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Abstract

One of the most important open problems in the theory of error-correcting codes is to
determine the tradeoff between the rate R and minimum distance δ of a binary code. The best
known tradeoff is the Gilbert-Varshamov bound, and says that for every δ ∈ (0, 1/2), there
are codes with minimum distance δ and rate R = RGV(δ) > 0 (for a certain simple function
RGV(·)). In this paper we show that the Gilbert-Varshamov bound can be achieved by codes
which support local error-detection and error-correction algorithms.
Specifically, we show the following results.

1. Local Testing: For all δ ∈ (0, 1/2) and all R < RGV(δ), there exist codes with length
n, rate R and minimum distance δ that are locally testable with quasipolylog(n) query
complexity.

2. Local Correction: For all ε > 0, for all δ < 1/2 sufficiently large, and all R < (1 −
ε)RGV(δ), there exist codes with length n, rate R and minimum distance δ that are locally
correctable from δ

2 − o(1) fraction errors with O(nε) query complexity.

Furthermore, these codes have an efficient randomized construction, and the local testing and
local correction algorithms can be made to run in time polynomial in the query complexity. Our
results on locally correctable codes also immediately give locally decodable codes with the same
parameters.

Our local testing result is obtained by combining Thommesen’s random concatenation tech-
nique and the best known locally testable codes. Our local correction result, which is signif-
icantly more involved, also uses random concatenation, along with a number of further ideas:
the Guruswami-Sudan-Indyk list decoding strategy for concatenated codes, Alon-Edmonds-Luby
distance amplification, and the local list-decodability, local list-recoverability and local testa-
bility of Reed-Muller codes. Curiously, our final local correction algorithms go via local list-
decoding and local testing algorithms; this seems to be the first time local testability is used in
the construction of a locally correctable code.
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1 Introduction

In this paper, we show the existence of binary locally testable codes and locally correctable codes
with rate-distance tradeoff matching what is known for general error-correcting codes.

Error-correcting codes are combinatorial objects that are used to protect data from errors. For-
mally, a (binary) error-correcting code C is a subset of {0, 1}n. There are two parameters of an
error-correcting code that measure how good the code is: the rate R and the minimum distance
δ. The rate R, which measures how much information can be packed into a codeword, is defined
by R = log2 |C|

n . The minimum distance δ, which measures the error-correcting capability of the
code, is defined to be the smallest relative Hamming distance1 between distinct x, y ∈ C. The
error-correction property of codes comes from the simple but important observation that there is
at most one codeword within distance δ/2 of any given word w ∈ {0, 1}n; finding this codeword
given w is the problem of decoding.

One of the main combinatorial problems of coding theory is to determine the best tradeoff
between the rate and the minimum distance for binary error-correcting codes. The best tradeoff
known today is known as the Gilbert-Varshamov (GV) bound, and states that for every δ ∈ (0, 1/2),
there exist codes of arbitrarily large length with minimum distance δ and rate R = RGV(δ). Here
RGV is the function:

RGV(δ) = 1−H(δ),

where H is the binary entropy function. There are many known families of codes, including random
codes, that achieve the GV bound, and it has been often conjectured that the GV bound is tight.

On the algorithmic side, it is not known how to deterministically construct codes that achieve
the GV bound in polynomial time. Nevertheless, efficient deterministic constructions of codes
with quite good rate-distance tradeoff are known, and furthermore these codes come equipped
with efficient error-detection and correction algorithms. An alternate research direction, which
is most relevant for us, has been to show existence of highly structured codes achieving the GV
bound. Here we mention the beautiful results of Thommesen [Tho83], who gave a randomized
construction of codes closely related to Reed-Solomon codes that meet the GV bound, and of
Guruswami-Indyk [GI04], who gave a polynomial time algorithm for decoding Thommesen’s codes
from δ/2-fraction errors (for sufficiently large δ < 1/2). This latter work uses deep results of
Guruswami-Sudan [GS99, GS00, GS02] on list-decoding Reed-Solomon codes and concatenated
codes.

In recent years, the problem of what algorithmic problems on codes can be solved locally has
gathered much attention. Locality here refers to algorithms that do not access all of their input,
and this often leads to sublinear time algorithms. A code C is said to be locally testable if there
is a randomized algorithm, which when given access to a received word w ∈ {0, 1}n, makes few
queries into w and can determine, with high probability, whether w is in C or w is far away from C.
A code is said to be locally correctable2 from α-fraction errors if there is a randomized algorithm,
which when given i ∈ [n] and access to a received word w ∈ {0, 1}n, makes few queries into w
and can determine ci with high probability, where c is the unique codeword that is α-close to w.

1The relative Hamming distance between two strings x, y ∈ Σn, denoted dist(x, y), is defined by: dist(x, y) = 1
n
· |{i |

xi 6= yi}|. We will often omit the word “relative”.
2A closely related notion is that of locally-decodable code in which one requires that, when given a string w that is

close to a codeword c ∈ C, and a coordinate i, the randomized algorithm computes the original message bit xi. Our
results for locally correctable codes hold for locally decodable codes as well, see discussion at end of the introduction.
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Locally testable codes (LTCs) and locally correctable codes (LCCs) have been extensively studied,
and are deeply connected to a number of important notions across theoretical computer science:
probabilistic proof systems, hardness amplification, private information retrieval, cryptography and
algebraic complexity theory.

Our main result is that there are codes that approach the GV bound, that can be locally tested
and locally corrected from (δ/2 − o(1))-fraction errors with sublinear (even polynomially small)
query complexity. For binary codes, it was previously known how to do this for codes approach-
ing the Zyablov bound [KMRS16], with the added advantage that the code also had an efficient
deterministic construction.
We give the formal statements of our main results next.
Theorem A (Locally testable codes approaching the GV bound)
Let δ ∈ (0, 1/2). Let R < RGV(δ).

Then there exists an infinite family of codes {Cn}n, with Cn ⊆ {0, 1}n, such that:

• the minimum distance of Cn is at least δ,

• the rate of Cn is at least R,

• Cn is locally testable with (log n)O(log logn) queries,

Furthermore, such a Cn can be constructed by a randomized polynomial time algorithm with high
probability, and the local testing algorithm can be implemented to run in time (log n)O(log logn).

Theorem B (Locally correctable codes approaching the GV bound)
Let ε > 0, and let ξ > 0 be sufficiently small (depending on ε). Let δ = 1

2−ξ. Let R < (1−ε)·RGV(δ).
Then there exists an infinite family of codes {Cn}n, with Cn ⊆ {0, 1}n, such that:

• the minimum distance of Cn is at least δ,

• the rate of Cn is at least R,

• Cn is locally correctable from ( δ2 − o(1))-fraction errors with O(nε) queries.

Furthermore, such a Cn can be constructed by a randomized polynomial time algorithm with high
probability, and the local correction algorithm can be implemented to run in time poly(nε).

Note that our result about local testability allows for codes with rate and distance arbitrarily
close to the GV bound for any distance δ ∈ (0, 1/2), but our result about local correctability
only achieves this for distances sufficiently close to 1/2 depending on ε where O(nε) is the query
complexity, and with a further (1 − ε)-factor loss in the rate. These results are the first to show
that codes with distance δ = 1/2− ξ and rate Ω(ξ2) can be locally tested / locally corrected from
(δ/2− o(1))-fraction errors.

We remark that analogous results over large alphabets were only recently obtained [KMRS16]. In
this setting, the best tradeoff between R and δ for general codes is completely known. Every code
must satisfy R ≤ 1− δ; this bound is known as the Singleton bound. Furthermore, Reed-Solomon
codes achieve R = 1− δ, and they can be decoded from a δ/2-fraction of errors in polynomial time.
In [KMRS16], it was shown that there exist explicit locally testable codes and locally correctable
codes which satisfy R = 1− δ− ε (for all ε > 0), and which can further be locally tested and locally
corrected from (δ/2− o(1))-fraction errors in sublinear (and even subpolynomial) time.
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1.1 Methods

The starting point for our constructions is the random concatenation technique of Thomme-
sen [Tho83], which he used to show that codes of a particular simple form can achieve the GV
bound. Specifically, he showed that if one takes a Reed-Solomon code over a large alphabet as
the outer code, and concatenate it with binary linear inner codes chosen uniformly at random and
independently for each outer coordinate, then the resulting code C lies on the GV bound with high
probability. In fact, the only property of Reed-Solomon codes that is used in this result is that the
rate and distance of Reed-Solomon codes lie on the Singleton bound.

Our construction of locally testable codes approaching the GV bound then follows from the result
of [KMRS16], which gave constructions of locally testable codes with rate and distance approaching
the Singleton bound. We start with such a locally testable code from [KMRS16] as the outer code,
and then concatenate it with uniformly random binary linear inner codes (independently for each
coordinate of the outer code). The required rate-distance tradeoff of the concatenated code follows
from Thommesen’s arguments, and the local testability follows easily from the local testability of
the outer code.

It is also known how to construct locally correctable codes with rate and distance approaching the
Singleton bound [KMRS16]. If we use these codes along with the random concatenation idea, we get
locally correctable codes approaching the GV bound. But Theorem B requires the fraction of errors
correctable by the local correction algorithm to approach δ/2. The natural local correction algorithm
for concatenated codes (using the local correction algorithm of the outer code, and decoding inner
codes by brute-force whenever an outer coordinate needs to be accessed) turns out to only decode
to a much smaller radius (namely half the Zyablov bound); see [KMRS16] for details.

Our proof of Theorem B uses several more ideas. The next ingredient we use is an insight of
Guruswami and Indyk [GI04]. They noted that the code C constructed by Thommesen could be
decoded from δ/2 fraction errors in polynomial time, provided the distance δ of C is sufficiently
large (equivalently, provided the rate R of C is sufficiently small). The main idea is to use the
list-decoding algorithms for concatenated codes developed by Guruswami and Sudan [GS00, GS02],
which for binary codes of distance nearly 1/2, can list decode from a fraction of errors that is also
nearly 1/2 – in particular, the fraction of errors correctable is far more than half the minimum
distance (which is around 1/4). One first list-decodes each of the inner concatenated codes (by
brute-force) to get a list of candidate symbols for each coordinate of the Reed-Solomon code, and
then one applies the list-recovery3 algorithm (of Guruswami and Sudan [GS99]) for the outer Reed-
Solomon code to get a list of candidate codewords. Finally, by computing the distance between
each of these candidate codewords and the given received word, one can identify the one codeword
(if any) that lies within distance δ/2 of the received word.

Our local correction algorithm will try to implement this high-level strategy in the local setting.
We will choose an outer code Cout over a large alphabet with suitable properties, and concatenate it
with independently chosen random binary linear inner codes. We describe the properties required
of Cout next:

• First of all, our choice of Cout should be such that the concatenated code approaches the GV
bound with high probability. We will achieve this by ensuring that Cout has a sufficiently

3A list-recovery algorithm is a generalization of a list-decoding algorithm. Here one is given a small list of candidate
symbols Si for each coordinate i of the code, and the goal is to find all codewords c ∈ C which have the property
that for at most α fraction of the coordinates i, the ith coordinate of c does not lie in Si.
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good rate-distance tradeoff4.

• Next, we would like Cout to be locally list-recoverable. A local list-recovery algorithm is an
algorithm that solves the list-recovery problem (in an implicit manner) using few queries.
Instead of outputting all nearby codewords (which is impossible using few queries), the local
list-recovery algorithm outputs implicit description of words w1, . . . , wL which is guaranteed
to contain all nearby codewords.

• Finally, we would like Cout to be locally testable. This is in order to identify which of the
words wi are actually codewords. Having done this, we can easily identify, by estimating
distances via sampling, the one codeword wi that is δ/2-close to our original received word.

Summarizing, we want Cout to be locally list-recoverable, locally testable and have a decent rate-
distance tradeoff. One might have hoped that the recently constructed codes of [KMRS16], which
achieve local testability and local correctability with optimal rate-distance tradeoff (on the Singleton
bound) would be good candidates for Cout. Unfortunately, none of the codes from [KMRS16] are
known to achieve both local list-recoverability and local testability.

Instead, we go further back in time to the mother of all local codes, Reed-Muller codes. Reed-
Muller codes turn out to satisfy the first two of these properties [RS96b, FS95, AS03, STV01], but
they fall short on the last property. This brings us to our final ingredient: Alon-Edmonds-Luby
(AEL) distance amplification [AEL95]. This distance amplification method improves the rate-
distance tradeoff for codes. Furthermore, it was shown in [KMRS16] that this method preserves
local testability and local correctability. Here we observe that this distance amplification method
also preserves local list-recoverability. Thus, applying AEL distance amplification to Reed-Muller
codes gives us a code that is locally list-recoverable, locally testable, and also has a decent rate-
distance tradeoff (which turns out to be good enough for our purposes)5. This gives us the code
Cout, and completes the high-level description of our constructions.

1.2 Further remarks

LTCs approaching the GV bound with constant query complexity? Our construction of
LTCs approaching the GV bound is based on two ingredients: an LTC approaching the Singleton
bound [KMRS16], and Thommesen’s random concatenation technique. The result of [KMRS16]
is in fact quite general: given any LTC family which can achieve rate arbitrarily close to 1, one
can construct another LTC family which approaches the Singleton bound with only a constant
factor blowup in the query complexity. Putting everything together: if there exist LTCs with rate
arbitrarily close to 1 with query complexity q, then there are LTCs approaching the GV bound with
query complexity O(q). It has often been lamented (at least once in print [BSGK+10], see page 2)
by researchers in the area that we do not know any lower bounds on the rate-distance tradeoff of
LTCs that distinguish them from general codes, and that for all we know, there could be constant
query LTCs on the GV bound. Our result shows that such a lower bound would imply something

4The rate-distance tradeoff will be quite close to, but not approaching, the Singleton bound. This is the reason
for our final locally correctable codes of Theorem B achieving rate that is smaller than RGV(δ) by a factor (1− ε).

5This description suffices for the existence part of Theorem B. However, to achieve sublinear time decoding, we will
need one further trick: to concatenate the Reed-Muller codes down to a smaller alphabet before applying the AEL
transformation - this smaller alphabet size is needed to let us perform the brute force list decoding of the random
inner codes step quickly.
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much more qualitative - that there do not exist constant query LTCs with rate arbitrarily close to
1.

Locally decodable codes. An important variant of LCCs are locally decodable codes (LDCs).
Those codes are defined similarly to LCCs, with the following difference: Recall that in the definition
of LCCs, the decoder gets access to a string w which is close to a codeword c, and is required to
decode a coordinate of c. In the definition of LDCs, we view the codeword c as the encoding of some
message x, and the decoder is required to decode a coordinate of x. LDCs were studied extensively
in the literature, perhaps more so than LCCs. If we restrict ourselves to linear codes, then LDCs
are a weaker object than LCCs, since every linear LCC can be converted into an LDC by choosing
a systematic encoding map. Since the LCCs we construct in this paper are linear, our results apply
to LDCs as well.

1.3 Organization of this paper

This paper is structured as follows: in Section 2 we provide some background on error correcting
codes and set up the notation that will be used throughout the paper. In Section 3 we show
the existence of locally testable codes approaching the GV bound. In Section 4 we show how to
convert any code on a large alphabet with (somewhat) good rate and distance into a binary code
nearly approaching the GV bound. In Section 5 we show the existence of locally correctable codes
approaching the GV bound using the latter transformation. In Sections 6 and 7 we provide further
ingredients needed for the construction of our locally correctable codes, namely local list recovery
algorithm for Reed-Muller codes (in Section 6), and distance amplification procedure for local list
recovery (in Section 7).

2 Preliminaries

We denote by Fq the finite field of q elements. For any finite alphabet Σ and for any string
x ∈ Σn the relative weight wt(x) of x is the fraction of non-zero coordinates of x, that is, wt(x) :=
|{i ∈ [n] : xi 6= 0}| /n. For any pair of strings x, y ∈ Σn, the relative distance between x and y is the
fraction of coordinates on which x and y differ, and is denoted by dist(x, y) := |{i ∈ [n] : xi 6= yi}| /n.
For a positive integer ` we denote by

(
Σ
`

)
the set containing all subsets of Σ of size `, and for any

pair of strings x ∈ Σn and S ∈
(

Σ
`

)n
we denote by dist(x, S) the fraction of coordinates i ∈ [n] for

which xi /∈ Si, that is, dist(x, S) := |{i ∈ [n] : xi /∈ Si}| /n. Throughout the paper, we use exp(n)
to denote 2Θ(n). Whenever we use log, it is to the base 2.

2.1 Error-correcting codes

Let Σ be an alphabet and let n be a positive integer (the block length). A code is simply a subset
C ⊆ Σn. If F is a finite field and Σ is a vector space over F, we say that a code C ⊆ Σn is F-linear
if it is an F-linear subspace of the F-vector space Σn. If Σ = F, we simply say that C is linear. The
rate of a code is the ratio log |C|

log(|Σ|n) , which for F-linear codes equals dimF(C)
n·dimF(Σ) .

The elements of a code C are called codewords. The relative distance dist(C) of C is the minimum
δ > 0 such that for every pair of distinct codewords c1, c2 ∈ C it holds that dist(c1, c2) ≥ δ, which
for F-linear codes equals the minimum δ > 0 such that wt(c) ≥ δ for every c ∈ C. We will use the
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notation dist(w,C) to denote the relative distance of a string w ∈ Σn from C, and say that w is
ε-close (respectively, ε-far) to C if dist(w,C) < ε (respectively, if dist(w,C) ≥ ε).

An encoding map for C is a bijection EC : Σk → C, where |Σ|k = |C|. For a code C ⊆ Σn of
relative distance δ, a given parameter α < δ/2, and a string w ∈ Σn, the problem of decoding from
α fraction of errors is the task of finding the unique c ∈ C (if any) which satisfies dist(c, w) ≤ α.

List decodable and list recoverable codes. List decoding is a paradigm that allows one to
correct more than δ/2 fraction of errors by returning a small list of close-by codewords. More
formally, α ∈ [0, 1] and an integer L we say that a code C ⊆ Σn is (α,L)-list decodable if for any
w ∈ Σn there are at most L different codewords c ∈ C which satisfy that dist(c, w) ≤ α. The
Johnson bound (see e.g., Corollary 3.2. in [Gur06]) states that any code C ⊆ Σn of relative distance
at least (1− 1

|Σ|)δ is (α,L)-list decodable for α ≈ (1− 1
|Σ|)(1−

√
1− δ) and constant L (independent

of n).

Theorem 2.1 (Johnson bound). Let C ⊆ Σn be a code of relative distance at least (1− 1
|Σ|)δ. Then

C is
(
(1− 1

|Σ|)α,L
)
-list decodable for any α < 1−

√
1− δ with L = 1

(1−α)2−(1−δ) .

For decoding concatenated codes it is often useful to consider the notion of list recovery where
one is given as input a small list of candidate symbols for each of the coordinates and is required to
output a list of codewords that are consistent with the input lists. More specifically, we say that a
code C ⊆ Σn is (α, `, L)-list recoverable if for any S ∈

(
Σ
`

)n
there are at most L different codewords

c ∈ C which satisfy that dist(c, S) ≤ α.

Some useful codes. In what follows we mention several families of codes that will be used in
our construction.

Let q be a prime power, let d, n be positive integers such that d ≤ n ≤ q, and let α1, α2, . . . , αn be
n distinct points in Fq. The Reed-Solomon code RSn(d, q) is the subset of Fnq containing all words
of the form (p(α1), p(α2), . . . , p(αn)) where p ∈ Fq[x] is a univariate polynomial of degree less than
d over Fq. It can be verified that RSn(d, q) has rate d/n and it follows from the Schwartz-Zippel
lemma that it has relative distance at least 1− d/n. In [Sud97, GS99] it was shown that the Reed-
Solomon codes can be efficiently list decoded up to the Johnson bound. We state here a stronger
form that applies also to list recovery (see e.g., Theorem 4.11 in [Gur06]).

Theorem 2.2 (List recovery of Reed-Solomon codes). The following holds for any ε > 0, prime
power q, and integers d, n, ` which satisfy that `d ≤ n ≤ q. There exists a deterministic algorithm
which given an input string S ∈

(Fq
`

)n
, outputs all codewords c ∈ RSn(d, q) such that dist(c, S) ≤

1−
√
` · dn −

ε
n . The running time of the algorithm is poly(q, 1/ε).

For a prime power q and integers d < q and m the Reed-Muller code RM(m, d, q) is the subset of
Fq

m

q containing all words of the form (p(α))α∈Fmq where p ∈ Fq[x1, . . . , xm] is a polynomial of (total)
degree less than d in m variables over Fq. Note that RSq(d, q) = RM(1, d, q) for every d, q. It can
also be verified that RM(m, d, q) has rate(

m+d
m

)
qm

≥
(
d

mq

)m
and relative distance at least 1− d/q.
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We shall also use the following fact which says that a random binary linear code achieves the
Gilbert-Varshamov bound [Gil52, Var57] with high probability. For x ∈ [0, 1] let H(x) = x log x +
(1− x) log(1− x) denote the binary entropy function.

Fact 2.3 (Gilbert-Varshamov (GV) codes). For any δ ∈ [0, 1/2) and R ∈ (0, 1 − H(δ)), for
sufficiently large n, a random binary linear code of block length n and rate R has relative distance
at least δ with probability at least 1− exp(−n).

2.2 Locally testable and locally correctable codes

Locally testable codes. Intuitively, a code is said to be locally testable [FS95, RS96a, GS06] if,
given a string w ∈ Σn, it is possible to determine whether w is a codeword of C, or rather far from
C, by reading only a small part of w. There are two variants of LTCs in the literature, “weak” LTCs
and “strong” LTCs, where the main difference is that weak LTCs are required to reject only words
which are of sufficiently large constant relative distance from C, while strong LTCs are required
to reject any word w not in C with probability proportional to the relative distance of w from C.
From now on, we will work exclusively with strong LTCs, since it is a simpler notion and allows us
to state a stronger result.

Definition 2.4 (Locally testable code (LTC)). We say that a code C ⊆ Σn is q-(strongly) locally
testable if there exists a randomized algorithm A that satisfies the following requirements:

• Input: A gets oracle access to a string w ∈ Σn.

• Query complexity: A makes at most q queries to the oracle w.

• Completeness: If w is a codeword of C, then A accepts with probability 1.

• Soundness: If w is not a codeword of C, then A rejects with probability at least dist(w,C)/4.

We say that the algorithm A is a local tester of C. Given an infinite family of LTCs {Cn}n, a
uniform local tester for the family is a randomized oracle algorithm that given n, computes the local
tester of Cn. We will often also be interested in the running time of the uniform local tester.

Remark 2.5. It is common to define strong LTCs with an additional parameter ρ, and have the
following soundness requirement:

• If w is not a codeword of C, then A rejects with probability at least ρ · dist(w,C).

Our definition corresponds to the special case where ρ = 1
4 . However, given an LTC with ρ < 1

4 , it
is possible to amplify ρ up to 1

4 at the cost of increasing the query complexity by a multiplicative
factor of 1/ρ. Hence, we chose to fix ρ to 1

4 in our definition, which somewhat simplifies the
presentation. See further discussion in [KMRS15b, Section 2.2.].

Locally correctable codes. Intuitively, a code is said to be locally correctable [BFLS91, STV01,
KT00] if, given a codeword c ∈ C that has been corrupted by some errors, it is possible to decode
any coordinate of c by reading only a small part of the corrupted version of c. Formally, it is defined
as follows.
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Definition 2.6 (Locally correctable code (LCC)). We say that a code C ⊆ Σn is (q, α)-locally
correctable if there exists a randomized algorithm A that satisfies the following requirements:

• Input: A takes as input a coordinate i ∈ [n] and also gets oracle access to a string w ∈ Σn

that is α-close to a codeword c ∈ C.

• Query complexity: A makes at most q queries to the oracle w.

• Output: A outputs ci with probability at least 2
3 .

We say that the algorithm A is a local corrector of C. Given an infinite family of LCCs {Cn}n, a
uniform local corrector for the family is a randomized oracle algorithm that given n, computes the
local corrector of Cn. Again, we will often be also interested in the running time of the uniform
local corrector.

Remark 2.7. By definition it holds that α < dist(C)/2. The above success probability of 2
3 can

be amplified using sequential repetition, at the cost of increasing the query complexity. Specifi-
cally, amplifying the success probability to 1 − e−t requires increasing the query complexity by a
multiplicative factor of O(t).

Locally list decodable and list recoverable codes. The following definition generalizes the
notion of locally correctable codes to the setting of list decoding. In this setting the algorithm A is
required to find all the nearby codewords in an implicit sense. Note that our definition below also
includes a nonstandard soundness property.

Definition 2.8 (Locally list decodable code). We say that a code C ⊆ Σn is (q, α, ε, L)-locally list
decodable if there exists a randomized algorithm A that satisfies the following requirements:

• Input: A gets oracle access to a string w ∈ Σn.

• Query complexity: A makes at most q queries to the oracle w.

• Output: A outputs L randomized algorithms A1, . . . , AL. When algorithm Aj is given as
input a coordinate i ∈ [n], it makes at most q queries to the oracle w and outputs a symbol
in Σ.

• Completeness: For every codeword c ∈ C that is α-close to w, with probability at least
1 − ε over the randomness of A the following event happens: there exists some j ∈ [L] such
that for all i ∈ [n],

Pr[Aj(i) = ci] ≥
2

3
,

where the probability is over the internal randomness of Aj .

• Soundness: With probability at least 1 − ε over the randomness of A, the following event
happens: for every j ∈ [L], there exists some c ∈ C such that for all i ∈ [n],

Pr[Aj(i) = ci] ≥
2

3
,

where the probability is over the internal randomness of Aj .
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We say that A has running time T if A outputs the description of the algorithms A1, . . . , AL in
time at most T and each Aj has running time at most T .

Remark 2.9. (On the soundness property) Typically locally list decodable codes are defined
without the soundness property. For us, the soundness property is important to allow us to identify
the unique closest codeword to the given received word.

In a later section, we will first construct a locally list decodable code without the soundness
property, and then we will achieve soundness via local testing.

The definition of locally list decodable codes can also be extended to the setting of list recovery.
The same remarks about the soundness property apply to this case also.

Definition 2.10 (Locally list recoverable code). We say that a code C ⊆ Σn is (q, α, ε, `, L)-locally
list recoverable if there exists a randomized algorithm A that satisfies the following requirements:

• Input: A gets oracle access to a string S ∈
(

Σ
`

)n
.

• Query complexity: A makes at most q queries to the oracle S.

• Output: A outputs L randomized algorithms A1, . . . , AL, where each Aj takes as input a
coordinate i ∈ [n], makes at most q queries to the oracle S and outputs a symbol in Σ.

• Completeness: For every codeword c ∈ C for which dist(c, S) ≤ α, with probability at least
1 − ε over the randomness of A the following event happens: there exists some j ∈ [L] such
that for all i ∈ [n],

Pr[Aj(i) = ci] ≥
2

3
,

where the probability is over the internal randomness of Aj .

• Soundness: With probability at least 1 − ε over the randomness of A, the following event
happens: for every j ∈ [L], there exists some c ∈ C such that for all i ∈ [n],

Pr[Aj(i) = ci] ≥
2

3
,

where the probability is over the internal randomness of Aj .

As above, we say that A has running time T if A outputs the description of the algorithms
A1, . . . , AL in time at most T and each Aj has running time at most T . Note that a code is
(q, α, ε, L)-locally list decodable if and only if it is (q, α, ε, 1, L)-locally list recoverable.

3 LTCs approaching the GV bound

In this section we prove the following theorem which implies Theorem A from the introduction.

Theorem 3.1 (LTCs approaching the GV bound). For any δ ∈ [0, 1
2) and γ > 0 there exists an

infinite family {C ′n}n of binary linear codes which satisfy the following. The code C ′n has block
length n, rate at least 1 − H(δ) − γ, relative distance at least δ, and is (log n)O(log logn)-locally
testable.
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Moreover, the code C ′n can be constructed by a randomized polynomial time algorithm that succeeds
with probability 1 − exp(−n), and the local testing algorithm can be implemented6 to run in time
(log n)O(log logn).

To prove the above theorem we first show in Section 3.1 a transformation which turns any large
alphabet code approaching the Singleton bound into a binary code approaching the GV bound. In
Section 3.2 we will then use this transformation to obtain LTCs approaching the GV bound.

3.1 Approaching the GV bound via random concatenation

Thommesen [Tho83] used the operation of random concatenation to construct a binary code lying
on the GV bound out of a large alphabet code lying on the Singleton bound. The following lemma
shows an approximate version of this, replacing “lying on” with “close to”. The proof is identical
to Thommesen’s.

Lemma 3.2. The following holds for any δ ∈ [0, 1/2), 0 < γ < 1 −H(δ), t ≥ 4
γ , and sufficiently

large n. Let C ⊆ Fn2t be a linear code of rate R = 1 − H(δ) − γ and relative distance at least
1 − R − γ

2 . Let C ′ ⊆ Ft·n2 be a code obtained from C by applying a (uniformly) random invertible
F2-linear transformation Ti : F2t → Ft2 on each coordinate i ∈ [n] of C independently. Then C ′ has
relative distance at least δ with probability at least 1− exp(−n).

Proof. The proof follows the arguments of [Tho83].
Fix a codeword c ∈ C with wt(c) = α ≥ 1−R− γ/2 and let c′ ∈ Ftn2 be a word obtained from c

by applying a uniformly random not-necessarily-invertible F2-linear transformation Ti : F2t → Ft2
on each coordinate i ∈ [n] of c independently. Note that this is a different distribution from what
was used in the statement of the lemma, since there is a (good) chance that the uniformly random
F2-linear transformation is not invertible.

Then for each non-zero coordinate i of c it holds that the i-th block of c′ of length t is distributed
uniformly over Ft2, and so αtn coordinates of c′ are uniformly distributed (while the rest equal
zero).

Consequently, we have that

Pr[wt(c′) < δ] ≤
(
αtn

≤ δtn

)
2−αtn ≤ 2H(δ/α)αtn · 2−αtn,

where the second inequality follows from the well known fact
(
m
≤βm

)
≤ 2H(β)·m for β ≤ 1/2. Now

note that the above inequality continues to hold even if the transformations Ti are chosen to be
uniformly random invertible transformations since this only increases the probability of any non-
zero element in the image of Ti by the same multiplicative factor.

Next we apply a union bound over all codewords c ∈ C. For this fix α > 0 such that α ≥
1−R− γ/2 and αn ∈ N. Then it holds that the number of codewords in C of relative weight α is
at most (

n

αn

)
·
(
2t
)αn−(1−R−γ/2)n ≤ 2n · 2(α−(1−R−γ/2))tn,

6To be precise, in order for the local testing algorithm to run in the claimed time, it needs access to the random
choices made during the construction of the code.
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where the above bound follows since there are at most
(
n
αn

)
choices for the location of the non-

zero coordinates, and for any such choice fixing the value of the first αn − (1 − R − γ/2)n non-
zero coordinates determines the value of the rest of the non-zero coordinates (since two different
codewords cannot differ on less that (1−R− γ/2)n coordinates).

Consequently, we have that

Pr[dist(C ′) < δ] ≤
∑

1−R−γ/2≤α≤1, αn∈N

2n · 2(α−(1−R−γ/2))tn · 2H(δ/α)αtn · 2−αtn

=
∑

1−R−γ/2≤α≤1, αn∈N

exp

[
−tn

((
1−R− γ

2

)
− α ·H

(
δ

α

)
− 1

t

)]

≤
∑

1−R−γ/2≤α≤1, αn∈N

exp

[
−tn

(
(1−R− γ)− α ·H

(
δ

α

)
+

1

t

)]
,

where the last inequality follows by assumption that t ≥ 4/γ.
So for dist(C ′) ≥ δ to hold with probability at least 1− exp(−n) it suffices to show that for any

1−R− γ/2 ≤ α ≤ 1,

1−R− γ ≥ α ·H
(
δ

α

)
,

or equivalently,

α ·H−1

(
1−R− γ

α

)
≥ δ.

To proceed, we recall an elementary inequality implicit in [Tho83] (see Lemma 3 in [GR10] for
an explicit form). Let H−1 : [0, 1] → [0, 1

2 ] be the inverse of the binary entropy function H in the
domain [0, 1

2 ].

Fact 3.3. For any 0 ≤ x ≤ y ≤ 1 it holds that H−1(x)
x ≤ H−1(y)

y .

We now complete the proof of the lemma.

α ·H−1

(
1−R− γ

α

)
= (1−R− γ) · H

−1((1−R− γ)/α)

(1−R− γ)/α

≥ (1−R− γ) · H
−1(1−R− γ)

1−R− γ
= H−1(1−R− γ)

= δ,

where the second inequality follows from Fact 3.3.

3.2 LTCs approaching the GV bound

We now use Lemma 3.2 to show the existence of LTCs approaching the GV bound. To this end we
first prove the following lemma which says that if C is locally testable then so is C ′.

Lemma 3.4. Let C ⊆ Fn2t be a code and let C ′ ⊆ Ft·n2 be a code obtained from C by applying an
invertible transformation Ti : F2t → Ft2 on each coordinate i ∈ [n] of C. Suppose furthermore that
C is q-locally testable in time T . Then C ′ is O(q · t2)-locally testable in time O(T · poly(t)).
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Proof. Let A be the local tester for C. Given oracle access to w′ ∈ Ft·n2 the local tester A′ for C ′

runs A and answers each query i of A by inverting Ti on the i-th block of w′ of length t.
The completeness property clearly holds. To show that the soundness property holds as well

suppose that w′ /∈ C ′ and let w ∈ Fn2t be the word obtained from w′ by inverting all the trans-
formations Ti. Then A′ rejects w′ with probability at least 1

4 · dist(w,C) ≥ 1
4 · dist(w′, C ′)/t, and

the rejection probability could be amplified to 1
4 · dist(w′, C ′) by repeating the test independently

O(t) times. Finally, note that the overall query complexity is O(q · t2) and overall running time is
O(T · poly(t)).

To obtain the final LTCs we shall also use the following theorem from [KMRS16, Theorem 1.2]
which states the existence of LTCs approaching the Singleton bound.

Theorem 3.5 (LTCs approaching the Singleton bound). For any γ > 0, 0 < R ≤ 1 − γ, and
t ≥ poly(1/γ) there exists an infinite family {Cn}n of linear codes where each Cn ⊆ Fn2t has rate

R, relative distance at least 1−R− γ, and is (log n)O(log logn)-locally testable.
Moreover, the code Cn can be constructed by a deterministic polynomial time algorithm, and the

local testing algorithm can be implemented to run in time (log n)O(log logn).

Proof of Theorem 3.1. Let δ ∈ [0, 1
2), 0 < γ < 1−H(δ) and t ∈ N such that t ≥ poly(4/γ) be fixed

constants. By Theorem 3.5, there exists a family of codes {Cn}n with rate R < 1−H(δ)− γ and
relative distance at least 1−R− γ/2 = H(δ) + γ

2 which is (log n)O(log logn)-locally testable.
Lemma 3.2 implies that each member of the family of codes {C ′n}n has relative distance at

least δ with probability at least 1 − exp(−n). Moreover, Lemma 3.4 implies that each C ′n is
O(t2·(log n)O(log logn)) = (log n)O(log logn)-locally testable in time (log n)O(log logn), as we wanted.

4 Approaching the GV bound via random concatenation, again

We now begin working towards our LCC constructions. In this section, we revisit the random
concatenation operation and show that it can be used to get codes approaching the GV bound
with weaker hypotheses on the outer code. In Section 3.1 we showed that given a large alphabet
code close to the Singleton bound, we can get a binary code close to the GV bound. We now show
that even if we are given a large alphabet code quite far from the Singleton bound (but with some
decent rate-distance tradeoff), the random concatenation operation still gives a binary code which
is quite close to the GV bound.

More precisely, given any large alphabet code of rate O(ξ2) and relative distance 1 − O(γξ) for
ξ = O(γ), the following lemma shows that we can then construct a binary code with rate only
a (1 − γ) factor away from the GV bound. In Section 5 we will use this lemma to obtain LCCs
nearly-approaching the GV bound with some small (but constant) rate.

Lemma 4.1. There exists an absolute constant c such that the following holds for any γ > 0,
0 < ξ ≤ γ/c, integer t, and sufficiently large n. Let C ⊆ Fn2t be a linear code of rate R and relative

distance at least 1− γ
6 ·ξ. Let C ′ ⊆ Ft·n/r2 be a code obtained from C by applying a random F2-linear

transformation Ti : F2t → Ft/r2 on each coordinate i ∈ [n] of C independently.
Suppose furthermore that

r ·R ≤
(

1−H
(

1

2
− ξ
))

(1− γ).
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Then C ′ has relative distance at least 1
2 − ξ with probability at least 1− exp(−n).

For the proof of the above lemma we shall use the Taylor expansion of the binary entropy function
at half. The formula follows easily from the Taylor expansion of log(1 + x) at zero.

Fact 4.2. For any |x| ≤ 1 it holds that

H

(
1 + x

2

)
= 1−

∞∑
k=1

x2k

(2k − 1) · 2k · ln 2
.

Proof of Lemma 4.1. Fix a codeword c ∈ C, and note that wt(c) ≥ 1− γ
6 ·ξ. Let c′ ∈ Ftn/r2 be a word

obtained from c by applying a random linear transformation Ti : F2t → Ft/r2 on each coordinate
i ∈ [n] of c independently. Then for each non-zero coordinate i of c it holds that the i-th block of

c′ of length t/r is distributed uniformly over Ft/r2 , and so at least (1− γ
6 · ξ) · tn/r coordinates of c′

are uniformly distributed.
Consequently it holds that

Pr

[
wt(c′) <

1

2
− ξ
]
≤

(1/2−ξ)tn/r∑
i=0

(
(1− ξγ/6)tn/r

i

)
2−(1−ξγ/6)·tn/r

≤ 2
H
(

1/2−ξ
1−ξγ/6

)
·(1−ξγ/6)·tn/r · 2−(1−ξγ/6)·tn/r.

By union bound over all codewords c ∈ C, recalling that |C| = 2tRn, the above implies in turn
that

Pr

[
dist(C ′) <

1

2
− ξ
]
≤ 2tRn · 2H

(
1/2−ξ
1−ξγ/6

)
·(1−ξγ/6)·tn/r · 2−(1−ξγ/6)·tn/r

= exp

[
− tn
r

((
1− ξγ

6

)
·
(

1−H
(

1/2− ξ
1− ξγ/6

))
− r ·R

)]
.

So for dist(C ′) ≥ 1
2 − ξ to hold with probability at least 1− exp(−n) it suffices to show that(

1− ξγ

6

)
·
(

1−H
(

1/2− ξ
1− ξγ/6

))
> r ·R.

For this we compute

1−H
(

1/2− ξ
1− ξγ/6

)
≥ 1−H

(
(1/2− ξ) · (1 + ξγ/3)

)
≥ 1−H

(
1

2
− ξ (1− γ/6)

)
≥

(
1− γ

6

)2
·
(

1−H
(

1

2
− ξ
))
·
(

1− c

2
· ξ
)
,

where the last inequality follows from Fact 4.2 for some absolute constant c.
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Consequently we have that(
1− ξγ

6

)
·
(

1−H
(

1/2− ξ
1− ξγ/6

))
≥

(
1− ξγ

6

)
·
(

1− γ

6

)2
·
(

1− c

2
· ξ
)
·
(

1−H
(

1

2
− ξ
))

>
(

1− γ

6
− γ

3
− c

2
· ξ
)
·
(

1−H
(

1

2
− ξ
))

≥ (1− γ) ·
(

1−H
(

1

2
− ξ
))

≥ r ·R,

where the third inequality follows by choice of ξ ≤ γ/c and the fourth inequality follows by choice
of r ·R ≤

(
1−H

(
1
2 − ξ

))
(1− γ).

5 LCCs approaching the GV bound

In this section we prove the following theorem which implies Theorem B from the introduction.

Theorem 5.1 (LCCs approaching the GV bound). For any constants β, γ > 0 there exists a
constant ξ0 = ξ0(β, γ), such that for any constant ξ > 0 which satisfy that ξ ≤ ξ0 there ex-
ists an infinite family {C ′n}n of binary linear codes which satisfy the following. The code C ′n
has block length at least n, rate

(
1−H

(
1
2 − ξ

))
(1 − γ), relative distance at least 1

2 − ξ, and is(
nβ · poly(1/γ′), 1

2 · (
1
2 − ξ)− γ

′)-locally correctable for any γ′ > 0.
Moreover, the code C ′n can be constructed by a randomized polynomial time algorithm that succeeds

with probability 1− exp(−n), and the local correction algorithm can be implemented to run in time
poly(nβ, 1/γ′).

5.1 Proof overview and main ingredients

For the proof of the above theorem we shall use Lemma 4.1 as well as the following three lemmas.
The first lemma establishes (an alphabet independent) Johnson bound for list recovery. For

a similar (alphabet dependent) statement and a proof sketch, we refer the reader to Theorem 5
in [GS01]. For completeness we provide a simple combinatorial proof of this lemma in Appendix
A, based on the proof of the Johnson bound for list decoding given in [Gur06].

Lemma 5.2 (Johnson bound for list recovery). Let C ⊆ Σn be a code of relative distance at least
δ. Then C is (α, `, L)-list recoverable for any α < 1−

√
` · (1− δ) with L = δ`

(1−α)2−`(1−δ) .

The second lemma gives a local list recovery algorithm for Reed-Muller codes. The algorithm is
similar to the local list decoding algorithm for Reed-Muller codes from [STV01], with an additional
local testing procedure that guarantees the soundness requirement in our definition of locally list
recoverable codes, and is given in Section 6.

Lemma 5.3 (Local list recovery of Reed-Muller codes). There exists an absolute constant c′ such

that for any α, ε > 0 and integers m, d, q, ` which satisfy α < 1 − c′ ·
√

`d
q the Reed-Muller code

RM(m, d, q) is
(
O(q2 · log(q/ε)), α, ε, `, O(q log(1/ε))

)
-locally list recoverable. Moreover, the local

list recovery algorithm can be implemented to run in poly(m, q, log(1/ε)) time.
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Finally, we shall use the following lemma which gives a distance amplification procedure for
local list recovery. This procedure is similar to the distance amplification procedure for locally
correctable codes from [KMRS16], and is given in Section 7.

Lemma 5.4 (Distance amplification for local list recovery). For any constants δout, αout, γ > 0
there exists an integer d = d(δout, αout, γ) ≤ poly(1/δout, 1/αout, 1/γ) such that the following holds.

• Cout be an F-linear code of block length nout, alphabet size σout, rate rout, and relative distance
δout that is (q, αout, ε, `out, Lout)-locally list recoverable.

• Cin be an F-linear code of block length nin, alphabet size σin, rate rin, and relative distance
δin that is (αin, `in, Lin)-(globally) list recoverable.

• additionally, suppose that nin ≥ d, σout = σrin·ninin and Lin ≤ `out.

Then there exists an F-linear code C of block length nout, alphabet size σninin , rate rin·rout and relative
distance at least δin − 2γ that is (O(q · n2

in · log(nin)), αin − γ, ε, `in, Lout)-locally list recoverable.
Moreover, if the running time of the local list recovery algorithm for Cout is Tout and the running

time of the global list recovery algorithm for Cin is Tin then the running time of the local list recovery
algorithm for C is

O(Tout) +O(q · Tin) + poly(q, nin, `in).

For the construction of the code C ′ := C ′n of Theorem 5.1 we first choose the code Cin to be
a Reed-Solomon code of rate rin = cβ · Θ(ξ2) and relative distance δin = 1 − cβ · Θ(ξ2) for some
constant cβ depending only on β, and use Lemma 5.2 to argue that it can be (globally) list recovered
from sufficiently large αin = Θ(1) fraction of errors. We then use Lemma 5.3 to obtain a Reed-
Muller code Cout of rate rout = 1/cβ and relative distance δout = Θ(1) that is locally list recoverable
from sufficiently large αout = Θ(1) fraction of errors (we will in fact concatenate the Reed-Muller
code with another Reed-Solomon code with appropriate parameters to slightly reduce the alphabet
size). Next we apply the distance amplification procedure of Lemma 5.4 with outer code Cout,
inner code Cin, and d = d(δout, αout, O(γξ)) to obtain a code C of rate Θ(ξ2) and relative distance
at least 1 − cβ · Θ(ξ2) − O(γξ) ≥ 1 − O(γξ) (where the inequality will hold for sufficiently small
ξ ≤ ξ0(β, γ)) that is locally list recoverable from sufficiently large Θ(1) fraction of errors. Finally,
we apply Lemma 4.1 to the code C to obtain the desired LCC C ′ that approaches the GV bound.
Full details of the construction appear in Section 5.2.

In Section 5.3, we analyze the rate and relative distance of C ′. In Section 5.4, we show that the
code C ′ is locally list decodable from 1/4 fraction of errors. We then use this property in Section 5.5
to show that C ′ is locally correctable from half the GV bound. This shows that C ′ satisfies the
local correction requirement.

5.2 Construction of C ′

In what follows we present the construction of the code C ′ := C ′n. To this end we first set some pa-
rameters and then describe the construction of the codes Cin,Cout, C and C ′. For better readability,
in what follows we will denote each variable v that is set to some absolute constant (independent
of β, γ, ξ, γ′ and n) by v̂. In what follows we will assume that nβ/4 is a sufficiently large power of 2.
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Parameter setting. Let 1
4 < α̂0 <

1
2 be an arbitrary constant, and note that by the Johnson

bound for list decoding (Theorem 2.1) there exist a constant δ̂0 ∈ [0, 1/2) and an integer L̂0 such
that any binary code of relative distance at least δ̂0 is (α̂0, L̂0)-list decodable. We will choose the
parameters below so that the random binary codes encoded by the Ti’s of Lemma 4.1 will have
relative distance at least δ̂0 (with high probability), and the code C will be locally list recoverable
from input lists of size L̂0 and sufficiently large constant fraction of errors. It will then follow
that the final code C ′ is locally list decodable from 1

4 fraction of errors and consequently locally
correctable from half the GV bound.

The code Cin. Choose an arbitrary constant 0 < α̂in < 1 such that α̂in · α̂0 > 1
4 (such α̂in

exists since α̂0 >
1
4), and note that by the Johnson bound for list recovery (Lemma 5.2) there exist

a constant δ̂in ∈ (0, 1) and an integer L̂in such that any code of relative distance at least δ̂in is
(α̂in, L̂0, L̂in)-list recoverable.

Let σin ≥ nin be growing functions of n such that σninin = nβ/4 and σin is a power of 2, and let

δin = δin(β, γ, ξ) < 1 be a constant to be determined later on which satisfies that δin ≥ δ̂in. Let
Cin be a Reed-Solomon code of block length nin, alphabet size σin, relative distance δin, and rate
rin := 1−δin. Then by the above discussion the code Cin is (α̂in, L̂0, L̂in)-(globally) list recoverable
in time poly(nβ) (via brute force).

The code Cout. The code Cout will be a concatenation of an outer Reed-Muller code C ′out with
an inner Reed-Solomon code C ′′out. We start by defining the inner Reed-Solomon code C ′′out.

Choose an arbitrary constant 0 < α̂′′out < 1, and note that by the Johnson bound for list recovery
(Lemma 5.2) there exist a constant δ̂′′out ∈ (0, 1) and an integer L̂′′out such that any code of relative
distance at least δ̂′′out is (α̂′′out, L̂in, L̂

′′
out)-list recoverable. Let C ′′out be a Reed-Solomon code of relative

distance δ̂′′out, rate r̂′′out := 1− δ̂′′out, block length 1/(rinr̂
′′
out) and alphabet size nrin·β/4. Then by the

above the code C ′′out is (α̂′′out, L̂in, L̂
′′
out)-(globally) list recoverable in time poly(nβ) (via brute force).

Next we define the outer Reed-Muller code C ′out. Choose an arbitrary constant 0 < α̂′out < 1, and
note that by Lemma 5.3 there exists a constant δ̂′out ∈ (0, 1) such that a Reed-Muller code of relative

distance δ̂′out, block length n·rinr̂′′out and alphabet size nβ/4 is
(
nβ/2 polylog n, α̂′out,

1
n , L̂

′′
out, n

β/4 polylog n
)

-

locally list recoverable in time poly(nβ). Let C ′out be a Reed-Muller code of block length n · rin ·
r̂′′out, alphabet size nβ/4, relative distance δ̂′out, and rate r′out = r′out(β). Then the code C ′out is(
nβ/2 polylog n, α̂′out,

1
n , L̂

′′
out, n

β/4 polylog n
)

-locally list recoverable in time poly(nβ).

Finally, let Cout be the code obtained by concatenating the outer Reed-Muller code C ′out with
the inner Reed-Solomon code C ′′out. Then it can be verified that Cout is an F2-linear code of
block length n, alphabet size nrin·β/4, relative distance δ̂′out · δ̂′′out, rate r′out · r̂′′out, and in addition

it is
(
nβ/2 polylog n, α̂′out · α̂′′out, 1

n , L̂in, n
β/4 polylog n

)
-locally list recoverable in time poly(nβ) by

emulating the local list recovery algorithm of C ′out in the natural way.

The code C. Let C be the code guaranteed by Lemma 5.4 for the codes Cout, Cin and d =

d
(
δ̂′out · δ̂′′out, α̂′out · α̂′′out,

γ
24 · ξ

)
(note that nin ≥ d when n is large enough, σout = σrin·ninin , and Lin =

L̂in = `out). Then C is an F2-linear code of block length n, alphabet size nβ/4, relative distance at

least δin− γ
12 ·ξ, rate rin ·r′out · r̂′′out, and is

(
nβ/2 polylog n, α̂in − γ

12 · ξ,
1
n , L̂0, n

β/4 polylog n
)

-locally
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list recoverable in time poly(nβ).

The code C ′. Let t = log(nβ/4) and let r̂0 be a constant such that a random binary linear code of
rate r̂0 and block length t has relative distance at least δ̂0 with probability at least 1−exp(−t) (such

r̂0 exists by Fact 2.3). Considering each symbol of the code C as an element of F2t , let C ′ ⊆ Ft·n/r̂02

be a code obtained from C by applying a random F2-linear transformation Ti : F2t → Ft/r̂02 on each
coordinate i ∈ [n] of C independently.

Choice of δin and ξ0. Finally, we set

δin = δin(β, γ, ξ) = 1−
(
1−H

(
1
2 − ξ

))
(1− γ)

r′out · r̂′′out · r̂0
,

and

ξ0 := min

{
1− δ̂in

5
· r′out · r̂′′out · r̂0,

γ

60
· r′out · r̂′′out · r̂0,

γ

c
, α̂in −

1

4α̂0

}
, (1)

where c is the constant guaranteed by Lemma 4.1. Note that ξ0 depends only on β and γ (recalling

that r′out depends only on β), and that δin ≥ δ̂in whenever ξ ≤ ξ0 by choice of ξ0 ≤ 1−δ̂in
5 ·r′out·r̂′′out·r̂0.

5.3 Rate and relative distance of C ′

We first show that C ′ has the desired rate and distance.

Claim 5.5. The code C ′ is a binary linear code of block length at least n and rate
(
1−H

(
1
2 − ξ

))
(1−

γ). Moreover, C ′ has relative distance at least 1
2 − ξ with probability 1 − exp(−n) over the choice

of the Ti’s.

Proof. By construction C ′ is a binary linear code of block length tn/r̂0 ≥ n and rate

rin · r′out · r̂′′out · r̂0 = (1− δin) · r′out · r̂′′out · r̂0 =

(
1−H

(
1

2
− ξ
))

(1− γ).

To show that C ′ has the required distance we use Lemma 4.1. To see that the conditions of this
lemma hold note first that the relative distance of C is at least

δin −
γ

12
· ξ = 1−

(
1−H

(
1
2 − ξ

))
(1− γ)

r′out · r̂′′out · r̂0
− γ

12
· ξ ≥ 1− γ

6
· ξ,

where the inequality is by our choice of ξ0 ≤ γ
60 ·r

′
out · r̂′′out · r̂0 in (1). Moreover, by choice of ξ0 ≤ γ/c

in (1) we have that ξ ≤ γ/c. Thus Lemma 4.1 implies that C ′ has relative distance at least 1
2 − ξ

with probability at least 1− exp(−n).
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5.4 Local list decoding of C ′

Next we show that C ′ can be locally list decoded from 1/4 fraction of errors.

Claim 5.6. The code C ′ is
(
nβ/2 · polylog n, 1

4 ,
1
n , n

β/4 · polylog n
)
-locally list decodable with prob-

ability 1 − exp(−n) over the choice of the Ti’s. Moreover, the local list decoder of C ′ can be
implemented to run in time poly(nβ).

Proof. By construction the code C is
(
nβ/2 · polylog n, α̂in − γ

12 · ξ,
1
n , L̂0, n

β/4 · polylog n
)

-locally

list recoverable in time poly(nβ), where α̂in > 1
4α̂0

, and each Ti is (α̂0, L̂0)-list decodable with
probability at least 1 − exp(−t) = 1 − on(1). The local list decoding algorithm A′ for C ′ will run
the local list recovery algorithm A for C and answer the queries of A by list decoding the Ti’s
corresponding to the queries of A. Details follow.

Let A be the algorithm that local list recovers C. On oracle access to w ∈ Ftn/r̂02 the algorithm
A′ that local list decodes C ′ runs A and whenever A asks for some coordinate i ∈ [n], the algorithm
A′ list decodes the i-th block of w of length t/r̂0 from α̂0 fraction of errors, and feeds the messages
corresponding to the first L̂0 codewords in the output list as an answer to the query of A. Let
A1, . . . , AL be the resulting output algorithms of A for L = nβ/4 · polylog n. Then A′ outputs L
algorithms A′1, . . . , A

′
L where each algorithm A′j is defined as follows

To decode the k′-th coordinate in the k-th block of C ′ of length t/r̂0 (that is, a coordinate of the
form kt/r̂0 + k′ ∈ [tn/r̂0] where 1 ≤ k ≤ n and 0 ≤ k′ < t/r̂0), the algorithm A′j runs the algorithm
Aj on input coordinate k. As above, whenever Aj asks for some coordinate i ∈ [n], the algorithm
A′j list decodes the i-th block of w of length t/r̂0 from α̂0 fraction of errors, and feeds the messages

corresponding to the first L̂0 codewords in the output list as an answer to the query of Aj . Let

σ ∈ F2t be the output symbol of Aj . Then the algorithm A′j outputs the k′-th bit of Tk(σ) ∈ Ft/r̂02 .

The query complexity of A′ is at most nβ/2 · polylog n · t = nβ/2 · polylog n, and the output list
size of A′ is nβ/4 polylog n. Each block of w of length t/r̂0 can be brute-force list decoded in time
2t/r̂0 = poly(nβ) and so the overall running time is poly(nβ). The soundness property clearly holds.

To see that the completeness property holds as well note that if dist(w, c′) ≤ 1
4 for some c′ ∈ C ′,

then by Markov’s inequality for at most 1/(4α̂0) fraction of i ∈ [n] it holds that the i-th block of w of
length t/r̂0 differs from the i-th block of c′ of length t/r̂0 by more than α̂0 fraction of the coordinates.
Moreover, since each Ti is (α̂0, L̂0)-list decodable with probability at least 1−on(1), with probability
at least 1− exp(−n) it holds that at most ξ/2 fraction of the Ti’s do not have this property. This
implies in turn that the list decoding of the Ti’s fails on at most ξ/2+1/(4α̂0) fraction of the blocks.
The completeness then follows since C is locally list recoverable from α̂in − γ

12 · ξ > ξ/2 + 1/(4α̂0)
fraction of errors (where the inequality holds by choice of ξ0 ≤ α̂in − 1/(4α̂0) in (1)) and input list
size L̂0.

5.5 Local correction of C ′

Finally, we show that the code C ′ is locally correctable from half the GV bound.

Claim 5.7. For any γ′ > 0 the code C ′ is
(
nβ · poly(1/γ′), 1

2 · (
1
2 − ξ)− γ

′)-locally correctable with
probability 1 − exp(−n) over the choice of the Ti’s. Moreover, the local corrector of C ′ can be
implemented to run in time poly(nβ, 1/γ′).
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Proof. By claims 5.5 and 5.6 we have that C ′ has relative distance at least 1
2 − ξ and in addition

it is
(
nβ/2 · polylog n, 1

4 ,
1
n , n

β/4 · polylog n
)
-locally list decodable in time poly(nβ) with probability

at least 1− exp(−n) over the choice of the Ti’s. In what follows assume that these two properties
hold, we will show that in this case C ′ is also

(
nβ · poly(1/γ′), 1

2 · (
1
2 − ξ)− γ

′)-locally correctable
in time poly(nβ, 1/γ′) for any γ′ > 0.

Let A′ be the algorithm that local list decodes C ′. By increasing the query complexity of A′

by a multiplicative factor of polylog n we may assume that both the completeness and soundness

properties of A′ hold with success probability 1 − 1
n2 instead of 2

3 . On oracle access to w ∈ Ftn/r̂02

and input coordinate i ∈ [tn/r̂0], the algorithm Ã that local corrects C ′ first runs A′ with oracle
access to w, let A′1, . . . , A

′
L be the output algorithms for L = nβ/4 polylog n. The algorithm Ã then

runs each of the A′j ’s on a random subset Sj ⊆ [tn/r̂0] of coordinates of size O(log n/(γ′)2), and
computes the fraction of coordinates δj in Sj on which the decoded values differ from the values of
w. Finally, the algorithm Ã finds some A′j for which δj ≤ 1

2 · (
1
2 − ξ) (if such A′j exists), and uses

A′j to decode the input coordinate i.

The query complexity of Ã is

nβ/4 · polylog n ·O(log n/(γ′)2) · nβ/2 · polylog n ·O(log n),

which is at most nβ ·poly(1/γ′) for sufficiently large n, and the running time of Ã is poly(nβ, 1/γ′).
Next we show that Ã satisfies the required local correction guarantees.

Let c′ ∈ C ′ be the (unique) codeword which satisfies that dist(w, c′) ≤ 1
2 ·
(

1
2 − ξ

)
− γ′. We

shall show below that with probability 1− o(1), there exists some A′j that computes c′ and satisfies

that δj ≤ 1
2 ·
(

1
2 − ξ

)
, and on the other hand, any A′j which does not compute c′ satisfies that

δj >
1
2 ·
(

1
2 − ξ

)
. This will imply in turn that the algorithm Ã will succeed in decoding the input

coordinate with probability 1− o(1) ≥ 2
3 as required.

We first show that with probability at least 1 − 3
n there exists some A′j that computes c′ and

satisfies that δj ≤ 1
2 ·
(

1
2 − ξ

)
. To see this note that by the completeness property of A′ and since

dist(w, c′) ≤ 1
4 , with probability at least 1 − 1

n over the randomness of A′ there exists some A′j
that computes c′. In this case, by union bound with probability at least 1 − 1

n it holds that each
decoded coordinate of A′j in Sj equals to the corresponding coordinate in c′. Furthermore, by

Chernoff bound with probability at least 1 − 1
n it holds that w and c′ differ on Sj by at most

1
2 ·
(

1
2 − ξ

)
fraction of the coordinates. Consequently, with probability at least 1− 3

n it holds that
δj ≤ 1

2 ·
(

1
2 − ξ

)
.

Next we show that with probability at least 1 − 3
n , any A′j which does not compute c′ satisfies

that δj >
1
2 ·
(

1
2 − ξ

)
. For this note that by the soundness property of A′, with probability at least

1− 1
n over the randomness of A′, for every such A′j there exists a codeword c̃ ∈ C ′ \ {c′} such that

A′j computes c̃. As above, by union bound this implies in turn that with probability at least 1− 1
n

it holds that each decoded coordinate of A′j in Sj equals to the corresponding coordinate on c̃. On

the other hand, since C ′ has relative distance at least 1
2 − ξ and dist(w, c′) ≤ 1

2 ·
(

1
2 − ξ

)
− γ′ we

have that dist(w, c̃) > 1
2 ·
(

1
2 − ξ

)
+ γ′, and so by Chernoff bound with probability at least 1− 1

n it
holds that w and c̃ differ on Sj by more than 1

2 ·
(

1
2 − ξ

)
fraction of the coordinates. Consequently,

with probability at least 1− 3
n it holds that δj >

1
2 ·
(

1
2 − ξ

)
for any such A′j which completes the

proof of the claim.
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6 Local list recovery of Reed-Muller codes

In this section we prove Lemma 5.3 which we recall here.

Lemma 5.3 (Local list recovery of Reed-Muller codes). There exists an absolute constant c′ such

that for any α, ε > 0 and integers m, d, q, ` which satisfy α < 1 − c′ ·
√

`d
q the Reed-Muller code

RM(m, d, q) is
(
O(q2 · log(q/ε)), α, ε, `, O(q log(1/ε))

)
-locally list recoverable. Moreover, the local

list recovery algorithm can be implemented to run in poly(m, q, log(1/ε)) time.

For the proof of the above lemma we shall need the following two lemmas. The first lemma
from [GS92] gives a local correction procedure for Reed-Muller codes (see. e.g., Proposition 2.6. in
[Yek12]).

Lemma 6.1 (Local correction of Reed-Muller codes). There exists an absolute constant r0 > 0
such that for any integers m, d, q which satisfy that d

q ≤ r0 the Reed-Muller code RM(m, d, q) is(
q, 1

4

)
-locally correctable.

In other words, there exists a randomized q-query algorithm Corr such that given oracle access
to a function f : Fmq → Fq which agrees with a degree d polynomial p : Fmq → Fq on at least 3/4
fraction of inputs, and given x ∈ Fmq ,

Pr[Corrf (x) = p(x)] ≥ 2

3
,

where the probability is over the internal randomness of Corr. Moreover Corr runs in poly(m, q)
time.

The second lemma gives a tolerant local testing procedure for Reed-Muller codes. A tolerant local
testing algorithm is a local testing algorithm that has the additional property of accepting all words
which are sufficiently close to the code. Formally it is defined as follows.

Definition 6.2. Let 0 < α < β < 1. We say that a code C ⊆ Σn is (q, α, β)-tolerant locally testable
if there exists a randomized algorithm A that satisfies the following requirements:

• Input: A gets oracle access to a string w ∈ Σn.

• Query complexity: A makes at most q queries to the oracle w.

• Completeness: If dist(w,C) ≤ α, then A accepts with probability at least 2
3 .

• Soundness: If dist(w,C) ≥ β, then A rejects with probability at least 2
3 .

Lemma 6.3 (Tolerant local testing of Reed-Muller codes). There exist absolute constants r0 > 0
and 0 < α0 < 1/4 such that for any integers m, d, q which satisfy that d

q ≤ r0 the Reed-Muller code
RM(m, d, q) is (O(q), α0, 1/4)-tolerant locally testable. Moreover the running time of the tester is
poly(m, q).

The proof of the above lemma is based on the robust local testing procedure for Reed-Muller
codes from [FS95], and is deferred to Section 6.2.
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6.1 Proof of Lemma 5.3

The proof follows the lines of the algorithm for the local list decoding of Reed-Muller codes from
[STV01], we need an additional local testing procedure that guarantees the soundness requirement
in our definition of locally list recoverable codes (Definition 2.10). Let S : Fmq →

(Fq
`

)
. We would

like to construct a list of oracle algorithms which compute all codewords p : Fmq → Fq such that
p(x) ∈ S(x) for at least β := 1 − α fraction of x ∈ Fmq . Moreover every oracle algorithm in the
list should compute some codeword. Now we describe an algorithm for this task. We will begin by
defining the following (deterministic) sub-algorithm which will be used in the main algorithm.

The algorithm receives as parameters β ∈ [0, 1], z ∈ Fmq and a ∈ Fq.

Algorithm 1 MS
z,a,β(x)

1: Let `z,x(t) = (1− t)z + tx denote the line through the points z, x.6

2: Find the list h1, · · · , hr that includes all univariate degree d polynomials p : Fq → Fq such that
p(t) ∈ S(`z,x(t)) for at least β/2 fraction of t ∈ Fq.

3: If there exists a unique i such that hi(0) = a, then output hi(1), else output ‘FAIL’.

The parameters z, a in Algorithm 1 must be thought of as advice which tells us that the poly-
nomial takes the value a ∈ F at the point z ∈ Fmq . The following claim makes this intuition
precise.

Claim 6.4. Let 0 < τ < 1, 1 ≥ β ≥ 16
τ

√
`d/q, and let p : Fmq → Fq be a degree d polynomial which

agrees with S in at least β fraction of inputs, then the following are true.

1. MS
z,a,β makes at most q queries to S and runs in poly(m, q) time.

2. Prz

[
Prx

[
MS

z,p(z),β computes p at x
]
≥ 1− τ

]
≥ 1

2 .

Proof. The number of queries is q since the algorithm only queries points on a line. Also Step
2 of the algorithm, which is the most expensive step, can be implemented in poly(m, q) time by
Theorem 2.2. Now we will prove (2). By Markov inequality,

Pr
z

[
Pr
x

[
MS

z,p(z),β does not compute p at x
]
≥ τ

]
≤ 1

τ
Pr
z,x

[
MS

z,p(z),β does not compute p at x
]
.

To bound the probability that MS
z,p(z),β does not compute p at x, let us define the following two

bad events and bound their probabilities.
Event A: @i ∈ [r] s.t. hi = p|`z,x
This will happen only if p does not agree with S on at least β/2 fraction of points on the line `z,x.
But we know that p has agreement at least β with S on the entire space. Since the set of points
on the line are pairwise independent, we can use Chebychev’s inequality to bound the probability
of this event.

Pr[A] = Pr[@i ∈ [r] s.t. hi = p|`z,x ] ≤ 4

βq
≤ τ

4
√
`dq
≤ τ

4

Event B: ∃i ∈ [r] s.t. hi 6= p|`z,x and hi(0) = p(z)
Since the list of polynomials h1, · · · , hr depends only on the line through z, x, we can think of the

6If z = x, choose a random line through z.
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random process as first picking a random line ` and then picking two random points t1, t2 ∈ Fq and
letting z = `(t1), x = `(t2). If hi 6= p|`, then they agree on at most d points of `, so Prt1 [hi(t1) =
p(`(t1))] ≤ d

q . By union bound,

Pr[B] = Pr
[
∃i ∈ [r] s.t. hi 6= p|`z,x and hi(0) = p(z)

]
≤ rd

q
.

By applying the Johnson bound for list recovery (Lemma 5.2) to the Reed-Solomon code of degree
d on the line ` ,

r ≤ `

(β/2)2 − `d/q
≤ q/d

(8/τ)2 − 1
.

Combining the above bounds we get, Pr[B] ≤ 1/((8/τ)2 − 1) ≤ τ/8.

Clearly, if events A,B do not happen, then MS
z,p(z),β will compute p at x. Therefore

Pr
z,x

[
MS

z,p(z),β does not compute p at x
]
≤ Pr[A] + Pr[B] ≤ τ

2
.

Therefore,

Pr
z

[
Pr
x

[
MS

z,p(z),β does not compute p at x
]
≥ τ

]
≤ 1

2
.

Algorithm 2 Local list recovery algorithm R(S, β)

1: Sample z1, · · · , zt ∈ Fmq uniformly at random where t = log(2/ε).

2: Let L be the list of all oracle algorithms MS
zi,a,β

for i ∈ [t] and a ∈ F.
3: Run the tolerant local tester T from Lemma 6.3 on each algorithm in L for t′ = 100 log(2qt/ε)

times and remove from L any algorithm which fails a majority of the tests.
4: For every M ∈ L, include the oracle algorithm CorrM in the output list where Corr is the

corrector from Lemma 6.1.

The following claim essentially proves Lemma 5.3.

Claim 6.5. Let 1 ≥ β > c′
√
`d/q where c′ is some sufficiently large absolute constant. Let Lout be

the list of oracle algorithms output by R(S, β). Then the following statements are true.

1. The size of the list |Lout| = O(q log(1/ε)).

2. The algorithm R(S, β) makes at most O(q2 log(q/ε)) queries to oracle S and runs in poly(m, q, log(1/ε))
time.

3. Each algorithm in Lout makes at most q2 queries to S and runs in poly(m, q) time.

4. Let p : Fmq → Fq be a degree d polynomial which agrees with S on at least β fraction of inputs,
then with probability at least 1− ε, there exists A ∈ Lout which computes p.

5. With probability at least 1− ε, every A ∈ Lout computes some degree d polynomial.
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Proof. (1) is trivially true since the list only gets smaller after Step 2. To prove (2), note that
R makes queries to S only in Step 3. By Lemma 6.3, the tester T makes O(q) queries to each
algorithmMS

zi,a,β
∈ L, and each algorithmMS

zi,a,β
makes at most q queries to S as in Algorithm 1.

Since the test is repeated t′ = O(log(q/ε)) times, the total queries to S is O(q2 log(q/ε)). To analyze
the running time, note that the tester T and the algorithmsMS

zi,a,β
run in poly(m, q) time, so the

total running time is poly(m, q, log(1/ε)).
To prove (3), note that every algorithm in Lout looks like CorrM for someM constructed in Step

2. By Lemma 6.1, Corr makes q queries toM, and eachM makes q queries to S as in Algorithm 1.
Thus the total queries CorrM makes to S on any input is at most q2. Also both Corr and M run
in poly(m, q) time, thus CorrM also takes poly(m, q) time.

To prove (4), observe that MS
z1,p(z1), · · · ,M

S
zt,p(zt)

are in the list L. Let 0 < α0 < 1
4 be the

constant that appears in Lemma 6.3 and let c′ > 16
α0

. By Claim 6.4, with probability ≥ 1− 1/2t =
1 − ε/2, at least one of these algorithms agree with p on ≥ 1 − α0 fraction of inputs, call this
algorithm M. Therefore M will also pass the local testing in Step 3 with probability 1 − ε/2 by
Lemma 6.3 and Chernoff bound. Since α0 <

1
4 , by Lemma 6.1, CorrM will compute p everywhere.

Finally to prove (5), by Lemma 6.3 and Chernoff bound, any A ∈ L that is 1/4 far from any
degree d polynomial will remain in the list after Step 3 with probability at most ε

tq . By union
bound over each algorithm in the list which is of size at most tq, with probability at least 1 − ε,
every algorithm A in L that remains after Step 3, will be 1

4 close to some degree d polynomial p′.
So by Lemma 6.1, CorrA will compute p′ everywhere. Therefore every algorithm in Lout computes
some degree d polynomial.

6.2 Tolerant local testing of Reed-Muller codes - Proof of Lemma 6.3

For the proof of lemma 6.3 we shall use the following lemma from [FS95, Theorem 7] which gives
a robust local testing procedure for Reed-Muller code. A robust local testing algorithm is a local
testing algorithm such that its local view on words far from the code is far on average from an
accepting view.

Lemma 6.6 (Robust local testing of Reed-Muller codes). There exists an absolute constant r0 > 0
such that the following holds for any α > 0 and integers m, d, q which satisfy that d

q ≤ r0. Suppose
that f : Fmq → Fq satisfies that dist (f,RM(m, d, q)) ≥ α. Then the expected relative distance of f
from RSq(d, q) on a random line is at least α

9 .

Proof of Lemma 6.3. Say we are given a function f : Fmq → Fq and we need to test if it is close to

a degree d polynomial. Let 0 < τ < 1 −
√
d/q be some threshold parameter to be chosen later.

The test is to choose a random line ` in Fmq and find if there is a univariate degree d polynomial
which is τ -close to f |`. If yes, then accept, else reject. Clearly this test makes only q queries. Also
by Theorem 2.2, when τ < 1 −

√
d/q, this can be implemented in poly(m, q) time. Now we will

show that for an appropriate choice of τ , this is a (O(q), α0, 1/4) tolerant test for some α0 > 0.
Let f : Fmq → Fq be some function which is α0-close to a degree d polynomial p. Since points

on a random line are uniform over Fmq , by Markov inequality, the probability that f |` is τ -far from
any univariate degree d polynomial is at most α0/τ . So the probability that the test rejects f is at
most β0 = α0/τ .

Let g : Fmq → Fq be some function which is 1/4-far from any degree d polynomial. Then by
Lemma 6.6, the expected distance of g|` to RSq(d, q) is at least 1/36. The probability that g|` is
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τ -far from p|` is at least β1 = 1/36−τ
1−τ . When d/q is sufficiently small, we can choose α0 and τ to be

some absolute constants such that 0 < τ < 1−
√
d/q and β0 < β1.

Finally to get the acceptance and rejection probabilities to 2/3 as in the definition of tolerant
locally testable codes, we repeat the above t times and accept a function if it is accepted in at least
β0+β1

2 fraction of the tests. When t is large enough (but still some absolute constant), by Chernoff
bound, the new test will have the required soundness and completeness.

7 Distance amplification for local list recovery

In this section we prove Lemma 5.4 which we recall here.

Lemma 5.4 (Distance amplification for local list recovery). For any constants δout, αout, γ > 0
there exists an integer d = d(δout, αout, γ) ≤ poly(1/δout, 1/αout, 1/γ) such that the following holds.

• Cout be an F-linear code of block length nout, alphabet size σout, rate rout, and relative distance
δout that is (q, αout, ε, `out, Lout)-locally list recoverable.

• Cin be an F-linear code of block length nin, alphabet size σin, rate rin, and relative distance
δin that is (αin, `in, Lin)-(globally) list recoverable.

• additionally, suppose that nin ≥ d, σout = σrin·ninin and Lin ≤ `out.

Then there exists an F-linear code C of block length nout, alphabet size σninin , rate rin·rout and relative
distance at least δin − 2γ that is (O(q · n2

in · log(nin)), αin − γ, ε, `in, Lout)-locally list recoverable.
Moreover, if the running time of the local list recovery algorithm for Cout is Tout and the running

time of the global list recovery algorithm for Cin is Tin then the running time of the local list recovery
algorithm for C is

O(Tout) +O(q · Tin) + poly(q, nin, `in).

Proof. The construction and analysis closely follow that of the high rate locally correctable codes
from [KMRS16].

One important ingredient in the construction will be a family of bipartite expanders which
additionally have the property of being good samplers. We define samplers below and state a
lemma (very closely related to that from [KMRS16]) showing the existence of the kind of samplers
we will need.

For a graph G, a vertex s and a set of vertices T , let E(s, T ) denote the set of edges that go
from s into T . Roughly speaking, a sampler is a bipartite d-regular graph in which the density of
any subset T of right vertices can be approximated by the value of E(s, T )/d for a uniform random
left vertex s.

Definition 7.1. Let G = (U ∪ V,E) be a bipartite d-regular graph with |U | = |V | = n. We say
that G is an (α, γ)-sampler if the following holds for every T ⊆ V : For at least 1−α fraction of the
vertices s ∈ U it holds that

|E(s, T )|
d

− |T |
n
≤ γ.
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Lemma 7.2. For every α, γ > 0, there exists d̂ = poly( 1
αγ ) such that for every sufficiently large n

and for every d > d̂ there exists a bipartite d-regular graph Gn,d,α,γ = (U ∪ V,E) with |U | = |V | = n
such that Gn,d,α,γ is an (α, γ)-sampler. Furthermore, there exists an algorithm that takes as inputs
n, d, α, γ and a vertex w of Gn,d,α,γ, and computes the list of the neighbors of w in Gn,d,α,γ in

time poly( logn·d
α·γ ).

The proof follows the outline presented in [KMRS15a, Section 2.4] and we omit the details here.
The only difference from [KMRS15a] is that here we require the degree to be any d > d̂, whereas

in [KMRS15a] it was constructed for specific d = poly
(

1
α·γ

)
. However it is easy to see that the

proof can be modified to make it work for larger degrees as well, by first constructing an (α, γ/2)
sampler for a pretty large degree and then adding matchings to the graph to get the required degree
and not hurting the sampling property too much.

We now describe the construction of the code C using these samplers.

The code construction We construct the code C by giving a bijection from Cout to C. Let
Σout,Σin denote the alphabets of Cout, Cin respectively. Given a codeword cout ∈ Cout, one obtains
the corresponding codeword c ∈ C as follows:

• View each codeword symbol in Σout as a vector of length rin ·nin over Σin and encode it via the
code Cin. Each codeword symbol gets mapped to a string in Σnin

in . We denote the resulting
string by c′ ∈ Σnin·nout

in and the various resulting codewords of Cin by B1, B2, . . . Bnout ∈ Σnin
in .

• Next, we apply a “pseudorandom” permutation to the coordinates of c′ as follows: Let Gnout
be a graph from the infinite family of nin-regular (min{αout, δout/2}, γ) samplers above and let
U = {u1, . . . , unout} and V = {v1, . . . , vnout} be the left and right vertices of Gnout respectively.
For each i ∈ [nout] and j ∈ [nin], we write the j-th symbol of Bi on the j-th edge of ui. Then,
we construct new blocks D1, . . . , Dnout ∈ Σnin

in , by setting the j-th symbol of Di to be the
symbol written on the j-th edge of vi. We reinterpret each of these blocks to be a symbol of

the alphabet Σ
def
= Σnin

in .

• Finally, we define the codeword c of C ⊆ Σnout as follows: the i-th coordinate ci is the block
Di, reinterpreted as a symbol of the alphabet Σ. We choose c to be the codeword in C that
corresponds to the codeword cout in Cout.

This completes the definition of the bijection. It follows immediately that C is an F-linear code
of blocklength nout and alphabet size σninin . The rate of C is

log |C|
nout · log |Σ|

=
log |Cout|

nout · nin · log |Σin|

=
rout · nout · log |Σout|
nout · nin · log |Σin|

=
rout · log |Σout|
nin · log |Σin|

=
rout · rin · nin · log |Σin|

nin · log |Σin|
= rout · rin.

25



It remains to show that the relative distance of C is at least δin − 2γ and that C is (O(q · n2
in ·

log(nin)), αin − γ, ε, `in, Lout)-locally list recoverable.
Once we prove the portion of the theorem that shows that C is (O(q · n2

in · log(nin)), αin −
γ, ε, `in, Lout)-locally list recoverable, it will follow almost in a blackbox manner that the relative
distance of C is at least δin − 2γ for the following reason. Notice that it will suffice to show that
C can be uniquely decoded from δin

2 − γ fraction of errors. Since Cin has relative distance at least

δin, Cin can be uniquely decoded from δin
2 fraction of errors and in other words Cin is (δin/2, 1, 1)-

(globally) list recoverable. Also Cout can be uniquely decoded from δout
2 fraction of errors and is

hence trivially (nout, δout/2, 0, 1, 1)-locally list recoverable.
Thus by the same construction (i.e same choice of samplers), the code C is (O(nout · n2

in ·
log(nin)), δin/2 − γ, 0, 1, 1)-locally list recoverable. In other words C is uniquely decodable from
δin/2− γ fraction of errors and hence has relative distance at least δin − 2γ.

We now prove that C is (O(q · n2
in · log(nin)), αin − γ, ε, `in, Lout)-locally list recoverable.

Local list recoverability We will now describe the (O(q ·n2
in · log(nin)), αin−γ, ε, `in, Lout)-local

list recovery algorithm A for the code C. This is based on the following algorithm Ã which locally
list recovers coordinates of Cout (instead of coordinates of C, as required of A).

Lemma 7.3. There exists a randomized algorithm Ã that on oracle access to a string S ∈
(

Σ
`in

)nout
makes at most O(q · nin · log(nin)) queries to S and outputs a list of Lout randomized algorithms
Ã1, ..., ÃLout which satisfy the following:

• Each Ãj takes as input coordinate i ∈ [nout] and also gets oracle access to the string S. Ãj
makes at most O(q · nin · log(nin)) queries to S and outputs a symbol ÃSj (i) ∈ Σout.

• (Completeness) For each cout ∈ Cout such that the corresponding codeword c of C (as given
by the bijection above) satisfies dist(c, S) ≤ αin − γ, with probability at least 1 − ε over the

randomness of Ã, there exists some j ∈ [Lout] such that PrÃj

[
ÃSj (i) = couti

]
≥ 1 − 1

3nin
for

all i ∈ [n].

• (Soundness) With probability at least 1 − ε over the randomness of Ã, for every j ∈ [Lout],

there exists some cout ∈ Cout such that PrÃj

[
ÃSj (i) = couti

]
≥ 1− 1

3nin
for all i ∈ [n].

We first show how to construct the required algorithm A, given such an algorithm Ã guaranteed
by Lemma 7.3. The algorithm A is given oracle access to a string S ∈

(
Σ
`in

)nout
, and needs to locally

list recover all codewords c ∈ C that “disagree” with S in at most αin − γ fraction of coordinates.
A outputs a list of Lout randomized algorithms A1, ..., ALout which work as follows.

Each Aj takes as input a coordinate i ∈ [nout] and also gets oracle access to the string S. Note
that by the above lemma, with probability at least 1 − ε over the randomness of Ã, for each Ãj

there exists some cout ∈ Cout such that PrÃj

[
ÃSj (i) = couti

]
≥ 1 − 1

3nin
for all i ∈ [n]. Let the

corresponding codeword in C be c. We will use Ãj to design Aj that will output the coordinates of
c. Let B1, . . . , Bnout and D1, . . . , Dnout be the corresponding blocks that arise in the construction
of c from cout. In order for Aj(i) to be able to decode the value of ci, it should be able to correctly
decode all the symbols in the block Di. Let ui1 , . . . , uinin be the neighbors of vi in the graph Gnout .
Each symbol of Di belongs to one of the blocks Bi1 , . . . , Binin , and therefore it suffices to retrieve
these blocks. Each of these blocks Bij is the encoding of coutij (the ijth symbol of cout) via the
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code Cin. Thus to recover Bi1 , . . . , Binin , it suffices to recover couti1 , . . . , coutinin
. The algorithm Aj

invokes the algorithm Ãj to recover each of couti1 , . . . , coutinin
, and by the union bound, it recovers

all of them correctly with probability at least 1 − nin · 1
3nin

= 2/3. Whenever this happens, the
algorithm Aj correctly retrieves the blocks Bi1 , . . . , Binin and hence also Di and hence ci.

Clearly the query complexity of Aj is nin times the query complexity of Ãj , and is hence at most
O(q · n2

in · log(nin)). The completeness and soundness of A follow almost immediately from the
completeness and soundness of Ã.

It remains to prove Lemma 7.3.

Proof of Lemma 7.3. Let Ā be the local list recovery algorithm for Cout. Ā is a randomized algo-
rithm that on oracle access to a string S ∈

(
Σout
`out

)nout
outputs a list of Lout randomized algorithms

Ā1, Ā2, . . . , ĀLout . By amplification we may assume that for each i ∈ [nout], Āj(i) errs with proba-
bility at most 1

3·nin , and this incurs a factor of at most O(log(nin)) to its query complexity. Thus
the query complexity is at most O(q · log(nin)).

We now describe Ã. Suppose the algorithm Ã is invoked on a string S = (S1, . . . , Snout) ∈(
Σ
`out

)nout
, the algorithm Ã invokes the algorithm Ā and emulates Ā in the natural way. Recall

that Ā expects to be given a string S̄ ∈
(

Σout
`out

)nout
. On input coordinate i, Ā makes queries to this

sequence and outputs a value Ā(i). For any k ∈ [nout], whenever Ā queries the kth element of the
sequence S̄1, . . . , S̄nout ∈

(
Σout
`out

)
, the algorithm Ã performs the following steps.

1. In the first step, for each coordinate r ∈ [nin] of Bk, Ã will find a list S(k,r) ∈
(

Σin
`in

)
and

associate that list with the rth coordinate of Bk. The list S(k,r) is defined as follows: Suppose
that vkr is the rth neighbor of the vertex uk in Gnout . Suppose that uk is the r̂th neighbor
of the vertex vkr . Then in the construction of the codeword c from cout, the value of the rth

coordinate of Bk is stored in the r̂th coordinate of Dkr . Now Skr ∈
(

Σ
`in

)
=
(Σninin
`in

)
is the input

list associated with the krth coordinate. Note that each element s ∈ Skr can be viewed as
an nin-tuple of elements from Σin. Let the r̂th element of this tuple be s(r̂). Then S(k,r) is
defined to be the set in

(
Σin
`in

)
obtained by taking the r̂th element of each member of the set

Skr . Ã can find this set by making a single query to the krth element of S to obtain Skr , and
from it find S(k,r).

2. Ã then invokes the global-list recovery algorithm for Cin with the lists S(k,r) for each r ∈ [nin].
The output of this algorithm is a list of size at most Lin with elements from Σnin

in . We denote
by S̄k the set of messages in Σrinnin

in = Σout corresponding to the codewords in this list. This
is what Ã feeds to Ā.

It is not hard to see that the query complexity of Ã is at most nin times the query complexity
of Ā, and hence it is at most O(q ·nin ·log(nin)). It remains to show that Ã satisfies the completeness
and soundness requirements. We first show the completeness.

Completeness: Let cout ∈ Cout be such that the corresponding codeword c of C (as given by the
bijection above) satisfies dist(c, S) ≤ αin − γ.

Claim 7.4. The string S̄ := (S̄1, S̄2, . . . , S̄nout) as defined above satisfies dist(cout, S̄) ≤ αout.

Once we have the claim, the completeness of Ã will follow immediately from the completeness of
Ā. We now prove the claim.
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Proof of Claim 7.4. Let T = {k ∈ [nout] | ck 6∈ Sk}. Then we know that |T | ≤ (αin− γ)nout. Let G
be the set of all i ∈ [nout] such that in the graph Gnout , ui has at most αin fraction of its neighbors
vj with j ∈ T . By the sampling property of Gnout , it holds that |G| ≥ (1− αout) · nout.

We will now show that for all k ∈ G, coutk ∈ S̄k. Since |G| ≥ (1 − αout) · nout, this shows that
dist(cout, S̄) ≤ αout and thus proves the claim.

Let k ∈ G. For each r ∈ [nin], let S(k,r) ∈
(

Σin
`in

)
be the set assigned to the rth coordinate of Bk

(as described above). To show that coutk ∈ S̄k, it suffices to show that the encoding of coutk via the
code Cin (which we call Bk) agrees with various S(k,r) for at least 1 − αin fraction of coordinates
r ∈ [nin], since then the global list recovery algorithm of Cin succeeds in outputting coutk .

Now let r be any coordinate such that the rth neighbor of uk in Gnout is a vertex vkr where
kr 6∈ T . Thus ckr ∈ Skr . Hence, by the definition of S(k,r), it holds that the rth coordinate of Bk
agrees with S(k,r). Since at most αin fraction of the r’s could have been such that kr ∈ T , thus for
at least 1− αin fraction of coordinates r ∈ [nin], Bk agrees with S(k,r), and hence coutk ∈ S̄k.

Soundness: The soundness of Ã follows immediately from the soundness of Ā.

It can be verified that the local list recovery algorithms Ã and A can be implemented efficiently
as required by the “moreover” part of the lemma.
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A Johnson Bound for List Recovery

In this section we prove Lemma 5.2 restated below.

Lemma 5.2 (Johnson bound for list recovery). Let C ⊆ Σn be a code of relative distance at least
δ. Then C is (α, `, L)-list recoverable for any α < 1−

√
` · (1− δ) with L = δ`

(1−α)2−`(1−δ) .

Proof. The proof is a simple adaptation of the proof of the Johnson bound for list decoding
from [Gur06, Theorem 3.3].

Let |Σ| = q, let S ∈
(

Σ
`

)n
be a string, and let N := {c ∈ C | dist(c, S) ≤ α}. Our goal will be to

show that L =| N |≤ δ`
(1−α)2−`(1−δ) . As the minimum relative distance of the code C is δ and each

c ∈ N has relative distance at most α from the string S, we have

δ ≤ E
{x,y}∼(N2 )

[
∆(x,y)

n

]
and α ≥ ε := E

x∼N
i∼[n]

[1xi 6∈Si ] . (2)

Let x,y be two distinct words in N , chosen uniformly at random. We will obtain a lower bound
on the expected fraction of coordinates where x and y agree (in terms of L,α and `). We know
that this expectation is at most 1− δ. The theorem will follow by comparing these two quantities.

For i ∈ [n], and z ∈ Σ, let ki(z) = |{x ∈ N | xi = z}|. Then we have that

Pr
{x,y}∼(N2 )

[xi = yi] =

(
L

2

)−1

·
∑
z∈Σ

(
ki(z)

2

)

=

(
L

2

)−1

·

∑
z∈Si

(
ki(z)

2

)
+

∑
z∈Σ\Si

(
ki(z)

2

)
≥
(
L

2

)−1

·

[
` ·
(
ki
2

)
+ (q − `)

(L−`ki
q−`
2

)]

where ki =
1

`
·
∑
z∈Si

ki(z) and we used Jensen’s inequality.
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Hence, the expected fraction of coordinates where x and y agree is bounded by

1

n
·
n∑
i=1

Pr
{x,y}∼(N2 )

[xi = yi] ≥
1

n
·
(
L

2

)−1

·
n∑
i=1

[
` ·
(
ki
2

)
+ (q − `)

(L−`ki
q−`
2

)]

≥
(
L

2

)−1

·

[
` ·
(
t

2

)
+ (q − `)

(L−t`
q−`
2

)]

where t =
1

n
·

n∑
i=1

ki and we again used Jensen’s inequality. Since the left hand side is bounded

from above by 1− δ, after some rearrangement, we have:

(1− δ) ·
(
L

2

)
≥ ` ·

(
t

2

)
+ (q − `)

(L−t`
q−`
2

)
(3)

Since ε is the expected fraction of disagreement between the words in N and S, we have that
Lnε is the total amount of disagreement between N and S. We can also count the amount of
disagreement in the following way: `ki =

∑
z∈Si ki(z) is the amount of agreement between the

words of N and the input list Si. Hence, the total agreement between the words of N and S is∑n
i=1 `ki = t`n. This implies that the total disagreement is Ln− t`n = Lnε. Thus, we obtain that

t`

L
= 1− ε.

Substituting
t`

L
= 1− ε in equation (3), and rearranging terms, we have

(1− δ) · L(L− 1)

2
≥ ` · t(t− 1)

2
+

(L− t`)(L− t`− q + `)

2(q − `)

=
`t2

2
− `t

2
+

(L− t`)2

2(q − `)
− L− t`

2

=
(1− ε)2L2

2`
− (1− ε)L

2
+

(Lε)2

2(q − `)
− Lε

2
,

which gives

(1− δ) · (L− 1) ≥ (1− ε)2

`
L− (1− ε) + ε

(
εL

q − `
− 1

)
=

(1− ε)2

`
L+

ε2L

q − `
− 1.

By grouping the terms with L and rearranging the inequality above, we get that

L ≤ δ

(1− ε)2

`
+

ε2

q − `
− (1− δ)

.

By looking at the denominator of the equation above, we have
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q`

q − `
·
(

(1− ε)2

`
+

ε2

q − `
− (1− δ)

)
=

q

q − `
− 2qε

q − `
+

qε2

q − `
+

q`ε2

(q − `)2
− q`(1− δ)

q − `

=
q

q − `
− 2qε

q − `
+

q2ε2

(q − `)2
− q`(1− δ)

q − `

≥ q

q − `
− 2qε

q − `
+

qε2

q − `
− q`(1− δ)

q − `
=

q

q − `
·
[
(1− ε)2 − `(1− δ)

]
.

Hence, we obtain

L ≤ δ

(1− ε)2

`
+

ε2

q − `
− (1− δ)

=

q`
q−` · δ

q`

q − `
·
(

(1− ε)2

`
+

ε2

q − `
− (1− δ)

)
≤

q`
q−` · δ

q
q−` · [(1− ε)2 − `(1− δ)]

=
δ`

(1− ε)2 − `(1− δ)

≤ δ`

(1− α)2 − `(1− δ)
,

where the last inequality follows since ε ≥ α.
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