
Approximate Degree and the Complexity of Depth Three Circuits

Mark Bun∗ Justin Thaler†

Abstract

Threshold weight, margin complexity, and Majority-of-Threshold circuit size are basic complex-
ity measures of Boolean functions that arise in learning theory, communication complexity, and cir-
cuit complexity. Each of these measures might exhibit a chasm at depth three: namely, all polynomial
size Boolean circuits of depth two have polynomial complexity under the measure, but there may exist
Boolean circuits of depth three that have essentially maximal complexity exp(Θ(n)). However, exist-
ing techniques are far from showing this: for all three measures, the best lower bound for depth three
circuits is exp(Ω̃(n2/5)). Moreover, current methods appear intrinsically unable to prove lower bounds
better than exp(Ω(

√
n)) even for depth four circuits, and have yet to prove lower bounds better than

exp(Ω̃(
√
n)) for circuits of any constant depth.

We take a significant step toward showing that all of these complexity measures indeed exhibit a
chasm at depth three. Specifically, for any arbitrarily small constant δ > 0, we exhibit:

• A depth three circuit of polynomial size (in fact, an O(log n)-decision list) of complexity
exp(Ω(n1/2−δ)) under each of these measures.

• A depth three circuit F of quasi-polynomial size (in fact, anO(log2 n)-decision list) of complexity
exp(Ω(n2/3−δ)) under each of these measures. The function F is also computed by a depth four
circuit of polynomial size.

Our methods suggest natural candidate functions that may exhibit stronger bounds, of the form exp(Ω̃(n)),
where the Ω̃ notation hides factors polylogarithmic in n. The technical core of our results lies in estab-
lishing new lower bounds on the uniform approximability of depth three circuits by low-degree polyno-
mials.

∗John A. Paulson School of Engineering and Applied Sciences, Harvard University. Supported by an NDSEG Fellowship and
NSF grant CNS-1237235. This work was done while the author was visiting Yale University.
†Georgetown University. Parts of this work were performed while the author was at Yahoo Research.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 121 (2016)

1 Introduction

Let f : {−1, 1}n → {−1, 1} be a Boolean function, and let C : 2{−1,1}n → N denote a measure of the
complexity of f . We say that C exhibits a chasm at depth three if all Boolean circuits1 of depth two have
polynomial complexity under the measure, but there exist circuits of depth three that have essentially maxi-
mal complexity exp(Θ(n)). Examples of measures that may satisfy a chasm at depth three include:

• Threshold Weight. A polynomial p : {−1, 1}n → R with integer coefficients is said to sign-represent
f if p(x) · f(x) > 0 for all x ∈ {−1, 1}n. The weight of p, denoted W (p), is the sum of the
absolute value of its coefficients. The threshold weight of f is the least weight of a sign-representing
polynomial for f .

It is easy to see that all DNF and CNF formulae of size s have threshold weight O(s). The best
known upper bound on the threshold weight of depth three circuits is the trivial 2O(n) bound. Hence,
threshold weight may exhibit a chasm at depth three.

• Discrepancy and Margin Complexity. Discrepancy, defined formally in Section 6.2, is a central
quantity in communication complexity and circuit complexity.2 For example, discrepancy is known
to characterize the communication complexity class PP, and small discrepancy implies large commu-
nication complexity in nearly every communication model. The multiplicative inverse of discrepancy
is also known to be equivalent to margin complexity, a central quantity in learning theory [21].

All DNF and CNF formulae have at least inverse-polynomial discrepancy. However, the best known
lower bound on the discrepancy of depth three circuits is the trivial 2−O(n) bound. Hence, margin
complexity and (the inverse of) discrepancy may exhibit a chasm at depth three.

• Majority-of-Threshold Circuit Size. Since OR and AND can each be computed by a single Ma-
jority gate, all DNF and CNF formulae are computed by Majority-of-Threshold (in fact, Majority-
of-Majority) circuits of polynomial size. Meanwhile, the best known upper bound on the size of
Majority-of-Threshold circuits computing depth three Boolean circuits is the trivial 2O(n) bound.
Hence, Majority-of-Threshold circuit size may exhibit a chasm at depth three.

We discuss each of these measures, together with applications, in more detail in Section 6.
Unfortunately, we are currently quite far from proving that any of the above complexity measures ac-

tually exhibit such a chasm. For each measure, the best known lower bound for depth three circuits is
exp(Ω̃(n2/5)) [10]. Moreover, as we explain in Section 1.2.4, existing techniques appear intrinsically un-
able to prove a lower bound better than exp(Ω(n1/2)) even for circuits of depth four. This barrier stems from
the fact that previous work has focused exclusively on analyzing block-composed functions. Here, a function
f : {−1, 1}N ·M → {−1, 1} is said to be block-composed if there are two functions h : {−1, 1}N → {−1, 1}
and g : {−1, 1}M → {−1, 1} such that f = h ◦ g := h(g, . . . , g). That is, a function is block-composed
if it interprets its input as a sequence of N blocks x1, . . . , xN ∈ {−1, 1}M , applies a Boolean function g
independently to each block xi, and then feeds the N outputs into a different function h.

In this paper, we take a significant step toward showing that all three of these complexity measures
indeed exhibit a chasm at depth three. Specifically, for any constant δ > 0, we exhibit:

1Throughout this paper, unless otherwise noted, all circuits under consideration are assumed to have polynomial size, and to be
over the basis AND, OR and NOT.

2Discrepancy is often thought of as a matrix-analytic quantity, rather than as a Boolean function complexity measure. For a
function f : {−1, 1}n × {−1, 1}n → {−1, 1}, when we refer to the discrepancy of f , we mean the discrepancy of the matrix
[f(x, y)]x,y∈{−1,1}n .

1

• A depth three circuit of polynomial size (in fact, anO(log n)-decision list) of complexity exp(Ω(n1/2−δ))
under each of these measures.

• A depth three circuit F of quasi-polynomial size (in fact, an O(log2 n)-decision list) of complexity
exp(Ω(n2/3−δ)) under each of these measures. Our F is also computed by a depth four circuit of
polynomial size.

Our results surpass the aforementioned exp(Ω(n1/2)) barrier, and improve substantially on the best lower
known bounds for circuits of any constant depth. Our methods also suggest natural candidate functions that
may exhibit stronger bounds, of the form exp(Ω̃(n)), where the Ω̃ notation hides factors polylogarithmic in
n (cf. Section 3.3).

Our improvement over prior work stems from the fact that we move beyond block-composed functions.
The functions that underly our analysis are rather complicated to define (see Sections 4.2 and 5.2 for details),
but here we briefly highlight their novel features. Inspired by prior work of Podolskii [25] (see Section 1.2.2
for further discussion), we define our functions to be “almost” block-composed, but to have mild depen-
dencies between blocks. Just like a block-composed function, each of our functions interprets its input as
a sequence of N blocks x1, . . . , xN ∈ {−1, 1}M , and applies a Boolean function g to each block, before
feeding theN outputs into a different function h. However, for i ≥ 2, before applying g to xi we first pass xi
through a “pre-processing function” that depends on the preceding blocks x1, x2, . . . , xi−1. We ensure that
this dependency is simple enough that the final function is computed by a circuit of depth three or four, but
complicated enough to break the exp(Ω(n1/2)) barrier that seems intrinsic to methods focusing exclusively
on block-composed functions.

1.1 Our Contributions: Details

The three complexity measures C described above are intimately related to uniform approximability by
low-degree polynomials, as we now explain. Roughly speaking, for each of the three measures, in order
to construct a function of complexity at least 2d under C, it suffices to identify a function f : {−1, 1}n →
{−1, 1} such that f cannot be uniformly approximated to error 1− 2−d by polynomials of degree at most d.
One can then apply known transformations [17,18,31] to transform f into a related function F : {−1, 1}n →
{−1, 1} such that C(F) ≥ 2Ω(d). Moreover, these transformations are simple in the following sense: if f is
computed by a (polynomial size) depth d circuit with logarithmic bottom fan-in, then so is F . Similarly, if
f is computed by a quasi-polynomial size depth d circuit with polylogarithmic bottom fan-in, then so is F .

Accordingly, the main technical contribution of this paper is to prove a new lower bound on the approx-
imability of suitable constant-depth circuits by low-degree polynomials.

Theorem 1. For any arbitrarily small constant δ > 0 and any arbitrarily large constant Γ > 1, there is an
(explicitly given) function f : {−1, 1}n → {−1, 1} that is computed by Boolean circuit of depth three, with
logarithmic bottom fan-in, that satisfies the following property. For any polynomial p : {−1, 1}n → R of
total degree at most n1/2−δ, there exists some x ∈ {−1, 1}n such that |p(x)− f(x)| > 1− 2−n

Γ
.

In fact, the function f in Theorem 1 is much simpler than an arbitrary depth three circuit with logarithmic
bottom fan-in; it is an O(log n)-decision list of polynomial length. An O(log n)-decision list is a function
whose output is determined by a very simple sequential decision process (essentially, a chain of “if-then-
else” statements, where each “if” statement is a conjunction on O(log n) variables – we give a precise
definition in Section 2). Decision lists have been studied intensely in learning theory and complexity theory
(see, e.g., [6, 8, 13, 16, 17, 27, 28, 36]).

2

Theorem 2. For any arbitrarily small constant δ > 0 and any arbitrarily large constant Γ > 1, there is an
(explicitly given) function f : {−1, 1}n → {−1, 1} that is computed by a polynomial size Boolean circuit
of depth four, with logarithmic bottom fan-in, that satisfies the following property. For any polynomial
p : {−1, 1}n → R of total degree at most n2/3−δ, there exists some x ∈ {−1, 1}n such that |p(x)−f(x)| >
1− 2−n

Γ
. Moreover, f is also computed by a Boolean circuit of depth three and size nO(logn), with bottom

fan-in O(log2 n).

Remark 3. In fact, the function f in Theorem 2 is computed by an O(log2 n)-decision list. Any O(log2 n)-
decision list can be sign-represented by a polynomial of degree O(log2 n). Hence, Theorem 2 exhibits a
function f that can be sign-represented by polynomials of just polylogarithmic degree, but f requires very
large degree (i.e., degree Ω(n2/3−δ)) to uniformly approximate, even if one only wants to approximate it to
error super-exponentially close to 1 (i.e., to error 1− 2−n

Γ
).

By combining Theorems 1 and 2 with known transformations [18, 31], we obtain depth three circuits F
and F ′ with very large complexity under the three measures described above. In fact, these functions are
themselves respectively computed by O(log n)- and O(log2 n)-decision lists.

Corollary 4. For any constant δ > 0, there is an (explicitly given) function F : {−1, 1}n → {−1, 1} that is
computed by a Boolean circuit of depth three and logarithmic bottom fan-in such that:
• The threshold weight of F is exp(Ω(n1/2−δ)).
• The discrepancy F is exp(−Ω(n1/2−δ)).
• Any Majority-of-Threshold circuit computing F has size exp(Ω(n1/2−δ)).

Corollary 5. For any constant δ > 0, there is an (explicitly given) function F ′ : {−1, 1}n → {−1, 1} that
is computed by a Boolean circuit of depth four and logarithmic bottom fan-in, and satisfies:
• The threshold weight of F ′ is exp(Ω(n2/3−δ)).
• The discrepancy F ′ is exp(−Ω(n2/3−δ)).
• Any Majority-of-Threshold circuit computing F ′ has size exp(Ω(n2/3−δ)).

Moreover, F ′ is also computed by a quasipolynomial size Boolean circuit of depth three and bottom fan-in
O(log2 n).

Table 1 succinctly compares our results to prior work.

Reference Threshold Weight Discrepancy Majority-of-Threshold Circuit
Bound Bound Circuit Size Bound Depth

[18] exp(Ω(n1/3)) N/A N/A 3
[30] N/A exp(−Ω(n1/5)) exp(Ω(n1/5)) 3

[8, 31] N/A exp(−Ω(n1/3)) exp(Ω(n1/3)) 3
[10] exp

(
Ω(n2/5)

)
exp

(
−Ω(n2/5)

)
exp

(
Ω(n2/5)

)
3

[34] exp
(

Ω(n
k−1
2k−1)

)
exp

(
−Ω(n

k−1
2k−1)

)
exp

(
Ω(n

k−1
2k−1)

)
k + 1 (for k ≥ 2)

[29] exp
(
Ω(n1/2)

)
exp

(
−Ω(n1/2)

)
exp

(
Ω(n1/2)

)
4

This work exp
(
Ω(n1/2−δ)

)
exp

(
−Ω(n1/2−δ)

)
exp

(
Ω(n1/2−δ)

)
3

This work exp
(
n2/3−o(1)

)
exp

(
−n2/3−o(1)

)
exp

(
n2/3−o(1)

)
3 (quasi-polynomial size)

This work exp
(
Ω(n2/3−δ)

)
exp

(
−Ω(n2/3−δ)

)
exp

(
Ω(n2/3−δ)

)
4

Table 1: Comparison of our new bounds for AC0 to prior work. The circuit depth column lists the depth of the
Boolean circuit used to exhibit the bound, and δ denotes an arbitrarily small positive constant. All Boolean circuits
are polynomial size unless otherwise noted.

3

1.2 Prior Work

In order to discuss prior work, it is helpful to introduce the notions of approximate degree and threshold
degree, which both capture the difficulty of point-wise approximation by low-degree polynomials. The ε-
approximate degree of a function f , denoted d̃egε(f), is the least degree of a real polynomial that point-wise
approximates f to error ε. By convention, d̃eg1/3(f) is denoted simply as d̃eg(f) and referred to without
qualification as the approximate degree of f (the constant 1/3 is chosen for aesthetic reasons, and could be
replaced with any other constant in (0, 1) without affecting the theory in any way). The threshold degree
of f , denoted deg±(f), is the least degree of a real polynomial that sign-represents f at all points. When
appropriate, we also use subscripts after function symbols to indicate the number of variables over which
the function is defined. For example, ORM denotes the OR function on M inputs.

1.2.1 Early Work on Approximating AC0 Functions by Low-Degree Polynomials

Minsky and Papert [23] famously proved an Ω(n1/3) lower bound on the threshold degree of the DNF
formula ORn1/3 ◦ANDn2/3 , now known as the Minsky-Papert DNF. Klivans and Servedio [15] proved an
essentially matching upper bound of Õ(n1/3) on the threshold degree of any polynomial size DNF.

Beigel identified a DNF (in fact, a 1-decision list) known as OMB (short for ODD-MAX-BIT) that has
threshold degree 1, but requires large degree to approximate to error bounded away from 1 [6]. OMB will
play a central role in this paper, and we define it formally in Section 2. Quantitatively, Beigel showed3 that
for any d > 0, there is an ε ∈ 1 − 2−Ω(n/d2) such that d̃egε(OMBn) ≥ d. For any ε > 0, Klivans and
Servedio [16] gave an optimal ε-approximating polynomial for any 1-decision list, showing that Beigel’s
lower bound is asymptotically tight for all d > 0.4

1.2.2 Prior Work of Podolskii

Podolskii pioneered a line of work devoted to proving approximate degree lower bounds that hold even when
the error parameter ε is allowed to be super-exponentially close to 1 [25, 26].5 In [26], he showed that for
any constant d ≥ 2, there exists a function of threshold degree d that cannot be uniformly approximated to
error ε by polynomials of degree at most d, unless ε = 1− n−Ω(nd). This result is tight, matching an upper
bound proved by Burhman et al. [8].

Our construction and analysis are inspired by another related result of Podolskii [25]. For any constant
d > 0, Podolskii identified a function f of threshold degree d such that, even forD � d, the following holds:
f cannot be uniformly approximated by degree D polynomials to error ε, unless ε is superexponentially
close to 1. Quantitatively, he showed that for any constant d > 0, there exists a DNF (in fact, a d-decision
list) f with threshold degree d, yet for any D < O(n1/5/ log n), there exists an ε ∈ 1− exp

(
Ω((n/D4)d)

)
for which d̃egε(f) ≥ D. Unfortunately, Podolskii’s construction itself does not yield any new bounds on the
complexity measures we are interested in. By introducing new ideas, we are able to prove such improved
bounds for depth three circuits.

3Beigel describes his result as a lower bound on the degree-d threshold weight of OMBn, which refers to the least weight
of a sign-representing polynomial p for f satisfying deg(p) ≤ d. However, his argument is easily seen to establish the claimed
approximate degree lower bound.

4Like Beigel, Klivans and Servedio state their results in terms of degree-d threshold weight. However, their construction is
easily seen to imply the claimed upper bound on the approximate degree of OMBn.

5Again, Podolskii describes his work in terms of degree-d threshold weight, but his results hold for approximate degree as well.

4

1.2.3 Translating Approximate Degree Lower Bounds to Complexity Bounds

Several works have focused on transforming approximate degree and threshold degree lower bounds into
bounds on the complexity measures that we focus on in this paper (threshold weight, discrepancy/margin
complexity, and Majority-of-Threshold circuit size). Krause and Pudlák [18] showed how to take a function
f of threshold degree at least d, and turn f into a related function F of threshold weight6 at least 2d. By
applying this transformation to the Minsky-Papert DNF, Krause and Pudlák obtained a depth three circuit
(with constant bottom fan-in) with threshold weight exp(Ω(n1/3)).

Subsequent work by Krause [17] showed that for F to have threshold weight 2Ω(d), it is enough for f to
satisfy d̃eg1−2−d(f) ≥ d.7 Krause applied his result to the function f = OMB, to obtain an exp(Ω(n1/3))
lower bound on the threshold weight of a specific 2-decision list.

Sherstov’s pattern-matrix method [31] showed how to take a function f satisfying the same condition
required by Krause (i.e., d̃eg1−2−d(f) ≥ d), and turn it into a function F with discrepancy 2−Ω(d). By
applying this transformation to the Minsky-Papert DNF or to OMB, Sherstov obtained a depth three circuit
with discrepancy exp(−Ω(n1/3)). Buhrman, Vereschagin, and de Wolf independently proved an identical
discrepancy bound via very different techniques [8]. These discrepancy bounds also implied corresponding
lower bounds on Majority-of-Threshold Circuit Size, through standard transformations [24].

1.2.4 Recent Work on Approximating AC0 Functions by Low-Degree Polynomials

A handful of recent works have established various forms of “hardness amplification” for approximate
degree [9, 10, 20, 29, 29, 32–34]. Roughly speaking, these results show how to take a function g which
is hard to approximate by degree d polynomials to error 1/3, and turn g into a related function f that is hard
to approximate by degree d polynomials to error exponentially close to 1. Specifically, in these works, f is
obtained from g by block-composing g with another function h.

Let EDM denote the well-known Element Distinctness function (defined formally in Section 2) and
EDM its negation. EDM has played a central role in recent works on hardness amplification for approximate
degree [10, 29, 34] because it currently exhibits the largest known approximate degree lower bound for any
function in AC0: d̃eg(EDM) = Ω̃(M2/3) [1].

Our prior work [10] showed that the function f = ORN ◦EDM satisfies d̃egε(f) ≥ Ω̃(M2/3) for
ε = 1 − 2−N , and used this result to obtain a depth three circuit such that C(F) = exp(Ω̃(n2/5)) for
the three complexity measures C that we focus on in this work. Thaler [35] then showed that the function
f = OMBN ◦EDM satisfies an identical lower bound, yielding another depth three circuit F (in fact, an
O(log n)-decision list) with C(F) = exp(Ω̃(n2/5)).

Sherstov [34] significantly strengthened the approach of [10] to obtain new threshold degree lower
bounds for functions in AC0. Specifically, in [34], for any k ≥ 2, Sherstov exhibited a read-once formula of
depth k (with polynomial bottom fan-in) that has threshold degree Ω(n

k−1
2k−1). Applying the transformations

of [17, 18, 31] to these circuits increases their depth by 1. In [29], Sherstov exhibited a depth four circuit of
logarithmic bottom fan-in and threshold degree Ω(n1/2) – applying the transformation of [17,18,31] to this
circuit does not increase its depth, yielding a depth four circuit F satisfying C(F) = exp(Ω(n1/2)).

The exp(Θ(
√
n)) Barrier For Circuits of Depth Four. Recall that for each of the three complexity mea-

sures C in which we are interested, in order to construct a function of complexity at least 2d under C, it
6In fact, Krause and Pudlák showed that F has threshold length 2d, where threshold length is the least number of non-zero

Fourier coefficients of any sign-representation for f . The threshold weight of f is always at least as large as its threshold length.
7Again, Krause phrased his lower bound in terms of the degree-d threshold weight of OMB, but his result is easily seen to

imply the statement here.

5

suffices to identify a function f : {−1, 1}n → {−1, 1} such that

f cannot be uniformly approximated to error 1− 2−d by polynomials of degree at most d. (1)

We now argue that for circuits of depth 4, prior techniques cannot accomplish this for d�
√
n, even if they

assume the existence of a DNF g : {−1, 1}M → {−1, 1} with (one-sided) approximate degree Ω(M).8

The methods of [10, 35] start with a function g : {−1, 1}M → {−1, 1}, and assume nothing about g
other than that g has (one-sided) approximate degree at least d. They show how to turn g into a “harder”
function f = h ◦ g by block-composing g with another function h ∈ {ORN ,OMBN}. Quantitatively, the
resulting bound is of the form d̃eg1−2−N (f) ≥ d. Clearly, one must setN ≥ d to obtain a bound of the form
Eq. (1). Hence, even if g has the largest possible (one-sided) approximate degree, d = M , the best bound
that can be obtained from the methods of [10, 35] is of the form d̃eg1−2−N (f) ≥ N , obtained by setting
M = N . In this case, f is a function over n = N2 variables, so these methods can only yield complexity
bounds of the form exp(Ω(N)) = exp(Ω(

√
n)).

Both [10, 35] showed that their respective analyses are tight for many functions g. Hence, the exp(
√
n)

barrier is not merely an artifact of the analysis in these works.
Indeed, at least in the case of h = ORN , the barrier is inherent to any method that attempts to construct

an f satisfying Eq. (1) by assuming nothing about a function g : {−1, 1}M → {−1, 1} other than that g has
(one-sided) approximate degree at least d, and then block-composing g with h. To see this, first observe that
ifM ≤ N , then for any function g : {−1, 1}M → {−1, 1}, (1/N)

∑N
i=1 g(xi)+(N−1)/N is a polynomial

of degree at most M ≤ n1/2 that approximates f = ORN ◦g to error 1− 1/N .
Even if M ≥ N , it is often the case that ORN ◦g can be approximated to error 1 − 2−Õ(n1/2) by a

polynomial of degree O(n1/2). Indeed, many functions g with large approximate degree (such as EDM for
example) can be approximated to error 1/3N2 by a ratio q1(x)/q2(x) of two polynomials of logarithmic
degree and weight quasi-polynomial in M and N . One can use q1, q2 to obtain a polynomial approximator
p for f = h ◦ g such that deg(p) = O(N log(M · N)), and p uniformly approximates f to error 1 −
2−O(N ·polylog(M)). We omit the details for brevity, but the construction can be found in [7] (see also [29,
Theorem 6.10]).

Sherstov [29,34] introduced sophisticated and demanding methods that can prove stronger lower bounds
for constant-depth circuits than [10,35]. However, his methods apply block-composition multiple times, and
crucially exploit alternation in the circuits computing the functions being composed; hence, in the context of
Eq. (1), his analysis improves over [10,35] only for circuits of greater depth or bottom fan-in than considered
in those works. Furthermore, in [29, Section 9.4] Sherstov provides a detailed discussion on barriers facing
his methods. In particular, he shows that the exp(Ω(n1/2)) barrier is inherent to the class of functions he
considers in [29], and is not an artifact of the analysis. He does indicate that his methods might be extendable
to break the exp(Ω(n1/2)) barrier by using circuits of depth 5 or greater.

1.3 An Additional Application

Here, we briefly mention one additional application of our results. By combining Theorem 2 with standard
machinery, we obtain an improved separation between the analogues of the complexity classes PP and PNP

in communication complexity. Specifically, for a function F : {−1, 1}n × {−1, 1}n → {−1, 1}, let PP(F)

8One-sided approximate degree is a measure that is intermediate between approximate degree and threshold degree. One-
sided approximate degree lower bounds is crucial to the analyses in [10, 29, 34]. However, we will not explicitly utilize one-sided
approximate degree in our own results, so we do not formally define it here. The best known one-sided approximate degree lower
bound for an AC0 function is the same as the best known approximate degree lower bound: Ω̃(M2/3), exhibited by EDM [10].

6

and PNP(F) respectively denote the least cost of a PP and PNP communication protocol for F . For any
constant δ > 0, we exhibit an F satisfying PP(F) = Ω(n2/3−δ) and PNP(F) = O(logc n) for some
constant c, answering a question of Thaler [35]. This improves over prior work that gave an F satisfying
PP(F) = Ω̃(n2/5) and PNP(F) = O(log2 n) [35] and earlier work of Buhrman et al. that gave an F
satisfying PP(F) = Ω(n1/3) and PNP(F) = O(log2 n) [8]. We direct the interested reader to [35] for
further details on this application.

2 Preliminaries

Notation. We work with Boolean functions f : {−1, 1}n → {−1, 1}, where −1 corresponds to logical
TRUE and +1 corresponds to logical FALSE. For a given Boolean function f , the function f̄ := −f
denotes its negation. The notation [n] refers to the set {0, 1, . . . , n}. For any n ∈ N, fix a canonical
injection [n] → {−1, 1}dlog(n+1)e; we refer to the image of any i ∈ [n] under this injection as the binary
representation of i. All logarithms in this work are assumed to be taken in base 2.

Decision Lists and OMB. A k-decision list D of length L over the Boolean variables x1, . . . , xn is repre-
sented by a list of L pairs (C0, b0), (C1, b1), . . . , (CL−1, bL−1) and a bit bL where each Ci is a conjunction
of width at most k, and each bi is either −1 or 1. Given any x ∈ {−1, 1}n, the value of D(x) is bi if i is the
smallest index such that Ci is made true by x; if no Ci is is true then D(x) = bL.

Any k-decision list of length L is computed by a depth three circuit of size O(L) and bottom fan-in
O(k). Indeed, letting S = {i ≤ L : bi = −1}, the circuit is

bL ∨
∨
i∈S

(
Ci(x) ∧ C̄1(x) ∧ · · · ∧ C̄i−1(x)

)
.

To see that this is indeed a circuit of depth three with bottom fan-in O(k), observe that for any conjunction
Ci of width k, C̄i is computed by a disjunction of width k.

Let OMB : {−1, 1}N → {−1, 1} denote a specific 1-decision list known as ODD-MAX-BIT, defined
as follows. For i = 1, 2, . . . , N , the conjunction Ci(x) = xN−i and bi = (−1)N−i. Finally, define bN = 1.
OMB can be equivalently defined in the following manner. On input x = (x1, . . . , xN), let β(x) denote the
largest index i such that xi = −1, and let β(x) = 0 if no such index exists. Then

OMB(x1, . . . , xN) =

{
−1 if β(x) is odd
1 otherwise.

Beigel [6] showed that OMB has high approximate degree, even when the error parameter is exponen-
tially close to 1. Specifically:

Theorem 6 (Beigel [6]). There exists a constant c > 0 for which the following holds. Let p(x) be a
polynomial of degree at most d such that |p(x)| ≥ 1 and p(x) · OMBN (x) > 0 for all x ∈ {−1, 1}N .
Then there exists an x ∈ {−1, 1}N such that |p(x)| ≥ 2cN/d

2
. In particular, d̃egε(OMBN) ≥ d for some

ε = 1− 2Ω(N/d2).

To prove Theorem 6, Beigel iteratively constructs a sequence of inputs x0, x1, . . . , xcN/d
2

for which |p(xt+1)| ≥
2 · |p(xt)|. He obtains these inputs by repeatedly applying the following lemma, which we will also make
use of directly.

7

Lemma 7 (Beigel [6]). Let d,N ∈ N and let ` ≥ 10d2 such that N/` is an integer. Consider the increasing
family of sets S1 ⊂ S2 ⊂ · · · ⊂ SN/` ⊆ {−1, 1}n defined by

S0 = {1N}, S1 = {x : xi = 1 ∀i > `}, . . . , St = {x : xi = 1 ∀i > t`}, . . . , SN/` = {−1, 1}N .

Let p(x) be a polynomial of degree at most d such that p(x) · OMBN (x) > 0 for all x ∈ St+1 \ St. Let
z ∈ St. Then there exists a z′ ∈ St+1 \ St such that |p(z′)| ≥ 2 · |p(z)|.

ELEMENT DISTINCTNESS. Aaronson and Shi [1], exhibit a function known as EDM : {−1, 1}M →
{−1, 1} that is computed by a polynomial size CNF formula of widthO(logM), and satisfies d̃eg2/3(EDM) =

Ω((M/ logM)2/3).9 This is the best known lower bound (up to logarithmic factors) on the (1/3)-approximate
degree of any function in AC0.

Specifically, EDM is defined as follows. Assume for simplicity that M = m · log2m for some m ∈ N.
EDM takes M bits as input, and interprets its input as m blocks (x1, . . . , xm) with each block consisting of
log2m bits. Each block is interpreted as a number in the range {1, . . . ,m}, and EDM evaluates to −1 on x
if and only if all m numbers are distinct.

Theorem 8 (Aaronson and Shi [1] and Ambanis [2]). There exists some constant c > 0 such that the
following holds. Let p : {−1, 1}M → {−1, 1} be any polynomial of degree at most c · (M/ logM)2/3.
Then there exists an x ∈ {−1, 1}M such that |p(x) − EDM (x)| > 1/3. The same statement holds with
EDM in place of EDM .

3 Intuition and Discussion of Theorems 1 and 2

3.1 Overview of Our Functions

For clarity, we focus in this discussion on the function f that we exhibit in Theorem 2. As mentioned in
Section 1, this function is complicated to define. Hence, before formally defining f , we provide here some
motivation for our definition.

Recall that [35] showed that d̃egε(OMBN ◦EDM) = Ω̃(M2/3) for ε = 1 − 2−N , Moreover, this
lower bound is essentially tight for OMBN ◦EDM : there is in fact a polynomial p of degree O(logM) that
approximates OMBN ◦EDM to error ε = 1− 2−O(N logM).

Our goal is to modify OMBN ◦EDM to obtain an f : {−1, 1}n → {−1, 1} that is much harder to ap-
proximate by low-degree polynomials, while still ensuring that f is computed by an O(log2 n) decision list.
Specifically, we will require, for some large constant k and small constant δ > 0, d̃egε(f) = Ω(M2/3−δ)

for ε = 1− 2−N
k
.

A natural first attempt to construct such an f is to block-compose OMBN ◦EDM with the parity function
on k variables. Specifically, let k be some constant, and consider the following function on k · N · M
variables: ⊕k ◦OMBN ◦EDM , where⊕ denotes the parity function. However, this function is still too easy
to approximate: there is a polynomial of degree O(k logM) that approximates⊕k ◦OMBN ◦EDM to error
1 − 2−O(kN logM). Indeed, letting p be the polynomial approximation to OMBN ◦EDM described above,
the polynomial q(x1, . . . xk) := 2−k

∏k
i=1 p(xi) does the trick.

We instead define f to be “just different enough” from⊕k ◦OMBN ◦EDM to foil this construction of an
approximating polynomial. Specifically, our f will first “pre-process” its input (x1, . . . , xk), before feeding

9This bound is tight up to a logarithmic factor, as d̃eg2/3(EDM) = O(M2/3 log1/3(M)) [3].

8

it into⊕k ◦OMBN ◦EDM . The pre-processing step will introduce dependencies between blocks, so that an
approximating polynomial for f will be unable to treat them independently in the manner of q.

In more detail, f will interpret its input x as k blocks, x1, . . . , xk (we will refer to x1, . . . , xk as “super-
blocks”, since each xi will itself be interpreted as consisting of N blocks, which will themselves each be
interpreted as consisting of M “sub-blocks”). For expository purposes, we focus in the remainder of this
section on the case k = 2, so that there are only two super-blocks x1, x2 (The full construction is defined
inductively, and described in Section 5.2). Assume for simplicity that N + 1 is a power of 2. The two
super-blocks will not contain the same number of bits: x1 will contain N ·M bits, while x2 will contain
N ·M ·log(N+1) bits. We will ultimately treat x1 as an input to OMBN ◦EDM ; accordingly, let us interpret
x1 as consisting of N blocks, each containing M bits, so that we can write x1 = (x1,1, . . . , x1,N) ∈(
{−1, 1}M

)N . Let γ(x1) ∈ {−1, 1}logN be the binary representation of the largest integer j satisfying
ED(x1,j) = −1, and let γ(x1) = 0 if no such j exists. That is, γ(x1) is the index of the “leading TRUE bit”
that gets fed into OMBN when evaluating (OMBN ◦EDM)(x1).

Similarly, we interpret x2 as consisting of N blocks. However, each block now contains M log(N + 1)
bits, and is comprised ofM sub-blocks, each consisting of log(N+1) bits. Let EQγ(x1) : {−1, 1}log(N+1) →
{−1, 1} denote the function that outputs−1 if and only if its input equals γ(x1). Finally, let u = (u1, . . . uN) ∈
({−1, 1}M)N denote the vector obtained by applying EQγ(x1) to each sub-block of x2. That is, u is the
vector obtained by first “pre-processing” each sub-block of x2 with an “equality test” EQγ(x1) that is deter-
mined by x1. Finally, we define

f =
(
(OMBN ◦EDM)(x1)

)
⊕
(
(OMBN ◦EDM)(u)

)
. (2)

Notice that the dependence of this pre-processing function on x1 is actually quite mild: u only de-
pends on the “leading TRUE bit” that gets fed into OMBN when evaluating OMBN ◦EDM (x1). This mild
dependence is what allows f to be computed by an O(log2 n) decision list.

It is not hard to see that an equivalent way to write f (that moreover helps reveal its structure as an
O(log2 n)-decision list) is:

f(x1, x2) = OMBN2+2N (ED(u1), ED(u2), . . . , ED(uN),

ED(x1,1), ED(x1,1) ∧ ED(u1), ED(x1,1) ∧ ED(u2), . . . , ED(x1,1) ∧ ED(uN),

...

ED(x1,N), ED(x1,N) ∧ ED(u1), . . . , ED(x1,N) ∧ ED(uN)), (3)

where u is defined as above. It turns out that Representation (2) of f is useful for establishing lower bounds
on the approximate degree of f , while Representation (3) is more useful for constructing approximating
polynomials for f , and gaining intuition about f (cf. Section 5.2.3). In particular, Representation (3) sug-
gests a natural method for approximating f : treat it as a 1-decision list over N2 + 2N “derived” variables
(and then use an optimal method of approximating 1-decision lists, which are well-understood). The proof
of our lower bound (Theorem 2) implicitly shows that this simple approach is essentially optimal. The next
subsection briefly explains the details of this approximation method.

3.2 A Nearly Matching Upper Bound

We begin by giving the well-known sign-representing polynomial for OMBN itself. Define p : {−1, 1}N →
R via

9

p(x1, . . . , xN) := 1 +

N∑
i=1

(−2)i · (1− xi)/2.

It is easy to see that OMBN (x) · p(x) > 0 for all x ∈ {−1, 1}N , and in fact 2−N−1 · p(x) approximates
OMBN to error ε = 1− 2−N−1.

We now turn to constructing an approximant for the function OMBN ◦EDM . Our starting point is a
polynomial q of degree O(M2/3) satisfying the following two properties (cf. [35]).

q(x) = 0 for all x ∈ ED−1
M (+1). (4)

1 ≤ q(x) ≤ 2 for all x ∈ ED−1
M (−1). (5)

Denoting an (N ·M)-bit input as (x1, . . . , xN) ∈
(
{−1, 1}M

)N , it is easy to check that

F (x1, . . . , xN) = sgn(g(x1, . . . , xN)), where g(x1, . . . , xN) = 1 +

N∑
i=1

(−3)i · q(xi).

In fact, 3−N−1 · g(x) approximates F to error 1− 3−N−1, and has degree equal to that of q.
Recall (cf. Eq. (3)) that in the case k = 2, our function can be written as

OMBN2+2N (ED(u1), ED(u2), . . . , ED(x1,N) ∧ ED(uN)).

Using techniques similar to the above, one can obtain a degree Õ(M2/3 logN) polynomial p that approx-
imates this function to error 1 − 2−O(N2). Our lower bound will show this approximation is essentially
optimal.

3.3 Prospects for Further Improved Lower Bounds

Recall that the best known lower bound on the approximate degree of any function f : {−1, 1}n → {−1, 1}
in AC0 is Ω̃(n2/3), exhibited by the function ED. A remarkable property of the lower bound in Theorem
2 is that it essentially matches this degree bound, even for approximations that are allowed error super-
exponentially close to 1 (i.e., error as large as 1− 2−n

Γ
for any constant Γ > 0).

Clearly, improving the degree bound in Theorem 1 beyond Ω(n2/3) will require first exhibiting a func-
tion in AC0 whose approximate degree is substantially larger than that of ED. A prime candidate is the
k-sum function for k ≥ 3 (see [3] for a definition of this function; here we merely note that ED is equivalent
to k-sum for k = 2). In our prior work, we conjectured that for any k = O(1), the approximate degree of the
k-sum function is Ω̃(nk/(k+1)) (an O(nk/(k+1)) upper bound was proved in [3]). We further conjecture that
for any constants δ,Γ > 0, replacing ED with k-sum in the definition the function we constructed to prove
Theorem 2 yields a function that cannot be uniformly approximated to error 1− 2−n

Γ
by any polynomial of

degree at most nk/(k+1)−δ. If true, this would imply, for any constant δ′ > 0, the existence of a depth four
circuit (and a depth three circuit of quasipolynomial size) that has threshold weight, margin complexity, and
Majority-of-Threshold circuit size all at least exp(Ω(n1−δ′)).

It may also be possible to slightly sharpen our analysis. Specifically, we conjecture that it is possible to
improve the parameter ck appearing in the statement of our Theorem 20 (cf. Section 5.2), from ck = Θ(2−k)

10

to ck = poly(k). If so, then by setting k = Θ(logM) and N = Θ(1) in the statement of Theorem 20, one
would obtain a Boolean circuit of constant depth and polynomial size, with complexity exp(Ω̃(n2/3)) (this
would improve over our stated bound of exp(Ω(n2/3−δ))).

Furthermore, this suggests the following candidate AC0 function that may have essentially maximal
complexity exp(Ω̃(n)): within the construction of Theorem 20, set k = Θ(logM), and N = Θ(1), and
replace EDM with an AC0 function conjectured to have approximate degree Ω̃(M), such as the SURJEC-
TIVITY function (see [5] for the definition of this function).

4 Proof of Theorem 1

Before stating and proving Theorem 1, we consider an easier statement, the proof of which is much cleaner,
while still capturing the main ideas of the general case.

4.1 Simplified Statement and its Proof

The function f that we exhibit in Theorem 1 is defined over k “superblocks”, where k is an arbitrarily large
constant (see Section 3.1 for motivation for the superblock terminology). Here, we consider the simpler case
of exactly k = 2 superblocks.

Notation. Recall (cf. Section 2) that for x = (x1, . . . , xN) ∈ {−1, 1}N , β(x) denotes the largest index
i = 1, . . . , N such that xi = −1 (or β(x) = 0 if none exists). Assume for simplicity that N + 1 is a
power of two. Given an input (x, y) ∈ {−1, 1}N × ({−1, 1}log(N+1))N , we interpret y as consisting of N
blocks y1, . . . , yN , each consisting of log(N + 1) bits. Let EQβ(x) : {−1, 1}log(N+1) → {−1, 1} denote
the function that outputs −1 if and only if its input equals the binary representation of β(x). Finally, let
u = (u1, . . . uN) ∈ {−1, 1}N denote the vector obtained by applying EQβ(x) to each block of y. That
is, u is the vector obtained by first “pre-processing” each block of y with an “equality test” EQβ(x) that is
determined by x.

Function Definition. Define F via:

F (x, y) = OMBN (x1, . . . , xN)⊕OMBN (u1(x, y1), . . . , uN (x, yN)) (6)

= OMBN (x1, . . . , xN)⊕OMBN (EQβ(x)(y1), . . . ,EQβ(x)(yN)). (7)

Proposition 9. There exists a constant c for which the following holds. Let d, n ∈ N where n = N +
N log(N + 1). Let p be a polynomial of degree at most d such that |p(x, y)| ≥ 1 and p(x, y) · F (x, y) > 0
for all (x, y) ∈ {−1, 1}n. Then there exists an (x, y) ∈ {−1, 1}n such that |p(x, y)| ≥ 2(cN/d2)2

.

To ease notation below, we will identify each block yi ∈ {−1, 1}log(N+1) with the number in [N] for
which yi is the binary representation. That is, while we will write each yi as though it were a number
0, 1, . . . , N , it should always be thought of as the binary string representing that number.

Proof Idea. Let p(x, y) be a polynomial of degree at most d that agrees with F in sign. Building on Beigel’s
proof of Theorem 6, we iteratively apply Lemma 7 to construct a sequence of inputs to the polynomial
p, such that evaluating p on each point yields a value of (at least) twice the magnitude of the previous
evaluation. By choosing these inputs carefully (and crucially exploiting the “pre-processing” step in the
definition of F2 that transforms y into the vector u(x, y), before feeding it into OMBN), we can apply
Lemma 7 a total of (cN/d2)2 times. This is a quadratic improvement over the number of times Beigel is

11

able to apply Lemma 7 to OMBN itself. Podolskii [25] used related ideas to obtain a lower bound for a
different function, but we are able to avoid the significant quantitative losses that are inherent to his approach.

In more detail, recall that Beigel’s lower bound argument (cf. Theorem 6) for OMBN started with
the input x0 = 1N , and iteratively applied Lemma 7 to obtain inputs x1, . . . , xcN/d

2
such that |p(xt)| ≥

2|p(xt−1)| for all t ≥ 1. Roughly speaking, the first input to F that we construct is a point (x1, y0) such
that u(x1, y0) = 1N and the last N − 10d2 bits of x1 are all set to 1. Since u(x1, y0) is fed into OMBN

in the definition of F , we are able to apply Beigel’s argument (Theorem 6) to obtain an input (x1, y1) such
that |p(x1, y1)| ≥ 2cn/d

2 · |p(x1, y0)|. We then “use” the second block of 10d2 bits of the first superblock
to “clean up” u, in the following sense: we find an x2 whose last N − 20d2 bits are all equal to 1, such that
u(x2, y1) = 1N and |p(x2, y1)| ≥ |p(x1, y1)|. This enables us to apply Beigel’s argument (Theorem 6) a
second time, finding an input (x2, y2) such that |p(x2, y2)| ≥ 2cn/d

2 · |p(x1, y1)|. We then use the third 10d2

bits of the first superblock to “clean up” u yet again, and repeat. We can continue the argument until we
have “used up” all the bits of the first superblock, at which point we have obtained the desired lower bound.

Proof of Proposition 9. Let ` = 10d2 and consider the increasing family of sets S0 ⊂ S1 ⊂ · · · ⊂ SN/` ⊆
{−1, 1}N defined as in Lemma 7. Let p be a polynomial of degree at most d such that p(x, y) ·F (x, y) > 0
for all (x, y) ∈ {−1, 1}n. We iteratively construct a sequence of inputs (x0, y0), (x1, y1), . . . , (xN/`, yN/`)
to p such that:
• Each xt ∈ St and each yt ∈ [t`]N ,
• |p(x0, y0)| ≥ 1, and
• |p(xt+1, yt+1)| ≥ 2cN/d

2 · |p(xt, yt)| for each t = 0, . . . , N/`− 1.

At the conclusion of this process, we obtain an input (xN/`, yN/`) such that |p(xN/`, yN/`)| ≥ 2(cN/d2)2
.

We may take as the first input (x0, y0) the point (1N , 0N). We construct the remaining inputs (xt, yt)
iteratively. The following claim formalizes this iterative process.

Claim 10. Let p be a polynomial of degree at most d and suppose p(x, y) · F (x, y) > 0 for all (x, y) ∈
{−1, 1}n. Let (xt, yt) be an input with xt ∈ St and yt ∈ [t`]N . Then there exists an input (xt+1, yt+1) such
that |p(xt+1, yt+1)| ≥ 2cN/d

2 · |p(xt, yt)|, where xt+1 ∈ St+1 and yt+1 ∈ [(t+ 1)`]N .

Proof. We prove the claim in two steps. First, we show that there exists an xt+1 ∈ St+1 for which
|p(xt+1, yt)| ≥ |p(xt, yt)|. Second, we show that there exists a yt+1 ∈ [(t+1)`]N such that |p(xt+1, yt+1)| ≥
2cN/d

2 · |p(xt+1, yt)|. Putting these steps together yields |p(xt+1, yt+1)| ≥ 2cN/d
2 · |p(xt, yt)|.

Step 1. We examine the function F (x, yt) (viewed as a function only of x). By construction, each block
yti ≤ t`. Thus, EQβ(x)(y

t
i) = 1 for all x ∈ St+1 \ St, and hence

OMBN (EQβ(x)(y
t
1), . . . ,EQβ(x)(y

t
N)) = OMBN (1N) = 1

for all such inputs. As a result, F (x, yt) = OMBN (x) whenever x ∈ St+1 \ St.
Now consider the polynomial q : {−1, 1}N → R defined by q(x) = p(x, yt). Then q(x) ·OMBN (x) >

0 for all x ∈ St+1 \ St. By assumption, xt ∈ St. Thus, by Lemma 7, there exists an xt+1 ∈ St+1 such that
|q(xt+1)| ≥ 2 · |q(xt)|. Unpacking the definition of q, we see that in particular, |p(xt+1, yt)| ≥ |p(xt, yt)|.
Step 2. We now show that there exists a yt+1 ∈ [(t+1)`]N , such that |p(xt+1, yt+1)| ≥ 2cN/d

2 ·|p(xt+1, yt)|.
For w ∈ {−1, 1}N , define the string yw by (yw)i = β(xt+1) if wi = −1 and (yw)i = yti if wi = 1. Note
that since β(xt+1) ≤ (t + 1)` and each yti ∈ [t`], we have that yw ∈ [(t + 1)`]N for every w ∈ {−1, 1}N .
Consider the function E : {−1, 1}N → {−1, 1} defined by E(w) := F (xt+1, yw), and observe that

E(w) = OMBN (xt+1)⊕OMBN (w).

12

Now consider the polynomial r(w) := p(xt+1, yw). Observe that yw is an affine function of w, i.e., we can
write

r(w) = p

(
xt+1,

(
1− w1

2

)
· β(xt+1) +

(
1 + w1

2

)
· yt1, . . . ,

(
1− wN

2

)
· β(xt+1) +

(
1 + wN

2

)
· ytN

)
.

Thus r is an polynomial with deg r ≤ deg p ≤ d. Moreover, r(w) · E(w) > 0 for all w ∈ {−1, 1}N . Since
E is either the function OMBN or its negation, we conclude by Theorem 6 that there exists a w∗ such that
|r(w∗)| ≥ 2cN/d

2 · |r(1N)|. Setting yt+1 := yw∗ thus yields

|p(xt+1, yt+1)| = |r(w∗)| ≥ 2cN/d
2 · |r(1N)| = 2cN/d

2 · |p(xt+1, yt)|,

as we wanted to show.

With Claim 10 established. we conclude the proof of Proposition 9.

4.2 Full Proof of Theorem 1

The proof begins by extending the “two-superblock” function F constructed in Section 4.1 (cf. Eq. (6)), to
construct a k-superblock function Fk for any constant number of superblocks k ≥ 2.

4.2.1 Construction of the Function Fk

First, fix a parameter N ∈ N and assume for simplicity that N + 1 is a power of 2. The construction of our
function Fk is inductive, and begins with the following sequence of auxiliary functions u1, u2, . . . , uk. For
each i = 1, . . . , k, each function

ui : {−1, 1}N×({−1, 1}N×({−1, 1}log(N+1))N)×· · ·×({−1, 1}N×({−1, 1}(i−1)·log(N+1))N)→ {−1, 1}N .

For i = 1, . . . , k, let si = (si,1, . . . , si,N) denote an arbitrary input in {−1, 1}N , and zi denote an arbitrary
input in ({−1, 1}(i−1)·log(N+1))N .

The auxiliary functions ui are defined recursively as follows.

u1(s1) = s1 = (s1,1, . . . , s1,N)

u2(s1, (s2, z2)) = (s2,1 ∧ EQβ(u1)(z2,1), . . . , s2,N ∧ EQβ(u1)(z2,N))

= (s2,1 ∧ EQβ(s1)(z2,1), . . . , s2,N ∧ EQβ(s1)(z2,N))

...

uk(s1, (s2, z2), . . . , (sk, zk)) = (sk,1∧EQβ(u1)◦···◦β(uk−1)(zk,1), . . . , sk,N ∧EQβ(u1)◦···◦β(uk−1)(zk,N))

Here, the notation ◦ denotes string concatenation. The function uk should be interpreted as the bitwise
AND of (sk,1, . . . , sk,N) with a vector of equality tests between (zk,1, . . . , zk,N) and the complete list of
the indices of the “leading TRUE bits” feeding into OMBN from each of the previous super-blocks i =
1, . . . , (k − 1).

13

We are now ready to define Fk. In what follows, F1, F2, . . . Fk will denote functions such that

Fi : {−1, 1}N×({−1, 1}N×({−1, 1}log(N+1))N)×· · ·×({−1, 1}N×({−1, 1}(i−1)·log(N+1))N)→ {−1, 1}.

The construction is recursive. Define:

F1(s1) = OMBN (u1)

= OMBN (s1,1, . . . , s1,N),

F2(s1, (s2, z2)) = F1(s1)⊕OMBN (u2)

= OMBN (s1,1, . . . , s1,N)⊕OMBN (s2,1 ∧ EQβ(s1)(z2,1), . . . , s2,N ∧ EQβ(s1)(z2,N)),

...

Fk(s1, (s2, z2), . . . , (sk, zk)) = Fk−1(s1, (s2, z2), . . . , (sk−1, zk−1))⊕OMBN (uk)

= Fk−1(s1, (s2, z2), . . . , (sk−1, zk−1))⊕OMBN (. . . , sk,i ∧ EQβ(u1)◦···◦β(uk−1)(zk,i), . . .)

Remark 11. We clarify that the function F2 defined in this section differs very slightly from the definition
of F given in Section 4.1 (cf. Eq. (6)) in that Eq. (6) did not involve the variables s2 ∈ {−1, 1}N . We
omitted the variables s2 in Eq. (6) for simplicity and clarity, since they are not needed to prove a lower
bound on the approximate degree of F2 itself (cf. Proposition 9). We do, however, need the variables sk to
prove our lower bound for Fk for k ≥ 3.

4.2.2 Representing Fk as a Decision List

The function Fk is represented by a O(k2 logN)-decision list

(C0, b0), (C1, b1), . . . , (C(N+1)k−2, b(N+1)k−2), b(N+1)k−1,

where (Ci, bi) are as follows:

14

C0(s; z) = s1,N ∧ (s2,N ∧ EQN (z2,N)) ∧ · · · ∧ (sk,N ∧ EQN◦···◦N︸ ︷︷ ︸
k−1 times

(zk,N)); b0 = (−1)k·N

C1(s; z) = s1,N ∧ (s2,N ∧ EQN (z2,N)) ∧ · · · ∧ (sk,N−1 ∧ EQN◦···◦N︸ ︷︷ ︸
k−1 times

(zk,N−1)); b1 = (−1)k·N−1

...

CN−1(s; z) = s1,N ∧ (s2,N ∧ EQN (z2,N)) ∧ · · · ∧ (sk,1 ∧ EQN◦···◦N︸ ︷︷ ︸
k−1 times

(zk,1)); bN−1 = (−1)(k−1)·N+1

CN (s; z) = s1,N ∧ (s2,N ∧ EQN (z2,N)) ∧ · · · ∧ (sk−1,N ∧ EQN◦···◦N︸ ︷︷ ︸
k−2 times

(zk−1,N)); bN = (−1)(k−1)·N

CN+1(s; z) = s1,N ∧ (s2,N ∧ EQN (z2,N))∧
· · · ∧ (sk−1,N−1 ∧ EQN◦···◦N︸ ︷︷ ︸

k−2 times

(zk−1,N−1)) ∧ (sk,N ∧ EQN◦···◦N︸ ︷︷ ︸
k−2 times

◦(N−1)(zk,N)); bN+1 = (−1)k·N−1

...

C(N+1)k−2(s; z) = (sk,1 ∧ EQ 0◦···◦0︸ ︷︷ ︸
k−1 times

(zk,1)); b(N+1)k−2 = −1

b(N+1)k−1 = 1.

Observe that each C` in the above is indeed a conjunction over O(k2 logN) variables (here, we are using
the fact that, for any integer i > 0 and any fixed string τ ∈ [N]m, the function EQτ : {−1, 1}i log(N+1) →
{−1, 1} is a conjunction of width i log(N + 1).)

In general, suppose ` = ak−1(N + 1)k−1 + ak−2(N + 1)k−2 + · · ·+ a0 where each 0 ≤ ai ≤ N . Let
ãi = N − ãi for each i = 0, 1, . . . , k − 1. then C` is given by C1

` ∧ C2
` ∧ · · · ∧ Ck` where Ci` is an empty

clause if ãi = 0 and otherwise

Ci`(s; z) = (si,ãk−i ∧ EQãk−1◦ãk−2◦···◦ãk−i+1
(zi,ãk−i)).

The bit b` = (−1)ãk−1+ãk−2+···+ã0 .
Since, for any constant k > 0, Fk is an O(log n) decision list of polynomial length, it can be computed

by a polynomial size circuit of depth three and logarithmic bottom fan-in.

4.2.3 The Main Proposition

The goal of this section is to prove the following generalization of Proposition 9.

Proposition 12. There exists a universal constant c > 0 such that for each k ∈ N, there exists a ck ≥ c ·4−k
2

for which the following holds. Let d, n ∈ N where

n = N ·
k∑
i=1

(1 + (i− 1) · log(N + 1)) = O(k2 ·N · logN).

Let p be a polynomial of degree at most d such that p(x) ·Fk(x) > 0 for all x ∈ {−1, 1}n. Then there exists
an x ∈ {−1, 1}n such that |p(x)| ≥ 2ck(N/d2)k · |p(1n)|.

15

Theorem 1 follows easily from Proposition 12.

Proof of Theorem 1, assuming Proposition 12. Let k = dΓ/δe. Observe that Fk is defined on {−1, 1}n
where n = O(k2N logN). Fix a polynomial p of degree d = n1/2−δ, and suppose that p(x) · Fk(x) > 0
for all x ∈ {−1, 1}n. By Proposition 12, there exists an x ∈ {−1, 1}n such that

|p(x)| ≥ 2ck(N/d2)k · |p(1n)| > 2Ωk(1)·N2·k·δ/ log2k N · |p(1n)| > 2n
Γ+1 · |p(1n)| > 2 · 2nΓ · |p(1n)|,

where the third inequality holds for sufficiently large n. Hence, if |p(1n)| > 2−n
Γ

, then |p(x)| > 2. It
follows that p cannot approximate Fk uniformly to within error less than 1− 2−n

Γ
.

Proof of Proposition 12. The proof is by induction on k. Beginning with k = 1, note that the function F1 is
just the OMBN function. Hence, if p is a polynomial of degree at most d for which p(x) · F1(x) > 0 for all
x ∈ {−1, 1}N , then by Theorem 6 there exists a universal constant c > 0 such that there is an x ∈ {−1, 1}N
for which |p(x)| ≥ 2cN/d

2 · |p(1N)|.
Now assume by way of induction that Proposition 12 holds for Fk, and consider the function Fk+1.

Additional Notation. To enable the induction, we need to introduce more detailed notation to represent the
inputs to Fk+1. Recall that Fk+1 is defined over a variable set (s1, (s2, z2), . . . , (sk+1, zk+1)) where each
si ∈ {−1, 1}N and each zi ∈ ({−1, 1}(i−1)·log(N+1))N . For notational convenience, we make the following
relabelings:

s1 7→ x

zi,j 7→ yi,j ◦ wi,j where yi,j ∈ {−1, 1}log(N+1) and wi,j ∈ {−1, 1}(i−2)·log(N+1)

Thus, we can think ofFk+1 as being defined over variables (x, (s2, y2), (s3, (y3, w3)) . . . , (sk+1, (yk+1, wk+1))).
With this notation in mind, we write Fk+1(x; s; y;w) as shorthand for

Fk+1(x, (s2, y2), (s3, (y3, w3)), . . . , (sk+1, (yk+1, wk+1))).

Similarly, for a polynomial p, we write p(x; s; y;w) for

p(x, (s2, y2), (s3, (y3, w3)), . . . , (sk+1, (yk+1, wk+1))).

Here, x ∈ {−1, 1}N , while s is shorthand for s = (s2, s3, . . . , sk+1) ∈
(
{−1, 1}N

)k, y is shorthand for

(y2, . . . , yk+1) ∈
((
{−1, 1}log(N+1)

)N)k
, and w is shorthand for (w3, . . . , wk+1).

As in the proof of Proposition 9, to ease notation, we will also identify any binary string in {−1, 1}log(N+1)

with the number in [N] for which the string is the binary representation. That is, while we will write any
such binary string as though it were a number 0, 1, . . . , N , it should always be thought of as the binary string
representing that number.

A Different Expression for Fi. The following claim follows straightforwardly from the definition of Fk
(cf. Section 4.2.1).

Claim 13. The function Fk+1 may be written as

Fk+1(x, (s2, y2),(s3, (y3, w3)), . . . , (sk+1, (yk+1, wk+1))) =

OMBN (. . . , xj , . . .)⊕ Fk(v2(x, s2, y2), v3(x, s3, y3, w3), . . . , vk+1(x, sk+1, yk+1, wk+1)),

16

where the functions vi are defined by:

v2(x, s2, y2) = (s2,1 ∧ EQβ(x)(y2,1), . . . , s2,N ∧ EQβ(x)(y2,N)),

v3(x, s3, y3, w3) = ((. . . , s3,j ∧ EQβ(x)(y3,j), . . .), w3),

vi(x, si, yi, wi) = ((. . . , si,j ∧ EQβ(x)(yi,j), . . .), wi) for i = 3, . . . , k + 1.

The Main Argument. Just as in Lemma 7 and Proposition 9, we let ` = 10d2 and consider the increasing
family of sets S0 ⊂ S1 ⊂ · · · ⊂ SN/` ⊆ {−1, 1}N defined by

S0 = {1N}, S1 = {x : xi = 1 ∀i > `}, . . . , St = {x : xi = 1 ∀i > t`}, . . . , SN/` = {−1, 1}N .

Let p be a polynomial of degree at most d such that p(x; s; y;w) · Fk+1(x; s; y;w) > 0 for all (x; s; y;w) ∈
{−1, 1}n. We iteratively construct a sequence of inputs

(x0; s0; y0;w0), (x1; s1; y1;w1), . . . , (xN/`; sN/`; yN/`;wN/`)

to p such that:

• Each xt ∈ St and each yt ∈ ([t`]N)k,

• (x0; s0; y0;w0) = (1N ; (1N)k; (0N)k; (0N , (0 ◦ 0)N , . . . , (0 ◦ · · · ◦ 0︸ ︷︷ ︸
k−1 times

)N)), and

• |p(xt+1; st+1; yt+1;wt+1)| ≥ 2ck(N/4d2)k · |p(xt; st; yt;wt)| for each i = 0, . . . , N/`− 1.

At the end of this process, we have obtained an input (xN/`; sN/`; yN/`;wN/`) such that

|p(xN/`; sN/`; yN/`;wN/`)| ≥ 2ck·(N/4d
2)k·(N/`) ≥ 2ck·(N/4d

2)k+1
,

where the last inequality holds for any k ≥ 2. Letting ck+1 = 4−(k+1)·ck ≥ 4−(k+1)·(4−k2 ·c) ≥ 4−(k+1)2 ·c,
at the conclusion of this process, we obtain an input (xN/`; sN/`; yN/`;wN/`) such that

|p(xN/`; sN/`; yN/`;wN/`)| ≥ 2ck+1·(N/d2)k+1 · |p(x0; s0; y0;w0)|

as desired, completing the induction.
For t = 1, . . . , N/`, we construct the inputs (xt; st; yt;wt) iteratively. The next claim formalizes this

iterative process.

Claim 14. Let p be a polynomial of degree at most d and suppose p(x; s; y;w) ·Fk+1(x; s; y;w) > 0 for all
(x; s; y;w) ∈ {−1, 1}n. Let (xt; st; yt;wt) be an input with xt ∈ St and yt ∈ ([t`]N)k. Then there exists an
input (xt+1; st+1; yt+1;wt+1) such that |p(xt+1; st+1; yt+1;wt+1)| ≥ 2ck(N/4d2)k · |p(xt; st; yt;wt)|, where
xt+1 ∈ St+1 and yt+1 ∈ ([(t+ 1)`]N)k.

Proof. As with Claim 10, we prove this claim in two steps. First, we show that there exists an xt+1 ∈
{−1, 1}N supported on St+1 for which |p(xt+1; st; yt;wt)| ≥ |p(xt; st; yt;wt)|. Second, we show that there
exists an st+1 ∈ ({−1, 1}N)k, a yt+1 ∈ ([(t+1)`]N)k, and a stringwt+1 such that |p(xt+1; st+1; yt+1;wt+1)| ≥
2ck(N/d2)k ·|p(xt+1; st; yt;wt)|. Putting these steps together yields |p(xt+1; st+1; yt+1;wt+1)| ≥ 2ck(N/d2)k ·
|p(xt; st; yt;wt)|.

17

Step 1. We examine the function Fk+1(x; st; yt;wt), viewed as a function in x. By construction, each block
yti,j ≤ t`. Thus, for all x ∈ St+1 \ St, we have EQβ(x)(y

t
i,j) = 1, and hence v2(x, st2, y

t
2) = 1N and

vi(x, s
t
i, y

t
i , w

t
i) = (1N , wti) for all i ≥ 3. As a result, whenever x ∈ St+1 \ St, we have

Fk+1(x; st; yt;wt) = OMBN (x)⊕ Fk(1N , (1N , wt3), . . . , (1N , wtk+1)),

which is either the function OMBN (x) or its negation. Without loss of generality, assumeFk+1(x; st; yt;wt) =
OMBN (x) below.

Now consider the polynomial q : {−1, 1}N → R defined by q(x) = p(x; st; yt;wt). Then q(x) ·
OMBN (x) > 0 for all x ∈ St+1 \ St. By assumption, xt ∈ St. Thus, by Lemma 7, there exists an xt+1 ∈
St+1 such that |q(xt+1)| ≥ 2 · |q(xt)|. In particular, this means |p(xt+1; st; yt;wt)| ≥ |p(xt; st; yt;wt)|.

Step 2. We now show that there exists an st+1 ∈ ({−1, 1}N)k, a yt+1 ∈ ([(t + 1)`]N)k, and a string wt+1

such that |p(xt+1; st+1; yt+1;wt+1)| ≥ 2ck(N/d2)k · |p(xt+1; st; yt;wt)|. This is the most complex part of the
proof, and is where we invoke the inductive hypothesis (the statement of Proposition 12) using the function
Fk. To do so, we introduce a new set of variables σ ∈ ({−1, 1}N)k and

ζ ∈ ({−1, 1}log(N+1))N × · · · × ({−1, 1}(k−1)·log(N+1))N

which should be interpreted as inputs to the function Fk (taking the place of s and z, respectively). We
then define a mapping (σ, ζ) 7→ (sσ, yσ, wσ,ζ) taking these inputs to Fk to inputs to Fk+1 that satisfies the
following (informally stated) properties:

• Property 1. The mapping is computed by a low-degree polynomial in σ and ζ (in fact, a polynomial
of degree 2).

• Property 2. The function Fk+1(xt+1; sσ; yσ;wσ,ζ) simply computes either Fk(σ; ζ) or its negation.

• Property 3. When the pair (σ; ζ) is the “starting input” (x0; s0; y0;w0) to Fk, then the resulting
image (sσ, yσ, wσ,ζ) = (st, yt, wt).

Properties 1 and 2 taken together show that the projected polynomial r(σ; ζ) := p(xt+1; sσ; yσ;wσ,ζ)
satisfies the hypotheses of Proposition 12 with respect to the function Fk(σ; ζ), and moreover deg(r) ≤
2 · deg(p) ≤ 2d. Thus, by the inductive hypothesis, there is some pair (σ∗; ζ∗) such that |r(σ∗; ζ∗)| ≥
2ck(N/(2d)2)k · |r(1nk)|, where the latter quantity is 2ck(N/(2d)2)k · |p(xt+1; st; yt;wt)| by Property 3 above.

Now we carry out the full details of Step 2. Define the mapping (σ, ζ) 7→ (sσ, yσ, wσ,ζ) as follows. For
strings

σ = (σ2, σ3, . . . , σk+1) ∈ ({−1, 1}N)k, and

ζ = (ζ3, ζ4, . . . , ζk+1) ∈
(
{−1, 1}log(N+1)

)N
×
(
{−1, 1}2·log(N+1)

)N
× · · · ×

(
{−1, 1}(k−1)·log(N+1)

)N
define the strings sσ, yσ and wσ,ζ by

• For each i = 2, . . . , k + 1,

(sσ)i,j =

{
−1 if σi,j = −1,

sti,j if σi,j = 1,

18

• For each i = 2, . . . , k + 1,

(yσ)i,j =

{
β(xt+1) if σi,j = −1,

yti,j if σi,j = 1,

• For each i = 3, . . . , k + 1,

(wσ,ζ)i,j =

{
ζi,j if σi,j = −1,

wti,j if σi,j = 1.

Observe that this parametrization has the property that if σ = (1N)k, then

(xt+1; sσ; yσ;wσ,ζ) = (xt+1; st; yt;wt).

That is, Property 3 above holds under this definition of sσ, yσ and wσ,ζ .
We now need to show that Fk+1(xt+1; sσ; yσ;wσ,ζ) indeed collapses to Fk(σ; ζ) (i.e., that Property 2

above holds). We will do this by applying the decomposition of Claim 13. Note that since β(xt+1) ≤ (t+1)`
and each yti,j ∈ [t`], we have that yσ ∈ ([(t+ 1)`]N)k for every σ ∈ ({−1, 1}N)k. We can thus calculate

v2(xt+1, (sσ)2, (yσ)2) = (. . . , (sσ)2,j ∧ EQβ(xt+1)((yσ)2,j), . . .) = (. . . , σ2,j , . . .),

where the final equality exploits the fact that yti,j ≤ t` for all i, j, and β(xt+1) > t`. Moreover, for
i = 3, . . . , k + 1,

vi(x
t+1, (sσ)i, (yσ)i, (wσ,ζ)i) = ((. . . , (sσ)i,j ∧ EQβ(xt+1)((yσ)i,j), . . .), (. . . , (wσ,ζ)i,j , . . .))

= ((. . . , σi,j , . . .), (. . . , (wσ,ζ)i,j , . . .)).

Consider the function E(σ; ζ) := Fk+1(xt+1; sσ; yσ;wσ,ζ). By the calculations above,

E(σ; ζ) = OMBN (xt+1)⊕ Fk(v2(xt+1, (sσ)2, (yσ)2), . . . , vk+1(xt+1, (sσ)k+1, (yσ)k+1, (wσ,ζ)k+1))

= OMBN (xt+1)⊕ Fk(σ2, (σ3, (wσ,ζ)3), . . . , (σk+1, (wσ,ζ)k+1))

= OMBN (xt+1)⊕ Fk(σ2, (σ3, ζ3), . . . , (σk+1, ζk+1)),

where the last equality follows because, for any string τ , we have

σi,j ∧ EQτ ((wσ,ζ)i,j) ⇐⇒ σi,j ∧ EQτ ((wσ,ζ)i,j) ∧ ((wσ,ζ)i,j = ζi,j)

⇐⇒ σi,j ∧ EQτ (ζi,j).

Now consider the polynomial r(σ; ζ) := p(xt+1; sσ; yσ;wσ,ζ). Since the variables sσ, yσ, and wσ,ζ can
be written as linear or quadratic functions of σ and ζ, the polynomial r satisfies deg r ≤ 2 deg p ≤ 2d.
Moreover, r(σ; ζ) ·E(σ; ζ) > 0 for all (σ; ζ). Since E is either the function Fk or its negation, the inductive
hypothesis (the statement of Proposition 12) allows us to conclude that there exists a (σ∗; ζ∗) such that
|r(σ∗; ζ∗)| ≥ 2ck(N/4d2)k · |r(1nk)|, where nk is the number of Boolean variables on which Fk is defined.
Setting st+1 := sσ∗, yt+1 := yσ∗, and wt+1 := wσ∗,ζ∗ thus yields

|p(xt+1; st+1; yt+1;wt+1)| = |r(σ∗; ζ∗)| ≥ 2ck(N/4d2)k · |r(1nk)| = 2ck(N/4d2)k · |p(xt+1; st; yt;wt)|,

as we wanted to show. This completes the proof of Claim 14.

With Claim 14 completed, we conclude the proof of Proposition 12.

19

5 Proof of Theorem 2

5.1 ELEMENT DISTINCTNESS Preliminaries

Let EDM : {−1, 1}M → {−1, 1} denote the negation of the function ED defined in Section 2. As in Section
2, assume for simplicity that M = m logm for some m which is a power of 2. Define an equivalence
relation ∼ on {−1, 1}M as follows. Let Sm denote the symmetric group on {1, . . . ,m}. Given an x =
(x1, . . . , xm) ∈ {−1, 1}M where each block xi ∈ {−1, 1}logm, and an x′ ∈ {−1, 1}M , we say x ∼ x′ if
there exists a permutation π ∈ Sm such that xi = x′π(i) for every i = 1, . . . ,m. This equivalence relation
is defined so that EDM (x) = EDM (x′) whenever x ∼ x′. Moreover, there is a unique equivalence class
T ⊆ {−1, 1}M such that EDM (η) = 1 for any η ∈ T . For the remainder of the paper, we let η ∈ T denote a
fixed, representative element of this equivalence class. We also say that a function q : {−1, 1}M → {−1, 1}
is symmetric with respect to ∼ if q(x) = q(x′) whenever x ∼ x′.

Let G = OMBN ◦EDM denote the block composition of OMBN with EDM , which is a function on
N ·M variables. The next theorem shows that composed function G is much harder to approximate by low
degree polynomials than OMB itself. Namely, d̃egε(G) ≥ Ω̃(M2/3) for ε = 1− 2−Ω(N).

Theorem 15 (Thaler [35]). There exists a universal constant c > 0 such that the following holds. Let
p : ({−1, 1}M)N → R be a polynomial of degree d = c · (M/ logM)2/3. Suppose that |p(x)| ≥ 1 and
p(x) ·G(x) > 0 for all x ∈ ({−1, 1}M)N . Then there exists an x ∈ ({−1, 1}M)N such that |p(x)| ≥ 2N/2.

Theorem 15 will be used as a building block in our proof of Theorem 2. Theorem 15 is a special case of
a more general result proved by Thaler in [35]. The proof in [35] is dual (in the sense of linear programming
duality) – it constructs a “witness” for the bound in Theorem 15 by exhibiting a solution to the dual of a
linear program capturing the approximate degree of G. Our proofs in this paper are primal, in the sense
that we reason about approximating polynomials directly. For completeness and expository purposes, we
reprove Theorem 15 below using a primal argument. To do so, we first introduce the following notion of
symmetry for polynomials with respect to the structure of G.

Definition 16. A function ψ : ({−1, 1}M)N → R is intra-block symmetric (with respect to ∼) if for every
i = 1, . . . , N and every pair xi, x′i ∈ {−1, 1}` with xi ∼ x′i,

ψ(x1, . . . , x
′
i, . . . , xN) = ψ(x1, . . . , xi, . . . , xN).

Lemma 17. Let p : ({−1, 1}M)N → R be a polynomial. Then the polynomial

p̃(x1, . . . , xN) := E
x′1∼x1,...,x′N∼xN

[p(x′1, . . . , x
′
N)]

is intra-block symmetric and satisfies deg p̃ ≤ deg p.

Proof. By linearity, it suffices to prove the lemma for factored polynomials of the form

p(x) = p1(x1)p2(x2) . . . pN (xN).

Then

p̃(x1, . . . , xN) =

N∏
i=1

E
x′i∼xi

pi(xi).

20

Write xi = (xi,1, . . . xi,m) where each xi,j ∈ {−1, 1}logm. Then

E
x′i∼xi

pi(xi) = E
π∈Sm

pi(xi,π(1), . . . xi,π(m))

which is a polynomial of degree at most deg pi. Therefore, deg p̃ ≤ deg p.

Clearly, if Theorem 15 holds for p̃, then it holds for p as well. Hence, Lemma 17 allows us to assume
without loss of generality that a sign-representing polynomial p for G is intra-block symmetric (if not, then
we apply the argument to p̃ rather than to p itself). Theorem 15 therefore follows from the proposition below.

Proposition 18. There exists a universal constant c > 0 such that the following holds. Let p : ({−1, 1}M)N →
R be a polynomial of degree at most d = c · (M/ logM)2/3, and suppose p is intra-block symmetric. Sup-
pose that p(x) · G(x) > 0 for all x ∈ ({−1, 1}M)N . Then there exists an x ∈ ({−1, 1}M)N such that
|p(x)| ≥ 2N/2 · |p(ηN)|.

As in Beigel’s original proof for the ODD-MAX-BIT function itself, the proof of Proposition 18 is via
induction using the following lemma.

Lemma 19. Consider the increasing family of sets S0 ⊂ S1 ⊂ · · · ⊂ SN/2 ⊆ ({−1, 1}M)N defined by

S0 = {ηN},
S1 = {x : x3 = x4 = · · · = xN = η},
...

Si = {x : x2i+1 = x2i+2 = · · · = xN = η},
...

SN/2 = ({−1, 1}M)N .

There is some constant c > 0 such that the following holds. Let p : ({−1, 1}M)N → R be a polynomial of
degree at most d = c · (M/ logM)2/3 that is intra-block symmetric, and suppose that p(x) · G(x) > 0 for
all x ∈ Si+1 \ Si. Let z ∈ Si. Then there exists a z′ ∈ Si+1 \ Si such that |p(z′)| ≥ 2 · |p(z)|.

Proof. Fix any polynomial p : ({−1, 1}M)N → R, and assume that p(z) = −T , where T > 0 (the case
where T < 0 is similar). Suppose that |p(x)| ≤ 2T for every x ∈ Si+1 \ Si. Define the polynomial
q : {−1, 1}M → R as follows. Given a string y ∈ {−1, 1}M , define a string xy by

• (xy)j = zj for all blocks with j ≤ 2i,

• (xy)2i = η,

• (xy)2i+1 = y,

• (xy)j = η for all j ≥ 2i+ 2.

Now define the polynomial q : {−1, 1}M → R by q(y) := p(xy). By construction, deg q ≤ deg p ≤ d,
and q is symmetric with respect to ∼. Moreover, q(η) = p(z) = −T while q(y) ∈ [0, 2T] for every y ∈
ED−1

(−1). The polynomial q′ := − 1
T · q satisfies q′(x) = 1 for all x ∈ ED −1

M (+1), and q′(x) ∈ [−2, 0]

for every x ∈ ED−1
M (−1). Observe that q′′ := 2q′−1

5 satisfies |q′′(x)− EDM | ≤ 4/5 for all x ∈ {−1, 1}M .

21

Using standard error reduction techniques (see for example [11, Claim 4.3]), q′′ can be transformed into
a polynomial of degree O(deg(q′′)) = O(deg(q)) = O(deg(p)) that uniformly approximates EDM to
error at most 1/3. Hence, the approximate degree lower bound for EDM (cf. Theorem 8) implies that
deg(p) ≥ c · (M/ logM)2/3 for some constant c > 0.

5.2 The Main Argument

Fix parameters M,N ∈ N, and a constant k > 0. We construct a family of functions H1, H2, . . . ,Hk, each
of which is computed by a polynomial size Boolean circuit of depth 4, with logarithmic bottom fan-in, as
well as by a quasipolynomial size Boolean circuit of depth 3, with polylogarithmic bottom fan-in. Theorem
2 follows easily from the following claim, which is the main result of this section.

Theorem 20. There exists a universal constant c > 0 such that the following holds. For each k ∈ N, let
ck = 2−k · c. Let n ∈ N where

n = N ·M ·
k∑
i=1

(1 + (i− 1) · log(N + 1)) = O(k2 ·N ·M · logN).

Let p be a polynomial of degree at most d = ck · (M/ logM)2/3 such that p(x) · Hk(x) > 0 for all
x ∈ {−1, 1}n and |p(x)| ≥ 1 for all x ∈ {−1, 1}n. Then there exists an x ∈ {−1, 1}n such that |p(x)| ≥
2(N/2)k .

Proof of Theorem 2, assuming Theorem 20. Let N = 2M δ and Let k = d2 · (1 + δ)Γ/δe in the statement
of Theorem 20, and observe that under this setting, Hk is defined over the domain {−1, 1}n for n =
O(k2M1+δ logM). Fix a polynomial p of degree at most d = ck · (M/ logM)2/3.

Let v = minx∈{−1,1}n |p(x)|, and suppose that p(x) ·Hk(x) > 0 for all x ∈ {−1, 1}n. By Theorem 20,
there exists an x ∈ {−1, 1}n such that

|p(x)| ≥ 2(N/2)k · v > 2M
δ·k · v ≥ 2M

2Γ(1+δ) · v ≥ 2 · 2nΓ · v,

where the last inequality holds for sufficiently large M . Hence, if v > 2−n
Γ

, then |p(x)| > 2. It follows that
p cannot approximate Hk uniformly to within error less than 1− 2−n

Γ
. To complete the proof, we observe

that for sufficiently large M , it holds that d ≥ n2/3−δ.

Remark 21. Rather than setting N = 2M δ as in the proof above, if we set N to be slightly subpolynomial
in M , and k to be a slowly growing function in M such that Nk ≈ nΓ, then we can obtain a function Hk

that is still computed by a depth three Boolean circuit of quasipolynomial size, and satisfies Theorem 2 with
n2/3−δ replaced by n2/3−o(1). For example, to obtain such a function it suffices to set N = M1/ log logM

and k = Γ · log logM . We omit further details for brevity.

Section Roadmap. The remainder of this section is devoted to defining the functions Hk and proving
Theorem 20. In Section 5.2.1, we review necessary notation. In Section 5.2.2, we exhibit the main ideas un-
derlying the construction of Hk and the proof of Theorem 20 by considering a simplified case. Specifically,
we fix k = 2, and establish that the bound of Theorem 20 holds for a slightly simplified version of H2. In
Section 5.2.3, we define Hk for any k ≥ 1 and explain why Hk be efficiently computed by decision lists
and Boolean circuits. Finally, in Section 5.2.4, we prove Theorem 20.

22

5.2.1 Notation

Recall that G = OMBN ◦EDM denotes the block composition of OMBN with EDM . G is a function on
N ·M variables. For two binary strings a, b ∈ {−1, 1}N , a ⊕ b denotes the entrywise XOR of a and b.
Recall (cf. Section 3.1) that for any binary vector a ∈

(
{−1, 1}M

)N , we interpret a as consisting of N
blocks a1, . . . , aN , each in {−1, 1}M , and we let γ(a) ∈ {−1, 1}log(N+1) denote the binary representation
of the largest integer j satisfying ED(aj) = −1.

5.2.2 Proof of Theorem 20 When k = 2

Consider the following function H :
(
{−1, 1}M

)N × (({−1, 1}log(N+1)
)M)N

, which should be viewed
as a slightly simplified version of the function H2 defined later (cf. Section 5.2.3).

H(x, y) = OMBN (EDM (x1), . . . , EDM (xN))⊕OMBN (. . . , EDM (. . . , ηj ⊕ EQγ(x)(yi,j), . . .), . . .).

One can think of H(x, y) as computing G(x1, . . . , xN)⊕G(u2(x, y)), where u2(x, y) “pre-processes”
y = (y1,1, . . . , yN,M) by first testing each yi,j for equality with γ(x), and then XOR-ing the result with η.

Our goal is to prove the following special case of Theorem 20.

Proposition 22. Let n = M ·N+M ·N · log(N+1) for someM,N ∈ N. There exists a universal constant
c > 0 such that the following holds. Let

p : ({−1, 1}M)N ×
((
{−1, 1}log(N+1)

)M)N
→ R

be a polynomial of degree at most d = c · (M/ logM)2/3 such that |p(x, y)| ≥ 1 and p(x, y) ·H(x, y) > 0
for all (x, y) in its domain. Then there exists an (x, y) in its domain such that |p(x, y)| ≥ 2(N/2)2

.

Proof. As with Lemma 19 we consider the increasing family of sets S0 ⊂ S1 ⊂ · · · ⊂ SN/2 ⊆ ({−1, 1}M)N

defined by

S0 = {ηN},
S1 = {x : x3 = x4 = · · · = xN = η},
...

St = {x : x2t+1 = x2t+2 = · · · = xN = η},
...

SN/2 = ({−1, 1}M)N .

Assuming Intra-Block Symmetry. Let p be a polynomial of degree at most d such that |p(x, y)| ≥ 1 and
p(x, y) ·H(x, y) > 0 for all (x, y) ∈ {−1, 1}n. First, we use the following simple lemma to show that it is
without loss of generality to assume a symmetric structure on p. The proof is similar to Lemma 17 and is
omitted for brevity.

Lemma 23. Let m ∈ N, and M = m logm. Let p : ({−1, 1}M)N ×
((
{−1, 1}log(N+1)

)M)N → R be a

polynomial. For x = (x1, . . . , xN) ∈ ({−1, 1}M)N , let us write each xi = (xi,1, . . . , xi,m) ∈ {−1, 1}M ,

23

where each xi,j ∈ {−1, 1}logm. For permutation π ∈ Sm, let π(xi) = (xi,π(1), . . . , xi,π(m)). Similarly, for

y = (y1, . . . , yN) ∈
((
{−1, 1}log(N+1)

)M)N
, let us write each

yi = (yi,1, . . . , yi,m) ∈
((
{−1, 1}log(N+1)

)logm
)m

,

where each yi,j ∈ ({−1, 1}log(N+1))logm. For π ∈ Sm, let

π(yi) = (yi,π(1), . . . , yi,π(m)).

Let

p̃(x, y) = E
π1,...,π2N∈Sm

[p(π1(x1), . . . , πN (xN), πN+1(y1), . . . , π2N (yN))].

Then deg(p̃) ≤ deg(p).

If p is a polynomial of degree at most d such that |p(x, y)| ≥ 1 and p(x, y) ·H(x, y) > 0 for all (x, y) ∈
{−1, 1}n, then the transformation of the above lemma results in a polynomial p̃ with the same properties.
Moreover, this polynomial is p̃ is invariant with respect to permutations of the form described in Lemma 23.
Formally, p̃ satisfies the following property: for any two inputs (x, y), (x′, y′) to p̃, if there exist permutations
π1, . . . , π2N such that (x1, . . . , xN , y1, . . . , yN) = (π1(x′1), . . . , πN (x′N), πN+1(y′1), . . . , π2N (y′N)), then

p̃(x, y) = p̃(x′, y′). We call any polynomial defined on ({−1, 1}M)N ×
((
{−1, 1}log(N+1)

)M)N
that

satisfies this invariance property intra-block symmetric. This in in analogy with the notion of intra-block
symmetry that we defined for polynomials on ({−1, 1}M)N (cf. Definition 16).

If p̃ satisfies Proposition 22, then so does p. Hence, we assume for the remainder of the proof that p
itself is intra-block symmetric; if not, then we apply the argument below to p̃ rather than to p.

The Proof of Proposition 22 for Intra-Block Symmetric Polynomials. As in the proofs of Propositions 9
and 12, to ease notation, we will identify any binary string in {−1, 1}log(N+1) with the number in [N] for
which the string is the binary representation. That is, while we will write any such binary string as though it
were a number 0, 1, . . . , N , it should always be thought of as the binary string representing that number.

Let c be the universal constant appearing in the statement of Proposition 18. Given an intra-block
symmetric polynomial p of degree at most c · (M/ logM)2/3 we iteratively construct a sequence of inputs
(x0, y0), (x1, y1), . . . , (xN/2, yN/2) to p such that:

• Each xt ∈ St and each yt ∈ ([2t]M)N ,

• |p(x0, y0)| ≥ 1, and

• |p(xt+1, yt+1)| ≥ 2N/2 · |p(xt, yt)| for each t = 0, . . . , (N/2)− 1.

At the conclusion of this process, we obtain an input (xN/2, yN/2) such that |p(xN/2, yN/2)| ≥ 2(N/2)2
.

We may take as the first input (x0, y0) the point (ηN , (0M)N), and we construct the remaining inputs
iteratively. The following claim formalizes this iterative process.

Claim 24. Let c be the universal constant appearing in the statement of Proposition 18. Let p be an intra-
block symmetric polynomial of degree at most d = c · (M/ logM)2/3 and suppose p(x, y) ·H(x, y) > 0 for
all (x, y) ∈ {−1, 1}n. Let (xt, yt) be an input with xt ∈ St and yt ∈ ([2t]M)N . Then there exists an input
(xt+1, yt+1) such that |p(xt+1, yt+1)| ≥ 2N/2 · |p(xt, yt)|, where xt+1 ∈ St+1 and yt+1 ∈ ([2(t+ 1)]M)N .

24

Proof. We prove the claim in two steps. First, we show that there exists an xt+1 ∈ St+1 for which
|p(xt+1, yt)| ≥ |p(xt, yt)|. Second, we show that there exists a yt+1 ∈ ([2(t+1)]M)N such that |p(xt+1, yt+1)| ≥
2N/2 · |p(xt+1, yt)|. Putting these steps together yields |p(xt+1, yt+1)| ≥ 2N/2 · |p(xt, yt)|.
Step 1. To complete the first step, we examine the function H(x, yt), viewed as a function of x. By
construction, each block yti ∈ [2t]M . Thus, EQγ(x)(y

t
i,j) = 1 for all x ∈ St+1 \ St, and hence

∀i = 1, . . . , N EDM (. . . , ηj ⊕ EQγ(x)(y
t
i,j), . . .) = EDM (η) = 1

=⇒ OMBN (. . . , EDM (. . . , ηj ⊕ EQγ(x)(y
t
i,j), . . .), . . .) = 1

for all such inputs. As a result, H(x, yt) = G(x) whenever x ∈ St+1 \ St.
Now consider the polynomial q : ({−1, 1}M)N → R defined by q(x) = p(x, yt). By construction,

deg q ≤ deg p ≤ d. Moreover, since p is intra-block symmetric, so is q as per Definition 16. In addition,
q(x) · G(x) > 0 for all x ∈ St+1 \ St. By assumption, xt ∈ St. Thus, by Lemma 19, there exists an
xt+1 ∈ St+1 such that |q(xt+1)| ≥ 2·|q(xt)|. By the definition of q, we see that in particular, |p(xt+1, yt)| ≥
|p(xt, yt)|.
Step 2. We now show that there exists a yt+1 ∈ ([2(t + 1)]M)N , such that |p(xt+1, yt+1)| ≥ 2N/2 ·
|p(xt+1, yt)|. For w ∈ ({−1, 1}M)N , define the string yw by (yw)i,j = γ(xt+1) if wi,j = −ηj and
(yw)i,j = yti,j if wi,j = ηj . Note that since γ(xt+1) ≤ 2(t + 1) and each yti ∈ [2t]M , we have that
yw ∈ ([2(t + 1)]M)N for every w ∈ ({−1, 1}M)N . Consider the function E(w) := H(xt+1, yw), and
observe that

E(w) = OMBN (. . . , EDM (xt+1
i), . . .)⊕OMBN (. . . , EDM (wi), . . .).

Now consider the polynomial r : ({−1, 1}M)N → R given by r(w) := p(xt+1, yw). Since we can write

r(w) = p

(
xt+1, . . . ,

(
1− ηj · wi,j

2

)
· γ(xt+1) +

(
1 + ηj · wi,j

2

)
· yti,j . . .

)
,

r satisfies deg r ≤ deg p ≤ d. Moreover, since p is intra-block symmetric, so is r. Finally, observe there
r(w) · E(w) > 0 for all w ∈ ({−1, 1}M)N . Since E is either the function G or its negation, we conclude
by Proposition 18 that there exists a w∗ such that |r(w∗)| ≥ 2N/2 · |r(ηN)|. Setting yt+1 := yw∗ thus yields

|p(xt+1, yt+1)| = |r(w∗)| ≥ 2N/2 · |r(ηN)| = 2N/2 · |p(xt+1, yt)|,

as we wanted to show (here, the final equality holds because p is intra-block symmetric). This concludes the
proof of Claim 24.

With Claim 24 established, we conclude the proof of Proposition 22.

5.2.3 Construction of the Function Hk

Definition of Auxiliary Functions. The construction of the functions H1, H2, . . . ,Hk begins with the
following sequence of auxiliary “pre-processing” functions u1, u2, . . . , uk. Each function ui maps

({−1, 1}M)N ×

((
{−1, 1}M

)N × (({−1, 1}log(N+1)
)M)N)

× . . .

· · · ×

((
{−1, 1}M

)N × (({−1, 1}(i−1)·log(N+1)
)M)N)

25

to
({−1, 1}M)N .

For i = 1, . . . , k, let si = (si,1, . . . , si,N) denote an arbitrary input in ({−1, 1}M)N , and zi denote an

arbitrary input in
((
{−1, 1}(i−1)·log(N+1)

)M)N
. The auxiliary functions ui are defined recursively by:

u1(s1) = (η ⊕ s1,1, . . . , η ⊕ s1,N)

u2(s1, (s2, z2)) = (η ⊕ (. . . , s2,1,` ∧ EQγ(u1)(z2,1,`), . . .), . . . , η ⊕ (. . . , s2,N,` ∧ EQγ(u1)(z2,N,`), . . .))

...

uk(s1, (s2, z2), . . . , (sk, zk)) = (. . . , η ⊕ (. . . , sk,j,` ∧ EQγ(u1)◦···◦γ(uk−1)(zk,j,`), . . .), . . .)

Definition of the Hi’s. We now recursively define Hi. Each function Hi is defined on the same domain as
ui. Define:

H1(s1) = G(u1)

= OMBN (EDM (η ⊕ s1,1), . . . , EDM (η ⊕ s1,N))

H2(s1, (s2, z2)) = H1(s1)⊕G(u2)

= OMBN (. . . , EDM (η ⊕ s1,j), . . .)⊕OMBN (. . . , EDM (. . . , ηj ⊕ (s2,j,` ∧ EQγ(u1)(z2,j,`)), . . .), . . .)

...

Hk(s1, (s2, z2), . . . , (sk, zk)) = Hk−1(s1, (s2, z2), . . . , (sk−1, zk−1))⊕G(uk)

RepresentingHk as anO(log2 n) Decision List and As Boolean Circuits. The functionHk is represented
by both a depth-four circuit of polynomial size and bottom fan-in O(k2 logN), and by a O(k2 · logM ·
logN)-decision list of quasi-polynomial length 2O(k2·logM ·logN) (the latter is itself computed by a Boolean
circuit of quasi-polynomial size and polylogarithmic bottom fan-in). To see why this is true, it is instructive
to first examine the function

H̃k(u1, u2, . . . , uk) = G(u1)⊕G(u2)⊕ · · · ⊕G(uk)

= OMBN (. . . , EDM (u1,j), . . .)⊕ · · · ⊕OMBN (. . . , EDM (uk,j), . . .).

We will first argue that this function H̃k is an O(k logM)-decision list of polynomial length in the variables
ui.

Before writing H̃k as a decision list, we first write it as a “generalized” decision list (f0, b0), (f1, b1),
Here, a generalized decision list is simply a decision list where the decision rules may be made by arbitrary

26

functions instead of conjunctions. For H̃k, it suffices to take

f0(u) = EDM (u1,N) ∧ EDM (u2,N) ∧ · · · ∧ EDM (uk,N); b0 = (−1)k·N

f1(u) = EDM (u1,N) ∧ EDM (u2,N) ∧ · · · ∧ EDM (uk,N−1); b1 = (−1)k·N−1

...

fN−1(u) = EDM (u1,N) ∧ EDM (u2,N) ∧ · · · ∧ EDM (uk,1); bN−1 = (−1)(k−1)·N+1

fN (u) = EDM (u1,N) ∧ EDM (u2,N) ∧ · · · ∧ EDM (uk−1,N); bN = (−1)(k−1)·N

fN+1(u) = EDM (u1,N) ∧ EDM (u2,N) ∧ · · · ∧ EDM (uk−1,N−1) ∧ EDM (uk,N); bN+1 = (−1)k·N−1

...

f(N+1)k−2(u) = EDM (uk,1); b(N+1)k−2 = 1

b(N+1)k−1 = 1.

Intuitively, this generalized decision list corresponds to walking through the tuples of indices
(N,N, . . . , N), (N,N, . . . , N − 1), · · · ∈ [N]k in decreasing lexicographic order. The function f corre-
sponding to a tuple (a1, a2, . . . , ak) is given by f1(u1) ∧ f2(u2) ∧ · · · ∧ fk(uk), where f i(ui) is an empty
clause if ai = 0, and f i(ui) = EDM (ui,ai) otherwise.

Now we argue that the generalized decision list (f0, b0), (f1, b1), . . . can be compiled into a trueO(k log n)-
decision list with length nO(k). Our starting point is a natural DNF representation for the EDM function
with size m3 and with 2 logm:

EDM (x1, . . . , xm) =
m∨
r=1

∨
i 6=j

(xi = r) ∧ (xj = r).

Each decision rule f is a conjunction of at most k of these EDM functions. Thus, each f is itself computed
by a DNF of size m3k and width 2k logm. Write each function f = C1 ∨ C2 ∨ · · · ∨ Cm3k

, where each
Ci is a conjunction of width 2k logm. Then we may replace each rule (f, b) by the sequence of conjunctive
rules

(C1, b), (C2, b), . . . , (Cm
3k
, b).

This yields a true O(k logM)-decision list for H̃k with length at most m3k · (N + 1)k = nO(k).
What changes when we consider the functionHk as a function of variables (s; z) instead of as a function

of the derived variables u1, . . . , uk? At first glance, it may not seem possible to write Hk as a w-decision
list in (s; z) for w = polylog(n), because for all i, the derived variable ui depends on γ(uj) for all i′ < i.
A crucial observation is that because of the order in which we are evaluating the decision rules, we may
equivalently evaluate each function EDM (ui,j) as if of the values γ(ui′) for i′ < i are fixed to constants.
(Namely, in a rule corresponding to a tuple (a1, a2, . . . , ak), we may consider each γ(ui′) as if it were fixed
to ai′). When the preceding values of γ(u1), . . . , γ(ui−1) are fixed, each variable ui,j,` is simply computed
by a conjunction of width k log(N + 1) + 1 over (s; z).

Thus, each decision rule f , as a function of variables (s; z), may be computed by a depth three circuit,
with a top OR gate of fan-in m3k, a middle level of AND gates with fan-in 2k logm, and a bottom level
of OR and AND gates with fan-in k log(N + 1) + 1. Using the decomposition above implies that Hk

is a polynomial-length generalized decision list where each decision rule is a CNF of width O(k logN).

27

This immediately shows that Hk is computed by a polynomial size circuit of depth four and bottom fan-in
O(k logN).

We now see why Hk is also computed by a decision list of quasi-polynomial length. For each decision
rule f , the subfunction of f computed by each AND gate in the middle level depends on at most O(k2 ·
logm · logN) variables. Thus, we can replace each of these subfunctions by a DNF of size 2O(k2·logm·logN)

and width O(k2 · logm · logN). Merging the top two levels of OR gates shows that f is itself computed by
a DNF of size 2O(k2·logm·logN) and width O(k2 · logm · logN) over the variables (s; z).

Each function f can be then be decomposed as above to yield a true O(k2 · logM · logN)-decision list
for Hk with length 2O(k2·logM ·logN).

5.2.4 Proof of Theorem 20, General k

While the proof requires additional cumbersome notation, all of the main ideas were already contained in
the proofs of Theorem 1 and Proposition 22.

Assuming Intra-Block Symmetry. Let p be a polynomial of degree at most d satisfying the hypothesis
of Theorem 20. As in the proofs of Theorem 15 and Proposition 22, it is without loss of generality to
assume that p satisfies the natural generalization of intra-block symmetry to inputs to Hk for k ≥ 2. More
specifically, recall that Hk is defined on inputs that can be expressed as (s1, (s2, z2), . . . , (sk, zk)), where

each si ∈
(
{−1, 1}M

)N and zi ∈
((
{−1, 1}(i−1)·log(N+1)

)M)N
, where M = m logm. We think of each

si and zi as having a two-level hierarchical structure. At the first level, write si = (si,1, . . . , si,N), where

each si,j ∈ {−1, 1}M , and write zi = (zi,1, . . . , zi,N), where each zi,j ∈
(
{−1, 1}(i−1)·log(N+1)

)M
. At the

second level, write each si,j = (si,j,1, . . . , si,j,m), where each si,j,` ∈ {−1, 1}logm, and similarly write each
zi,j = (zi,j,1, . . . , zi,j,m), where each zi,j,` ∈ {−1, 1}(i−1)·log(N+1)·logm.

For any permutation π ∈ Sm, let

π(si,j) = (si,j,π(1), . . . , si,j,π(m)),

and similarly let
π(zi,j) = (zi,j,π(1), . . . , zi,j,π(m)).

For any two inputs (s1, (s2, z2), . . . , (sk, zk)) and (s′1, (s
′
2, z
′
2), . . . , (s′k, z

′
k)) to Hk, write

(s1, (s2, z2), . . . , (sk, zk)) ∼ (s′1, (s
′
2, z
′
2), . . . , (s′k, z

′
k))

if there exist permutations πi,j : 1 ≤ i ≤ N, 1 ≤ j ≤ m such that si,j = πi,j(s
′
i,j) and zi,j = πi,j(z

′
i,j)

for all i, j. By a simple averaging argument analogous to Lemmas 17 and 23, we may assume that p is
invariant under the relation ∼, i.e., that if (s1, (s2, z2), . . . , (sk, zk)) ∼ (s′1, (s

′
2, z
′
2), . . . , (s′k, z

′
k)), then

p(s1, (s2, z2), . . . , (sk, zk)) = p(s′1, (s
′
2, z
′
2), . . . , (s′k, z

′
k)). We refer to any such polynomial as intra-block

symmetric.
Indeed, if p is does not satisfy intra-block symmetry, then it is possible, by averaging, to define a poly-

nomial p̃ that does (this is analogous to Lemmas 17 and 23)). Moreover deg(p̃) ≤ deg(p), the polynomial
p̃ satisfies the hypotheses of Theorem 20 if p does, and p satisfies the conclusion of Theorem 20 if p̃ does.
Hence, if p is not intra-block symmetric, we apply the proof below to p̃ instead to conclude that p̃ satisfies
the conclusion of Theorem 20, which implies that p does as well.

By the above discussion, Theorem 20 is an immediate consequence of the following proposition that is
tailored to intra-block symmetric polynomials.

28

Proposition 25. There exists a universal constant c > 0 such that the following holds. For each k ∈ N,
let ck = 2−k · c. Let p be an intra-block symmetric polynomial of degree at most d = ck · (M/ logM)2/3

such that p(x) · Hk(x) > 0 for all x ∈ {−1, 1}n. Then there exists an x ∈ {−1, 1}n such that |p(x)| ≥
2(N/2)k · |p(1n)|.

Proof. The proof is by induction on k. Beginning with k = 1, note that the function H1 is the function
G = OMBN ◦EDM , with each input pre-processed by an XOR with an appropriate bit of η. Hence, letting
c be the universal constant appearing in the statements of Proposition 18 and Lemma 19, Proposition 18
implies that if p is a polynomial of degree d ≤ c · (M/ logM)2/3 for which p(x) · H1(x) > 0 for all
x ∈ ({−1, 1}M)N , then there exists an x ∈ ({−1, 1}M)N for which |p(x)| ≥ 2N/2 · |p((1M)N)|.

Now assume the inductive hypothesis for Hk, and consider the function Hk+1.

Additional Notation. To enable the induction, we need to introduce more detailed notation to represent the
inputs to Hk+1. Recall that Hk+1 is defined over a variable set (s1, (s2, z2), . . . , (sk+1, zk+1)) where each

si ∈ ({−1, 1}M)N and each zi ∈
((
{−1, 1}log(N+1)

)(i−1)·M)N
. For convenience, we make the following

relabelings:

s1,j ⊕ η 7→ xj ∈ {−1, 1}M

zi,j 7→ yi,j ◦ wi,j where yi,j ∈
(
{−1, 1}log(N+1)

)M
and wi,j ∈

(
{−1, 1}log(N+1)

)(i−2)·M

Thus, we can think ofHk+1 as being defined over variables (x, (s2, y2), (s3, (y3, w3)) . . . , (sk+1, (yk+1, wk+1)))
The following claim can be established straightforwardly from the recursive definition of Hk+1.

Claim 26. The function Hk+1 may be written as

Hk+1(x, (s2, y2),(s3, (y3, w3)), . . . , (sk+1, (yk+1, wk+1))) =

G(. . . , η ⊕ xi, . . .)⊕Hk(v2(x, s2, y2), v3(x, s3, y3, w3), . . . , vk+1(x, sk+1, yk+1, wk+1)),

where the functions vi are defined by:

v2(x, s2, y2) = (s2,j,` ∧ EQγ(x)(y2,j,`))1≤j≤N,1≤`≤M ,

vi(x, si, yi, wi) = ((si,j,` ∧ EQγ(x)(yi,j,`))1≤j≤N,1≤`≤M , wi) for i = 3, . . . , k + 1,

With this decomposition in mind, we use the notation Hk+1(x; s; y;w) as shorthand for
Hk+1(x, (s2, y2), (s3, (y3, w3)), . . . , (sk+1, (yk+1, wk+1))). Here, x ∈ ({−1, 1}M)N , while s is shorthand
for

s = (s2, s3, . . . , sk+1) ∈
((
{−1, 1}M

)N)k
,

y is shorthand for

(y2, . . . , yk+1) ∈

(((
{−1, 1}log(N+1)

)M)N)k
,

and w is shorthand for (w3, . . . , wk+1). Similarly, for a polynomial p, we write p(x; s; y;w) for
p(x, (s2, y2), (s3, (y3, w3)), . . . , (sk+1, (yk+1, wk+1))).

29

Consider the increasing family of sets S0 ⊂ S1 ⊂ · · · ⊂ SN/2 ⊆ ({−1, 1}M)N as in the proof of
Proposition 22. That is,

S0 = {ηN},
S1 = {x : x3 = x4 = · · · = xN = η},
...

St = {x : x2t+1 = x2t+2 = · · · = xN = η},
...

SN/2 = ({−1, 1}M)N .

Let p be a polynomial of degree at most d such that p(x; s; y;w) ·Hk+1(x; s; y;w) > 0 for all (x; s; y;w) ∈
{−1, 1}n.

As in the proof of Propositions 9, 12, and 22, to ease notation, we will identify any binary string in
{−1, 1}log(N+1) with the number in [N] for which the string is the binary representation. That is, while we
will write any such binary string as though it were a number 0, 1, . . . , N , it should always be thought of as
the binary string representing that number.

The Core Argument for Proposition 25. We iteratively construct a sequence of inputs

(x0; s0; y0;w0), (x1; s1; y1;w1), . . . , (xN/2; sN/2; yN/2;wN/2)

to p such that:

• Each xt ∈ St and each yt ∈ (([2t]M)N)k,

• (x0; s0; y0;w0) = (ηN ; ((1M)N)k; ((0M)N)k; ((0M)N , ((0 ◦ 0)M)N , . . . , ((0 ◦ · · · ◦ 0︸ ︷︷ ︸
k−1 times

)M)N)), and

• |p(xt+1; st+1; yt+1;wt+1)| ≥ 2(N/2)k · |p(xt; st; yt;wt)| for each i = 0, . . . , N/2− 1.

At the conclusion of this process, we obtain an input (xN/2; sN/2; yN/2; zN/2) such that

|p(xN/2; sN/2; yN/2; zN/2)| ≥ 2(N/2)k · |p(x0; s0; y0; z0)|.

The following claim formalizes this process.

Claim 27. Let p be an intra-block symmetric polynomial defined on the same domain as Hk+1. Let ck =
2−(k+1) ·c, where c is the universal constant appearing in the statement of Lemma 19. Suppose the degree of
p is at most d ≤ ck+1(M/ logM)2/3 and suppose p(x; s; y;w) ·Hk+1(x; s; y;w) > 0 for all (x; s; y;w) ∈
{−1, 1}n. Let (xt; st; yt;wt) be an input with xt ∈ St and yt ∈ (([2t]M)N)k. If t + 1 ≤ N/2, then there
exists an input (xt+1; st+1; yt+1;wt+1) such that |p(xt+1; st+1; yt+1;wt+1)| ≥ 2(N/2)k · |p(xt; st; yt;wt)|,
where xt+1 ∈ St+1 and yt+1 ∈ (([2(t+ 1)]M)N)k.

Proof. As usual, we prove this claim in two steps. First, we show that there exists an xt+1 ∈ ({−1, 1}M)N

supported on St+1 for which |p(xt+1; st; yt;wt)| ≥ |p(xt; st; yt;wt)|. Second, we show that there exists an
st+1 ∈ (({−1, 1}M)N)k, a yt+1 ∈ (([2(t+1)]M)N)k, and a stringwt+1 such that |p(xt+1; st+1; yt+1;wt+1)| ≥
2(N/2)k · |p(xt+1; st; yt;wt)|. Putting these steps together yields |p(xt+1; st+1; yt+1;wt+1)| ≥ 2(N/2)k ·
|p(xt; st; yt;wt)|.

30

Step 1. To complete the first step, we examine the function Hk+1(x; st; yt;wt), viewed as a function in
x. By construction, each block yti,j,` ≤ 2t. Thus, for all x ∈ St+1 \ St, we have EQγ(x)(y

t
i,j,`) = 1, and

hence v2(x, st2, y
t
2) = (1M)N and vi(x, sti, y

t
i , w

t
i) = ((1M)N , wti) for all i ≥ 3. As a result, whenever

x ∈ St+1 \ St, we have

Hk+1(x; st; yt;wt) = G(x)⊕Hk(1
N , (1N , wt3), . . . , (1N , wtk+1)),

which is either the function G(x) or its negation. Without loss of generality, assume Hk+1(x; st; yt;wt) =
G(x) below.

Now consider the polynomial q : ({−1, 1}M)N → R defined by q(x) = p(x; st; yt;wt). Then q(x) ·
G(x) > 0 for all x ∈ St+1 \ St. Moreover, deg(q) ≤ deg(p), and since p is intra-block symmetric, so is q.
By assumption, xt ∈ St. Thus, by Lemma 19, there exists an xt+1 ∈ St+1 such that |q(xt+1)| ≥ 2 · |q(xt)|.
In particular, this means |p(xt+1; st; yt;wt)| ≥ |p(xt; st; yt;wt)|.

Step 2. We now move on to complete the second step, i.e., to show that there exists an st+1 ∈ (({−1, 1}M)N)k,
a yt+1 ∈ (([2(t+1)]M)N)k, and a stringwt+1 such that |p(xt+1; st+1; yt+1;wt+1)| ≥ 2(N/2)k ·|p(xt+1; st; yt;wt)|.
For strings

σ =(σ2, σ3, . . . , σk+1) ∈ (({−1, 1}M)N)k, and

ζ =(ζ3, ζ4, . . . , ζk+1)∈
((
{−1, 1}log(N+1)

)M)N
×
((
{−1, 1}log(N+1)

)2·M
)N
×. . .×

((
{−1, 1}log(N+1)

)(k−1)·M
)N

define the strings sσ, yσ and wσ,ζ by

• For each i = 2, . . . , k + 1, 1 ≤ j ≤ N, 1 ≤ ` ≤M :

(sσ)i,j,` =

{
−1 if σi,j,` = −1,

sti,j,` if σi,j,` = 1,

• For each i = 2, . . . , k + 1, 1 ≤ j ≤ N, 1 ≤ ` ≤M :

(yσ)i,j,` =

{
γ(xt+1) if σi,j,` = −1,

yti,j,` if σi,j,` = 1,

• For each i = 3, . . . , k + 1, 1 ≤ j ≤ N, 1 ≤ ` ≤ (i− 2) ·M :

(wσ,ζ)i,j,` =

{
ζi,j,` if σi,j,` = −1,

wti,j,` if σi,j,` = 1.

Observe that this parametrization has the property that if σ = ((1M)N)k, then

(xt+1; sσ, yσ;wσ,ζ) = (xt+1; st; yt;wt).

Note that since γ(xt+1) ≤ 2(t + 1) and each yti,j,` ∈ [2t], we have that yσ ∈ (([2(t + 1)]M)N)k for
every σ ∈ (({−1, 1}M)N)k. We can thus calculate

v2(xt+1, (sσ)2, (yσ)2) = ((sσ)2,j,` ∧ EQγ(xt+1)((yσ)2,j,`))1≤j≤N,1≤`≤M = (σ2,j,`)1≤j≤N,1≤`≤M ,

31

vi(x
t+1, (sσ)i, (yσ)i, (wσ,ζ)i) = (((sσ)i,j ∧ EQγ(xt+1)((yσ)i,j))1≤j≤N,1≤`≤M , (wσ,ζ)i)

= ((σi,j)1≤j≤N,1≤`≤M , (wσ,ζ)i).

Consider the function E(σ; ζ) := Hk+1(xt+1; sσ; yσ;wσ,ζ). By the calculations above,

E(σ; ζ) = G(xt+1)⊕Hk(v2(xt+1, (sσ)2, (yσ)2), . . . , vk+1(xt+1, (sσ)k+1, (yσ)k+1, (wσ,ζ)k+1))

= G(xt+1)⊕Hk(σ2, (σ3, (wσ,ζ)3), . . . , (σk+1, (wσ,ζ)k+1))

= G(xt+1)⊕Hk(σ2, (σ3, ζ3), . . . , (σk+1, ζk+1)).

Now consider the polynomial r(σ; ζ) := p(xt+1; sσ; yσ;wσ,ζ). Since the variables sσ, yσ, and wσ,ζ can
be written as linear or quadratic functions of σ and ζ, the polynomial r satisfies deg r ≤ 2 deg p ≤ ck ·
(M/ logM)2/3. Moreover, r(σ; ζ) · E(σ; ζ) > 0 for all (σ, ζ), and r is intra-block symmetric. Since E
is either the function Hk or its negation, the inductive hypothesis for Proposition 25 (i.e, the statement of
Proposition 25 for k instead of k+1) allows us to conclude that there exists a (σ∗, ζ∗) such that |r(σ∗; ζ∗)| ≥
2(N/2)k · |r(1nk)|, where nk is the number of Boolean variables on whichHk is defined. Setting st+1 := sσ∗,
yt+1 := yσ∗ and wt+1 := wσ∗,ζ∗ thus yields

|p(xt+1; st+1; yt+1;wt+1)| = |r(σ∗; ζ∗)| ≥ 2(N/2)k · |r(1nk)| = 2(N/2)k · |p(xt+1; st; yt;wt)|,

as we wanted to show.

With Claim 27 established, the inductive proof of Proposition 25 is complete.

6 Applications

6.1 Threshold Weight of AC0

A polynomial threshold function (PTF) for a Boolean function f : {−1, 1}n → {−1, 1} is a polynomial
p : {−1, 1}n → R with integer coefficients that agrees in sign with f on all Boolean inputs. The weight of an
n-variate polynomial p is the sum of the absolute values of its coefficients. The degree-d threshold weight of
a Boolean function f : {−1, 1}n → {−1, 1}, denoted W (f, d), is defined to be the least weight of a degree-
d PTF for f . We let W (f) denote the quantity W (f, n), i.e., the least weight of any threshold function for
f regardless of its degree. Threshold weight upper bounds underly some of the most powerful techniques
in computational learning theory based on the classic Perceptron [23] and Winnow [22] algorithms (see
[10, Section 8.3] for a discussion). Thus, our threshold weight lower bounds impose limitations on how
efficiently such algorithms can learn depth three circuits.

Degree-d threshold weight is closely related to ε-approximate degree when ε is very close to 1:

Lemma 28. Let f : {−1, 1}n → {−1, 1} be a Boolean function, and let w > 0. If d̃eg1− 1
w

(f) > d, then
W (f, d) > w.

Proof. We prove the contrapositive, i.e., that any PTF p for f having weight w and degree d can be trans-
formed into a uniform approximation to f with error 1 − 1

w . Let p be such a PTF. Since p has integer
coefficients and is nonzero on Boolean inputs, |p(x)| ≥ 1 on {−1, 1}n. Moreover, |p(x)| ≤ w by the weight
bound, so the polynomial 1

w · p(x) satisfies | 1w · p(x)− f(x)| ≤ 1− 1
w for every x ∈ {−1, 1}n.

Thus, our main results yield new lower bounds on the degree-d threshold weight of circuits of depth
three and four.

32

Corollary 29. For any arbitrarily small constant δ > 0 and any arbitrarily large constant Γ > 1, there exist:

1. A depth three Boolean circuit f : {−1, 1}n → {−1, 1} (with logarithmic bottom fan-in) such that
W (f1, n

1/2−δ) > 2n
Γ

.

2. A depth four Boolean circuit f ; : {−1, 1}n → {−1, 1} (with logarithmic bottom fan-in) such that
W (f, n2/3−δ) > 2n

Γ
. The function f ′ is also computed by a depth three circuit of quasi-polynomial

size and bottom fan-in O(log2 n).

Moreover, a result of Krause [17] allows us to translate each of these lower bounds into a degree inde-
pendent threshold weight lower bounds for a related function.

Lemma 30 ([17], Lemma 3.4). Let f : {−1, 1}n → {−1, 1} be a Boolean function, and define F :
{−1, 1}3n → {−1, 1} by

F (x1, . . . , xn, y1, . . . , yn, z1, . . . , zn) := f(. . . , (z̄i ∧ xi) ∨ (zi ∧ yi), . . .).

Then W (F) ≥W (f, d) for all d for which 2d ≥W (f, d).

When this transformation is applied to a function f computed by a Boolean circuit of depth d with
logarithmic bottom fan-in, the resulting function F is also computed by a depth d circuit with logarith-
mic bottom fan-in. To see this, note that if g is any function that depends on O(log n) variables, then
G(x, y, z) := g((z̄ ∧ x) ∨ (z ∧ y)) also depends on O(log n) variables. Hence, G is computed by either a
DNF or CNF of size poly(n) and bottom fan-in O(log n). So while F is naturally computed by a circuit of
depth d+ 2, the bottom three levels of gates can be replaced by such DNF or CNF formulae so as to merge
a layer of gates and obtain a depth d circuit with logarithmic bottom fan-in.

The same argument shows that if f is computed by a quasi-polynomial size circuit of depth d with
polylogarithmic bottom fan-in, then the resulting function F is also computed by a depth d circuit with
quasi-polynomial size and polylogarithmic bottom fan-in.

Corollary 31. For any arbitrarily small constant δ > 0, there exist:

1. A depth three Boolean circuit F : {−1, 1}n → {−1, 1} (with logarithmic bottom fan-in) such that
W (F) > exp(Ω(n1/2−δ)).

2. A depth four Boolean circuit F ′ : {−1, 1}n → {−1, 1} (with logarithmic bottom fan-in) such that
W (F ′) > exp(Ω(n2/3−δ)). The function F ′ is also computed by a depth three circuit of quasi-
polynomial size and bottom fan-in O(log2 n).

While the weight bounds of Corollaries 29 and 31 are stated for polynomial threshold functions over
{−1, 1}n (i.e., for polynomials that are integer linear combinations of parities), a now standard transforma-
tion [19] shows that the same threshold weight lower bound also holds for polynomials over {0, 1}n (i.e.,
for integer linear combinations of conjunctions) up to polynomial factors.

6.2 Discrepancy of AC0

Discrepancy is a central quantity in communication complexity and circuit complexity. For instance, an
upper bound on the discrepancy of a Boolean function f : X × Y → {−1, 1} yields lower bounds for
computing f in essentially every model of communication complexity. In particular, the discrepancy of

33

f essentially characterizes it’s small-bias communication complexity in the PP model of Babai et al. [4].
Theorem 1 yields a new exponentially small upper bound on the discrepancy of a depth three circuit, while
Theorem 2 yields a new upper bound for any function in AC0.

For a Boolean function f : X × Y → {−1, 1}, let M (f) be its communication matrix M (f) =
[f(x, y)]x∈X,y∈Y . A combinatorial rectangle of X × Y is a set of the form A × B with A ⊆ X and
B ⊆ Y . For a distribution µ over X × Y , the discrepancy of f with respect to µ is defined to be the
maximum over all rectangles R of the bias of f on R. That is:

discµ(f) = max
R

∣∣∣∣∣∣
∑

(x,y)∈R

µ(x, y)f(x, y)

∣∣∣∣∣∣ .
The discrepancy of f , denoted disc(f), is defined to be minµ discµ(f).

Sherstov’s pattern matrix method [31] shows how to generically transform an AC0 function with high
threshold degree or high threshold weight into another AC0 function with low discrepancy.

Theorem 32 (cf. [31], adapted from Corollary 1.2 and Theorem 7.3). Let f : {−1, 1}n → {−1, 1} be
given, and define the communication problem F : {−1, 1}4n × {−1, 1}4n → {−1, 1} by

F (x, y) = f(. . . ,∨4
j=1(xi,j ∧ yi,j), . . .).

Then for every integer d ≥ 0, we have

disc(F)2 ≤ max

{
2n

W (f, d− 1)
, 2−d

}
.

Recall that W (f, d − 1) is the least weight of any degree d − 1 PTF for f . We apply the pattern
matrix method to the functions f, f ′ of Corollary 29. By the same argument as in Section 6.1, the pattern
matrix method does not increase the depth of the circuits computing these functions. We thus obtain new
discrepancy upper bounds for circuits of depth three and four:

Corollary 33. For any arbitrarily small constant δ > 0, there exist:

1. A depth three Boolean circuit F : {−1, 1}n → {−1, 1} (with logarithmic bottom fan-in) such that
disc(F) < exp(−Ω(n1/2−δ)).

2. A depth four Boolean circuit F ′ : {−1, 1}n → {−1, 1} (with logarithmic bottom fan-in) such that
disc(F ′) < exp(−Ω(n2/3−δ)). The function F ′ is also computed by a depth three Boolean circuit of
quasi-polynomial size and bottom fan-in O(log2 n).

Application to Circuit Complexity. It is well-known that a discrepancy upper bound for a function F
yields a lower bound on the size of Majority-of-Threshold circuits computing F [12,14,24,30]. Indeed, the
exponential Majority-of-Threshold circuit size lower bounds of [8,10,29–31,34] for AC0 are all proved using
discrepancy. Our discrepancy upper bound of Corollary 33 sharpens these previous lower bounds by yielding
a depth three Boolean circuit F of polynomial size such that any Majority-of-Threshold circuit computing
F requires size exp

(
Ω(n1/2−δ)

)
, and a depth four Boolean circuit requiring size exp

(
Ω(n2/3−δ)

)
, for any

δ > 0.

Corollary 34. For any arbitrarily small constant δ > 0, there exist:

34

1. A depth three Boolean circuit F : {−1, 1}n → {−1, 1} (with logarithmic bottom fan-in) such that
any Majority-of-Threshold circuit computing F has size at least exp(Ω(n1/2−δ)).

2. A depth four Boolean circuit F ′ : {−1, 1}n → {−1, 1} (with logarithmic bottom fan-in) such that any
Majority-of-Threshold circuit computing F ′ has size at least exp(Ω(n2/3−δ)). The function F ′ is also
computed by a depth three Boolean circuit of quasi-polynomial size and bottom fan-in O(log2 n).

Combining Corollaries 31, 33, and 34 yields Corollaries 4 and 5 from the introduction.

References

[1] Scott Aaronson and Yaoyun Shi. Quantum lower bounds for the collision and the element distinctness
problems. J. ACM, 51(4):595–605, 2004.

[2] Andris Ambainis. Polynomial degree and lower bounds in quantum complexity: Collision and element
distinctness with small range. Theory of Computing, 1(1):37–46, 2005.

[3] Andris Ambainis. Quantum walk algorithm for element distinctness. SIAM J. Comput., 37(1):210–239,
2007.

[4] László Babai, Peter Frankl, and Janos Simon. Complexity classes in communication complexity theory
(preliminary version). In 27th Annual Symposium on Foundations of Computer Science, Toronto,
Canada, 27-29 October 1986, pages 337–347. IEEE Computer Society, 1986.

[5] Paul Beame and Widad Machmouchi. The quantum query complexity of ac0. Quantum Information
& Computation, 12(7-8):670–676, 2012.

[6] Richard Beigel. Perceptrons, PP, and the Polynomial Hierarchy. Computational Complexity, 4:339–
349, 1994.

[7] Richard Beigel, Nick Reingold, and Daniel A. Spielman. PP is closed under intersection. J. Comput.
Syst. Sci., 50(2):191–202, 1995.

[8] Harry Buhrman, Nikolai K. Vereshchagin, and Ronald de Wolf. On computation and communication
with small bias. In 22nd Annual IEEE Conference on Computational Complexity (CCC 2007), 13-16
June 2007, San Diego, California, USA, pages 24–32. IEEE Computer Society, 2007.

[9] Mark Bun and Justin Thaler. Dual lower bounds for approximate degree and markov-bernstein in-
equalities. In Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors,
ICALP (1), volume 7965 of Lecture Notes in Computer Science, pages 303–314. Springer, 2013.

[10] Mark Bun and Justin Thaler. Hardness amplification and the approximate degree of constant-
depth circuits. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina
Speckmann, editors, Automata, Languages, and Programming - 42nd International Colloquium,
ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, volume 9134 of Lec-
ture Notes in Computer Science, pages 268–280. Springer, 2015. Full version available at
http://eccc.hpi-web.de/report/2013/151.

[11] Ilias Diakonikolas, Parikshit Gopalan, Ragesh Jaiswal, Rocco A. Servedio, and Emanuele Viola.
Bounded independence fools halfspaces. SIAM J. Comput., 39(8):3441–3462, 2010.

35

[12] Mikael Goldmann, Johan Håstad, and Alexander A. Razborov. Majority gates VS. general weighted
threshold gates. Computational Complexity, 2:277–300, 1992.

[13] Mika Göös, Toniann Pitassi, and Thomas Watson. The landscape of communication complexity
classes. Electronic Colloquium on Computational Complexity (ECCC), 22:49, 2015.

[14] András Hajnal, Wolfgang Maass, Pavel Pudlák, Mario Szegedy, and György Turán. Threshold circuits
of bounded depth. J. Comput. Syst. Sci., 46(2):129–154, 1993.

[15] Adam R. Klivans and Rocco A. Servedio. Learning DNF in time 2õ(n1/3). J. Comput. Syst. Sci.,
68(2):303–318, 2004.

[16] Adam R. Klivans and Rocco A. Servedio. Toward attribute efficient learning of decision lists and
parities. Journal of Machine Learning Research, 7:587–602, 2006.

[17] Matthias Krause. On the computational power of boolean decision lists. Computational Complexity,
14(4):362–375, 2006.

[18] Matthias Krause and Pavel Pudlák. On the computational power of depth-2 circuits with threshold and
modulo gates. Theor. Comput. Sci., 174(1-2):137–156, 1997.

[19] Matthias Krause and Pavel Pudlák. Computing boolean functions by polynomials and threshold cir-
cuits. Computational Complexity, 7(4):346–370, 1998.

[20] Troy Lee. A note on the sign degree of formulas. CoRR, abs/0909.4607, 2009.

[21] Nati Linial and Adi Shraibman. Learning complexity vs. communication complexity. In Proceedings
of the 23rd Annual IEEE Conference on Computational Complexity, CCC 2008, 23-26 June 2008,
College Park, Maryland, USA, pages 53–63. IEEE Computer Society, 2008.

[22] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algo-
rithm. Machine Learning, 2(4):285–318, 1987.

[23] Marvin Minsky and Seymour Papert. Perceptrons - an introduction to computational geometry. MIT
Press, 1969.

[24] Noam Nisan. The communication complexity of threshold gates. In Combinatorics, Paul Erdos is
Eighty, pages 301–315, 1994.

[25] Vladimir V. Podolskii. A uniform lower bound on weights of perceptrons. In Edward A. Hirsch,
Alexander A. Razborov, Alexei L. Semenov, and Anatol Slissenko, editors, Computer Science - Theory
and Applications, Third International Computer Science Symposium in Russia, CSR 2008, Moscow,
Russia, June 7-12, 2008, Proceedings, volume 5010 of Lecture Notes in Computer Science, pages
261–272. Springer, 2008.

[26] Vladimir Vladimirovich Podolskii. Perceptrons of large weight. Problems of Information Transmis-
sion, 45(1):46–53, 2009.

[27] Ronald L. Rivest. Learning decision lists. Machine Learning, 2(3):229–246, 1987.

36

[28] Rocco A. Servedio, Li-Yang Tan, and Justin Thaler. Attribute-efficient learning and weight-degree
tradeoffs for polynomial threshold functions. In Shie Mannor, Nathan Srebro, and Robert C.
Williamson, editors, COLT, volume 23 of JMLR Proceedings, pages 14.1–14.19. JMLR.org, 2012.

[29] A. A. Sherstov. The power of asymmetry in constant-depth circuits. In FOCS, 2015. Full version
available at http://eccc.hpi-web.de/report/2015/147/.

[30] Alexander A. Sherstov. Separating AC0 from depth-2 majority circuits. SIAM J. Comput., 38(6):2113–
2129, 2009.

[31] Alexander A. Sherstov. The pattern matrix method. SIAM J. Comput., 40(6):1969–2000, 2011.

[32] Alexander A. Sherstov. Approximating the and-or tree. Theory of Computing, 9(20):653–663, 2013.

[33] Alexander A. Sherstov. The intersection of two halfspaces has high threshold degree. SIAM J. Comput.,
42(6):2329–2374, 2013.

[34] Alexander A. Sherstov. Breaking the Minsky-Papert barrier for constant-depth circuits. In David B.
Shmoys, editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June
03, 2014, pages 223–232. ACM, 2014.

[35] Justin Thaler. Lower bounds for the approximate degree of block-composed functions. Electronic
Colloquium on Computational Complexity (ECCC), 21:150, 2014. To appear in ICALP, 2016.

[36] Leslie G. Valiant. A theory of the learnable. In Richard A. DeMillo, editor, Proceedings of the 16th
Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1984, Washington, DC, USA,
pages 436–445. ACM, 1984.

37

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

http://eccc.hpi-web.de/report/2015/147/

