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Abstract

We present a candidate reduction from the 3-Lin problem to the 2-to-2 Games problem and present
a combinatorial hypothesis about Grassmann graphs which, if correct, is sufficient to show the sound-
ness of the reduction in a certain non-standard sense. A reduction that is sound in this non-standard
sense implies that it is NP-hard to distinguish whether an n-vertex graph has an independent set of size(

1− 1√
2

)
n− o(n) or whether every independent set has size o(n), and consequently, that it is NP-hard

to approximate the Vertex Cover problem within a factor
√

2− o(1).

1 Introduction

This paper focusses on hardness of approximation results for the Vertex Cover and the Independent Set
problems, which are closely related to the hardness of approximating the 2-to-2 Games problem with a
certain non-standard notion of soundness.

1.1 Vertex Cover and Independent Set

Given an n-vertex graph G = (V,E), the Vertex Cover problem asks for a vertex cover of minimum size,
namely, a subset C ⊆ V of minimum size that includes at least one endpoint of each edge e ∈ E. This
is a classic NP-hard problem and has a greedy 2-approximation algorithm. The algorithm starts with the
graph G, initializes C = ∅, and until the graph has at least one edge remaining, picks an edge, adds both
its endpoints to C, removes all edges incident on either of these two endpoints, and repeats. It is easily
seen that the final set C is a vertex cover of G and has size at most twice that of the minimum vertex cover.
A somewhat better approximation algorithm achieving factor 2 − Ω

(
1√

logn

)
is known via SDP relaxation

[17, 21]. However it is a major open question whether there is a 2 − δ approximation algorithm for some
fixed positive constant δ. Surprisingly, as discussed below, there is some evidence to the contrary: Vertex
Cover might actually be hard to approximate within a factor 2− ε for every positive constant ε.

The complement V \ C of a vertex-cover C is an independent set, namely, a set of vertices I ⊆ V
that has no edge inside it. For constants 0 < β < α < 1, let GapIS(α, β) denote a promise gap-problem
where the task is to distinguish whether a given n-vertex graph has an independent set of size at least αn or
whether every independent set is of size at most βn. Clearly, if GapIS(α, β) is hard,1 then it would be hard
to approximate Vertex Cover within a factor strictly less than 1−β

1−α .
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Let ε denote a positive and arbitrarily small constant. We summarize the known NP-hardness results for
approximating the Vertex Cover problem, obtained in a sequence of highly influential papers. Building on
the PCP Theorem [13, 3, 2], the Parallel Repetition Theorem [31], and the Long Code based PCP framework
in [4], Håstad[18] showed that GapIS(1

4 − ε,
1
8 + ε) is NP-hard, implying 7

6 − ε ≈ 1.16 hardness factor for

Vertex Cover. Dinur and Safra [11] showed that GapIS(p − ε, 4p3 − 3p4 + ε) is NP-hard for p = 3−
√

5
2 ,

implying 10
√

5−21−ε ≈ 1.36 hardness factor for Vertex Cover. Their paper introduced several techniques,
e.g. the Biased Long Code, application of Fourier analytic theorems on Boolean hypercube, and implicitly,
the notion of 2-to-2 Games, all of which are indispensable in authors’ opinion, for further progress on Vertex
Cover.

1.2 d-to-d Games

In this section, we discuss the d-to-d Games and their connection to the Independent Set and Vertex Cover
problems.

Definition 1.1. A 2-Prover-1-Round GameG = (V,E,Φ,Σ) consists of a set of variables V , a set of colors
Σ, and a constraint Φ(u, v) for every (directed) edge (u, v) ∈ E. The goal is to assign colors to variables,
say A : V → Σ, so as to satisfy the maximum number of the constraints. A constraint Φ(u, v) is satisfied
if (A(u), A(v)) ∈ Φ(u, v), where by abuse of notation, Φ(u, v) ⊆ Σ × Σ denotes the subset of color-pairs
that are deemed satisfactory. The subset Φ(u, v) ⊆ Σ× Σ may in general depend on the edge (u, v).

Let d > 1 be an integer. A constraint Φ(u, v) ⊆ Σ × Σ is said to be a d-to-d constraint if there are
partitions A1, ..., Ar and B1, ..., Br of Σ into sets of size d such that (|Σ| = rd)

Φ(u, v) =
r⋃
i=1

Ai ×Bi.

A 2-Prover-1-Round Game G = (V,E,Φ,Σ) is said to be a d-to-d Game if every constraint Φ(u, v) is a
d-to-d constraint. A 1-to-1 Game is also called a Unique Game. In this case, Φ(u, v) is simply a perfect
matching on Σ× Σ.

In the above definitions, the number of colors |Σ| is thought of as a constant, possibly large, and the size
of the constraint graph as the growing input size. Motivated by a hardness of approximation result for the
2-SAT problem, Khot [23] formulated the Unique Games Conjecture:

Conjecture 1.2. For every constant δ > 0, for sufficiently large constant |Σ|, given an instance G =
(V,E,Φ,Σ) of a Unique Game, it is NP-hard to distinguish between

• YES case: there is a coloring satisfying 1− δ fraction of the constraints of G.

• NO case: no coloring satisfies more than δ fraction of the constraints of G.

The reduction in [11] implicitly suggests the idea of 2-to-2 Games (though therein, the game is a α-
game in the sense of [10] instead of a 2-to-2 game and the notion of soundness is non-standard). Motivated
by hardness of approximation result for the Vertex Cover problem, Khot [23] also formulated the d-to-d
Conjecture.2

2Note that the Unique Games Conjecture is, necessarily, made with imperfect completeness whereas the d-to-d Conjecture is
made with perfect completeness. Strictly speaking, the conjecture in [23] is a d-to-1 Conjecture. It implies (and in authors’ opinion,
is morally equivalent to) the d-to-d Conjecture stated here.
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Conjecture 1.3. Fix any integer d > 2. For every constant δ > 0, for sufficiently large constant |Σ|, given
an instance G = (V,E,Φ,Σ) of a d-to-d Game, it is NP-hard to distinguish between

• YES case: there is a coloring satisfying all of the constraints of G.

• NO case: no coloring satisfies more that δ fraction of the constraints of G.

Let ε denote a positive and arbitrarily small constant. It was shown that the d-to-d Conjecture implies
that GapIS

(
1− 1

21/d
− ε, ε

)
is NP-hard for d > 2 [23]. The result did not apply in case of Unique Games,

because the imperfect completeness of Unique Games presented a difficulty. This difficulty was circum-
vented in [27] where the authors showed that the Unique Games Conjecture implies that GapIS(1

2 − ε, ε)
is NP-hard and therefore, implies that Vertex Cover is NP-hard to approximate within a factor 2 − ε. The
Unique Games Conjecture, and to a lesser extent the d-to-d Conjecture, is now a prominent open question
in theoretical computer science. It implies hardness of approximation results, often optimal results, for
numerous problems and has connections to several areas in algorithms, computational complexity, and ge-
ometry, see [36, 26, 25] for surveys on the topic. It is thus worthwhile to investigate possible lines of attack
towards proving (or disproving) the Unique Games Conjecture, the d-to-d Conjectures, and their variants.
In this paper, we present a line of attack towards proving a variant of the 2-to-2 Conjecture with a certain
non-standard notion of soundness, and towards making progress on the Independent Set and Vertex Cover
problems.

Unfortunately we have to consider games where the constraints are a mix of 2-to-2 constraints and 1-to-
1 constraints and the game satisfies an additional transitivity property. This feature might not be necessary,
but we are unable to circumvent it for now.

Definition 1.4. A Transitive 2-to-2 Game is a game G = (V,E,Φ,Σ) where

• Each constraint Φ(u, v) is a 2-to-2 constraint or a 1-to-1 constraint.

• Transitivity: If there is a 1-to-1 constraint Φ(u, v) and a 1-to-1 or a 2-to-2 constraint Φ(v, w), then
there is also a constraint Φ(u,w). The constraint Φ(u,w) is either 1-to-1 or 2-to-2 depending on
whether Φ(v, w) is 1-to-1 or 2-to-2 respectively. Moreover, the constraint Φ(u,w) is a composition
of constraints Φ(u, v) and Φ(v, w), i.e. for every a, b, c ∈ Σ,

(a, b) ∈ Φ(u, v), (b, c) ∈ Φ(v, w) =⇒ (a, c) ∈ Φ(u,w).

The notion of soundness (NO case) in Conjectures 1.2 and 1.3 states that no coloring satisfies more than
a tiny fraction of the constraints. This notion will be referred to as the standard notion of soundness. It has
been a folklore among the experts (see [27, Theorem 3.1], where this is stated for the 1-to-1 case) that as far
as the Independent Set and Vertex Cover hardness results are concerned, a non-standard notion of soundness
for the d-to-d Games suffices. The non-standard notion concerns “(j, δ)-colorings” that we define next. 3

Definition 1.5. Let G(V,E,Φ,Σ) be a Transitive 2-to-2 Game, δ > 0, j be a positive integer, and X ⊆ V .
A coloring A : X →

(
Σ
j

)
is called a (j, δ)-coloring if the following holds (note that one is allowed to assign

a set of j colors to every variable in X and the rest of the variables are unassigned):

• |X| > δ |V |.
3Our definition has to take into account the transitivity feature that we unfortunately have to deal with. Also, we restrict ourselves

to the case d = 2 which is our primary concern.
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• For every u, v ∈ X such that Φ(u, v) is a 2-to-2 constraint, there are colors a ∈ A(u), b ∈ A(v) such
that (a, b) ∈ Φ(u, v).

• For every u, v ∈ X such that Φ(u, v) is a 1-to-1 constraint, the color setsA(u) andA(v) are identical
up to the matching Φ(u, v). More precisely, for every (a, b) ∈ Φ(u, v), a ∈ A(u) if an only if
b ∈ A(v).

Now we state a variant of Conjecture 1.3 (for d = 2) with a non-standard notion of soundness, imperfect
completeness, and for transitive 2-to-2 games. This variant is to be thought of as weaker than Conjecture
1.3 in the sense that Conjecture 1.3 (for d = 2) implies it (up to an insignificant caveat).

Conjecture 1.6. For every constant δ > 0 and every positive integer j, for sufficiently large constant |Σ|,
given an instance G = (V,E,Φ,Σ) of a Transitive 2-to-2 Game, it is NP-hard to distinguish between

• YES case: there is a (1, 1− δ)-coloring to the graph G.

• NO case: there is no (j, δ)-coloring to the graph G.

Finally, we note that the result below follows directly from prior works [11, 23, 27]. A proof is presented
in Section B for the sake of completeness. The ingredients include the Biased Long Code and analytic
theorems of Russo, Margulis and Friedgut on the Boolean hypercube. Some care is required to handle the
transitivity feature.

Theorem 1.7. If Conjecture 1.6 holds, then GapIS(1− 1√
2
− ε, ε) is NP-hard for every positive constant ε.

1.3 Our Results

Roughly speaking, we give a reduction from an NP-hard problem known as 3-Lin to (Transitive) 2-to-2
Game such that the reduction is sound in the sense of Conjecture 1.6 assuming a combinatorial hypothesis.
Therefore, correctness of the combinatorial hypothesis would imply Conjecture 1.6 and the corresponding
results for GapIS and Vertex Cover via Theorem 1.7.

We now state the results more formally. Let 3-Lin be the following problem. The instance of the problem
is (X,Eq) whereX is a set of variables taking values over F2 and Eq is a set of linear equations over F2 such
that every equation depends on three variables in X . The goal is to find an assignment to the variables so as
to maximize the number of equations satisfied. Let Gap3Lin(c, s) denote the promise gap-problem where
the task is to distinguish whether a given 3-Lin instance has an assignment satisfying at least c fraction of
the equations or whether every assignment satisfies at most s fraction of the equations. A celebrated result
of Håstad [19] shows that for every positive constant ε, Gap3Lin(1−ε, 1

2 +ε) is NP-hard. For our purposes,
it is convenient to work with a 3-Lin instance that is regular, i.e. every equation contains three distinct
variables, every variable appears in exactly, say 5, equations, and two distinct equations share at most one
variable. Starting with Håstad’s result, it is a routine exercise to show that Gap3Lin(1 − ε, s∗) is NP-hard
on regular instances for every positive constant ε and for some absolute constant s∗ < 1. Our main result is
this:

Theorem 1.8. For every positive integer j and every constant δ > 0, for sufficiently small constant ε > 0,
there is a polynomial time reduction mapping a regular instance (X,Eq) of Gap3Lin(1−ε, s∗) to an instance
G = (V,E,Φ,Σ) of Transitive 2-to-2 Game such that:

• YES case: If there is an assignment satisfying at least 1− ε fraction of the equations in (X,Eq), then
there is a (1, 1− δ)-coloring to G.
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• NO case: Assuming the combinatorial Hypothesis 2.5, if no assignment satisfies more than s∗ fraction
of the equations in (X,Eq), then there is no (j, δ)-coloring to G.

We present the combinatorial hypothesis later, after discussing the Grassmann graph and the motivation
behind the hypothesis. The following corollary follows via Theorem 1.7.

Corollary 1.9. Assuming the combinatorial Hypothesis 2.5,

• Conjecture 1.6 is correct.

• GapIS
(

1− 1√
2
− ε, ε

)
is NP-hard for every positive constant ε.

• Vertex Cover is NP-hard to approximate to within a factor
√

2− ε for every positive constant ε.

Remark 1.10. Our reduction, depending on the correctness of the combinatorial hypothesis, would give√
2 − o(1) hardness for Vertex Cover, improving on the 1.36 hardness of Dinur and Safra. While the

numerical improvement would be interesting, in authors’ opinion, a much more interesting feature would
be the “gap-location” for the Independent Set problem. Our reduction would show that GapIS(α∗, β) is
NP-hard where α∗ is a fixed, absolute constant and β → 0 is an arbitrarily small constant. Such a result
would be remarkable, in authors’ opinion, irrespective of whether it gives an improvement in the Vertex
Cover hardness factor. The best known result in this direction is that GapIS(2−k − o(1), 2−2k+1 + o(1))
is NP-hard for every integer k > 2, by Siu On Chan [7]. Hardness of GapIS(α, β) corresponds to Vertex
Cover hardness of 1−β

1−α . An improvement in Vertex Cover hardness would not necessarily yield β → 0 while
keeping α fixed, which in authors’ opinion, is a more fundamental and challenging question.

Remark 1.11. In an ongoing work with Dinur and Kindler, we are investigating whether our reduction,
with a slight modification, gives soundness in the sense of Conjecture 1.3, i.e., in the NO case, any coloring
of the 2-to-2 Game instance satisfies only o(1) fraction of its edges. This could prove the 2-to-2 Games
Conjecture, albeit with imperfect completeness. The modification of the reduction amounts to removing
some of the constraints in the 2-to-2 Game constructed by the reduction.

Remark 1.12. 3-Lin is known to have a “Lasserre integrality gap” on random instances with perfect com-
pleteness [15, 35, 37]. Our reduction from 3-Lin to 2-to-2 Games and then the reduction from 2-to-2 Games
to the Independent Set and Vertex Cover problems could yield similar Lasserre integrality gap for the latter
problems. Of course, we do not yet have a soundness analysis for the reduction. As far as integrality gaps
are concerned, the initial 3-Lin instance is a random instance, which could perhaps make the soundness
analysis more amenable.

1.4 Overview of the Reduction

A vast majority of hardness of approximation results are proved by constructing special purpose Probabilis-
tically Checkable Proof Systems (PCPs) (e.g. [2, 4, 18, 19, 16, 24, 7]). Sometimes it is more convenient, and
certainly helpful to a reader not familiar with PCP terminology, to take a combinatorial view and present a
PCP construction, equivalently, as a combinatorial reduction (e.g. [11, 9]). In this paper, we adopt the latter
view as far as possible, using PCP terminology wherever helpful or necessary.

A generic and extremely successful framework to construct PCPs, developed in [1, 4, 31, 18, 19], is as
follows. Therein a PCP reduction is a “composition” of two modules, an ”Inner PCP” and an ”Outer PCP”.
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• The Inner PCP is best thought of as a combinatorial gadget and an analysis of its structural properties.
The gadget is often coding-theoretic and amounts to a specific encoding scheme and a probabilistic
procedure to test whether a given word is (close to) a codeword and if so, to decode (or “list-decode”)
that codeword. The choice of the encoding scheme as well as the nature of the tester (e.g. number
of queries and the acceptance predicate) are dictated by the target problem for which one desires a
hardness of approximation result.

• The Outer PCP is a canonical NP-hard problem known variously as 2-Prover-1-Round Game, 2-CSP,
or Label Cover. The problem is known to be very hard to approximate [1, 31], via Raz’s Parallel
Repetition Theorem.

• The composition amounts to taking several (local) copies of the Inner PCP gadget and “combining”
them via the (global) Outer PCP.4

With this framework in mind, we give a short and informal overview of our reduction, leaving out several
intricate details. We recall that the reduction is intended to construct a 2-to-2 Game, where the goal is to
assign “colors” to vertices of a graph and once a color is assigned to a vertex, there are exactly 2 colors to its
neighbor that are deemed acceptable. This consideration dictates our choice of Inner PCP and specifically,
what we might call “Grassmann encoding”. The object being encoded is a linear function on a F2-vector
space. Linearity is inherent to our reduction which dictates, in turn, our choice of Outer PCP as a 2-Prover-
1-Round Game “played with” an underlying instance of 3-Lin, making Gap3Lin a natural starting point for
the reduction.

Inner PCP: Grassmann Graph, “Grassmann Encoding”, and our Hypotheses

Let 1� `� n be integers. The vertex set L, |L| = N of the Grassmann graphG({0, 1}n, `) consists of all
`-dimensional subspaces L of {0, 1}n, the n-dimensional vector space over F2. A pair of vertices L,L′ ∈ L
are connected by an edge if and only if dim(L ∩ L′) = `− 1. Given a linear function f : {0, 1}n → {0, 1}
(or equivalently an n-bit string sf that defines the linear function x→ 〈sf , x〉), the Grassmann graph leads
to a natural encoding of f by a string of length N over the alphabet Σ = {1, 2, . . . , 2`}. The encoding
writes down, for every `-dimensional subspace L, the linear function f |L, namely, the restriction of f to the
subspace L. There are exactly 2` distinct linear functions on an `-dimensional space which can be numbered
with Σ = {1, 2, . . . , 2`}.

Now suppose that the (global) linear function f is unknown, but for an edge (L,L′) in the Grassmann
graph, f |L = σ ∈ Σ is known. What do we know about f |L′ = σ′? We note that dim(L ∩ L′) = ` − 1
and since σ, σ′ are (supposed to be) restrictions of the same global function, it must be the case that they are
consistent on L ∩ L′, i.e. σ|L∩L′ = σ′|L∩L′ . Clearly, for a given σ, there are exactly two possible choices
for σ′. More generally, the “acceptable” or “consistent” pairs of functions (σ, σ′) on (L,L′) respectively are
in 2-to-2 correspondence with each other. Let Φ(L,L′) ⊆ Σ× Σ denote this set of consistent pairs.

We are naturally led to the following 2-to-2 Game: assign “colors” from Σ (interpreted as linear func-
tions on `-spaces) to the vertices of the Grassmann graph, and be consistent on significant fraction of the
“constraints” Φ(L,L′). Of course, one option is to pick a global linear function f and assign L → f |L;
such strategy yields consistency on all edges. Is this essentially the only strategy? Before proceeding, let us
mention that there are two notions of consistency that are natural and relevant:

4Perhaps a useful analogy here is the text-book reduction from 3SAT to the Traveling Salesperson. Therein, for every variable
of of the 3SAT instance, there is a copy of a fixed graph (= TSP-gadget) and then edges are added between these copies using the
clauses of the 3SAT instance.
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• (Standard Consistency): An assignment A : L → Σ is said to be δ-consistent if it is consistent on δ
fraction of the edges, i.e. for δ fraction of the edges (L,L′), (A[L], A[L′]) ∈ Φ(L,L′).

• (Non-Standard Consistency): An assignment F : L →
(

Σ
j

)
∪{∅} (i.e. every vertex either gets j colors

or does not get any color) is said to be (j, δ)-consistent if there is a subset S ⊆ L, |S| > δ|L| such that
(a) for all L ∈ S, F [L] 6= ∅ (b) for all edges (L,L′) inside S , there are colors σ ∈ F [L], σ′ ∈ F [L′]
with (σ, σ′) ∈ Φ(L,L′).

One is tempted to speculate that (parameters `, n are thought of as arbitrarily large with `� n):

Speculation (1): For every δ, there is δ′ such that given any δ-consistent (in the standard sense) assignment
A, there is a global linear function f : {0, 1}n → {0, 1} such that for δ′ fraction of the vertices L, it holds
that A[L] = f |L.

Speculation (2): For every j > 1, δ > 0, there is δ′, such that given any (j, δ)-consistent (in the non-
standard sense) assignment F , there is a global linear function f : {0, 1}n → {0, 1} such that for δ′ fraction
of the vertices L, it holds that f |L ∈ F [L].

In coding-theoretic terms, in both the speculations, the assignments A or F are regarded as “received
words”. If the desired global linear function f exists, it then serves as a “decoding” of the received word.
We however know that Speculation (2) is false in the case j > 3. A counter-example appears in Section 2.
Since Speculation (1) implies Speculation (2),5 Speculation (1) is also false. We believe that Speculation
(2) is correct in the case j = 1 and seems to present interesting challenges. We show, in Section 6, that it
follows from our Hypothesis 2.7, via a “`-space vs b-space” linearity test.6 The linearity test and its analysis
using Fourier method are presented in Section D. Hypothesis 2.7 states that in the Grassmann graph, a set
of constant density contains a connected component of constant density inside it. In addition, we propose
Hypothesis 2.8 stating that the Grassmann graph is a “small set vertex expander”.7 These hypotheses might
be a good starting point for further investigation.

We now state our main hypothesis informally. We would like to somehow salvage Speculation (2). We
hypothesize that (see Hypothesis 2.5 for a formal statement) given a (j, δ)-assignment to the Grassmann
graph G({0, 1}n, `), there exists a q-dimensional subspace Q such that if one “zooms-into” the subgraph
induced on `-spaces L that contain Q (this subgraph is isomorphic to G({0, 1}n−q, ` − q)), then indeed
there is a global linear function that is consistent with the given assignment on δ′ fraction of vertices in the
induced subgraph. Here q, δ′ depend on j, δ. We in fact hypothesize that the zoom-in is successful in this
sense for α fraction of q-dimensional subspaces Q where α depends on j, δ, `. This hypothesis is sufficient
to prove Conjecture 1.6. The “zoom-in” is a new feature in the context of Inner PCPs and our Outer PCP
needs to have an appropriate mechanism to handle it.

Outer PCP: 2-Prover-1-Round Game

We present the Outer PCP as a 2-Prover-1-Round Game. Usually, this game is constructed from a hard
instance of 3SAT, e.g. [19, 18], in which case it is compatible with a “Long Code” based Inner PCP.

5The Grassmann graph is dense in the sense that a set of density δ contains at least δ2 fraction of the edges. Given a (j, δ)-
assignment, one can pick a random assignment from its j-list for every vertex that has been assigned and satisfy δ2

j
fraction of the

edges in expectation. Hence existence of a (j, δ)-consistent assignment implies existence of a δ2

j
-consistent assignment.

6This test is in the spirit of “line vs point” and “plane vs plane” low degree test in [33, 3, 32]. However our analysis is Fourier-
based instead of algebraic and combinatorial.

7The Grassmann graph G({0, 1}n, `) is not a “small set edge expander”. It has sets of sub-constant size with edge expansion
6 1

2
, e.g. fix a non-zero point x ∈ {0, 1}n and consider the set of all `-spaces containing x.
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However in our case, to be compatible with the “Grassmann Code” based Inner PCP, the game needs to
be constructed from a hard instance of a linear constraint satisfaction problem, Gap3Lin being the natural
choice (this has been done previously, e.g. [22, 28], with a “Hadamard Code” based Inner PCP).

Let (X,Eq) be an instance of Gap3Lin(1 − ε, s∗) where ε can be chosen to be arbitrarily small and
s∗ < 1 is an absolute constant. The 2-Prover-1-Round Game is a game between a verifier and two non-
communicating provers, where the provers wish to convince the verifier that the instance (X,Eq) has a
(1−ε)-satisfying assignment. Fix a parameter k, thought of as a large integer, and a “smoothness” parameter
β, say β = k−

3
4 for the sake of concreteness. The game proceeds as follows:

• The verifier picks at random k equations {e1, . . . , ek}, lets U to be the set of 3k variables that appear
in these equations, and sends U to the first prover as a question.

• The verifier picks a subset of variables V ⊆ U by including in V , independently for 1 6 i 6 k, (a) all
three variables from the equation ei with probability 1−β and (b) one of the three variables chosen at
random from the equation ei with probability β. Note that the size of V is, w.h.p., close to its expected
size 3k− 2βk, so V is nearly the same as U . The verifier sends V to the second prover as a question.

• The provers answer with bit-strings sU , |sU | = |U | and sV , |sV | = |V | respectively, supposedly
giving the assignment to the set of variables they received.

• The verifier accepts if and only if sU |V = sV (i.e. if the two provers agree on the shared variables V )
and sU satisfies the k equations (this is known as a “side condition”).

The parameter k is a constant, so the size of the game is polynomial in the size of the Gap3Lin instance.
Instead of viewing the game as “active” verification, one can write down the description of the game as a
graph, with possible questions as its vertices and possible question-pairs asked to the provers as its edges.
The game is then viewed as a “passive” optimization problem: assigning colors (= bit-strings of appropriate
length) to the vertices, so as to satisfy constraints on the edges. The following statements show that approx-
imating the provers’ optimal strategy (which, in the passive view, is same as a coloring that maximizes the
fraction of the edge-constraints satisfied) is a very hard problem, and hence can be used as a canonical hard
problem for further reduction.

(Completeness): It is clear that if the instance (X,Eq) has a (1− ε)-satisfying assignment, the provers can
answer according to this (global) assignment. The k equations chosen by the verifier are all satisfied with
probability > 1− kε, in which case the verifier accepts.

(Soundness): On the other hand, it follows from the Parallel Repetition Theorem [31, 20, 30, 12] that if
every assignment to the instance (X,Eq) is at most s∗-satisfying, then any strategy of the provers can make
the verifier accept with probability at most 2−Ω(βk).

Composition of Inner and Outer PCP

We “compose” the Inner PCP and the Outer PCP, constructing an instance G2:2 of a Transitive 2-to-2 Game
as in Definition 1.4 and Theorem 1.8. Only the questions U to the first prover in the Outer PCP appear
explicitly in the construction whereas the questions V to the second prover are only implicitly used. The
composition, at a high level, is rather straightforward. However, incorporating the “side conditions” from the
Outer PCP and ensuring the “transitivity” of the 2-to-2 Game G2:2 present serious difficulties. Both of these
issues are skipped altogether from this overview. Also, in the actual reduction, there are more constraints in
G2:2 that described here.
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In the 2-to-2 Game G2:2, for every question U to the first prover, there is a copy of the Grassmann graph
G({0, 1}U , `). A vertex L in this graph is to be assigned a color (or a j-list of colors) from the alphabet
Σ, |Σ| = 2`, the colors being interpreted as linear functions on L. The intention is as follows. Suppose that
in the Outer PCP, the prover intends to answer with a bit string s, |s| = |U | = 3k, a supposed assignment
to the variables in U . The string s is thought of as the linear “inner product” function fs : {0, 1}U →
{0, 1}, fs(x) = 〈s, x〉. The assignment of colors to the vertices of the Grassmann graph is then precisely
the encoding of the linear function fs, i.e. a vertexL is assigned the color fs|L. We add the 2-to-2 constraints
for all edges (L,L′) of this Grassmann graph as in the Inner PCP.

To summarize, the 2-to-2 Game G2:2 has a block of vertices for every question U to the first prover and
along with the edge-constraints inside it, the block is exactly a copy of the Grassmann graph/encoding/game.
Now we describe the edges across two different blocks. Let U,U ′ be two distinct questions to the first prover
and V be a question to the second prover such that V ⊆ U as well as V ⊆ U ′, i.e. the verifier can potentially
ask the question-pair (U, V ) as well as the question-pair (U ′, V ). Obviously the space {0, 1}V is contained
in both {0, 1}U and {0, 1}U

′
. There are two types of edges8 between the block of U and the block of U ′.

• For any L ⊆ {0, 1}V , dim(L) = `, L is contained in both U and U ′, and hence there are vertices
u, u′ in their blocks corresponding to L. We add a 1-to-1 constraint between u, u′. Note that (a) the
colorings to the blocks of U,U ′ are supposed to be the encodings of the “inner product” functions fsU
and fsU′ respectively (b) the assignments sU and sU ′ are supposed to be restrictions of some global
assignment to U and U ′ respectively and hence are supposed to agree with an assignment sV on V .
Therefore, the linear function fsU |L, i.e. the intended color of u, and the linear function fsU′ |L, i.e.
the intended color of u′, must be the same, i.e. fsU |L = fsV |L = fsU′ |L. This defines the 1-to-1
constraint between u, u′.

• Similarly, for any L,L′ ⊆ {0, 1}V , dim(L) = dim(L′) = `, dim(L ∩ L′) = ` − 1, L is contained
in {0, 1}U and L′ is contained in {0, 1}U

′
, and hence there are vertices u, u′ in the blocks of U,U ′

respectively, corresponding to L,L′ respectively. We add a 2-to-2 constraint between u, u′. As before,
the intended color of u is fsU |L = fsV |L and the intended color of u′ is fsU′ |L′ = fsV |L′ . Since
dim(L∩L′) = `−1, there is a 2-to-2 correspondence between the functions fsV |L and fsV |L′ , which
defines the 2-to-2 constraint between u, u′.

This completes the informal description of the reduction. The actual reduction, with several additional
details, is presented in Section 4. The transitivity of the game G2:2 is proved in Section A.

Advice, Covering Property, and Soundness Analysis

Let us attempt the soundness analysis at a high level, showing the need for an additional “advice feature”
in the Outer PCP, as well as a certain “covering property”. Given a (j, δ)-coloring to the game G2:2, the
soundness analysis derives prover strategies in the Outer PCP with a good success probability. This implies
conversely that if the Outer PCP is chosen beforehand to have low enough soundness (= 2−Ω(βk)), then the
game G2:2 has no (j, δ)-coloring, completing the proof of Theorem 1.8.

Accordingly, suppose there is a (j, δ)-coloring to the game G2:2 and assume for simplicity that a δ
fraction of vertices in every block have been (j-list-)colored. Fix a question U to the first prover. Towards
deriving her answer, she looks at the (j, δ)-coloring of her copy of the Grassmann graph G({0, 1}U , `). Our

8In the actual reduction, potentially, there are edges between blocks of U,U ′, even when there is no question V that appears
along with both U,U ′.
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main hypothesis (Hypothesis 2.5) implies that for a good fraction of q-dimensional subspaces Q ⊆ {0, 1}U ,
after zooming-into the subgraph induced on vertices (= `-spaces) that contain Q, there is a global linear
function f = fs : {0, 1}U → {0, 1} that has good agreement with the given coloring. The prover returns
the string s as her answer. Though she does not know which zoom-in space Q works, she can chooses Q
randomly, and it is hypothesized to work with a good probability. We emphasize that the “decoded” global
linear function fs, and hence her answer, in general depends on the choice of the zoom-in space Q.

Now let V be the question to the second prover. Since {0, 1}V is contained in {0, 1}U , the Grassmann
graph G({0, 1}V , `) is an induced subgraph of the Grassmann graph G({0, 1}U , `). The second prover
wishes to derive his answer from the coloring to his graph G({0, 1}V , `). Let S be the subset of vertices in
the graph G({0, 1}U , `) that are colored, with density of S being δ. The prover can only use the coloring to
the set S ∩ G({0, 1}V , `), which might however have negligible density in G({0, 1}V , `). If so, he has no
information to derive his answer from, and in the worst case, this could happen for almost every question V
asked to him, for a fixed question U to the first prover. The purpose of the “smoothness” parameter in the
Outer PCP is to precisely avoid this issue. Provided that β

√
k · 2` → 0 (which happens with β = k−

3
4 and

k large enough), V has expected size |U | − 2βk that is close enough to |U | = 3k that one has the following
guarantee: for a fixed question U to the first prover and for any subset S of density δ in G({0, 1}U , `), for
almost every question V to the second prover, the density of S∩G({0, 1}V , `) inG({0, 1}V , `) is≈ δ. This
guarantee is referred to as the “covering property”, a special case of which is defined and used in [28]. The
property is stated formally as Lemmas 4.6, 4.7 and proved in Section C.

We assume therefore that for the question V to the second prover, δ fraction of vertices of his Grass-
mann graph G({0, 1}V , `) are colored. In a similar manner as the first prover, he wishes to zoom-into a
q-dimensional subspace Q′ ⊆ {0, 1}V , decode a global linear function fs′ : {0, 1}V → {0, 1}, return s′

as the answer, and hope that s′ = s|V , i.e., that his answer is consistent with the first prover’s answer.
Strictly speaking, he outputs a short list of all fs′ that have agreement with coloring to his Grassmann
graph and hopes that one of them is consistent with the first prover’s function fs. It is reasonable to ex-
pect this consistency because both provers are using the same coloring: if fs is consistent with coloring
to S ⊆ G({0, 1}U , `), then its restriction fs|V is consistent with S ∩ G({0, 1}V , `) for a good fraction of
questions V to the second prover, and then fs|V = fs′ appears in the decoded list of the second prover.
There is one catch however. The decoded global functions depend in general on the zoom-in space, so the
two provers must “agree” on the zoom-in space, i.e. manage to choose Q = Q′, without communication.
We resolve this issue by letting the verifier in the Outer PCP choose a random q-dimensional subspace
Q ⊆ {0, 1}V and send it to both provers as extra “advice” along with their questions. We make sure that
this advice does not compromise or hurt the soundness of the Outer PCP.

2 The Grassmann Graph and related Hypotheses

In this section we introduce the Grassmann graph and related hypotheses that are relevant towards the sound-
ness analysis of our PCP construction (at the Inner PCP level). The Grassmann graph leads to an encoding
of a linear function on a high-dimensional F2-vector space and a “2-to-2 test” to check the encoding. The
linear function is encoded by writing down its restriction to all `-dimensional subspaces, the restrictions
themselves being linear functions on the respective subspaces. Given a supposed encoding, i.e. an assign-
ment of a linear function to every `-dimensional subspace, one can test that the given linear functions on a
pair of `-dimensional subspaces are consistent on their intersection. For the test to have the 2-to-2 property,
the test is performed only on a pair of `-dimensional subspaces for which their intersection is (` − 1)-
dimensional. Naturally, the following “decoding” question arises: Given an assignment to the `-spaces that
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demonstrates some consistency, is there a global linear function that explains some (or almost all) of the
consistency? We hypothesize that the answer is affirmative, but subtle. Also, towards the analysis of our
reduction, we have to deal with more general “(j, δ)-assignments” where a δ fraction of the `-spaces are
each assigned a list of j linear functions on it.

2.1 The Grassmann Graph

Let F be a field of size p, V be a linear space of dimension n over F and 1 6 ` 6 n − 1 a positive integer.
The Grassmann graph G(V, `)p is defined as follows:

• The vertices are all `-dimensional subspaces of V .

• The edges are pairs of vertices L,L′ such that dim(L ∩ L′) = `− 1.

The Grassmann graph has been moderately studied in the literature, mainly in the context of distance-
regular graphs [6]. Classical theorems such as Erdös-Ko-Rado and Kruskal-Katona are also known to hold
[8]. Here are some known facts regarding the Grassmann graph, though we do not necessarily need them.

Fact 2.1. Suppose 1 6 ` 6 n
2 .

1. The number of vertices in the graph G(V, `)p is the `th p-nomial coefficient (sometimes referred to
as “Gaussian binomial coefficient”) [

n

`

]
p

def
=

`−1∏
i=0

pn − pi

p` − pi
.

2. The graph is regular with degree d = pn−p`
p`−p`−1

[
`
`−1

]
p
. For p = 2, this is Θ(2n).

3. The eigenvalues of the (adjacency matrix of the) graph are

λj = pj+1

[
`− j

1

][
n− `− j

1

]
−
[
j

1

]
p

.

with multiplicities
[
n
j

]
p
−
[
n
j−1

]
p
, for j = 0, ..., ` 9.

For p = 2 the eigenvalues are approximately (1 + 2j−`)2n+1−j , and so the normalized eigenvalues
are Θ(2−j).

We will only be interested in the case p = 2 and the subscript p will be omitted henceforth. The
following observation will be useful.

Fact 2.2. Given the Grassmann graph G(V, `), dim(V ) = n and a q-dimensional subspace Q ⊆ V, 0 6
q 6 `−1, let ZoomQ denote the subset of verticesL ∈ G(V, `) such thatQ ⊆ L. Then the induced subgraph
on the subset ZoomQ is isomorphic to the (lower order) Grassmann graph G(V ′, `′) with dim(V ′) = n −
q, `′ = `− q. A natural isomorphism is by letting V ′ = V/Q to be the quotient space.

9[0
1

]
is defined to be 0.
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2.2 (j, δ)-Assignments and Zooming-in

Let [2`] denote the set of linear functions on an `-dimensional space. We would need to consider the so-
called “(j, δ)-assignments” to the vertices of the Grassmann graph.

Definition 2.3. The density of a set S ⊆ G(V, `) is its fractional size, i.e. Density(S) = |S|
|{L∈G(V,`)}| = |S|

[n`]
.

Definition 2.4. Let S ⊆ G(V, `) and let F : S →
(

[2`]
j

)
assign, to each `-space L ∈ S, a set F [L] of j

linear functions on L. The assignment F is said to be (j, δ)-edge-consistent, or simply a (j, δ)-assignment,
if

• S has density at least δ.

• If L1, L2 ∈ S are connected by an edge, then there is a pair a1 ∈ F [L1], a2 ∈ F [L2] such that a1, a2

agree on L1 ∩ L2.

We consider the scenario where j and δ are given constants, then ` is allowed to be sufficiently large,
and finally the global dimension n is allowed to be sufficiently large compared to `. One would hope that
a (j, δ)-assignment implies the existence of a global linear function g : V → {0, 1} that “explains” some
of the consistency. Specifically, is there a global linear function g such that g|L ∈ F [L] for δ′ = δ′(j, δ)
fraction of L? The answer turns out to be negative as seen from the following example.

2.2.1 Subspace Example

Fix Z ⊆ V to be a subspace of dimension n− ` and pick a set of vertices S ⊆ G(V, `) as

S = {L ∈ G(V, `) | dim(L ∩ Z) = 2} .

It is not difficult to see that S has constant density which can be computed to be ≈ 0.20. We will exhibit
a (3,≈ 0.20)-assignment F [·] which has no non-trivial consistency with any global linear function. For
each z ∈ Z \ {0}, choose fz : V → {0, 1} to be a global linear function arbitrarily. The assignment
F : S →

(
[2`]
3

)
is now defined as

F [L] = {fz|L | z ∈ (L ∩ Z) \ {0}}.

In words, L is assigned three linear functions that are restrictions to L of the three global linear functions
fz for z ∈ (L ∩ Z) \ {0}. Note that dim(L ∩ Z) = 2 and hence |F [L]| = 3. Now we show that if
L1, L2 ∈ S have an edge connecting them, then the assignments F [L1], F [L2] are consistent. Indeed, when
dim(L1) = `, dim(L1 ∩ L2) = `− 1, dim(L1 ∩ Z) = 2, we have

1 6 dim(L1 ∩ L2 ∩ Z) 6 2.

In particular, there exists z ∈ (L1 ∩ L2 ∩ Z) \ {0}. By design, we have fz|L1 ∈ F [L1] and fz|L2 ∈ F [L2]
and moreover that fz|L1 , fz|L2 agree on L1 ∩ L2, both being restrictions of the same global function fz .
Finally, we note that since the choice of functions fz is arbitrary, no global linear function has a non-trivial
consistency with the assignment F [·]. For the sake of concreteness, one can let fz be the linear “inner
product” function x→ 〈z, x〉. It is not difficult to see that for any global linear function f : V → {0, 1},

Pr
L∈G(V,`)

[f |L ∈ F [L]] 6 2−Ω(`).
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2.2.2 Zooming-in

We now consider a plausible way to circumvent the above example. For a Grassmann graph G(V, `) and a
subspace Q ⊆ V , let

ZoomQ = {L | L ∈ G(V, `), Q ⊆ L}
be the subset of vertices that containQ (we intend to take dim(Q)� `). Similarly, for a subset S ⊆ G(V, `),
let

ZoomQ[S] = {L | L ∈ S, Q ⊆ L}
be the subset of vertices of S that contain Q. Returning to the subspace example above, let F [·] be the
(3,≈ 0.20)-assignment to the Grassmann graph G(V, `) as therein. Let S be the subset of density ≈ 0.20
to which F [·] actually assigns a list of 3 linear functions. We noted that no global linear function has a
non-trivial consistency with F [·]. To be specific, for any global linear function f : V → {0, 1},

Pr
L∈G(V,`)

[f |L ∈ F [L]] 6 2−Ω(`).

We observe however that there exists a one-dimensional subspace Q such that after zooming-into Q (i.e.
conditioning on the `-spaces containing Q), there does exist a global linear function with good consistency
with F [·]. Indeed, let z ∈ Z \{0} be an arbitrary point, fz be the global linear function associated with z and
let Q = Span{z}. For any subspace L ∈ ZoomQ[S], we have z ∈ Q ⊆ L and hence fz|L ∈ F [L]. Thus
the global linear function fz is consistent with the assignment F [·] on every L ∈ ZoomQ[S]. Moreover,
ZoomQ[S] when regarded as a subset of ZoomQ has a constant density, say C (in fact its density is higher
than the original density of S in G(V, `) which is ≈ 0.20). Thus

Pr
L∈G(V,`)

[fz|L ∈ F [L] | Q ⊆ L] > C

where the probability is conditional on the `-spaces containing Q. Further, if the point z were chosen at
random from the global space V , with probability ≈ 2−`, we have z ∈ Z \ {0} and then zooming-into
Q = Span{z} gives a global linear function with good consistency. To summarize our specific example,

Given a (3,≈ 0.20)-assignment F [·] to G(V, `), for ≈ 2−` fraction of one-dimensional subspaces Q ⊆
V , zooming-into Q gives a global linear function that is Ω(1)-consistent with F [·].

We now hypothesize that something to this effect always holds for any (j, δ)-assignment to a Grassmann
graph G(V, `) when one is allowed to zoom-into a q-dimensional subspace Q with constant q and the zoom-
in succeeds for a non-negligible fraction (that may depend arbitrarily on `) of q-dimensional subspaces Q.
Our main hypothesis appears below, followed by its variants and special cases.

2.3 Our Hypotheses

The main hypothesis

Hypothesis 2.5. For every integer j > 1 and constant δ > 0, there exist an integer q > 0, a constant
C > 0, and a function α(·) > 0 of an integer parameter such that for all sufficiently large integers `, for all
sufficiently large integers n, the following holds: Let F [·] be a (j, δ)-assignment to the Grassmann graph
G(V, `) with dim(V ) = n. Then for at least α(`) fraction of the q-dimensional subspaces Q ⊆ V , there
exists a global linear function gQ : V → {0, 1} such that (note the conditional probability)

Pr
L∈G(V,`)

[gQ|L ∈ F [L] | Q ⊆ L] > C. (1)
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Upper bound on list-decoding size

In Hypothesis 2.5, given a (j, δ)-assignment F [·], a global linear function gQ satisfying Equation (1) is
viewed as a “decoded” global linear function. Naturally, such decoded function is only useful when there
are not many functions satisfying Equation (1), hence one would like to obtain an upper bound on the number
of such functions. Indeed, a reasonable upper bound, stated below, follows from the work of Blinovsky [5].
We include a proof in Section E.2 for the sake of completeness.

Theorem 2.6. Let F [·] assign to every L ∈ G(V, `), a list F [L] of at most j linear functions on L. Let Q be
any q-dimensional subspace of V . Then there are at most jC

C2−j·2q−` global functions g for which

Pr
L∈G(V,`)

[g|L ∈ F [L] | Q ⊆ L] > C.

Hypotheses about connectivity of Grassmann graph

We are far from understanding the case of general j in the Hypothesis 2.5 and even the case j = 1 presents
interesting challenges. We show in Section 6 that Hypothesis 2.5 in the case j = 1 follows from the
Hypothesis 2.7 below without the need for zoom-in. A linearity test is developed therein that could be of
independent interest.

Hypothesis 2.7. For every constant δ > 0, there exists a constant ε > 0 such that for all sufficiently
large integers `, for all sufficiently large integers n, the following holds: Let S be any set of vertices in the
Grassmann graph G(V, `), dim(V ) = n with density at least δ. Then the induced subgraph on S contains
a connected component of density at least ε.

The hypothesis below seems like a natural related question, stating that the Grassmann graph is a “small
set vertex expander”. This could be a good starting point for further investigations.

Hypothesis 2.8. There is a function λ(ε) of a positive parameter ε such that

• λ(ε)→∞ as ε→ 0.

• For any ε > 0, for all large enough integers `, for all large enough integers n, the following holds:
Let S be a set of vertices in the Grassmann graph G(V, `), dim(V ) = n with density ε and let Γ(S)
denote the vertex neighborhood of S, i.e. Γ(S) = {L′ | ∃ L ∈ S such that (L,L′) ∈ G(V, `)}. Then

|Γ(S)| > λ(ε) · |S| .

Hypothesis with side condition

As is standard, while composing the “Inner PCP” with the “Outer PCP”, we require that the decoded global
linear function gQ in Equation (1), Hypothesis 2.5 itself respects certain linear “side condition”. We state a
variant of Hypothesis 2.5 that takes into account the side condition and show that this variant follows easily
from Hypothesis 2.5.

Definition 2.9. A pair ({h1, ..., hr}, (b1, ..., br)), where {hi ∈ {0, 1}n}ri=1 are linearly independent and
bi ∈ {0, 1}, is called a side condition for a function g : {0, 1}n → {0, 1}. We say that g respects the side
condition if g(hi) = bi, for every i.

14



Note that when g is a linear function respecting the side condition ({h1, . . . , hr}, (b1, . . . , br)), the value
of g on the space H = Span{h1, ..., hr} is fixed. We will often simplify notation and say g respects the
side condition H , when (b1, . . . , br) is clear from the context. Note that the vertices of the Grassmann graph
G(V, `) are `-dimensional subspaces of V . Now we instead think of the vertex set as

{L⊕H |L ∈ G(V, `)} ,

restricted to only those L such that L ∩H = {0} and moreover, if L⊕H = L′ ⊕H , then the two vertices
are identified together10. Note that dim(L ⊕ H) = ` + r. There is an edge between L ⊕ H and L′ ⊕ H
if and only their intersection has dimension ` + r − 1. It can be easily seen that the resulting graph is
isomorphic to a “lower order” Grassmann graph G(V ′, `), where V ′ ⊆ V is a complementing space to H
(i.e. V ′ ⊕H = V, V ′ ∩H = {0}, dim(V ′) = n− r).

A “(j, δ)-assignment respecting the side condition” is an assignment F [·] : S →
(

[2`]
j

)
to a set of vertices

S such that

• S has density at least δ.

• For each vertex L ⊕H ∈ S, F [L ⊕H] is a list of j linear functions on L ⊕H that respect the side
condition. Note that since the side condition already specifies the values of a linear function on H ,
the number of linear functions on L⊕H that respect the side condition is exactly 2`.

• For any L ⊕ H,L′ ⊕ H ∈ S that are connected by an edge, there are linear functions a ∈ F [L ⊕
H], a′ ∈ F [L′ ⊕H] that agree on the intersection L⊕H ∩ L′ ⊕H .

We now state the variant of Hypothesis 2.5 that takes into account the side condition. A (rather self-
evident) proof that Hypothesis 2.10 follows from Hypothesis 2.5 appears in Section E.1.

Hypothesis 2.10. For every integer j > 1 and constant δ > 0, there exist an integer q > 0, a constant
C > 0, and a function α(·) > 0 of an integer parameter such that for all sufficiently large integers `, for all
sufficiently large integers n, the following holds: LetF [·] be a (j, δ)-assignment respecting the side condition
({hi}ri=1, {bi}ri=1) to the Grassmann graph G(V, `) with dim(V ) = n and r 6 n

3 . Then for at least α(`)
fraction of the q-dimensional subspaces Q ⊆ V , there exists a global linear function gQ : V → {0, 1} that
respects the side condition such that (note the conditional probability)

Pr
L∈G(V,`)

[gQ|L⊕H ∈ F [L⊕H] | Q ⊆ L] > C. (2)

3 The Outer PCP

Our Outer PCP is a carefully constructed 2-Prover-1-Round Game from a regular instance of the 3-Lin
problem. Recall (see the paragraph before Theorem 1.8) that an instance (X,Eq) of the 3-Lin problem
consists of a set of F2-valued variablesX and a set of equations Eq, each equation containing three (distinct)
variables. The instance is regular if every variable appears in exactly, say 5, equations, and two distinct
equations share at most one variable. Starting with a 3-Lin instance given by Håstad’s reduction [19], a
standard sequence of transformations can turn the instance into a regular one, while preserving the near-
perfect completeness and keeping the soundness bounded away from 1. To summarize:

10 In our application, we will have r = n
3
� `, so almost all `-dimensional spaces L ⊆ V satisfy L ∩H = {0}.
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Theorem 3.1. There exists an absolute constant 1
2 < s∗ < 1 such that for every constant ε > 0, the

Gap3Lin(1− ε, s∗) problem on regular instances is NP-hard.

Let (X,Eq) be an instance of Gap3Lin(1− ε, s∗) as in Theorem 3.1. We intend to construct a 2-Prover-
1-Round Game that is used as our Outer PCP. Instead of taking a passive view of 2-Prover-1-Round Game as
a constraint satisfaction problem as in Definition 1.1, it is more intuitive to take an equivalent active view in
terms of two provers and a probabilistic verifier. The two provers wish to convince the verifier that the 3-Lin
instance is near-satisfiable. Since our construction has multiple subtle features, we present it incrementally,
adding one feature at a time. The construction is along the lines of [28], “smoothness” and “covering”
features are as therein and there is an additional “advice” feature.

3.1 Equation vs Variable Game

We start with a standard “equation vs variable” game that the reader might be already familiar with. In this
game, the verifier chooses an equation e ∈ Eq uniformly at random, sends it to the first prover, chooses a
variable x randomly from the three variables occurring in the equation e and sends it to the second prover.
The provers are expected to provide a F2-value for each of the variables they receive. The verifier accepts if
and only if the first prover provides a satisfying assignment to e and if both provers give x the same value.

Completeness: Suppose there is an assignment to (X,Eq) that satisfies 1− ε fraction of the equations. The
provers can answer according to this assignment and the verifier accepts with probability at least 1− ε.
Soundness: Suppose no assignment to (X,Eq) satisfies more than s∗ fraction of the equations. The strategy
of the second prover is simply an assignment to all the variables. This assignment fails to satisfy 1 − s∗
fraction of the equations. For every equation that fails, the second prover either has to give inconsistent
answer to at least one of its variables or answer with an unsatisfying assignment to the equation. Thus the
provers cannot make the verifier accept with probability more than 1− 1−s∗

3 (i.e. bounded away from 1).

3.2 Smooth Equation vs Variable Game

We modify the equation vs variable game slightly and call it a smooth game.11 Let β ∈ (0, 1) be a smooth-
ness parameter. The verifier sends an equation e to the first prover as before. To the second prover however,
the verifier sends a random variable x occurring in e with probability β, and sends the equation e with
probability 1− β (hence asking the same question to both the provers).

Completeness: As before, the completeness is at least 1− ε.
Soundness: The new game is effectively a trivial game with probability 1 − β and is same as the equation
vs variable game with probability β. Hence the soundness is at most 1− Ω (β), where the Ω-notation hides
the dependence on s∗ (which is an absolute constant anyways).

3.3 Smooth Equation vs Variable Game with Advice

Our application requires a further modification of the smooth game. Roughly speaking, the provers are
also provided extra “advice” that acts like publicly shared randomness . Nevertheless, this advice cannot
considerably help the provers.

11Smoothness refers to the property of a game wherein for a fixed question and two distinct answers to the first prover, w.h.p.
over the choice of the question to the second prover, the second prover’s answers need to be distinct for the verifier to accept. The
game described is smooth provided β � 1.
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As before, the verifier picks an equation e at random, say xi1 + xi2 + xi3 = bi, and sends it to the first
prover. With probability 1 − β, the second prover receives the equation e as well, and otherwise a single
variable from the equation e chosen at random. Let V ⊆ {xi1 , xi2 , xi3} be the set of variables sent to the
second prover (so |V | is 1 or 3). The verifier chooses an advice vector a ∈ {0, 1}V at random. If |V | = 3,
define a∗ = a, and if |V | = 1, let a∗ be obtained from a by padding with 0 in place of {xi1 , xi2 , xi3} \ V .
The verifier sends the first prover the vector a∗ and the second prover the vector a. As before, the provers
are expected to provide a value for each of the variable they receive.

Call this game Gβ,1. The extra advice could give the first prover a hint as to which variables the second
prover receives. For example, if the first prover’s advice vector is a∗ = (0, 0, 1), she knows that the second
prover has received either all three variables or (just) the variable xi3 . However, when the first prover
receives the vector (0, 0, 0), she does not know whether the second prover has received all three variables
along with advice a = (0, 0, 0) or a single variable, whose identity she does not know, along with advice
a = (0). It is clear from this discussion that:
Completeness: The completeness of game Gβ,1 is at least 1− ε.
Soundness: The soundness of game Gβ,1 is at most 1− Ω (β).

We further generalize to the game Gβ,q for any integer q > 0 where instead of sampling and sending the
provers one pair (a∗, a) respectively, the verifier samples independently, q pairs (a∗1, a1), . . . , (a∗q , aq), and
sends the list [a∗1, . . . , a

∗
q ] to the first prover and the list [a1, . . . , aq] to the second prover. It is not difficult to

see that:
Completeness: The completeness of game Gβ,q is at least 1− ε.

Soundness: The soundness of game Gβ,q is at most 1 − Ω
(
β
2q

)
. Intuitively, the verifier rejects when

the second prover is sent a single variable (which happens with probability β) along with the advice-list
[(0), . . . , (0)] (which happens with probability 1

2q ).

Remark 3.2. The soundness of the
(

2q

β

)
-fold parallel repetition game G⊗2q/β

β,q is upper bounded by an

absolute constant less than 1. Intuitively, in 2q

β “trials”, with constant probability, there is a “coordinate”
on which the second prover receives a single variable along with the advice-list [(0), . . . , (0)], and then the
verifier rejects with a constant probability.

3.4 The Final Game (Outer PCP)

Finally, our Outer PCP is a k-fold parallel repetition of the game Gβ,q, i.e. the game G⊗kβ,q.

Completeness: The completeness of game G⊗kβ,q is at least 1− kε.

Soundness: The soundness of game G⊗kβ,q is at most 2−Ω(βk/2q). The game can be considered as βk
2q -fold

parallel repetition of the gameG⊗2q/β
β,q which has constant soundness as per Remark 3.2. One can then apply

the parallel repetition theorem for projection games with no dependency on the answer size as in [30, 12].

Remark 3.3. Let U, V be the questions sent to the first and the second prover in the game G⊗kβ,q, not taking
into account the “advice” yet. Thus U is a set of 3k variables and V ⊆ U with expected size E [|V |] =
3k − 2βk. With a careful look, it can be seen that the advice-list for the first prover is a list [x1, . . . , xq]

with ∀ 1 6 i 6 q, xi ∈ {0, 1}U . Similarly, the advice-list for the second prover is a list [y1, . . . , yq] with
∀ 1 6 i 6 q, yi ∈ {0, 1}V . Moreover, if one regards the space {0, 1}V as a subspace of {0, 1}U in a natural
manner, then ∀ 1 6 i 6 q, xi = yi. Thus the advice is to be interpreted as a list of q points in {0, 1}V that
is sent to both provers.
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4 The Main Reduction

In this section we present our reduction towards proving Theorem 1.8. The soundness analysis of the
reduction is presented in Section 5.

4.1 Setting of the Parameters

Let (X, eq) be an instance of regular Gap3Lin(1 − ε, s∗) as in Theorem 3.1. We will use the game G⊗kβ,q in
Section 3.4 as the “Outer PCP”. Since there are several parameters involved, we specify the (tedious) order
in which the parameters are chosen.

Let (j, δ) be the parameters required of the reduction in Theorem 1.8. Depending on (j, δ), let q, C, α(·)
be as given in Hypothesis 2.10 and let ` be an integer large enough so that Hypothesis 2.10 holds for all
sufficiently large integers k (= n therein). The soundness analysis of the reduction shows (modulo Hypoth-
esis 2.10) that a (j, δ)-coloring to the 2-to-2 Game yields a prover strategy in the Outer PCP with success
probability roughly δ·α(`)·C2

j . Conversely, by setting the parameters β, k appropriately, the soundness of
the Outer PCP, 2−Ω(βk/2q), is ensured to be small enough beforehand so that the 2-to-2 Game does not
have a (j, δ)-coloring. In addition, a certain smoothness or covering parameter β

√
k · 2` also needs to be

sufficiently small. One can choose 1
k � β � 1√

k
and k large enough so that both the soundness of the

Outer PCP and the covering parameter are small enough. Finally the completeness parameter 1 − ε for the
Gap3Lin instance is chosen to be close enough to 1 so that the Outer PCP as well as the 2-to-2 Game have
completeness 1− kε > 1− δ.

4.2 The Reduction

Consider the game G⊗kβ,q and ignore the advice for now. Let U and V denote the sets of questions asked
to the first and the second prover respectively. Specifically, U is the set of all k-tuples of equations, U =
(e1, . . . , ek) from the regular Gap3Lin instance (X, eq). For our purposes, it will be convenient to retain
only those “legitimate” U = (e1, . . . , ek) such that (a) the equations e1, . . . , ek are distinct and do not share
variables and (b) for any pair of variables x ∈ ei and y ∈ ej , i 6= j, x, y do not appear together in any
equation in the instance (X, eq). Due to regularity of the instance (X, eq), every variable appears in a
constant number of equations, and hence the fraction of U that are not legitimate is negligible, i.e. O( k

2

|X|),
and dropping these does not affect our analysis. We assume henceforth that U consists of only the legitimate
tuples U .

The verifier in the game G⊗kβ,q picks a k-tuple U = (e1, . . . , ek) ∈ U uniformly at random and then
constructs a k-tuple V such that independently for 1 6 i 6 k, the ith element of V is the equation ei with
probability 1 − β and is a variable in the equation ei with probability β. Thus the set of questions V to the
second prover consists of “mixed” tuples. In the following, we will work only with the set U and the role of
the set V will be implicit.

We are now ready to describe the Transitive 2-to-2 Game G2:2(V (G2:2), E(G2:2),Σ,Φ) that our reduc-
tion constructs. For any U ∈ U , we regard U as the tuple of k equations (e1, . . . , ek) as well as the set of 3k
variables appearing in these equations, say (x11, x12, x13, . . . , xk1, xk2, xk3). For each equation ei, define
a vector vi ∈ {0, 1}U that has 1 on coordinates corresponding to variables in ei and 0 on the rest. Denote
HU = Span{v1, ..., vk} referred to as the space of side conditions. Let b1, . . . , bk ∈ {0, 1} be the “right
hand sides” of the equations, i.e. the equation ei is xi1 + xi2 + xi3 = bi. Define

LU
def
=
{
L ⊆ {0, 1}U

∣∣∣ dim(L) = `, L ∩HU = {0}
}
.
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Note that for L ∈ LU , its intersection with HU is trivial and hence dim(L⊕HU ) = `+ k. Also, |U | = 3k,
dim(HU ) = k and dim(L) = `. The fraction of `-spaces L ⊆ {0, 1}U such that L ∩HU 6= {0}, L 6∈ LU is
negligible (≈ 2`−2k, see Fact E.4).

Vertices of G2:2: The game G2:2 has a block of vertices Block[U ] for every U ∈ U defined as

Block[U ] = {L⊕HU |L ∈ LU} .

The vertex set of G2:2 is the (disjoint) union of all blocks:

V (G2:2) =
⋃
U∈U

Block[U ].

Colors of G2:2: The set of colors Σ has size |Σ| = 2`. For a vertex L⊕HU , its color set Σ is identified with

{ψ : L⊕HU → {0, 1} | ψ is linear, ∀ 1 6 i 6 k, ψ(vi) = bi}.

In words, the vertex L⊕HU is to be assigned a linear function ψ : L⊕HU → {0, 1} that “respects the side
conditions”, meaning ψ(vi) = bi for 1 6 i 6 k. Since the values of ψ are already determined on HU , there
are exactly 2` eligible linear functions ψ.

Edges and Constraints of G2:2: Towards defining the edges and constraints of the game G2:2, we stress a
notational (and perhaps conceptual) point. X is the set of all variables in the Gap3Lin instance, so U ⊆ X
and {0, 1}U is a subspace of {0, 1}X in a natural manner. Every subspace under consideration can be
considered as a subspace of {0, 1}X and we can freely take the intersections or direct sums of subspaces.
For instance if U1, U2 are two sets of variables and L1 ⊆ {0, 1}U1 , L2 ⊆ {0, 1}U2 are subspaces, we can
consider both L1, L2 as subspaces of {0, 1}U1∪U2 (which in turn is a subspace of {0, 1}X ) and then the
subspaces L1 ∩ L2, L1 ⊕ L2 make sense.

We are ready to define the edges and the constraints of G2:2. For U,U ′ ∈ U (allowing the possibility
that U = U ′), we describe the edges between their respective blocks.12 There is an edge between vertices
L⊕HU , L

′ ⊕HU ′ if either of the two conditions holds. Either

dim(L⊕HU ⊕HU ′) = dim(L′ ⊕HU ⊕HU ′) = dim(L⊕ L′ ⊕HU ⊕HU ′), (3)

in which case, the constraint is 1-to-1, or

dim(L⊕HU ⊕HU ′) = dim(L′ ⊕HU ⊕HU ′) = dim(L⊕ L′ ⊕HU ⊕HU ′)− 1, (4)

in which case, the constraint is 2-to-2. This definition is, admittedly, rather mysterious and we try to clarify
it somewhat. We recommend reading the proofs of Lemmas 4.2, 4.3, 4.4 to start having some intuition. We
first consider the 1-to-1 constraints.

1-to-1 Constraints: From Lemma 4.2, we always have

dim(L⊕HU ⊕HU ′) = dim(L′ ⊕HU ⊕HU ′).

If, in addition, this dimension is same as that of L⊕L′ ⊕HU ⊕HU ′ which contains both the spaces above,
then all the three spaces must be identical, i.e. L⊕HU⊕HU ′ = L′⊕HU⊕HU ′ = L⊕L′⊕HU⊕HU ′ = Z,

12Here U,U ′ are thought of as sets of variables that are nearly identical. There might be edges between the blocks of U,U ′ that
differ significantly, but those edges are merely “accidental” and do not have much relevance towards the soundness of the reduction.
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say. From Lemma 4.4, there is a 1-to-1 correspondence between linear functions onL⊕HU (that respect side
condition onHU ) and linear functions on L⊕HU⊕HU ′ = Z (that respect side condition on bothHU , HU ′),
and the same holds between L′⊕HU ′ and L′⊕HU⊕HU ′ = Z. This gives a 1-to-1 correspondence between
linear functions on L⊕HU and L′ ⊕HU ′ (respecting the relevant side conditions) which is regarded as the
1-to-1 constraint on the “coloring” of L⊕HU and L′ ⊕HU ′ .

2-to-2 Constraints: As before, from Lemma 4.2, we always have

dim(A = L⊕HU ⊕HU ′) = dim(A′ = L′ ⊕HU ⊕HU ′) = d (say).

Now suppose that Z = L ⊕ L′ ⊕ HU ⊕ HU ′ , dim(Z) = d + 1. Since Z = A ⊕ A′, it follows that
dim(A ∩ A′) = d − 1. Thus, it is possible to choose a basis I for A ∩ A′ and v ∈ L, v′ ∈ L′ so that
I ∪ {v} is a basis for A, I ∪ {v′} is a basis for A′, and I ∪ {v, v′} is a basis for Z. In the following, all
linear functions considered are supposed to respect the side condition on HU or HU ′ or both, depending on
whether the relevant space contains HU , HU ′ or both.

Every linear function f on A ∩A′ = Span(I) has exactly two extensions f1, f2 to A = Span(I ∪ {v}),
depending on their value on v, and has exactly two extensions f ′1, f

′
2 to A′ = Span(I ∪ {v′}), depending

on their value on v′. Moreover by Lemma 4.4, linear functions on A are in one-to-one correspondence with
those on L ⊕ HU . Denote by f̃1, f̃2 the mates of f1, f2 respectively via this correspondence. Similarly,
linear functions on A′ are in one-to-one correspondence with those on L′ ⊕HU ′ and let f̃ ′1, f̃

′
2 be the mates

of f ′1, f
′
2. This gives a 2-to-2 constraint between L ⊕HU and L′ ⊕HU ′ that matches the pair (f̃1, f̃2) with

the pair (f̃ ′1, f̃
′
2).

Remark 4.1. Another useful way to describe the constraint, both in the 1-to-1 and 2-to-2 case, is as follows:
if there is a space Z that includes both L ⊕HU and L′ ⊕HU ′ and has an assignment β that respects side
conditions on HU , HU ′ , then β|L⊕HU , β|L′⊕HU′ are colorings to L ⊕ HU and L′ ⊕ HU ′ respectively that
satisfy the constraint. In both cases above Z happens to be L⊕L′ ⊕HU ⊕HU ′ , but we will have occasion
to use an even larger space Z in certain proofs.

Auxiliary Lemmas

Lemma 4.2. Let U,U ′ ∈ U and Eq[U ],Eq[U ′] denote the sets of equations (k in number) in U,U ′ respec-
tively. Then, for L ∈ LU ,

dim(L⊕HU ⊕HU ′) = `+ 2k − |Eq[U ] ∩ Eq[U ′]|.

Proof. Let Eq[U ′] = {e′1, . . . , e′k} and recall that HU ′ = Span(ve′1 , . . . , ve′k). Let C denote the “current
space” that is initialized toC = L⊕HU and has dimension `+k. We consider equations e′1, . . . , e

′
k ∈ Eq[U ′]

one by one, and check whether “adding” ve′i to the current space increases its dimension. If the equation
e′i ∈ Eq[U ], then ve′i ∈ HU already, and hence dim(C ⊕ Span(ve′i)) = dim(C). Otherwise e′i 6∈ Eq[U ] and
shares at most one variable with U ∪ (U ′ \ e′i). This is where we use the fact that U,U ′ are “legitimate”
tuples in the sense described in the first paragraph of current section. Thus ve′i is linearly independent of
L⊕HU⊕j 6=iSpan(ve′j ).Hence C⊕Span(ve′i) has dimension 1 larger than that of C. Carrying the argument
for i = 1, . . . , k shows that in the end C = L⊕HU ⊕HU ′ and dim(C) is as desired.

Lemma 4.3. Let U,U ′ ∈ U and L ∈ LU , L′ ∈ LU ′ . Then

dim(L⊕HU ⊕H ′U ) = dim(L′ ⊕HU ⊕H ′U ).
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Proof. From Lemma 4.2, both the dimensions are equal to `+ 2k − |Eq[U ] ∩ Eq[U ′]|.

Lemma 4.4. Let U,U ′ ∈ U and L ∈ LU . Then any linear function on L ⊕ HU that respects the side
condition on HU , has a unique extension to L⊕HU ⊕HU ′ that respects the side condition on both HU and
HU ′ .

Proof. Let f be a linear function on L⊕HU that respects the side condition on HU . Clearly, it has at most
one extension to L⊕HU ⊕HU ′ that respects the side condition on both HU and HU ′ , so the main point is
to show that there indeed is such an extension. Similar to the proof of Lemma 4.2, let C denote the current
space, g denote the current linear function on C, so that initially C = L ⊕ HU , g = f and at each step,
g respects the side condition on HU and the side condition due to equations e′1, . . . , e

′
i−1 considered so far.

Consider the equation e′i. If e′i ∈ Eq[U ] then C ⊕ Span(ve′i) = C and we keep g unchanged and proceed
next. If e′i 6∈ Eq[U ], then as in the proof of Lemma 4.2, ve′i is linearly independent ofL⊕HU⊕j 6=iSpan(ve′j ).

Hence C ⊕ Span(ve′i) has dimension 1 larger than that of C and the function g can be safely extended to
vector ve′i as required. To be precise, one sets g(ve′i) = b′i where b′i is the ‘right hand side” of the equation
e′i and then extends g linearly to C ⊕ Span(ve′i). Carrying the argument for i = 1, . . . , k, completes the
proof.

4.3 Completeness

It is easily observed that the reduction satisfies the completeness condition as in Theorem 1.8. Let σ : X →
{0, 1} be an assignment to the Gap3Lin instance (X,Eq) that satisfies 1−ε fraction of the equations. Let Eq′

denote the set of the equations satisfied so that |Eq′| > (1− ε)|Eq|. Let U ′ ⊆ U be the subset of k-tuples of
equations U such that all its k equations are satisfied, i.e. U ⊆ Eq′. Clearly, |U ′| > (1−kε)|U| > (1−δ)|U|
by choosing ε sufficiently small.

For every U ∈ U ′, let σ[U ] denote the linear function on {0, 1}U that maps x ∈ {0, 1}U to 〈σ|U , x〉.
Since σ satisfies all equations inside U , the linear function σ[U ] respects the side conditionHU . Now assign
to every vertex L⊕HU in Block[U ], the linear function σ[U ]|L⊕HU . We show that this assignment satisfies
all constraints whose both endpoints have been assigned. Indeed if (L⊕HU , L

′⊕HU ′) is a constraint such
that both endpoints are assigned, then the constraint is satisfied since all spaces are assigned using the same
global assignment σ. Thus the 2-to-2 Game has a (1, 1− δ)-assignment.

4.4 Covering Property

We need a certain covering property towards the soundness analysis. While this property was introduced
in [28], we need a more general notion. The covering property, the zoom-in required in Hypothesis 2.10,
and the “advice” in the 2-Prover-1-Round game in Section 3.4 (the Outer PCP) are all used in a coordinated
manner in the soundness analysis.

Let U be the set of 3k variables in a fixed set of k equations. We recall that in the Outer PCP game,
the verifier chooses V ⊆ U randomly by choosing from each equation independently (a) with probability β,
one of the variables from the equation and (b) with probability 1− β, all three variables from the equation.
We consider {0, 1}V as a subspace of {0, 1}U in a natural manner. Slightly rephrasing a result from [28],
the statistical distance between the following two distributions over one-dimensional subspaces of {0, 1}U
is small, i.e. at most O(β

√
k).13

13The intuition is as follows. A one-dimensional subspace is same as a non-zero point. A random point in {0, 1}U (and in
{0, 1}V ) has negligible chance of being zero, so we might as well consider the distribution of (a) a random point in {0, 1}U and
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• Choose a random one-dimensional subspace P ⊆ {0, 1}U .

• Choose V ⊆ U as described above, choose a random one-dimensional subspace P ′ ⊆ {0, 1}V and
regard it as a subspace of {0, 1}U .

We will need an analogous statement regarding two distributions over `-dimensional subspaces of {0, 1}U .
We define the two distributions below and prove the subsequent lemmas in Section C.

Definition 4.5. Let U be a fixed set of k equations and V ⊆ U be chosen as above with parameter β. Let
` > 1 be an integer. Let L, L′ be distributions over `-dimensional subspaces of {0, 1}U sampled as follows.

• L: Choose a uniformly random `-dimensional subspace of {0, 1}U .

• L′: Choose V ⊆ U as above, choose a uniformly random `-dimensional subspace of {0, 1}V and
regard it as a subspace of {0, 1}U .

Lemma 4.6. Suppose 2`β 6 1
8 . Let L, L′ be distributions over `-dimensional subspaces over {0, 1}U

sampled as in Definition 4.5. Then the statistical distance between L, L′ is bounded as

SD(L, L′) 6 β
√
k · 2`+4.

Lemma 4.7. Let 0 6 q 6 ` − 1 be an integer. Let Q be q-dimensional subspace of {0, 1}U . Let LQ and
L′Q be distributions L and L′ conditioned on the event that a sampled `-subspace L contains Q. Suppose

2`β 6 1
8 . Then for at least 1−

√
β k

1
4 fraction of Q,

SD(LQ, L′Q) 6
√
β k

1
4 · 2`+5. (5)

5 Soundness Analysis

In this section, given a (j, δ)-assignment to the gameG2:2 constructed in Section 4, we show how to extract a
provers’ strategy in the Outer PCP game (G⊗kβ,q as in Section 3.4) that succeeds with probability p = p(j, δ, `).
If the soundness of the Outer PCP game is chosen to be smaller than p to begin with, it implies that the game
G2:2 has no (j, δ)-assignment, proving Theorem 1.8.

We recall that the first prover (the “larger” prover) receives as a question, a set U of 3k variables (in
k equations) and an advice-list [x1, . . . , xq] of q points in {0, 1}U (in fact in {0, 1}V as stated next). The
second prover (the “smaller” prover) receives as a question a subset V ⊆ U of variables and an advice-
list [x1, . . . , xq] of the same q points in {0, 1}V . We will extract the provers’ strategies in the next two
subsections, and show in the last subsection that these strategies succeed with a good probability.

5.1 Strategy for the First (Larger) Prover

We recall that a typical vertex in the game G2:2 is denoted as L⊕HU . Specifically, for U ∈ U , the block of
vertices corresponding to U is14

Block[U ] = {L⊕HU | L ⊆ {0, 1}U , dim(L) = `, L ∩HU = {0}},

(b) a random point in {0, 1}V after choosing V and then “lifting it up” by appending 0 in the coordinates U \ V . We note that
|U \ V | ≈ 2βk. A point chosen from the second distribution has ≈ 2βk more zeroes than that from the first distribution. However
the imbalance between the number of zeroes and ones in a typical point in {0, 1}U is ≈

√
k, so when βk �

√
k, a deviation of

2βk zeroes is nearly imperceptible.
14We emphasize that Block[U ] contains the vertex L⊕HU for essentially all `-dimensional subspaces L ⊆ {0, 1}U .
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and the set of vertices of G2:2 is the union of all blocks of vertices over U ∈ U . Let F [·] be the given
(j, δ)-assignment to the game G2:2. Let us emphasize that this means:

• For at least δ fraction of the vertices L⊕HU , a list F [L⊕HU ] of j linear functions on L⊕HU (that
respect the side condition on HU ) is given. The remaining vertices are unassigned and do not play
any role in the analysis.

• If there is a 2-to-2 constraint between vertices L ⊕ HU and L′ ⊕ HU ′ , both of which are assigned,
then there are linear functions f ∈ F [L⊕HU ], f ′ ∈ F [L′ ⊕HU ′ ] that satisfy the constraint.

• If there is a 1-to-1 constraint between vertices L⊕HU and L′⊕HU ′ , both of which are assigned, there
is a one-to-one correspondence between the lists F [L⊕HU ], F [L′ ⊕HU ′ ], via the same one-to-one
correspondence that defines the 1-to-1 constraint.

By an averaging argument, for at least δ
2 fraction of the tuples U , at least δ

2 fraction of vertices in
Block[U ] are assigned. Call such a tupleU good and let Ugood be the set of good tuples with |U|good > δ

2 ·|U|.
Let the question to the first prover be U ∈ U along with the advice-list [x1, . . . , xq] of points in {0, 1}U .

If U 6∈ Ugood, the prover gives up, so let us assume U ∈ Ugood, and let Assigned[U ] ⊆ Block[U ] denote the
set of vertices in its block that have been assigned, |Assigned[U ]| > δ

2 · |Block[U ]|. Since this is a (j, δ2)-
assignment respecting the side condition on HU , Hypothesis 2.10 states that for some q, α(·), C that depend
on (j, δ2), for at least α(`) fraction of the q-dimensional subspaces Q ⊆ {0, 1}U , there exists a global linear
function gQ : {0, 1}U → {0, 1} that respects the side condition on HU and

Pr
L⊆{0,1}U , dim(L)=`

[gQ|L⊕HU ∈ F [L⊕HU ] | Q ⊆ L] > C. (6)

We call such a choice ofQ “lucky” and letQlucky be the set of all lucky q-dimensional subspaces of {0, 1}U .
We note that the parameter q was chosen beforehand to exactly match with that arising in Hypothesis 2.10.
Moreover, call a q-dimensional subspace Q “smooth” if it satisfies Condition (5) in Lemma 4.715, and let
Qsmooth be the set of all smooth q-dimensional subspaces of {0, 1}U .

The prover looks at the advice-list and lets Q = Span(x1, . . . , xq). If Q 6∈ Qlucky or Q 6∈ Qsmooth,
the prover gives up. Otherwise the prover picks a global linear function gQ : {0, 1}U → {0, 1} respecting
the side condition and satisfying Equation (6) (if there is more than one, one of them is picked arbitrarily),
and outputs gQ as the answer. Strictly speaking, the linear functions gQ amounts to a function x→ 〈σQ, x〉
on {0, 1}U for some σQ ∈ {0, 1}U and the prover answers that σQ is the assignment to the 3k received
variables (σQ satisfies the k equations as gQ respects the side condition). However, it is more convenient to
view the function gQ itself as the answer.

We note that a uniformly random q-subspace of {0, 1}U is lucky with probability > α(`) (by Hypoth-
esis 2.10) and is smooth with probability > 1 − βk

1
4 > 1 − α(`)

2 when the parameters β, k are chosen
appropriately. Thus with probability at least α(`)

2 , the space Q dictated by the advice-list is both lucky and
smooth.

15To recall, the condition is that the distributions LQ and L′Q are close in statistical distance; the former distribution chooses a
random `-subspace of {0, 1}U containing Q and the latter distribution chooses a random question V ⊆ U to the second prover and
then a random `-subspace of {0, 1}V containing Q.
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5.2 A Strategy for the Second (Smaller) Prover

Let the question to the second prover be V along with the advice-list [x1, . . . , xq] of points in {0, 1}V . Let
Q = Span(x1, . . . , xq) be the q-dimensional subspace of {0, 1}V . Let LV be the set of all `-dimensional
subspaces of {0, 1}V (though when the prover decides on an answer, only the subspaces containing Q are
relevant):

LV =
{
L |L ⊆ {0, 1}V , dim(L) = `

}
.

The prover first obtains an assignment FV [·] to LV . Fix L ∈ LV . The prover examines every k-tuple of
equations U such that V ⊆ U , i.e. every question that could have been asked to the first prover, when the
question of the second prover is V . Note that L ⊆ {0, 1}V ⊆ {0, 1}U and hence there is a vertex L ⊕HU

of the game G2:2 in Block[U ]. If the vertex L⊕HU has been assigned, then the prover defines

FV [L] = {f |L | f ∈ F [L⊕HU ]},

i.e. restrictions of all functions in F [L ⊕ HU ] to L. In general there are several U that contain V , so a
priori, there is ambiguity in the definition of FV [·]. The claim below shows however that the definition is
unambiguous.

Claim 5.1. FV [·] is well defined. That is, if V ⊆ U, V ⊆ U ′ and if L ⊕HU , L ⊕HU ′ are both assigned,
then the restrictions of F [L⊕HU ] and F [L⊕HU ′ ] to L are identical.

Proof. Notice that L ⊕ HU , L ⊕ HU ′ have a 1-to-1 constraint between them in the game G2:2. By Defi-
nition 1.5, a (j, δ)-assignment must assign identical sets of j assignments to the vertices that have a 1-to-1
constraint between them.

Once FV is defined, the prover zooms-intoQ, and chooses at random any linear function hQ : {0, 1}V →
{0, 1} that satisfies (if one exists and if so, we show that the list-size is bounded)

Pr
L∈LV

[hQ|L ∈ FV [L]] | Q ⊆ L] >
C

4
. (7)

The prover outputs hQ : {0, 1}V → {0, 1} as the answer. Again, strictly speaking, the linear function hQ
amounts to a function y → 〈τQ, y〉 on {0, 1}V for some τQ ∈ {0, 1}V and the prover answers that τQ is the
assignment to the variables he received. However, it is more convenient to view the function hQ itself as the
answer.

5.3 The Success Probability of the Provers

We now show that the provers’ strategy succeeds with a good probability. Let U, V, [x1, . . . , xq], xi ∈
{0, 1}V be the provers’ questions and Q = Span(x1, . . . , xq). We already observed that with probability
at least δ

2 , U ∈ Ugood and with probability α(`)
2 , Q is both lucky and smooth (from the first prover’s per-

spective). Assume that all these properties hold. Then the answer of the first prover is a global function
gQ : {0, 1}U → {0, 1} that satisfies the side condition on HU , and

Pr
L⊆{0,1}U , dim(L)=`

[gQ|L⊕HU ∈ F [L⊕HU ] | Q ⊆ L] > C.

Since Q is smooth, by Lemma 4.7, the uniform distribution on `-spaces in {0, 1}U containing Q is (
√
βk

1
4 ·

2`+5)-close in statistical distance to the distribution that chooses a question V ⊆ U to the second prover and
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then chooses uniformly an `-space in {0, 1}U containing Q. By setting the parameters β, k appropriately,
we can assume that this statistical distance is at most C2 and conclude from the above inequality:

Pr
V, L∈LV

[gQ|L⊕HU ∈ F [L⊕HU ] | Q ⊆ L] >
C

2
.

By an averaging argument, with probability at least C4 over the choice of question V to the second prover,

Pr
L∈LV

[gQ|L⊕HU ∈ F [L⊕HU ] | Q ⊆ L] >
C

4
.

Fix any such good choice of question V . Note that the assignment FV [L] to the `-spaces L of the second
prover is precisely the restriction of the assignment F [L ⊕ HU ] to the `-spaces of the first prover. Letting
h∗Q : {0, 1}V → {0, 1} to be the restriction of gQ : {0, 1}U → {0, 1} to {0, 1}V , we can rewrite the
inequality above as:

Pr
L∈LV

[
h∗Q|L ∈ FV [L] | Q ⊆ L

]
>
C

4
.

Thus the function h∗Q satisfies Condition (7) and is a legitimate candidate for the second prover’s answer.

By Theorem 2.6, the number of functions hQ satisfying Condition (7) is at most jC/4
(C/4)2−j·2q−` 6 8j

C for a
large enough choice of `. When the second prover does pick h∗Q as the answer, both the provers’ answers
are consistent (h∗Q being a restriction of gQ) and the provers succeed. Their overall success probability is at
least

δ

2
· α(`)

2
· C

4
· C

8j
=
δ α(`) C2

128 j
.

6 The Case j = 1 of Hypothesis 2.5

In this section it is shown that Hypothesis 2.5, in the case j = 1, follows from Hypothesis 2.7 without the
need of zoom-ins.

Let f : S → [2`], Density(S) = δ be the given (1, δ)-assignment to the Grassmann graph G(V =
{0, 1}n, `), meaning, for any two `-spaces L1, L2 ∈ S such that dim(L1 ∩ L2) = ` − 1, we have the
consistency f [L1]L1∩L2 = f [L2]L1∩L2 . We intend to show, using Hypothesis 2.7, that there is a global
linear function g : {0, 1}n → {0, 1} such that g|L = f [L] for a fraction C = C(δ) of the `-spaces L.

Here is the idea. Fix an integer b = `
10 . Using Hypothesis 2.7, we conclude rather easily, that for a

constant fraction of pairs L1, L2 ∈ S such that dim(L1 ∩ L2) = b, we still have f [L1]L1∩L2 = f [L2]L1∩L2 .
This enables us to assign linear functions to b-dimensional spaces that have a good agreement with the given
assignment to `-dimensional spaces. In other words, this assignment passes the “`-space vs b-space linearity
test”16 with good probability. Using a Fourier analytic approach,17 we are able to show a soundness guar-
antee for the “`-space vs b-space linearity test”, implying the existence of a desired global linear function.
A formal proof appears below. The analysis of the linearity test is presented in Section D which might be of
independent interest.

16Analogous to the “line vs point low degree test”.
17As opposed to the rather involved algebraic (and/or combinatorial) analysis of the “line vs point” and “plane vs plane” low

degree test in [3, 32].
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Let b = `
10 . For a b-dimensional space B ⊆ V , let ZoomB be the (lower order) Grassmann graph

induced on the set of vertices {L|L ∈ G(V, `), B ⊆ L} (see Fact 2.2). Let ZoomB[S] = S ∩ZoomB be the
set of vertices in S that contain B, and let Density(ZoomB[S]) be its density inside ZoomB . Clearly,

E
B⊆V, dim(B)=b

[Density(ZoomB[S])] = Density(S) = δ.

By an averaging argument, Density(ZoomB[S]) > δ
2 for at least δ2 fraction of b-spacesB; denote byB the set

of all such “good” b-spaces. Fix anyB ∈ B. Note that there are 2b different F2-valued linear functions onB.
Partition ZoomB[S] into classes C1, . . . , C2b according to the restriction of f [L]|B for L ∈ ZoomB[S]. We
observe that for any edge (L,L′) of the Grassmann graph inside ZoomB[S], the linear functions f [L], f [L′]
agree on L1∩L2 ⊇ B and hence the edge is inside one of the partitions Ci. Since Density(ZoomB[S]) > δ

2 ,
Hypothesis 2.7 implies that there is a connected component C of density > ε in ZoomB[S] and as observed,
C ⊆ Ci0 for some 1 6 i0 6 2b. Let h[B] denote the linear function on B that equals the common function
f [L]|B over L ∈ Ci0 . This gives an assignment h : B → [2b] of linear functions to b-spaces. From the
discussion, if a pair (B,L), B ⊆ L of a b-space and a `-space is chosen at random from V = {0, 1}n, then

Pr
B⊆L⊆V

[f [L]|B = h[B]] >
δ

2
· ε,

where B ∈ B with probability at least δ
2 and then L is in the “large” connected component of ZoomB[S]

with probability at least ε. That is, the “`-space vs b-space test” succeeds with probability > δ
2 · ε. Theorem

D.1 now implies that there is a global linear function g : V → {0, 1} that agrees with at least C fraction of
the L-spaces in G(V, `).
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Appendix

A Transitivity of G2:2

In this section, we show that the game G2:2 constructed in Section 4 is transitive as per Definition 1.4.

Lemma A.1. Suppose L1 ⊕ HU1 , L2 ⊕ HU2 have a 1-to-1 constraint between them in G2:2, and L2 ⊕
HU2 , L3⊕HU3 have a 1-to-1 or a 2-to-2 constraint between them. Then there is a constraint between L1⊕
HU1 , L3⊕HU3 , and it is 1-to-1 or a 2-to-2 depending on whether the constraint betweenL2⊕HU2 , L3⊕HU3

is 1-to-1 or 2-to-2 respectively.

Proof. Since there is 1-to-1 constraint between L1 ⊕HU1 , L2 ⊕HU2 , we have

L1 ⊕HU1 ⊕HU2 = L2 ⊕HU1 ⊕HU2 . (8)

We first consider the case when the constraint between L2 ⊕HU2 , L3 ⊕HU3 is also 1-to-1. This gives

L2 ⊕HU2 ⊕HU3 = L3 ⊕HU2 ⊕HU3 . (9)

Combining the above equations gives (“add” HU1 to Equation (9) and do a “substitution” using Equation
(8))

L1 ⊕HU1 ⊕HU2 ⊕HU3 = L3 ⊕HU1 ⊕HU2 ⊕HU3 . (10)

Now we would like to “remove”HU2 from both the sides so as to obtain L1⊕HU1⊕HU3 = L3⊕HU1⊕HU3

and implying that there is a 1-to-1 constraint between L1⊕HU1 and L3⊕HU3 . This “removal” can be done
for the following reason. Write HU2 = A ⊕ B, A ∩ B = {0} where (a) A is the span of all vectors
ve such that the equation e occurs in U2, but also occurs in U1 or U3, and hence A ⊆ HU1 ⊕ HU3 . (b)
B is the span of all vectors ve such that the equation e occurs in U2, but not in U1 nor in U3. Any such
equation e shares at most one variable with U1 and at most one variable with U3 and no variable with
U2 \ e. Hence there is a variable that is “private” to e, meaning it does not occur in U1 ∪ U3 ∪ (U2 \ e). In
particular, the “private” variables of the equations contributing to B are distinct. Thus the intersection of B
and L1 ⊕ L3 ⊕HU1 ⊕HU3 ⊆ {0, 1}

U1 ⊕ {0, 1}U3 is {0}. To summarize, we can write Equation (10) as

L1 ⊕ (HU1 ⊕HU3 ⊕A)⊕B = L3 ⊕ (HU1 ⊕HU3 ⊕A)⊕B,

which simplifies to
(L1 ⊕HU1 ⊕HU3)⊕B = (L3 ⊕HU1 ⊕HU3)⊕B,

and we can now safely “remove” B, using Fact E.5.

We now consider the case when the constraint between L2⊕HU2 , L3⊕HU3 is 2-to-2. We have Equation
(8) as before, but instead of Equation (9), we now have

dim(L2 ⊕HU2 ⊕HU3) = dim(L3 ⊕HU2 ⊕HU3) = dim(L2 ⊕ L3 ⊕HU2 ⊕HU3)− 1. (11)

We claim that one can “add” HU1 to all three “sums” in Equation (11). Arguing as earlier, one can write
HU1 = A′⊕B′, A′∩B′ = {0}whereA′ ⊆ HU2⊕HU3 andB′ is linearly independent of {0, 1}U2⊕{0, 1}U3 .
Thus “adding” HU1 to all three “sums”, increases the dimension of each “sum” by precisely dim(B′). Thus

dim(L2⊕HU1 ⊕HU2 ⊕HU3) = dim(L3⊕HU1 ⊕HU2 ⊕HU3) = dim(L2⊕L3⊕HU1 ⊕HU2 ⊕HU3)− 1.
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Using Equation (8) and “substituting”, we get

dim(L1⊕HU1 ⊕HU2 ⊕HU3) = dim(L3⊕HU1 ⊕HU2 ⊕HU3) = dim(L1⊕L3⊕HU1 ⊕HU2 ⊕HU3)− 1.

Now, arguing as earlier again, we “remove” HU2 from all three “sums”. One can write HU2 = A⊕B, A ∩
B = {0} where A ⊆ HU1 ⊕HU3 and B intersects L1 ⊕ L3 ⊕HU1 ⊕HU3 only at {0}. Thus “removing”
HU2 from all three “sums”, decreases the dimension of each “sum” by precisely dim(B). Thus

dim(L1 ⊕HU1 ⊕HU3) = dim(L3 ⊕HU1 ⊕HU3) = dim(L1 ⊕ L3 ⊕HU1 ⊕HU3)− 1,

implying that there is a 2-to-2 constraint between L1 ⊕HU1 and L3 ⊕HU3 .

Lemma A.2. Let s1 = L1 ⊕ HU1 , s2 = L2 ⊕ HU2 , s3 = L3 ⊕ HU3 be vertices in G2:2 such that there is
1-to-1 constraint between (s1, s2) and a constraint between (s2, s3). Then the constraint between (s1, s3)
(as guaranteed by Lemma A.1) is a composition of the constraints between (s1, s2) and (s2, s3).

Specifically, if linear functions (respecting relevant side conditions) f on L1⊕HU1 , g on L2⊕HU2 , and
h on L3 ⊕HU3 are such that (f, g) satisfy (s1, s2) and (g, h) satisfy (s2, s3), then (f, h) satisfy (s1, s3).

Proof. In the following, whenever we construct a linear function on a certain space, it will always respect the
side condition contained in that space. Since (g, h) satisfy the constraint (s2, s3), there is a linear function
β on W = L2 ⊕ L3 ⊕HU2 ⊕HU3 that respects side conditions on HU2 and HU3 and

g = β|L2⊕HU2
, h = β|L3⊕HU3

.

Let Z = W ⊕ HU1 and extend the linear function β on W uniquely to a linear function γ on Z so as to
respect the side condition HU1 . This is possible because every equation in U1 that does not appear in U2 or
U3 has a “private variable”, as in the proof of the previous lemma. We note that

γ|L2⊕HU2
= (γ|W )|L2⊕HU2

= β|L2⊕HU2
= g,

γ|L3⊕HU3
= (γ|W )|L3⊕HU3

= β|L3⊕HU3
= h.

Since there is a 1-to-1 constraint (s1, s2), we have

L1 ⊕HU1 ⊕HU2 = L2 ⊕HU1 ⊕HU2 .

It therefore holds that

Z = L2 ⊕ L3 ⊕HU1 ⊕HU2 ⊕HU3 ⊇ L2 ⊕HU1 ⊕HU2 = L1 ⊕HU1 ⊕HU2 ⊇ L1 ⊕HU1 .

Since γ is an assignment on Z, by Remark 4.1, γ|L1⊕HU1
and γ|L2⊕HU2

= g satisfy the constraint (s1, s2).
However (f, g) is supposed to satisfy this 1-to-1 constraint, and hence we must have f = γ|L1⊕HU1

. Now
we have f = γ|L1⊕HU1

and h = γ|L3⊕HU3
and by Remark 4.1, (f, h) satisfy the constraint (s1, s3).

B Reduction from 2-to-2 Games to the Independent Set Problem

In this section, we present a reduction from the (Transitive) 2-to-2 Games problem to the Independent Set
problem, proving Theorem 1.7. The reduction is along the lines of [11, 23, 27], using the Biased Long Code
and analytic theorems of Russo, Margulis and Friedgut, introduced in [11]. Some care is required to handle
the transitivity feature.
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B.1 Biased Long Code

While the Biased Long Code can be viewed as an encoding scheme, it is more convenient to take a combi-
natorial view and treat it as a weighted Kneser graph. The valid codewords then amount to certain large (in
fact the largest) independent sets in this graph. The analysis of the Biased Long Code amounts to a structural
theorem about independent sets of moderately large (= linear) size.

Definition B.1. For a bias parameter p ∈ (0, 1) and alphabet Σ, the vertex set of weighted Kneser graph
Gp[Σ] is P(Σ), the family of all subsets of Σ. The weight of a vertex A ⊆ Σ is µp(A) = p|A|(1− p)|Σ|−|A|.
The edge set is {(A,B) |A,B ⊆ Σ, A ∩B = ∅}.

It can be shown easily that the largest independent sets in Gp[Σ] have weight p. These are precisely the
sets Iσ0 = {F | σ0 ∈ F} for any fixed σ0 ∈ Σ.

Definition B.2. For a set family F ⊆ P(Σ), let µp(F) denote its weight under µp. Let A ∼ µp denote the
process of picking a set A ⊆ Σ according to the distribution µp. For a fixed element σ ∈ Σ, let Inflσ(F)
denote its influence on the family F defined as

Inflσ(F) = Pr
A∼µp

[ Exactly one of the pair A and A∆{σ} is in F ].

The average sensitivity of a family asp(F) is the sum of all influences, i.e.

asp(F) =
∑
σ∈Σ

Inflσ(F).

B.2 The Reduction

Let G = (V,E,Φ,Σ) be the instance of a Transitive 2-to-2 Game as in Conjecture 1.6. The parameters j
and δ therein will be chosen later. The Independent Set instance G′ = (V ′, E′) is defined as follows. Set
the parameter p = 1− 1√

2
− δ. The vertex set of the instance is

V ′ = {(x,A) |x ∈ V, A ⊆ Σ} .

The weight of the vertex (x,A) is 1
|V | ·µp(A), so that the total weight of all the vertices is 1. The edge set is

E′ = {((x1, A1), (x2, A2)) | (x1, x2) ∈ E ∧ ∀ σ1 ∈ A1, σ2 ∈ A2, (σ1, σ2) 6∈ Φ(x1, x2)} .

In words, there is a cloud of vertices for every x ∈ V . For every constraint (x1, x2) ∈ E, there are
cross edges between the respective clouds. There is an edge between (x1, A1), (x2, A2) if there is no pair of
colors in the sets A1, A2 that satisfy the constraint on (x1, x2). 18

B.3 Completeness

Let C : X → Σ be a (1, 1 − δ)-coloring of the game G = (V,E,Φ,Σ) where X ⊆ V , |X| = (1 − δ)|V |.
The coloring satisfies all the constraints inside X . Consider the set of vertices in G′(V ′, E′),

I
def
= {(x,A) |x ∈ X, C(x) ∈ A} .

18 One could add edges inside each cloud according to the Kneser graph. The reduction does not need it though.

31



Clearly, the set I includes a weight p of the vertices inside the cloud for every x ∈ X . Hence the
weight of I is (1 − δ)p > 1 − 1√

2
− 2δ. We observe that I is an independent set. For every pair of

vertices (x,A), (x′, A′) ∈ I , we show that there is no edge between them in G′. Since the coloring C
satisfies the constraint (x, x′), we have (C(x), C(x′)) ∈ Φ(x, x′). By definition of the set I , we have
C(x) ∈ A, C(x′) ∈ A′. Thus A,A′ contain a consistent pair of colors, so there is no edge between (x,A)
and (x′, A′).

B.4 Soundness

We begin by stating two auxiliary lemmas towards the soundness analysis. The relevance of the 2-to-2-ness
of the constraints and the choice of p ≈ 1− 1√

2
is apparent from the statements of these lemmas. Let Σ and

Γ be alphabets such that |Γ| = |Σ|
2 and π : Σ→ Γ be a 2-to-1 map. For F ⊆ Σ, its projection π(F ) ⊆ Γ is

defined naturally as {π(σ)|σ ∈ F}. For a family F ⊆ P(Σ), the projected family π(F) ⊆ P(Γ) is defined
naturally as {π(F )|F ∈ F}. For a subset H ⊆ Γ, the set π−1(H), |π−1(H)| = 2|H| is defined naturally
as {σ|σ ∈ Σ, π(σ) ∈ H}.

Lemma B.3. For q ∈ (0, 1), µ1−(1−q)2(π(F)) > µq(F).

Proof. For every H ⊆ Γ, we define π↑(H) = {F ⊆ Σ|π(F ) = H}. We observe that

• µ1−(1−q)2(H) = µq(π
↑(H)).

• The families π↑(H) over all H ⊆ Γ is a disjoint partition of the family P(Σ).

The lemma follows by noting that

µ1−(1−q)2(π(F)) =
∑

H∈π(F)

µ1−(1−q)2(H) =
∑

H∈π(F)

µq(π
↑(H)) >

∑
H∈π(F)

µq(π
↑(H) ∩ F) = µq(F).

Lemma B.4. Let F ⊆ P(Σ), F ′ ⊆ P(Σ′) be two families, each of weight strictly larger than 1
2 under the

distribution µq with q = 1− 1√
2
. Let π : Σ→ Γ, π′ : Σ′ → Γ be 2-to-1 maps (so |Σ| = |Σ′| = 2|Γ|). Then

there exist F ∈ F , F ′ ∈ F ′ such that π(F ) ∩ π′(F ′) = ∅.

Proof. We note that 1 − (1 − q)2 = 1
2 and from Lemma B.3, µ 1

2
(π(F)) > µq(F) > 1

2 and similarly

µ 1
2
(π′(F ′)) > 1

2 . Thus π(F) and π′(F ′) are families, each containing more than half (in the usual counting
sense) of the sets from P(Γ). Hence there must exist H ∈ π(F), H ′ ∈ π′(F ′) that are complements of
each other and in particular H ∩H ′ = ∅.

We now present the soundness analysis. Given a maximal independent set I of weight at least ε in G′,
we show how to construct a (j, δ)-coloring for G = (V,E,Φ,Σ) where j, δ depend only on ε. For every
x ∈ G, consider the part of I inside the cloud of x,

Fx = {A |A ⊆ Σ, (x,A) ∈ I} .

Claim B.5. The family Fx is monotone.
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Proof. Otherwise, there are A ⊆ B such that A ∈ Fx and B 6∈ Fx. Then I ∪ {(x,B)} is an independent
set larger than I , contradicting the maximality of I .

Since the independent set I has weight ε, by an averaging argument, there is a set X ⊆ V, |X| > ε
2 · |V |

such that I includes a weight > ε
2 of vertices from the cloud of x, i.e. µp(Fx) > ε

2 for x ∈ X .

Theorem B.6 (Russo - Margulis [34, 29]). Suppose F is a monotone family. Then µq(F) is an increasing
function of q and

dµq(F)

dq
= asq(F).

Claim B.7. There exists p′ ∈ (p, p+ δ) such that

E
x∈X

[
asp′(Fx)

]
6

1

δ
.

Proof. By Lagrange’s mean value theorem, it follows that there exists p′ ∈ (p, p+ δ) such that

E
x∈X

[
asp′(Fx)

]
=

d

dq

(
E
x∈X

[µq(Fx)]
)∣∣∣
q=p′

=
Ex∈X [µp+δ(Fx)]− Ex∈X [µp(Fx)]

δ
6

1

δ
.

From Claim B.7 and an averaging argument, there is a set X ′ ⊆ X, |X ′| > |X|
2 such that for all

x ∈ X ′, asp′(Fx) 6 2
δ . A theorem of Friedgut states that families with bounded average sensitivity are

well-approximated by “juntas”.

Definition B.8 (Junta). A family F ⊆ P(Σ) is called a j-junta, if there exists J ⊆ Σ, |J | = j such that the
membership of a set A in F is determined by only A ∩ J .

Theorem B.9 (Friedgut [14]). There exists a constant C(q) > 1 such that for every F ⊆ P (Σ) and an
accuracy parameter η > 0, there exists F ′ ⊆ P (Σ) that is a j-junta and

• j = C(q)asq(F)/η.

• µq(F∆F ′) 6 η.

Fix x ∈ X ′ and set η
def
= ε

20 . Since asp′(Fx) 6 2
δ , it follows from Friedgut’s Theorem that Fx is η-close

to a k-junta with k = C(p′)2/(δη). Let Jx ⊆ Σ denote the set of elements on which the junta depends.
Clearly, the set-family that is a junta on Jx and is closest to Fx is the “majority vote” on each setting of Jx,
namely

[Fx] 1
2

def
=

{
F ∪ F ′

∣∣F ⊆ Σ \ Jx, F ′ ⊆ Jx, Pr
A⊆Σ\Jx, A∼µp′

[
A ∪ F ′ ∈ Fx

]
>

1

2

}
.

The following claim shows that the family [Fx] 3
4

is also close to Fx (and will be more useful to work with):

[Fx] 3
4

def
=

{
F ∪ F ′

∣∣F ⊆ Σ \ Jx, F ′ ⊆ Jx Pr
A⊆Σ\Jx, A∼µp′

[
A ∪ F ′ ∈ Fx

]
>

3

4

}
.
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Claim B.10. µp′(Fx∆[Fx] 3
4
) 6 5η.

Proof. Let F∗ ⊆ P(Jx) be the family of subsets F ⊆ Jx such that

1

2
< Pr

A⊆Σ\Jx, A∼µp′
[A ∪ F ∈ Fx] 6

3

4
.

Notice that for each such F (a) at least 1
4 (weighted) fraction of its extensions to Σ are not in Fx (b) each

extension is in [Fx] 1
2

(c) no extension is in [Fx] 3
4
. Hence

1

4
· Pr
F⊆Jx, F∼µp′

[F ∈ F∗] 6 µp′(Fx∆[Fx] 1
2
) 6 η.

It follows that
µ([Fx] 1

2
∆[Fx] 3

4
) = Pr

F⊆Jx, F∼µp′
[F ∈ F∗] 6 4η.

We finish the proof using the triangle inequality,

µp′(Fx∆[Fx] 3
4
) 6 µp′(Fx∆[Fx] 1

2
) + µp′([Fx] 1

2
∆[Fx] 3

4
) 6 5η.

Claim B.11. [Fx] 3
4
6= ∅.

Proof. Using the triangle inequality, the previous claim, and that η = ε
20 ,

µp′([Fx] 3
4
) > µp′(Fx)− µp′(Fx∆[Fx] 3

4
) >

ε

2
− 5η > 0.

Definition B.12. The extended junta EJ(x) of x is defined by

EJ(x) = Jx ∪
{
σ ∈ Σ | Inflσ(Fx) > 2−10k

}
.

We note that for x ∈ X ′, asp′(Fx) 6 2
δ and since the average sensitivity is the sum of all influences,

|EJ(x)| 6 j = k + 2·210k
δ . Our coloring to the game G = (V,E,Φ,Σ) will assign, to every x ∈ X ′, a set

of at most j colors EJ(x). We now show that this is indeed a (j, δ)-coloring. Firstly,

|X ′| > |X|
2

>
ε

4
|V | > δ|V |

as δ will be chosen accordingly. Secondly, we need to show that every constraint (x1, x2) inside X ′ is
satisfied in the sense of Definition 1.5. Fix any such constraint. It is a 2-to-2 or a 1-to-1 constraint. Our
main soundness lemma below takes care of the 2-to-2 case, and the 1-to-1 case then follows directly from
the transitivity of the game.

Lemma B.13. Suppose x1, x2 ∈ X ′ are such that (x1, x2) is a 2-to-2 constraint. Then there exist consistent
colors for x1, x2 in their respective extended juntas. I.e. there exist σ1 ∈ EJ(x1), σ2 ∈ EJ(x2) such that
(σ1, σ2) ∈ Φ(x1, x2).
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Proof. It will be convenient to think of the 2-to-2 constraint in terms of a pair of 2-to-1 maps π1 : Σ1 →
Γ, π2 : Σ2 → Γ. Here Σ1 = Σ2 = Σ are the same alphabet, but it will be convenient to think of them
as separate. A coloring (a1, a2) to vertices (x1, x2) satisfies the 2-to-2 constraint if and only if π1(a1) =
π2(a2). Assume towards a contradiction that there is no pair of consistent colors in the extended juntas for
x1 and x2. The assumption can be stated as

π1(EJ(x1)) ∩ π2(EJ(x2)) = ∅.

Note in particular that Jx2 ⊆ EJ(x2) and hence

π1(EJ(x1)) ∩ π2(Jx2) = ∅. (12)

Our goal is to exhibit F1 ∈ Fx1 , F2 ∈ Fx2 such that π1(F1)∩ π2(F2) = ∅. We will zero-in on such F1, F2

in progressive manner. We consider the case of F1, the other case being similar. We zero-in on a sequence
of sets

A1 ⊆ B1 ⊆ B1 ⊆ F1,

that are contained, respectively, in progressively expanding “universe of focus”

Jx1 ⊆ π−1
1 (π1(Jx1)) ⊆ π−1

1 (π1(Jx1)) ∪ π−1
1 (π2(Jx2)) ⊆ Σ1.

We clarify that the set π−1
1 (π1(Jx1)) is a superset of Jx1 and can have size up to 2|Jx1 | since that map π1 is

2-to-1. The weights (sizes) of set-families are with respect to µp′ , unless stated otherwise.

• Recalling the definition of [Fx1 ] 3
4

and using Claim B.11, there is A1 ⊆ Jx1 such that at least 3
4 of its

extensions outside Jx1 are in Fx1 .

• We let B1 = A1 ∪
(
π−1

1 (π1(Jx1)) \ Jx1
)
. Due to monotonicity of Fx1 , at least 3

4 of extensions of B1

outside π−1
1 (π1(Jx1)) are in Fx1 .

• We now retain B1 as is, but consider it as subset of enlarged universe π−1
1 (π1(Jx1)) ∪ π−1

1 (π2(Jx2)).
The elements added to the enlarged universe, namely π−1

1 (π2(Jx2)) are outside of EJ(x1) (using
Equation (12)), hence have influence at most 2−10k, and are at most 2k in number. The fraction of
extensions of B1 outside π−1

1 (π1(Jx1)) ∪ π−1
1 (π2(Jx2)) remains at least

3

4
− 2−10k · p′−2k−1

(1− p′)−2k−1 >
5

8
.

Using a similar argument for x2, to summarize, there exist

B1 ⊆ D1 = π−1
1 (π1(Jx1)) ∪ π−1

1 (π2(Jx2)), B2 ⊆ D2 = π−1
2 (π1(Jx1)) ∪ π−1

2 (π2(Jx2))

such that at least 5
8 of their extensions outsideD1 andD2 respectively are in Fx1 and Fx2 respectively. Note

that

π1(B1) ∩ π2(B2) = ∅. (13)

We are almost done. Denote

F1 = {S1 ⊆ Σ1 \D1 | B1 ∪ S1 ∈ Fx1}, F2 = {S2 ⊆ Σ2 \D2 | B2 ∪ S2 ∈ Fx2},
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so that µp′(F1) > 5
8 and due to monotonicity, letting q = 1 − 1√

2
> p′, µq(F1) > 5

8 , and similarly

µq(F2) > 5
8 . Applying Lemma B.4 to F1,F2 along with 2-to-1 maps π1 : Σ1 \D1 → Γ \ π1(D1) and π2 :

Σ2 \D2 → Γ\π2(D2) (we have π1(D1) = π2(D2) = Jx1 ∪Jx2), there exist F ∗1 ⊆ Σ1 \D1, F
∗
2 ⊆ Σ2 \D2

such that
π1(F ∗1 ) ∩ π2(F ∗2 ) = ∅. (14)

Finally, letting F1 = B1 ∪ F ∗1 and F2 = B2 ∪ F ∗2 , and using Equations (13),(14), we conclude that
F1 ∈ Fx1 , F2 ∈ Fx2 , π1(F1) ∩ π2(F2) = ∅ as desired.

Finally, we handle the 1-to-1 constraints inside X ′. Let GX′ be the subgraph of G(V,E,Φ,Σ) induced
on X ′. The transitivity of the game, as per Definition 1.4, then implies that G|X′ can be partitioned into
cliques C1, . . . , Cm such that

• All constraints inside a clique Cr are 1-to-1, i.e. matchings on Σ × Σ. For any x, y, z ∈ Cr, the
matchings between (x, y), (y, z) can be composed to derive the matching between (x, z).

• For r 6= s, either there is no edge between Cr, Cs or there is a complete bipartite graph between Cr, Cs
with all constraints being 2-to-2. In the latter case, for any x, y ∈ Cr and z ∈ Cs, the 2-to-2 constraint
(x, z) is a composition of the 1-to-1 constraint (x, y) and the 2-to-2 constraint (y, z).

These considerations show that all vertices inside a clique Cr play an essentially identical role. Therefore,
in a maximal independent set I , for any x, y ∈ Cr, the families Fx,Fy ⊆ P(Σ) are identical up to the per-
mutation of Σ that defines the 1-to-1 constraint (x, y), and hence the color-sets EJ(x), EJ(y) are identical
up to the (same) permutation. This shows that 1-to-1 constraints are satisfied in the sense of Definition 1.5.

C Covering Property

Proof of Lemma 4.7 from Lemma 4.6

Let U, V, k, β, `,L,L′, q,Q,LQ,L′Q be as in Definition 4.5 and Lemmas 4.6, 4.7. LetQ,Q′ be distributions
over q-dimensional subspaces of {0, 1}U that are analogous to L,L′ respectively (i.e. as in Definition 4.5,
with parameter q instead of `). It is easily observed that an equivalent way to sample fromQ (resp. Q′) is to
sample an `-space L from L (resp. L′) and then sample a uniformly random q-dimensional subspace of L.
We stress that Q and L are uniform distributions on q-dimensional and `-dimensional subspaces of {0, 1}U
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respectively. We have the sequence of arguments

E
Q∼Q

[
SD(LQ,L′Q)

]
=

∑
Q

Pr [Q = Q]
∑
L⊇Q

∣∣∣Pr [LQ = L]− Pr
[
L′Q = L

]∣∣∣
=

∑
Q

∑
L⊇L

∣∣∣Pr [Q = Q] · Pr [LQ = L]− Pr [Q = Q] · Pr
[
L′Q = L

]∣∣∣
6

∑
Q

∑
L⊇Q

∣∣∣Pr [Q = Q] · Pr [LQ = L]− Pr
[
Q′ = Q

]
· Pr

[
L′Q = L

]∣∣∣+

∑
Q

∑
L⊇Q

∣∣∣Pr
[
Q′ = Q

]
· Pr

[
L′Q = L

]
− Pr [Q = Q] · Pr

[
L′Q = L

]∣∣∣
=

∑
L

∣∣∣Pr [L = L]− Pr
[
L′ = L

]∣∣∣+

∑
Q

∣∣∣Pr
[
Q′ = Q

]
− Pr [Q = Q]

∣∣∣ ∑
L⊇Q

Pr
[
L′Q = L

]
= SD(L,L′) + SD(Q,Q′),

where we used triangle inequality and the fact that sampling Q ∈ Q and then L ∼ LQ is equivalent to
sampling L ∼ L and similarly, sampling Q ∈ Q′ and then L ∼ L′Q is equivalent to sampling L ∼ L′. Now
Lemma 4.6 upper bounds both SD(L,L′) and SD(Q,Q′) by β

√
k · 2`+4 and hence

E
Q∼Q

[
SD(LQ,L′Q)

]
6 β
√
k · 2`+5.

Lemma 4.7 now follows by Markov inequality.

Proof of Lemma 4.6

We recall that U, |U | = 3k is a set of 3k variables in k equations. A subset V ⊆ U is chosen by choosing
independently for each equation, one of the variables in the equation with probability β and all three vari-
ables in the equation with probability 1−β. The expected size of V is 3k−2βk and except with probability
2−Ω(k), we have |V | > 2k.

We note that choosing a uniformly random `-subspace L of {0, 1}U (resp. {0, 1}V ) is equivalent to
choosing uniformly a sequence of points x1, . . . , x` in {0, 1}U (resp. {0, 1}V ) that are linearly independent
and lettingL = Span(x1, . . . , x`). Since a uniformly random and independent sequence of points x1, . . . , x`
in {0, 1}U (resp. in {0, 1}V ) is linearly independent except with probability 6 2`−dim(U) (resp. 6 2`−dim(V ),
see Fact E.3), we might as well focus on such sequences of points. It is thus enough to bound the statistical
distance between distributions D,D′ over ({0, 1}U )` sampled as:

• D: Choose uniformly and independently x1, . . . , x` ∈ {0, 1}U .

• D′: Choose V ⊆ U , choose uniformly and independently x′1, . . . , x
′
` ∈ {0, 1}

V and regard them as
points in {0, 1}U (by appending 0 in coordinates U \ V ).

We now observe that since the process of choosing V ⊆ U is independent over the k equations, D = Sk
and D′ = S ′k where S,S ′ are the “basic” distributions exactly as above, but with k = 1, |U | = 3. A
bound on the statistical distance between D,D′ now follows in the same manner as in [28, Lemma 3.1], by
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bounding the Hellinger distance between S,S ′, using the multiplicativity of the Hellinger distance to bound
the Hellinger distance between D,D′ and finally, bounding the Hellinger distance in terms of the statistical
distance. We observe how a bound on Hellinger distance between S,S ′ also follows already from the proof
of [28, Lemma 3.1]. Re-writing the sampling process for S,S ′ for convenience (this is the special case
k = 1, |U | = 3):

• S: Choose uniformly at random x1, . . . , x` ∈ {0, 1}3.

• S ′: With probability 1− β, choose uniformly at random x1, . . . , x` ∈ {0, 1}3. Otherwise:

Choose uniformly at random b1, . . . , b` ∈ {0, 1}. Output with probability β
3 each,

b100, . . . , b`00, or 0b10, . . . , 0b`0, or 00b1, . . . , 00b`.

The distributions S,S ′ are over ({0, 1}3)` which is equivalent to Σ3 where Σ = {0, 1}` is the concatenation
of the first (second, third, respectively) bit of each of the ` strings of length three. Note that 0` ∈ Σ. Denoting
the uniform distribution over Σ by Uniform(Σ), it is seen that

S = (Uniform(Σ),Uniform(Σ),Uniform(Σ)) ,

i.e. three independent and uniform copies of Σ, whereas,

S ′ = (1− β) (Uniform(Σ),Uniform(Σ),Uniform(Σ)) +

β

3

(
Uniform(Σ), 0`, 0`

)
+
β

3

(
0`,Uniform(Σ), 0`

)
+
β

3

(
0`, 0`,Uniform(Σ)

)
.

With this viewpoint, the Hellinger distance between S,S ′ is calculated to be at most 4β2|Σ|2 in the proof of
[28, Lemma 3.1]. The statistical distance between D,D′ is then at most 16β

√
k · |Σ|.

D “`-space vs b-space” Linearity Test

In this section, we present and analyze “`-space vs b-space” linearity test. The analysis is Fourier analytic
and, as is standard, it is convenient to think of boolean values as {−1, 1} and replace addition over F2 by
product of the signs {−1, 1}. A function f : Ω = {−1, 1}n → {−1, 1} is linear if f(x)f(y) = f(x · y) for
all x, y ∈ Ω and x · y denotes the coordinatewise product of x, y.

The `-space vs b-space Linearity Test

For Ω = {−1, 1}n, let B and L denote the set of all b-dimensional and `-dimensional subspaces of Ω. Let
A,F be tables that assign, for B ∈ B, L ∈ L respectively, linear functions A[B] : B → {−1, 1}, F [L] :
L → {−1, 1} on the respective subspaces. The test picks a pair (B,L) uniformly at random with B ⊆
L,B ∈ B, L ∈ L and accepts if and only if

F [L]|B ≡ A[B].

Our result is the following:
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Theorem D.1. Let Ω,B,L and parameters n, `, 1 6 b 6 `
4 be as in the description of the test above. Let

A,F be tables that assign linear functions to B ∈ B and L ∈ L respectively. Suppose the tables pass the
linearity test with probability at least 1

2b
+ ε where ε > 22−b/4, i.e.

Pr
B⊆L,B∈B,L∈L

[F [L]|B ≡ A[B]] >
1

2b
+ ε.

Then there exists a global linear function g : Ω → {−1, 1} that agrees with at least ε3

300 fraction of the
`-spaces, that is

Pr
L∈L

[F [L] ≡ g|L] >
ε3

300
.

The rest of the section is devoted to proving Theorem D.1. We start by viewing the entire table A[·] as a
function f : {−1, 1}nb → {−1, 1}b as follows. In notation, for (v1, . . . , vb) ∈ ({−1, 1}n)b = {−1, 1}nb,

f(v1, . . . , vb) = (A[Span(v1, . . . , vb)](v1), . . . , A[Span(v1, . . . , vb)](vb)).

In words, to evaluate f(v1, . . . , vb), one considers the b-spaceB = Span(v1, . . . , vb), and the linear function
A[B] on B. The linear function assigns, in particular, {−1, 1}-values to the vectors v1, . . . , vb respectively.
The list of these b values is defined to be f(v1, . . . , vb). Since the output of f is a string of length b, we
can think of f as a collection of {−1, 1}-valued functions, f1, . . . , fb, one for each output coordinate. In
notation, fi : {−1, 1}nb → {−1, 1} is defined as

fi(v1, . . . , vb) = A[Span(v1, . . . , vb)](vi).

We must make a couple of clarifying remarks. First, when the input vectors {v1, ..., vb} are linearly de-
pendent, then their span B has dimension less than b and A[B] is undefined. However the fraction of
such inputs is negligible (at most 2b−n) and on those inputs f can be defined arbitrarily without affect-
ing the analysis. Second, since the same b-space may have different bases, f has many symmetries, e.g.
f1(v1, ..., vb) = f2(v2, v1, ..., vb). We will use these symmetries, but not in any explicit manner.

The Gowers’ Test

The main idea behind the analysis is to use a “Gowers’ Test” as an auxiliary tool. We can relate the ac-
ceptance probability of the `-space vs b-space test to that of the acceptance probability of the Gowers’ test.
The Gowers’ test allows us to conveniently switch from local considerations to global considerations. Let ~1
denote a b-dimensional vector with all coordinates 1.

Definition D.2. [Gowers’ Test] Given h : {−1, 1}nb → {−1, 1}b, pick x, y, z ∈ {−1, 1}nb randomly and
check if

h(x)h(y)h(z)h(x · y · z) = ~1.

Represent a function h : {−1, 1}nb → {−1, 1}b as h = (h1, . . . , hb) where hi are the coordinatewise
functions. For T ⊆ [b], let hT =

∏
i∈T hi be the product functions. The lemma below expresses the

probability of h passing the Gowers’ test in terms of the Fourier coefficients of products of functions hT .

Lemma D.3. The probability that h : {−1, 1}nb → {−1, 1}b passes the Gowers’ Test is:

Pr
x,y,z∈{−1,1}nb

[
h(x)h(y)h(z)h(x · y · z) = ~1

]
=

1

2b
+

1

2b

∑
T⊆[b],T 6=∅

∑
S⊆[nb]

ĥ4
T (S).
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Proof. For the test to pass, it must pass on every coordinate. Thus,

Pr
x,y,z∈{−1,1}nb

[
h(x)h(y)h(z)h(x · y · z) = ~1

]
= E

x,y,z∈{−1,1}nb

[
b∏
i=1

1 + hi(x)hi(y)hi(z)hi(x · y · z)
2

]

=
1

2b
+

1

2b

∑
T⊆[b],T 6=∅

E
x,y,z∈{−1,1}nb

[hT (x)hT (y)hT (z)hT (x · y · z)]

=
1

2b
+

1

2b

∑
T⊆[b],T 6=∅

∑
S⊆[nb]

ĥ4
T (S).

The main trick is that Lemma D.3 is applied globally as well as locally and then the information gained
from the two applications is combined. Globally, the lemma is applied to the function f : {−1, 1}nb →
{−1, 1}b that (essentially) represents the entire assignment {A[B]|B ∈ B}. Locally, for a fixed `-space L,
the lemma is applied to the function g : {−1, 1}`b → {−1, 1}b that represents, in a similar manner, the
assignment {A[B]|B ⊆ L} (i.e. only the assignment to b-spaces that are contained in L). We present the
local application first.

Fix an `-space L. Locally, L can be identified with {−1, 1}` and the linear function F [L] on it can
be identified with a Fourier character χS for some S ⊆ [`]. The assignment {A[B]|B ⊆ L} can be
represented, in a similar manner as before, by a function g : {−1, 1}`b → {−1, 1}b, g = (g1, . . . , gb)
where for (w1, . . . , wb) ∈ ({−1, 1}`)b = {−1, 1}`b,

gi(w1, . . . , wb) = A[Span(w1, . . . , wb)](wi).

We note that g really is the restriction of f to Lb. As before, for T ⊆ [b], let gT =
∏
i∈T gi be the product

functions. We now relate the probability that g passes the Gowers’ test with the probability that the linearity
test passes for the fixed L, i.e. the probability that F [L]|B = A[B] for a random B ⊆ L. Let 1 − γ be
the probability that random vectors w1, . . . , wb ∈ {−1, 1}` are linearly independent, so that γ 6 2b−` is
negligible. Thus choosing a random b-dimensional subspace of L is essentially same as choosing b random
vectors from L = {−1, 1}`. We now have

(1− γ) · Pr
B⊆L

[F [L]|B = A[B]] 6 Pr
w1,...,wb∈{−1,1}`

[
∧bi=1 F [L](wi) = A[Span(w1, . . . , wb)](wi)

]
= Pr

w1,...,wb∈{−1,1}`

[
∧bi=1 χS(wi) = gi(w1, . . . , wb)

]
= E

w1,...,wb∈{−1,1}`

[
b∏
i=1

1 + χS(wi)gi(w1, . . . , wb)

2

]

=
1

2b
+

1

2b

∑
T⊆[b],T 6=∅

E
w1,...,wb∈{−1,1}`

[
gT (w1, . . . , wb)

∏
i∈T

χS(wi)

]

=
1

2b
+

1

2b

∑
T⊆[b],T 6=∅

ĝT (ST ),
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where ST ⊆ [`b] is defined as (ST (1), . . . , ST (b)) and ST (i) ⊆ [`] equals S if i ∈ T and equals ∅ if i 6∈ T .
Hence noting that γ 6 2b−`,

Pr
B⊆L

[F [L]|B = A[B]] 6
1

2b
+ 2 · 2b−` +

1

2b

∑
T⊆[b],T 6=∅

ĝT (ST ).

Now we take average of this inequality over the choice of L ∈ L and note that the L.H.S. then equals the
probability that the linearity test accepts (which is > 1

2b
+ ε). This gives

ε

2
6 ε− 2 · 2b−` 6 E

L∈L

 1

2b

∑
T⊆[b],T 6=∅

ĝT (ST )

.
We keep in mind that g and S depend on the choice of L. Using convexity of the function x→ x4, we get

ε4

16
6 E

L∈L

 1

2b

∑
T⊆[b],T 6=∅

ĝ4
T (ST )

.
Applying Lemma D.3 to g : {−1, 1}` → {−1, 1}b, we get

ε4

16
6 E

L∈L

[
Pr [g passes Gowers’ test]

]
.

Now we relate the R.H.S. to the probability that f passes the Gowers’ test, using the fact that g really is the
restriction of f to Lb. Let x = (x1, . . . , xb), y = (y1, . . . , yb), z = (z1, . . . , zb) where xi, yi, zi are either in
L or in the global space {−1, 1}n, as understood from the context. We would like to argue as

ε4

16
6 E

L∈L

[
Pr [g passes Gowers’ test]

]
= Pr

L∈L, xi,yi,zi∈L

[
g(x)g(y)g(z)g(x · y · z) = ~1

]
≈ Pr

xi,yi,zi∈{−1,1}n

[
f(x)f(y)f(z)f(x · y · z) = ~1

]
= Pr [f passes Gowers’ test].

This is an almost correct argument, except that the distributionD of xi, yi, zi ∈ {−1, 1}n is slightly different
from the distribution D′ of L ∈ L, xi, yi, zi ∈ L = {−1, 1}` (i.e. first choosing L at random and then
choosing xi, yi, zi from inside L). The distributions are identical however if conditioned on the 3b vectors
xi, yi, zi being linearly independent. The probability of this happening is at least 1 − 23b−n and 1 − 23b−`

depending on the space they are chosen from. It follows that the statistical distance between the distributions
is at most 3 · 23b−` and the argument above is correct up to that much error. It follows that (provided
ε > 4 · 2−b/4)

ε4

24
6 Pr [f passes Gowers’ test].

Applying Lemma D.3 to f ,
1

2b
+

1

2b

∑
T⊆[b],T 6=∅

∑
S⊆[nb]

f̂4
T (S) >

ε4

24
.
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Noting that the sum of squares of Fourier coefficients of a boolean function equals 1, we see that there exists
T ⊆ [b], T 6= ∅ and S ⊆ [nb] such that f̂2

T (S) > ε4

32 . We are almost done, by inspecting the coefficient
f̂T (S). Let S = (S1, . . . , Sb), Si ⊆ [n], and denote B = Span(v1, . . . , vb) below. By definition of Fourier
coefficients and of the functions f, fT ,

f̂T (S) = E
v1,...,vb∈{−1,1}n

[
fT (v1, . . . , vb) ·

b∏
i=1

χSi(vi)

]

= E
v1,...,vb∈{−1,1}n

[∏
i∈T

A[B](vi) ·
b∏
i=1

χSi(vi)

]

= E
B, dim(B)=b, v1,...,vb∈B,

Rank(v1,...,vb)=b

[∏
i∈T

A[B](vi) ·
b∏
i=1

χSi(vi)

]
± 2b−n,

where while choosing v1, . . . , vb ∈ {−1, 1}n, they are assumed to be linearly independent (introducing the
negligible error term 2b−n) and then their choice is same as first choosing a random b-space B and then
letting v1, . . . , vb be a random basis of B. Regard B = {−1, 1}b and A[B] as the linear function χS[B] for
S[B] ⊆ [b]. The global function χSi(vi) where Si ⊆ [n], vi ∈ {−1, 1}n, after restricting to vi ∈ B, amounts
to a linear function on B, say χSi↓B with Si ↓ B ⊆ [b]. Thus

f̂T (S) = E
B, dim(B)=b, v1,...,vb∈B,

Rank(v1,...,vb)=b

∏
i∈T

χS[B]∆Si↓B(vi) ·
∏

i∈[b]\T

χSi↓B(vi)

± 2b−n.

Let us look at the expectation for a fixed B. Call B good if

∀ i ∈ T, Si ↓ B = S[B], ∀ i ∈ [b] \ T, Si ↓ B = ∅, (15)

and let B′ be the set of such good B. For a good B, the expectation equals 1 and from Lemma E.2, the
expectation is bounded by 2−b+1 in magnitude for a bad B. Thus

f̂T (S) = Pr
B

[
B ∈ B′

]
± 2−b+1 ± 2b−n.

Since |f̂T (S)| > ε2

6 , it follows that PrB [B ∈ B′] > ε2

10 (since ε > 22−b/4 > 23−b/2). Now we show that in
fact for some S∗ ⊆ [n], for all i ∈ T , Si = S∗ and for all i ∈ [b] \ T , Si = ∅. This is because if this were
not the case, for a random b-space B, Condition (15) holds with probability at most 2−b, upper bounding
PrB [B ∈ B′] by 2−b, a contradiction. It follows that χS∗ : {−1, 1}n → {−1, 1} is a global linear function
that agrees with the given linear function A[B] on > ε2

10 fraction of B, dim(B) = b.

Agreement with `-spaces

What we have concluded so far is that if tables F,A pass the `-space vs b-space linearity test with probability
> 1

2b
+ ε, then there is a global linear function g : {−1, 1}n → {−1, 1}n that agrees with A[B] for > ε2

10
fraction of b-spaces B. Theorem D.1 however demands a good agreement with F [L] for `-spaces L. This is
easy to fix. Let

B∗ =

{
B | Pr

L:B⊆L
[F [L]|B = A[B]] >

ε

2

}
.
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Since the linearity test succeeds with probability > 1
2b

+ ε, by an averaging argument, |B∗| > ε
2 · |B|.

Now modify the table A[·] to table A′[·] so that A′[B] = A[B] for B ∈ B∗ and A′[B] is a random linear
function on B otherwise. Clearly, the tables F,A′ still pass the linearity test with probability > 2−b + ε

2 and
by the analysis so far, there is a global linear function g that agrees with A′[B] for > ε2

40 fraction of B ∈ B.
Since A′[B] for B 6∈ B∗ was defined at random, their contribution to consistency with g is negligible, i.e. at
most 2−b. Thus we have

Pr
B

[g|B = A[B] ∧ B ∈ B∗] > ε2

80
.

For every B ∈ B∗, by definition, A[B] is consistent with F [L] for at least ε
2 fraction of L containing B.

Hence,

Pr
B⊆L

[g|B = A[B] ∧ B ∈ B∗ ∧ F [L]B = A[B]] >
ε3

160
.

In particular,

E
L

[
Pr
B⊆L

[F [L]|B = g|B]

]
>

ε3

160
.

This implies immediately that g|L = F [L] for at least ε3

160−2b > ε3

300 fraction of L, since for L not satisfying
this, the inside probability is at most 2−b.

E Missing Proofs

E.1 Hypothesis 2.5 implies Hypothesis 2.10

Let G(V, `), dim(V ) = n and the side condition {hi}ri=1, {bi}
r
i=1, r 6 n

3 be as in Hypothesis 2.10. Let
H = Span(h1, . . . , hr), dim(H) = r. Let W [H] be any “complementing space” to H so that V =
H ⊕ W [H], H ∩ W [H] = {0}. We identify linear functions on subspaces of V that respect the side
conditionH with their restrictions toW [H], move to the “lower order” Grassmann graphG(W [H], `), apply
Hypothesis 2.5, and then “pull-back” the function on W [H] guaranteed by Hypothesis 2.5 to a function on
V that respects the side condition.

Formally, let q, α(·), C be as in Hypothesis 2.5 given (j, δ2) and n sufficiently large. Let Q ⊆ V be a
random q-dimensional space. With probability at least 1 − 2r+q−n (see Fact E.4), we have Q ∩ H = {0}
and we condition on this event henceforth.

Claim E.1. W [Q]
def
= (Q⊕H) ∩W [H] is a random q-dimensional subspace of W [H].

Proof. Firstly, the dimension consideration shows that

dim(W [Q]) = dim(W [H]) + dim(Q⊕H)− dim(W [H]⊕Q⊕H) = (n− r) + (q + r)− n = q.

Also, it is easily seen that each q-dimensional subspace of W [H] has equally many pre-images under the
mapping Q→ (Q⊕H) ∩W [H].

Let F [·] be the (j, δ)-assignment to G(V, `) respecting the side condition H and S be the set of its
vertices that have been assigned. We “move” to the lower order Grassmann graph G(W [H], `) and define a
(j, δ)-assignment F̃ [·] to it as (denoting the set of its vertices assigned as S̃)

S̃ = {L ∈ G(W [H], `) |L⊕H ∈ S} .
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F̃ [L] = F [L⊕H]|L.

By Hypothesis 2.10, with probability at least α(`) over the choice of Q, there exists gQ : W [H] → {0, 1}
such that

Pr
L:Q⊆L⊆W [H]

[
gQ|L ∈ F̃ [L]

]
> C.

Define g′Q to be the unique extension of gQ to V respecting the side condition. Since spaces L ⊆W [H] can
be pulled back to L⊕H , g′Q satisfies Equation (2) of Hypothesis 2.10 as required.

E.2 Proof of Theorem 2.6

Denote by N the size of L def
= {L ∈ G(V, `) |Q ⊆ L} and let f1, ..., fm be all functions agreeing with F [·]

on at least C fraction of L ∈ L. We construct a bipartite graph, where the left side consists of f1, ..., fm
and the right side consists of pairs {(L, σ) |L ∈ L, σ ∈ F [L]}. We connect fi and (L, σ) by an edge if
fi|L ≡ σ. Then the degree of each fi is at least C ·N and the number of vertices on the right side is at most
jN . Let us remove edges if necessary so that the degree of each fi is exactly C ·N .

Denote by d(L, σ) the degree of (L, σ) and let us count the number of triples {fi, fj , (L, σ)} where
i 6= j and (fi, (L, σ)), (fj , (L, σ)) are both edges in the bipartite graph. Using Cauchy-Schwartz and noting
that the number of vertices on the right side is at most jN and

∑
L∈L,σ∈F [L] d(L, σ) = CmN , the number

of such triples is lower bounded as

∑
L∈L,
σ∈F [L]

(
d(L, σ)

2

)
=
∑
L∈L,
σ∈F [L]

d(L, σ)2

2
− d(L, σ)

2
> jN ·

(
CmN
jN

)2

2
− CmN

2
=
C2m2N

2j
− CmN

2
.

On the other hand, since any distinct pair of functions fi, fj agree on at most 2q−` fraction of L ∈ L, the
number of such triples is at most

(
m
2

)
2q−`N 6 m22q−`N

2 . Combining the two bounds gives m 6 jC
C2−j2q−` .

E.3 Auxiliary Lemmas and Facts

Lemma E.2. Let s1, . . . , sb ∈ Fb2 such that at least one of them is non-zero. Let v1, . . . , vb ∈ Fb2 be chosen
at random. Then the following conditional expectation is bounded as:∣∣∣∣∣ E

v1,...,vb

[
b∏
i=1

(−1)〈si,vi〉 | Rank(v1, . . . , vb) = b

]∣∣∣∣∣ 6 2−b+1.

Proof. Note that without the conditioning, the expectation is clearly zero. The point is to prove the upper
bound conditional on the event that v1, . . . , vb are linearly independent (and hence form a basis of Fb2.
Assume w.l.o.g. that s1 is non-zero. Let

A = {A = (v1, . . . , vb) | Rank(A) = b},

so that we are interested in the expectation

E
A

[
b∏
i=1

(−1)〈si,vi〉 | A ∈ A

]
.

44



Let
A′ = {A = (v1, . . . , vb) | Rank(A) = b, ∀ 2 6 i 6 b, 〈s1, vi〉 = 0}.

It is easily seen that |A′| 6 2−b+1 · |A|. Imagine choosing v2, v3, . . . , vb so that every vi is outside the span
of the previously chosen ones. If we require (in addition) that every vi also lies in the hyperplane defined
by the equation 〈s1, x〉 = 0, then at each step, this happens with probability at most 1

2 , showing the desired
upper bound on |A′|. Hence the two expectations

E
A

[
b∏
i=1

(−1)〈si,vi〉 | A ∈ A

]
, E

A

[
b∏
i=1

(−1)〈si,vi〉 | A ∈ A \ A′
]

differ by at most 2−b+1. We show that the latter is zero. For fixed α2, α3, . . . , αb ∈ F2, consider the
following bijection on A \ A′ (that adds to the first vector, a linear combination of others):

(v1, v2, v3, . . . , vb)→ (v1 +
b∑
i=2

αivi, v2, v3, . . . , vb).

The quantity of interest changes as follows:

b∏
i=1

(−1)〈si,vi〉 → (−1)
∑b
i=2 αi〈s1,vi〉 ·

b∏
i=1

(−1)〈si,vi〉.

Now take expectation of L.H.S. over the choice of A = (v1, . . . , vb) ∈ A \ A′ and expectation of R.H.S.
over the choice of A ∈ A \ A′ as well as over a random choice of α2, . . . , αb. The two expectations are
equal (due to bijectivity) and the expectation of the L.H.S. is what we are interested in. Since 〈s1, vi〉 6= 0
for some 2 6 i 6 b, the expectation over the R.H.S. is zero and we are done.

Fact E.3. Let V be an n-dimensional vector space over F2, and 1 6 ` 6 n − 1. Let x1, . . . , x` ∈ V be
chosen randomly and independently. Then x1, . . . , x` are linearly independent with probability > 1− 2`−n.

Proof. If x1, . . . , x` are linearly dependent, then for some 1 6 i 6 `, xi is in the span of x1, . . . , xi−1.
Hence the probability that these ` vectors are linearly dependent can be upper-bounded as

∑̀
i=1

Pr
x1,...,xi∈V

[xi ∈ Span{x1, ..., xi−1}] 6
∑̀
i=1

2i−1

2n
6 2`−n.

Fact E.4. Let V be an n-dimensional vector space over F2, H ⊆ U be a subspace of dimension r, and
1 6 ` 6 n− `. Let x1, . . . , x` ∈ V be chosen randomly and independently. Then

Pr
x1,...,x`∈V

[Span({x1, ...x`}) ∩H = {0}] > 1− 2r+`−n.

Proof. If Span({x1, . . . , x`})∩H 6= {0}, then for some 1 6 i 6 `, xi is in the span of H ∪{x1, . . . , xi−1}.
Hence the probability that Span({x1, . . . , x`}) ∩H 6= {0} can be upper-bounded as

∑̀
i=1

Pr
x1,...,x`∈V

[xi ∈ H ⊕ Span({x1, ..., xi−1})] 6
∑̀
i=1

2r+i−1

2n
6 2r+`−n.
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Fact E.5. Let A,A′, B be subspaces of a vector space V over F2 such that A ⊕ B = A′ ⊕ B and (A ⊕
A′) ∩B = {0}. Then A = A′.

Proof. By symmetry, it suffices to show that A ⊆ A′. Let a ∈ A. Then a ∈ A⊕ B = A′ ⊕ B and so there
are a′ ∈ A′, b ∈ B such that a = a′ ⊕ b. Hence b = a⊕ a′ ∈ A⊕A′, and b must be 0.
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