretical
Computer Science, 19(2):161–187, 1982.

[19] Milena Mihail. Conductance and convergence of markov chains-a combinatorial treatment of ex-
panders. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages 526–531.
IEEE Comput. Soc. Press, 1989.

[20] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica, 12(4):449–
461, 1992.

[21] Noam Nisan. RL⊆SC. Computational Complexity, 4(1):1–11, 1994.

[22] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of computer and System Sciences,
49(2):149–167, 1994.

15

[23] Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4), 2008.

[24] Omer Reingold, Luca Trevisan, and Salil Vadhan. Pseudorandom walks on regular digraphs and the RL
vs. L problem. In Proceedings of the thirty-eighth annual ACM symposium on Theory of computing,
pages 457–466. ACM, 2006.

[25] Theodore J. Rivlin. The Chebyshev polynomials. Pure and applied mathematics. Wiley, 1974.

[26] E. B. Saff and V. Totik. Polynomial approximation of piecewise analytic functions. Journal of the
London Mathematical Society, s2-39(3):487–498, 1989.

[27] Michael E. Saks and Shiyu Zhou. BPHSPACE(S)⊆ DSPACE(S3/2). J. Comput. Syst. Sci., 58(2):376–
403, 1999.

[28] Amnon Ta-Shma. Inverting well conditioned matrices in quantum logspace. In Proceedings of the
45th annual ACM symposium on Symposium on theory of computing, STOC ’13, pages 881–890, New
York, NY, USA, 2013. ACM.

[29] A. F. Timan. Theory of Approximation of Functions of a Real Variable. Dover books on advanced
mathematics. Pergamon Press, 1963.

[30] Leslie G Valiant. The complexity of computing the permanent. Theoretical computer science,
8(2):189–201, 1979.

[31] Dieter van Melkebeek and Thomas Watson. Time-space efficient simulations of quantum computa-
tions. Electronic Colloquium on Computational Complexity (ECCC), 17:147, 2010.

[32] John Watrous. Space-bounded quantum complexity. Journal of Computer and System Sciences,
59(2):281–326, 1999.

A Simulatable matrices

Lemma A.1. The family of transition matrices of (directed or undirected) graphs is simulatable.

Proof. (of Lemma 2.1) Let G = (V,E) be a graph with n vertices and let A be its transition matrix. Let
k ∈ N, s, t ∈ [n] and δ, ε > 0. Consider the algorithm that on input k, s, t, takes T independent random
walks of length k overG starting at vertex s. The algorithm outputs the ratio of walks that reach vertex t. Let
Yi be the random value that is 1 if the i-th trial reached t and 0 otherwise. Then, for every i, E[Yi] = Ak[s, t].
Also, Y1, . . . , YT are independent. By Chernoff,

Pr

[∣∣∣∣∣ 1

T

T∑
i=1

Yi −Ak[s, t]

∣∣∣∣∣ ≥ ε
]
≤ 2e−2ε2T

Taking T = poly(ε−1, log δ−1), the error probability (i.e., getting an estimate that is ε far from the cor-
rect value) is at most δ. Altogether, the algorithm runs in space O(log(Tnk|E|)) = O(log(nkε−1) +
log log δ−1), assuming |E| = poly(n, k).

We say ‖A‖∞ ≤ c if for every i ∈ [n],
∑

j |A[i, j]| ≤ c. We show:

16

Lemma A.2. The family of real matrices with infinity norm at most 1 is simulatable.

Proof. (of Lemma 2.2) We prove the result to real matrices, with positive or negative entries, as long as they
have bounded infinity norm. By generalizing the sign of an entry to its phase, the result easily applies to
complex matrices as well.

Let A be a real matrix of dimension n such that ‖A‖∞ ≤ 1. Let di(A) =
∑

j |A[i, j]|.Let k ∈ N,
s, t ∈ [n] and δ, ε > 0. Note that:

Ak[s, t] =

n∑
i1=1

n∑
i2=1

· · ·
n∑

ik−1=1

A[s, i1] ·A[i1, i2] · . . . ·A[ik−1, t]

=

n∑
i1=1

n∑
i2=1

· · ·
n∑

ik−1=1

|A[s, i1]|
ds(A)

· |A[i1, i2]|
di1(A)

· . . . · |A[ik−1, t]|
dik−1

(A)
· p (A, 〈s, i1, i2, . . . , ik−1, t〉) ,

where

p (A, 〈s, i1, i2, . . . , ik−1, t〉) =
ds(A) · di1(A) · . . . · dik−1

(A)

sgn (A[s, i1] ·A[i1, i2] · . . . ·A[ik−1, it])
.

Consider the algorithm that on input k, s, t, takes T independent random walks of length k over G
starting from vertex s. Iterating over all random walks, the algorithm approximates 1

T

∑
i y(i), where y(i) =

p(A, i) if the walk i reached t, and 0 otherwise. Correspondingly, let Yi be the random value that is p(A, i)
if the i-th walk reached t and 0 if it did not. Then,

E[Yi] =
n∑

i1=1

n∑
i2=1

· · ·
n∑

ik−1=1

A[s, i1] ·A[i1, i2] · . . . ·A[ik−1, t] · p(A, 〈s, i1, . . . , ik−1, t〉) = Ak[s, t].

Denote the algorithm’s outcome by M(k, s, t). As in Lemma 2.1, and using the fact that |p(A, i)| ≤ 1,
the algorithm can (ε, δ)–approximates E[Yi] by choosing T which is poly(ε−1, log δ−1). Following the
same analysis as of Lemma 2.1, the algorithm runs in O(log nkε−1 + log log δ−1) space. We conclude that
A is simulatable.

17

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

