
Local Testing for Membership in Lattices

Karthekeyan Chandrasekaran ∗ Mahdi Cheraghchi † Venkata Gandikota‡

Elena Grigorescu §

July 28, 2016

Abstract

Motivated by the structural analogies between point lattices and linear error-correcting codes,
and by the mature theory on locally testable codes, we initiate a systematic study of local
testing for membership in lattices. Testing membership in lattices is also motivated in practice,
by applications to integer programming, error detection in lattice-based communication, and
cryptography.

Apart from establishing the conceptual foundations of lattice testing, our results include the
following:

1. We demonstrate upper and lower bounds on the query complexity of local testing for the
well-known family of code formula lattices. Furthermore, we instantiate our results with
code formula lattices constructed from Reed-Muller codes, and obtain nearly-tight bounds.

2. We show that in order to achieve low query complexity, it is sufficient to design one-sided
non-adaptive canonical tests. This result is akin to, and based on an analogous result for
error-correcting codes due to Ben-Sasson et al. (SIAM J. Computing 35(1) pp1–21).

1 Introduction

Local testing for properties of combinatorial and algebraic objects have widespread applications
and have been intensely investigated in the past few decades. The main underlying goal in Local
Property Testing is to distinguish objects that satisfy a given property from objects that are far
from satisfying the property, using a small number of observations of the input object. Starting with
the seminal works of [8, 13, 33], significant focus in the area has been devoted to locally testable
error-correcting codes, called Locally Testable Codes (LTCs) [15]. LTCs are the key ingredients in
several fundamental results in complexity theory, most notably in the PCP theorem [3, 4].

∗Department of Industrial and Enterprise Systems Engineering, University of Illinois Urbana-Champaign, IL.
Email: karthe@illinois.edu.
†Department of Computing, Imperial College London, UK. Work done in part while the author was with Si-

mons Institute for the Theory of Computing, University of California, Berkeley, CA and supported by a Qualcomm
fellowship. Email: m.cheraghchi@imperial.ac.uk.
‡Department of Computer Science, Purdue University, West Lafayette, IN. Email: vgandiko@purdue.edu. Re-

search supported in part by the Purdue Research Foundation.
§Department of Computer Science, Purdue University, West Lafayette, IN. Email: elena-g@purdue.edu. Research

supported in part by the Purdue Research Foundation.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 125 (2016)

In this work we initiate the study of local testability for membership in point lattices, a class
of infinite algebraic objects that form subgroups of Zn. Lattices are well-studied in mathematics,
physics and computer science due to their rich algebraic structure [9]. Algorithms for various
lattice problems have directly influenced the ability to solve integer programs [10, 23, 17]. Recently,
lattices have found applications in modern cryptography due to attractive properties that enable
efficient computations and security guarantees [28, 26, 31, 32]. Lattices are also used in practical
communication settings to encode data in a redundant manner in order to protect it from channel
noise during transmission [12].

A point lattice L ⊂ Rn of rank k and dimension n is specified by a set of linearly independent
vectors b1, . . . , bk ∈ Zn known as a basis, for some k ≤ n. If k = n the lattice is said to have full
rank. The set L is defined to be the set of all vectors in Rn that are integer linear combinations of
the basis vectors, i.e., L := {

∑k
i=1 αibi | αi ∈ Z ∀ i ∈ [k]}. Lattices are the analogues over Z of

linear error-correcting codes over a finite field F, which are generated as F-linear combinations of a
linearly independent set of basis vectors b1, . . . , bk ∈ Fn.

Given a basis for a lattice L, we are interested in testing if a given input t ∈ Rn belongs to L,
or is far from all points in L by querying a small number of coordinates of t. We emphasize that
this setting does not limit the computational space or time in pre-processing the lattice as well as
the queried coordinates. The main goal is to design a tester that queries only a small number of
coordinates of the input.

1.1 Motivation

Integer Programming. Lattices are the fundamental structures underlying integer programming
problems. An integer programming problem (IP) is specified by a constraint matrix A ∈ Zn×m, a
vector b ∈ Rn. The goal is to verify if there exists an integer solution to the system Ax = b, x ≥ 0.
Although IP is NP-complete [18], its instances are solved routinely in practice using cutting planes
and branch-and-cut techniques [35]. The relaxed problem of verifying integer feasibility of the sys-
tem Ax = b is equivalent to verifying whether b lies in the lattice generated by the columns of A.
Thus, the relaxation problem is the membership testing problem in a lattice. It is solvable efficiently
and is a natural pre-processing step to solving IPs. Furthermore, if the number of constraints n
in the problem is very large, then it would be helpful to run a tester that reads only a partial set
of coordinates of the input b to verify if b could lie in the lattice generated by the columns of A
or is far from it. If the test rejects, then this saves on the computational effort to search for a
non-negative solution.

Cryptography. In cryptographic applications, it is imperative to understand which lattices are
difficult to test in order to ensure security of lattice-based cryptosystems. In some cryptanalytic
attacks on lattice-based cryptosystems, one needs to distinguish target vectors that are close to
lattice vectors from those that are far from all lattice vectors, a problem commonly known as the
gap version of the Closest Vector Problem (GapCVP). An approach to address GapCVP is to use
expensive distance estimation algorithms inspired by Aharonov and Regev [1] and Liu et al. [24].
Local testing of lattices is closely related to both distance estimation [30] and GapCVP, and hence
progress in the proposed testing model could lead to new insights in cryptanalytic attacks.

Complexity theory. Lattices can be seen as coding theoretic objects naturally bringing features
of error-correcting codes from the finite field domain to the real domain. As such, a study of local

2

testing (and correction) procedures for lattices naturally extends the classical notions of Locally
Testable Codes (LTCs) and Locally Decodable Codes (LDCs), which are in turn of significance
to computational complexity theory (for example in constructing probabilistically checkable proofs
and hardness amplification, among numerous other applications). Characterizing local testability,
explicitly initiated by Kaufman and Sudan [19], has been an intensely investigated direction in the
study of LTCs. We believe that an analogous investigation of lattices is likely to bring new insights
and new connections in property testing.

Lattice-based communication. Lattices are a major technical tool in communication systems
as the analogue of error-correcting codes over reals, for applications such as wireless communication
and transmission over analog lines. In lattice-coding, the message m is mapped to a point c in a
chosen lattice L. The codeword c is transmitted over an analog channel. If the encoded message
gets corrupted by the channel, then the channel output may not be a lattice point, thus enabling
transmission error detection. In order to correct errors, computationally expensive decoding algo-
rithms are employed. Instead, the receiver may perform a local test for membership in the lattice
beforehand, allowing the costly decoding computation to run only when there is a reasonably high
chance of correct decoding.

We now give an informal description of our testing model motivated by its application in lattice-
coding. The transmission of each coordinate of a lattice-codeword over the analog channel consumes
power that is proportional to the square of the transmitted value. Thus the power consumption for
transmitting the lattice-codeword c ∈ L ⊂ Rn is proportional to its squared `2 norm. The power
consumption for transmitting a codeword over the channel is usually constrained by a power budget.
The noise vector is also subject to a bound on its power. The power budget for transmission is
typically formulated by considering the lattice-code C(L) defined by the set of lattice points c ∈ L
that satisfy

∑n
i=1 c

2
i ≤ σn for some constant power budget σ > 0. In order to ensure that the

receiver can tolerate adversarial noise budget δ per channel use, the shortest nonzero vector v ∈ L
should be such that

∑n
i=1 v

2
i ≥ δn. Thus, the relative distance of the lattice-code C(L) is defined

to be
∑n

i=1 v
2
i /n, where v ∈ L is a shortest nonzero lattice vector. The rate of a lattice-code C(L)

is defined to be (1/n) log |C(L)| (note that this quantity could be larger than 1). In this work,
an asymptotically good family of lattices, is one that achieves rate and relative distance that are
both lower bounded by a nonzero constant. Such families are ideal for use in noisy communication
channels.

We define a notion of a tester that will be useful as a pre-processor for decoding, and is similar
to the established notion of a code tester: An `2-tester of a lattice L for a given distance parameter
ε > 0 is a probabilistic procedure that given an input t ∈ Rn, queries at most q coordinates
of t, accepts with probability at least 2/3 if t ∈ L, and rejects with probability at least 2/3 if∑n

i=1(ti − wi)2 ≥ εn for every w ∈ L.
We start by formalizing the model and stating two main motivating goals.

1.2 Testing model

In the above application, we focused on `2 distances. We now formalize the notion of testing
lattices for `p distances, which is the natural notion of distance for real-valued inputs. We remark
that despite an extensive literature on property testing with respect to the Hamming distance,
testing under `p distance was only recently proposed for systematic investigation by Berman et

3

al. [6] in the context of testing non-algebraic properties. The `p distance between x, y ∈ Rn
is defined as dp(x, y) := ‖x − y‖p = (

∑
i∈[n] |xi − yi|p)1/p. The distance from v ∈ Rn to L is

dp(v, L) := minu∈L dp(v, u). Denote the `p norm of the real vector 1n by ‖1n‖p. For a lattice L, we
denote the subspace of the lattice by span(L). We focus on integral lattices, which are sub-lattices
of Zn, as these are the most commonly encountered lattices in applications1.

Definition 1 (Local test for lattices). An `p-tester T (ε, c, s, q) for a lattice L ⊆ Zn is a probabilistic
algorithm that queries q coordinates of the input t ∈ Rn, and

• (completeness) accepts with probability at least 1− c if t ∈ L,

• (soundness) rejects with probability at least 1− s if dp(t, L) ≥ ε · ‖1n‖p (we call such a vector
t to be ε-far from L).

If T always accepts inputs t that are in the lattice L then it is called 1-sided, otherwise it is 2-
sided. If the queries performed by T depend on the answers to the previous queries, then T is called
adaptive, otherwise it is called non-adaptive.

A test T (ε, 0, 0, q) is a test with perfect completeness and perfect soundness. 1-sided testers
(i.e., testers with perfect completeness) are useful as a pre-processing step, as mentioned earlier.

An asymptotically good family of lattices L(n) satisfies: 1) minv∈L(n) ‖v‖
p
p/n = Ω(1), and 2)

contains 2Ω(n) lattice points in the origin-centered `p-ball of radius n1/p.
Similar to the application in lattice-coding and locally testable codes, a main question in `p-

testing of lattices is the following:

Question 1. Is there an asymptotically good family of lattices that can be tested for membership
with constant number of queries?

Motivated by the applications in IP and cryptography, we identify another fundamental question
in `p-testing of lattices:

Question 2. What properties of a given lattice enable the design of `p-testers with constant query
complexity?

Tolerant Testing. Many applications can tolerate a small amount of noise in the input. Parnas
et al. [30] introduced the notion of tolerant testing to account for a small amount of noise in the
input. Tolerant testing has been studied in the context of codes (e.g. [16, 20]), and in the context
of properties of real-valued data in the `p norm (e.g. [6]). We extend the tolerant testing model to
lattices as follows.

Definition 2 (Tolerant local test for lattices). An `p-tolerant-tester T (ε1, ε2, c, s, q) for a lattice
L ⊆ Zn is a probabilistic algorithm that queries q coordinates of the input t ∈ Rn, and

• (completeness) accepts with probability at least 1− c if dp(t, L) ≤ ε1 · ‖1n‖p,

• (soundness) rejects with probability at least 1− s if dp(t, L) ≥ ε2 · ‖1n‖p.
1Arbitrary lattices can be approximated by rational lattices and rational lattices can be scaled to integral lattices.

4

Tolerant testing with parameter ε1 = 0 corresponds to the notion of testing given in Definition
1. Tolerant testing and distance approximation are closely related notions. In fact, in the Ham-
ming space, the ability to perform tolerant testing for every choice of ε1 < ε2 can be exploited to
approximate distances (using a binary search) [30].

Analogy with code testers. A common notion of testing for membership in error-correcting
codes requires that inputs at Hamming distance at least εn from the code be rejected. (This notion
is only relevant when the covering radius of the code is larger than εn.) We include the common
definition here, and note that stronger versions of testing have also been considered in the literature
[15, 16].

Definition 3 (Local test for codes). A tester T (ε, c, s, q) for an error-correcting code C ⊆ Fn is a
probabilistic algorithm that makes q queries to the input t ∈ Fn, and

• (completeness) accepts with probability at least 1− c if t ∈ C, and

• (soundness) rejects with probability at least 1−s if dH(t, C) ≥ ε·n, where dH(u, v) := |{i ∈ [n] :
u(i) 6= v(i)}| denotes the Hamming distance between u and v, and dH(t, C) := minc∈C dH(t, c)
(we call such a vector t to be ε-far from C).

1.3 Our contributions

We initiate the study of membership testing in point lattices from the perspective of sublinear
algorithms. Our contributions draw on connections between lattices and codes, and on well-known
techniques in property testing.

1.3.1 Upper and lower bounds for testing specific lattice families

We make progress towards Question 1 by focusing on an asymptotically good family of sets con-
structed from linear codes, via the so-called “code formula” [12]. We show upper and lower bounds
on the query complexity of `1-testers for code formulas, as a function of the query complexity of
the constituent code testers.

Code formula lattices. For simplicity, in what follows we will slightly abuse notation and
use binary code C ⊆ {0, 1}n to denote both the code viewed over the field F2 = {0, 1} and
the code embedded into Rn via the trivial embedding 0 7→ 0 and 1 7→ 1. All the arithmetic
operations in the code formula refer to operations in Rn. For two sets A and B of vectors we define
A+B := {a+ b | a ∈ A, b ∈ B}.

Definition 4 (Code Formula). Let C0 ⊆ C1 ⊆ · · · ⊆ Cm−1 ⊆ Cm = Fn2 be a family of nested binary
linear codes. Then the code formula constructed from the family is defined as

C0 + 2C1 + · · ·+ 2m−1Cm−1 + 2mZn.

Here, m is the height of the code-formula.
If the family satisfies the Schur product condition, namely, c1 ∗ c2 ∈ Ci+1 for all codewords

c1, c2 ∈ Ci, where the ‘*’ operator is the coordinate-wise (Schur) product c1 ∗ c2 = 〈(c1)i · (c2)i〉i∈[n],

then the code-formula forms a lattice (see [21]) and we denote it by L(〈Ci〉m−1
i=0).

5

Significance of code formula lattices. Code formula lattices with height one already have
constant rate if the constituent code C0 has minimum Hamming distance Ω(n). Unfortunately,
these lattices have tiny relative minimum distance (since 2Zn has constant length vectors). However,
code formulas of larger height achieve much better relative distance. In particular, it is easy to
see that code formula lattices of height m ≥ log n in which each of the constituent codes Ci has
minimum Hamming distance Ω(n) give asymptotically good families of lattices [14, 9]. The code
formula lattice constructed from a family of codes that satisfies the Schur-product condition is
equivalent to the lattice constructed from the same family of codes by Construction D [22, 9, 21].
Construction-D lattices are primarily used in communication settings, e.g. see Forney [12].

In this work we design a tester for code formula lattices using testers for the constituent codes.

Theorem 1.1. Let 0 < ε, s < 1 and C0 ⊆ C1 ⊆ · · · ⊆ Cm−1 ⊆ {0, 1}n be a family of bi-
nary linear codes satisfying the Schur product condition. Suppose every Ci has a 1-sided tester
Ti(ε/m2i+1, 0, s, qi). Then, there exists an `1-tester T (ε, 0, s, q) for the lattice L(〈Ci〉m−1

i=0) with
query complexity

q = O

(
1

ε
log

1

s

)
+

m−1∑
i=1

qi.

Next, we show a lower bound on the query complexity for testing membership in code formula
lattices, using lower bounds for testing membership in the constituent codes.

Theorem 1.2. Let 0 < ε, c, s < 1 and C0 ⊆ C1 ⊆ · · · ⊆ Cm−1 ⊆ {0, 1}n be a family of binary linear
codes satisfying the Schur product condition. Let qi = qi(ε, c, s) be such that any (possibly adaptive,
2-sided) `1-tester Ti(ε, c, s, q

′) for Ci satisfies q′ = Ω(qi), for every i = 0, 1, . . . ,m− 1. Then every
(possibly adaptive, 2-sided) `1-tester T (ε, c, s, q) for the lattice L(〈Ci〉m−1

i=0) has query complexity

q = Ω

(
max

{
1

ε
log

1

s
, max
i=0,1,...,m−1

qi

})
.

Code formula lattices from Reed-Muller codes. We instantiate the upper and lower bounds on the
query complexity for a common family of code formula lattices constructed using Reed-Muller codes
[12] to obtain nearly matching upper and lower bounds. We recall Reed-Muller codes below.

Definition 5 (Reed Muller Codes). Each codeword of a binary Reed-Muller code RM(k, r) ⊆ F2r
2

corresponds to a polynomial p(x) ∈ F2[x] in r variables of degree at most k evaluated at all 2r

possible inputs x ∈ Fr2.

For the family of Reed-Muller codes in F2r
2 , it is well-known that RM(0, r) ⊆ RM(1, r) ⊆

RM(2, r) ⊆ RM(3, r) ⊆ · · · ⊆ RM(r − 1, r) ⊆ RM(r, r) = F2r
2 . A particular family of RM codes

that leads to code formula lattices is 〈RM(ki, r)〉log r
i=0 , with ki = 2i. Indeed, it can be easily verified

that this family satisfies the Schur product condition since Reed-Muller codewords are evaluation
tables of multivariate polynomials over the binary field and product of two degree k polynomials
is a degree 2k polynomial. Hence for height m ≤ log r the construction 〈RM(2i, r)〉m−1

i=0 gives rise
to a lattice.

Corollary 1.3. Let 0 ≤ k0 < k1 < · · · < km−1 < r be integers such that the family of Reed-
Muller codes RM(k0, r) ⊆ RM(k1, r) ⊆ · · · ⊆ RM(km−1, r) satisfies the Schur product condition.

6

Let 0 < ε, s < 1 and L be the lattice obtained from this family of codes using the code formula
construction:

L = RM(k0, r) + 2RM(k1, r) + · · ·+ 2m−1RM(km−1, r) + 2mZ2r .

Then, there exists an `1-tester T (ε, 0, s, q) for L with query complexity

q(ε, s) = O

(
2km−1 · 1

ε
log

1

s

)
.

In particular, when the height m and the degrees are constant, the query complexity of the
tester is a constant.

For the lower bound, we obtain the following corollary using known lower bounds for testing
Reed-Muller codes.

Corollary 1.4. Let 0 ≤ k0 < k1 < · · · < km−1 < r be integers such that the family of Reed-Muller
codes RM(k0, r) ⊆ RM(k1, r) ⊆ · · · ⊆ RM(km−1, r) satisfies the Schur product condition. Let
0 < ε, c, s < 1 be constants and L be the lattice obtained from this family of codes using the code
formula construction:

L = RM(k0, r) + 2RM(k1, r) + · · ·+ 2m−1RM(km−1, r) + 2mZ2r .

Then, every (possibly 2-sided, adaptive) `1-tester T (ε, c, s, q) for L has query complexity

q = Ω(2km−1).

We note that for code formula lattices obtained from Reed-Muller codes, Corollaries 1.3 and
1.4 show matching bounds (up to a constant factor depending on ε, s).

Random lattices. We also observe that random lattices obtained from binary, random LDPC
codes are not testable with a small number of queries. Indeed, consider the following distribution
of random lattices (e.g., [11, 5]): For constants b < a, let m = nb/a and let H ∈ Fm×n2 be a random
matrix such that each row and column has exactly a and b non-zeroes respectively. Consider the
linear code Ca,b := {x ∈ Fn2 : Hx = 0(mod 2)} and the code formula lattice L(Ca,b) associated with
the linear code Ca,b.

Theorem 1.5. There exist constants a, b, ε, c, s such that every (possibly 2-sided, adaptive)
`1-tester T (ε, c, s, q) for L(Ca,b) has query complexity q = Ω(n).

The above theorem follows as an immediate corollary of Theorem 1.2 and of Theorem 3.7 in [5].

1.3.2 Tolerant testing code formulas

We also obtain upper bounds for tolerantly testing code formula lattices.

Theorem 1.6. Let 0 < ε1, ε2, c, s < 1 and C0 ⊆ C1 ⊆ · · · ⊆ Cm−1 ⊆ {0, 1}n be a family of
binary linear codes satisfying the Schur product condition. Suppose every Ci has a tolerant tester

7

Ti(2ε1,
ε2

m2i+1 ,
c

m+1 , s, qi). Let γ = min{c/(m + 1), s}, ε2 > m2m+1ε1. Then there exists an `1-

tolerant-tester T (ε1, ε2, c, s, q) for the lattice L(〈Ci〉m−1
i=0) with query complexity

q = O

(
1

(ε2 − 2ε1)2
log

(
1

γ

))
+
m−1∑
i=0

qi.

Corollary 1.7. Let 0 ≤ k0 < k1 < · · · < km−1 < r be integers such that the family of Reed-Muller
codes RM(k0, r) ⊆ RM(k1, r) ⊆ · · · ⊆ RM(km−1, r) satisfies the Schur product condition. Let L be
the lattice obtained from this family of codes using the code formula construction:

L = RM(k0, r) + 2RM(k1, r) + · · ·+ 2m−1RM(km−1, r) + 2mZ2r .

Then there exists a `1-tolerant-tester T (ε1, ε2, 1/3, 1/3, q) for L for all ε1 ≤
c′1

2km−1
, ε2 ≥

c′2m

2k0−1 (for

some constants c′1 and c′2) with query complexity q = O(2km−1 · logm).

1.3.3 A canonical/linear test for lattices

Our next result makes progress towards addressing Question 2. We show a reduction from any given
arbitrary test to a canonical linear test, thus suggesting that it is sufficient to design canonical linear
tests for achieving low query complexity. In order to describe the intuition behind a canonical linear
test, we first illustrate how to solve the membership testing problem when all coordinates of the
input are known. For a given lattice L, its dual lattice is defined as

L⊥ := {u ∈ span(L) | 〈u, v〉 ∈ Z, for all v ∈ L}.

It is easy to verify that (L⊥)⊥ = L. Furthermore, a vector v ∈ L if and only if for all u ∈ L⊥, we
have 〈u, v〉 ∈ Z. Thus, to test membership of t in L in the classical decision sense, it is sufficient
to verify whether t has integer inner products with a set of basis vectors of the dual lattice L⊥.
Inspired by this observation, we define a canonical linear test for lattices as follows. For a lattice
L ⊆ Rn and J ⊆ [n], let L⊥J := {x ∈ L⊥ | supp(x) ⊆ J}, where supp(x) is the set of non-zero
indices of the vector x.

Definition 6 (Linear Tester). A linear tester for a lattice L ⊆ Zn is a probabilistic algorithm which
queries a subset J = {j1, . . . , jq} ⊆ [n] of coordinates of the input t ∈ Rn and accepts t if and only
if 〈t, x〉 ∈ Z for all x ∈ L⊥J . 2

Remark. By definition, the probabilistic choices of a linear tester are only over the set of coor-
dinates to be queried: upon fixing the coordinate queries, the choice of the algorithm to accept or
reject is fully determined. Furthermore, a linear tester is 1-sided since if the input t is a lattice
vector, then for every dual vector u ∈ L⊥, the inner product 〈u, t〉 is integral, and so it will be
accepted with probability 1.

We show that non-adaptive linear tests are nearly as powerful as 2-sided adaptive tests for
a full-rank lattice. We reduce any (possibly 2-sided, and adaptive) test for a full-rank lattice to
a non-adaptive linear test for the same distance parameter ε, with a small increase in the query
complexity and the soundness error.

2 Verifying whether 〈t, x〉 ∈ Z for all x ∈ L⊥J can be performed efficiently by checking inner products with a set of
basis vectors of the lattice L⊥J .

8

Theorem 1.8. Let L ⊆ Zn be a lattice with rank(L) = n. If there exists an adaptive 2-sided
`p-tester T (ε, c, s, q) with query complexity q = qT (ε, c, s), then there exists a non-adaptive linear
`p-tester T ′(ε, 0, c+ s, q′) with query complexity q′ = qT (ε/2, c, s) +O((1/εp) log (1/s)).

Furthermore, if we are guaranteed that the inputs are in Zn, then the query complexity of
the test T ′ above can be improved to be identical to that of T (up to a constant factor in the ε
parameter). The increase in the query complexity comes from an extra step used to verify the
integrality of the input.

Theorem 1.8 suggests that, for the purposes of designing a tester with small query complexity,
it is sufficient to design a non-adaptive linear tester, i.e., it suffices to only identify the probability
distribution for the coordinates that are queried. Moreover, this theorem makes progress towards
Question 2, since it shows that a lower bound on the query complexity of non-adaptive linear tests
for a particular lattice implies a lower bound on the query complexity of all tests for that lattice.
Thus in order to understand the existence of low query complexity tester for a particular lattice,
it is sufficient to examine the existence of low query complexity non-adaptive linear tester for that
lattice.

We note that Theorem 1.8 is the analogue of the result of [5] for linear error-correcting codes.
In section 2, we comment on the comparison between our proof and that in [5].

1.3.4 Testing membership of inputs outside the span of the lattice

We also observe a stark difference between the membership testing problem for a linear code, and
the membership testing problem for a lattice. In the membership testing problem for a linear code
C ⊆ Fn defined over a finite field that is specified by a basis, the input is assumed to be a vector
in Fn and the goal is to verify whether the input lies in the span of the basis (see definition 3).
As opposed to codes, for a lattice L ⊆ Rn, the input is an arbitrary real vector, and the goal is to
verify whether the input is a member of L, and not to verify whether the input is a member of the
span of the lattice. Thus, the inputs to the lattice membership testing problem could lie either in
span(L), or outside span(L). Interestingly, for some lattices it is easy to show strong lower bounds
on the query complexity if the inputs are allowed to lie outside span(L), thus suggesting that such
inputs are hard to test.

Theorem 1.9. Let L ⊆ Zn be a lattice of rank k. Let P ⊆ [n] be the support of the vectors in
span(L)⊥. Let 0 < ε, c, s < 1. Every non-adaptive `p-tester T (ε, c, s, q) for L for inputs in Rn has
query complexity

q = Ω(|P |).

On the other hand, testers for inputs in the span(L) can be lifted to obtain testers for all inputs
(including inputs that could possibly lie outside span(L)).

Theorem 1.10. Let L ⊆ Zn be a lattice of rank k. Let P ⊆ [n] be the support of the vectors in
span(L)⊥. Let 0 < ε, c, s < 1, and suppose L has an `p-tester T (ε, c, s, q) for inputs t ∈ span(L).
Then L has a tester T ′(2ε, c, s, q′) for inputs in Rn with query complexity

q′ ≤ q + |P |.

Theorem 1.10 implies that for lattices L of rank at most n− 1, if the membership testing prob-
lem for inputs that lie in span(L) is solvable using a small number of queries and if span(L)⊥ is

9

supported on few coordinates, then the membership testing problem for all inputs (including those
that do not lie in span(L)) is solvable using a small number of queries.

Knapsack Lattices. Theorem 1.9 implies a linear lower bound for non-adaptively testing a
well-known family of lattices, known as knapsack lattices, which have been investigated in the quest
towards lattice-based cryptosystems [25, 34, 29]. We recall that a knapsack lattice is generated by
a set of basis vectors B = {b1, . . . , bn−1}, bi ∈ Rn that are of the form

b1 = (1, 0, . . . , 0, a1)

b2 = (0, 1, . . . , 0, a2)

...

bn−1 = (0, 0, . . . , 1, an−1)

where a1, . . . , an are integers. We denote such a knapsack lattice by La1,...,an−1 .

Corollary 1.11. Let a1, . . . , an be integers and 0 < ε, c, s < 1. Every non-adaptive `p-tester
T (ε, c, s, q) for La1,...,an has query complexity

q = Ω(n).

However, knapsack lattices with bounded coefficients are testable with a constant number of
queries if the inputs are promised to lie in span(L).

Theorem 1.12. Let a1, . . . , an be integers with M = maxi∈[n] |ai|p and 0 < ε, s < 1. There exists

a non-adaptive `p-tester T (ε, 0, s, q) for La1,...,an with query complexity q = O
(
M
εp · log 1

s

)
, if the

inputs are guaranteed to lie in span(L).

Theorem 1.12 indicates that the large lower bound suggested by Theorem 1.9 could be circum-
vented for certain lattices if we are promised that the inputs lie in span(L). The assumption that
the input lies in span(L) is natural in decoding problems for lattices.

2 Overview of the proofs

2.1 Upper and lower bounds for testing general code formula lattices

The constructions of a tester for Theorem 1.1 and a tolerant tester for Theorem 1.6 follow the
natural intuition that in order to test the lattice one can test the underlying codes individually.
The proof relies on a triangle inequality that can be derived for such lattices. The application to
code-formula lattices constructed from Reed-Muller codes follows from the tight analysis of Reed-
Muller code testing from [7], which guarantees constant rejection probability of inputs that are at
distance proportional to the minimum distance of the code.

While the tester that we construct from code testers for the purposes of proving Theorem 1.1
is an adaptive linear test, there is a simple variant that is a non-adaptive linear test with at least
as good correctness and soundness. (see Remark 5.16 for a formal description).

The lower bound (Theorem 1.2) relies on the fact that if an input t is far from the code Ck in
the code formula construction, then the vector 2kt is far from the lattice (Lemma 3.3). Moreover,
if t ∈ Ck then 2kt belongs to the lattice. Therefore a test for the lattice can be turned into a test
for the constituent codes.

10

2.2 From general tests to canonical tests

We briefly outline our reduction for Theorem 1.8. Suppose T (ε, c, s, q) is a 2-sided, adaptive tester
with query complexity q = qT (ε, c, s) for a full rank integral lattice L. Such a tester handles all
real-valued inputs. We first restrict T to a test that processes only integral inputs in the bounded
set Zd = {0, 1, . . . , d − 1} (for some carefully chosen d), and so the restricted test inherits all the
parameters of T . We remark that Zd ⊂ Z is a subset of integers, and it should not be confused
with Zd, the ring of integers modulo d.

A key ingredient in our reduction is choosing the appropriate value of d in order to enable the
same guarantees as that of codes. We choose d such that dZn ⊆ L. Such a d always exists [27].
This choice of d allows us to add any vector in V = L mod d (embedded in Rn) to any vector
x ∈ Rn without changing the distance of x to L in any `p-norm (see Proposition 5.2).

Since our inputs are now integral and bounded, any adaptive test can be viewed as a distribution
over deterministic tests, which themselves can be viewed as decision trees. This allows us to proceed
along the same lines as in the reduction for codes over finite fields of [5].

We exploit the property that adding any vector in V to any vector x ∈ Rn does not change
the distance to L. In the first step of our reduction we add a random vector in V to the input
and perform a probabilistic linear test. The idea is that one can relabel the decision tree of any
test according to the decision tree of a linear test, such that the error shifts from the positive
(yes) instances to the negative (no) instances (see Lemma 5.3). A simple property of lattices used
in this reduction is that if the set of queries I and answers aI do not have a local witness for
non-membership in the lattice (in the form of a dual lattice vector v supported on I such that
〈wI , vI〉 6∈ Z), then there exists w ∈ L that extends aI to the remaining set of coordinates (i.e.,
aI = wI).

In the next step we remove the adaptive aspect of the test to obtain a non-adaptive linear test
for inputs in Znd (see Lemma 5.4). We obtain this tester by performing the adaptive queries on
a randomly chosen vector in V (and not on the input itself) and rejecting/accepting according
to whether there exists a local witness for the non-membership of the input queried on the same
coordinates.

We then lift this test to a non-adaptive linear test for inputs in Zn, by simulating the test over
Znd on the same queried coordinates but using the answers obtained after taking modulo d. Owing
to the choice of d, this does not change the distance of the input to the lattice (see Lemma 5.5).

Finally, we extend this test to a non-adaptive linear test for inputs in Rn by performing some
additional queries to rule out inputs that are not in Zn. For this, we design a tester for the integer
lattice Zn with query complexity O((1/εp) log (1/s)). This final step of testing integrality increases
the overall query complexity to qT (ε/2, c, s) +O((1/εp) log (1/s)) (see Lemma 5.6).

Organization. We prove the upper bound and lower bound for testing code formula constructions
(Theorem 1.1, Theorem 1.2) and its instantiations to Reed-Muller codes (Corollary 1.3, Corol-
lary 1.4) in Section 3. The upper bound for tolerant testing code-formula constructions (Theorem
1.6) and its instantiations to Reed-Muller codes (Corollary 1.7) are proved in Section 4. We present
the formal lemmas needed to prove Theorem 1.8 and their proofs in Section 5. We address non-
full-rank lattices and prove Theorems 1.9, 1.10, Corollary 1.11 and Theorem 1.12 in Section 6.

11

3 Testing Code-Formula Lattices

3.1 Upper Bounds for Code-Formula Lattices

In this section we construct a tester for testing membership in lattices obtained from the code
formula construction using a tester for the constituent codes.

Theorem 1.1. Let 0 < ε, s < 1 and C0 ⊆ C1 ⊆ · · · ⊆ Cm−1 ⊆ {0, 1}n be a family of bi-
nary linear codes satisfying the Schur product condition. Suppose every Ci has a 1-sided tester
Ti(ε/m2i+1, 0, s, qi). Then, there exists an `1-tester T (ε, 0, s, q) for the lattice L(〈Ci〉m−1

i=0) with
query complexity

q = O

(
1

ε
log

1

s

)
+

m−1∑
i=1

qi.

Proof. Let L := L(〈Ci〉m−1
i=0). First, we use Lemma 5.6 to reduce the task to testing integral inputs

for distance parameter ε/2. According to the lemma, it suffices to show that all such inputs can be
tested with 1-sided error and using

∑m−1
i=1 qi queries.

Now, let w ∈ Zn denote the input. We may assume that all coordinates of w are non-negative
integers less than 2m. Otherwise, we can shift each coordinate by an appropriate (possibly differ-
ent) multiple of 2m to make sure this condition holds. Observe that each such operation would
correspond to shifting w by an integer multiple of the lattice vector 2mei, where ei is the ith basis
vector, and that translating a vector by a lattice point does not affect its distance to the lattice.
Moreover, observe that this transformation can be applied implicitly, locally, and efficiently by the
testing algorithm as the queries are made.

Let w0, . . . , wm−1 ∈ {0, 1}n where wi(j) is the (i+1)th least significant bit in the binary decom-
position of the jth coordinate of w. Thus we have w =

∑m−1
i=0 2iwi. Once again, the coordinates of

wi can be computed implicitly, locally and efficiently by the algorithm as the queries are made.
The tester T would now proceed as follows: Run Ti(ε/(m2i+1), 0, s, qi) on wi for every i =

0, 1, . . . ,m− 1. Accept if and only if all tests accept.
The overall query complexity of this tester is

∑m−1
i=1 qi.

The completeness of this tester is easy to deduce. Indeed, if w ∈ L(〈Ci〉m−1
i=0), then by definition

of the code formula construction, there exist w̃i ∈ Ci for every i = 0, 1, . . . ,m − 1 and an integer
w̃m ∈ 2mZn such that w =

∑m−1
i=0 2iw̃i + w̃m. Since entries of w are non-negative integers less than

2m, we must have w̃m = 0. Moreover, since w̃i ∈ {0, 1}n and the binary representation is unique,
it must be that w̃i ∈ Ci for i = 0, . . . ,m− 1. That is, each of the wi embedded in Fn2 are in Ci and
therefore, each Ti(ε/(2

i+1m), 0, s, qi) (and thus the overall tester) will accept wi.
Before analyzing the soundness, we observe the following simple inequality.

Claim 3.1. d1(w,L) ≤ d1(w0, C0) + 2d1(w1, C1) + · · ·+ 2m−1d1(wm−1, Cm−1).

Proof. Let ci ∈ {0, 1}n be the closest codeword to wi in Ci for every i = 0, 1, . . . ,m− 1. From the
definition of the code formula construction, we know that the vector v = c0 + 2c1 + · · ·+ 2m−1cm−1

12

is a lattice vector. Therefore,

m−1∑
i=0

2id1(wi, Ci) =
m−1∑
i=0

2i‖wi − ci‖1

≥

∥∥∥∥∥
m−1∑
i=0

2i(wi − ci)

∥∥∥∥∥
1

(by the triangle inequality)

= d1(w, v)

≥ d1(w,L).

Now, if d1(w,L) ≥ εn/2, then by Claim 3.1 we have

d1(w0, C0) + 2d1(w1, C1) + · · ·+ 2m−1d1(wm−1, Cm−1) ≥ εn/2.

Therefore, by averaging, for some i ∈ {0, 1, . . . ,m − 1} we must have d1(wi, Ci) ≥ (ε/(m2i+1))n.
Thus the tester Ti(ε/(m2i+1), 0, s, qi) will reject with probability at least 1−s. Hence the soundness
follows.

We now apply the result of Theorem 1.1 to the lattice obtained by applying code formula on a
nested family of Reed-Muller codes. In order to do so, we use the following result.

Theorem 3.2. [7] For any 0 ≤ k ≤ r and 0 < s < 1, RM(k, r) has a 1-sided tester T (ε, 0, s, q(ε, s))
with query complexity q(ε, s) = O((log 1

s)(2k + 1
ε)) whose queries are each uniformly distributed.

Using the above result in Theorem 1.1, we obtain Corollary 1.3 whose proof we present next.

Corollary 1.3. Let 0 ≤ k0 < k1 < · · · < km−1 < r be integers such that the family of Reed-
Muller codes RM(k0, r) ⊆ RM(k1, r) ⊆ · · · ⊆ RM(km−1, r) satisfies the Schur product condition.
Let 0 < ε, s < 1 and L be the lattice obtained from this family of codes using the code formula
construction:

L = RM(k0, r) + 2RM(k1, r) + · · ·+ 2m−1RM(km−1, r) + 2mZ2r .

Then, there exists an `1-tester T (ε, 0, s, q) for L with query complexity

q(ε, s) = O

(
2km−1 · 1

ε
log

1

s

)
.

Proof. From Theorem 1.1, for any ε > 0, there is a T (ε, 0, s, q(ε, s)) tester for the code formula
lattice L(〈Ci〉m−1

i=0) with query complexity q(ε, s) = O
(

1
ε log 1

s

)
+
∑m−1

i=0 qi
(

ε
m2i+1 , s

)
, where qi(ε, s)

is the query complexity of testing the code Ci (with distance parameter ε and soundness error
s). By Theorem 3.2, each RM(ki, r) has a 1-sided tester Ti(εi, 0, s, qi(εi, s)) with query complexity
qi(εi, s) = O(log(1/s))(2ki + 1/εi). Therefore, the 1-sided tester T (ε, 0, s, q) for the code formula

13

lattice L(〈RM(i, r)〉km−1

i=k0
) has query complexity

q(ε, s) = O

(
1

ε
log

1

s

)
+

m−1∑
i=0

qi

(ε

m2i+1
, s
)

= O

(
1

ε
log

1

s

)m−1∑
i=0

(
2ki +m2i+1

)
= O

(
1

ε
log

1

s

)(
m2m +

m−1∑
i=0

2ki

)

= O

(
1

ε
log

1

s

)(
m2m + 2km−1

)
= O

(
1

ε
log

1

s
· 2km−1

)
.

To see the last step of the above equation, recall that in order for L(〈RM(i, r)〉km−1

i=k0
) to be a

lattice, we must have ki ≥ 2i−1 for i > 0, and in particular km−1 ≥ 2m−2. So 2km−1 ≥ 22m−2 ≥ m2m,
for m ≥ 5.

3.2 Lower bounds for Code-Formula Lattices

In this section, we prove Theorem 1.2. We will use the following lemma.

Lemma 3.3. Let C0, C1, . . . , Cm−1 be a family of codes satisfying the Schur product condition and
L = L(〈Ci〉m−1

i=0). Let t ∈ {0, 1}n and k ∈ {0, 1, . . . ,m− 1}. Then

d1(t, Ck) ≤ d1(2kt, L) ≤ 2kd1(t, Ck).

Proof. Since 2kCk is contained in L, d1(2kt, L) ≤ d1(2kt, 2kCk) = 2kd1(t, Ck). So, the distance of
2kt to the lattice is at most 2kd1(t, Ck). We now show the inequality

d1(2kt, L) ≥ d1(t, Ck).

Let v =
∑m−1

j=0 2jcj + 2mz for some arbitrary cj ∈ Cj (for every j ∈ {0, 1, . . . ,m − 1}) and some

z ∈ Zn, be an arbitrary lattice vector. We will show that d1(2kt, v) ≥ d1(t, Ck). Let u = ck− t, and
S ⊆ [n] be the support of u, then |S| ≥ d1(t, Ck).

By Claim 3.4, d1(2kt, v) ≥
∑

i∈S |v(i)−2kt(i)| ≥ |S| (where v(i) and t(i) represent the ith entry
in the respective vectors), which completes the proof.

Claim 3.4. For every i ∈ S, |v(i)− 2kt(i)| ≥ 1.

Proof. Let i ∈ S. Since 2ku = 2kck − 2kt, we have 2k|u(i)| = 2k. We also have

|v(i)− 2kt(i)| =

∣∣∣∣∣∣
k−1∑
j=0

2jcj(i) + 2ku(i) +

m−1∑
j=k+1

2jcj(i) + 2mz(i)

∣∣∣∣∣∣ .

14

Since cj(i) ∈ {0, 1} for every j ∈ {0, 1, . . . , k − 1}, the first term in the above sum is at least zero
and at most 2k − 1. The maximum is achieved when all cj(i) = 1 for all j ∈ [k − 1], and u(i) = 1.

Hence, 1 ≤
∣∣∣∑k−1

j=0 2jcj(i) + 2ku(i)
∣∣∣ ≤ 2k+1 − 1. Since ck+1(i) ∈ {0, 1}, we have

1 ≤

∣∣∣∣∣∣
k−1∑
j=0

2jcj(i) + 2ku(i) + 2k+1ck+1(i)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
k−1∑
j=0

2jcj(i) + 2ku(i)

∣∣∣∣∣∣+
∣∣∣2k+1ck+1(i)

∣∣∣ ≤ 2k+2 − 1.

Proceeding similarly, since cj(i) ∈ {0, 1} for j = k + 2, . . . ,m− 1, we have

1 ≤

∣∣∣∣∣∣
k−1∑
j=0

2jcj(i) + 2ku(i) +
m−1∑
j=k+1

2jcj(i)

∣∣∣∣∣∣ ≤ 2m − 1.

Since zm ∈ Z, we conclude that
∣∣∣∑k−1

j=0 2jcj(i) + 2ku(i) +
∑m−1

j=k+1 2jcj(i) + 2mz(i)
∣∣∣ ≥ 1.

Theorem 1.2. Let 0 < ε, c, s < 1 and C0 ⊆ C1 ⊆ · · · ⊆ Cm−1 ⊆ {0, 1}n be a family of binary linear
codes satisfying the Schur product condition. Let qi = qi(ε, c, s) be such that any (possibly adaptive,
2-sided) `1-tester Ti(ε, c, s, q

′) for Ci satisfies q′ = Ω(qi), for every i = 0, 1, . . . ,m− 1. Then every
(possibly adaptive, 2-sided) `1-tester T (ε, c, s, q) for the lattice L(〈Ci〉m−1

i=0) has query complexity

q = Ω

(
max

{
1

ε
log

1

s
, max
i=0,1,...,m−1

qi

})
.

Proof. Let T (ε, c, s, q) be a test for the code lattice, and let k ∈ {0, 1, . . . ,m − 1}. We construct
a tester Tk(ε, c, s, q) for Ck as follows: On input w ∈ {0, 1}n, run T (ε, c, s, q) on 2kw and accept if
and only if T accepts. The query complexity of Tk is the same as the query complexity of T . If
the input w is a codeword in Ck, then by the definition of the lattice, 2kw is a lattice vector, and
Tk will accept w with probability at least 1 − c. If d1(w,Ck) ≥ εn, then by Lemma 3.3, we have
that d1(2kw,L(〈Ci〉)m−1

i=0) ≥ εn. Therefore, Tk will reject w with probability at least 1− s. Finally,
since L ⊆ Zn we have that d(w,Zn) ≤ d(w,L) and so we could use T to test membership in Zn.
By Claim 3.5 testing Zn requires q = Ω(1

ε log(1/s)) queries.

Claim 3.5. Any test Tk(ε, c, s, q) for Zn requires q = Ω(1
ε log(1/s)) queries.

Proof. First, we use Yao’s duality theorem [36] which is a standard tool in proving lower bounds
and assume that the testing algorithm is, without loss of generality, deterministic (but possibly
adaptive). We exhibit two distributions on the inputs which the algorithm is expected to distinguish
but cannot do so without making sufficiently many queries. The yes case distribution is the
deterministic distribution on all-zeros input (which is a lattice point). Given an input from this
distribution, the algorithm should accept. The no case distribution would consists of the all-zeros
vector but with a uniformly random set S of 2εn coordinate positions changed from 0 to 1/2.
Indeed, all vectors on the support of this distribution are ε-far from the lattice. Assuming that
q ≤ n/2 (otherwise there is nothing to prove), each time the algorithm queries a position that has
not been queries before, there is at most a 4ε chance that it hits any position in S (even conditioned
on the past query outcomes). Thus the probability that the algorithm ever succeeds in finding a
position in S is at most 1− (1− 4ε)q, which, on the other hand by the soundness condition, should
be at least 1−s. Therefore, the soundness error is at least s ≥ (1−4ε)q or, in other words, in order
to achieve a given s we must have q = Ω(1

ε log(1
s)).

15

In the case of code formula lattices generated from Reed-Muller codes of order r, we note that
n = 2r. We need the following known lower bound on the query complexity of testing Reed-Muller
codes. For completeness we reproduce the exact statement that we need in this work and include
a proof.

Theorem 3.6 ([2]). Let T (ε, c, s, q) be a (possibly 2-sided and adaptive) tester for the code RM(k, r)
where k ≤ r/(2 log r), ε < 1/2 − Ω(1), and c + s < 1 − Ω(1) (where Ω(1) hides arbitrarily small
positive absolute constants). Then, q ≥ 2k.

Proof. Using the reduction from 2-sided, adaptive testers to non-adaptive, 1-sided tests for any
linear code (applicable to RM codes) of [5], it is sufficient to focus on the latter tests. Let C be the
code RM(k, r). First we note that the length of the code is R := 2r and its dimension is

log |C| =
k∑
i=0

(
r

i

)
≤ 1 + krk.

Therefore, noting that k ≤ r/(2 log r),

|C| = O(2kr
k
) = O(2r

k+1
) = O(2(logR)

√
R) = 2o(R).

Let V be the number of points in a Hamming ball of radius εR in {0, 1}R. Thus we have V ≤ 2h(ε)R,
where h(·) denotes the binary entropy function. Let S be the set of points in {0, 1}R that have
Hamming distance at most εr with the code. Of course we have

|S| ≤ V |C| = O(2(h(ε)+o(1))R).

Since ε < 1 is a fixed constant, this implies |S|/2R = o(1). Now we run the tester with the following
two input distributions:

Case 1. The tester is given a uniformly random string in {0, 1}R as the input.

Case 2. The tester is given a uniformly random codeword of C as the input.

Since the dual distance of C is 2k+1, a standard coding theoretic fact implies that a uniformly
random codeword of C is t-wise independent for t = 2k+1; i.e., any local view of up to t coordinates
of the random codeword is exactly the uniform distribution. Therefore, since the tester makes no
more than t queries, its output distribution is exactly the same in the above two cases. Let p be
the acceptance probability of the tester with respect to the (common) output distribution. In order
to satisfy completeness, the tester should accept with probability at least 1− c in the second case.
Therefore, we must have p ≥ 1− c.

On the other hand, a uniform random string in {0, 1}R is ε-far from the code with probability
1 − o(1) according to the above bound on |S|. In the conditional world where this string actually
becomes ε-far from the code, the acceptance probability of the code would thus remain within p(1±
o(1)). However, in this case the soundness implies that the tester should accept with probability
at most s, and thus, p ≤ s(1 + o(1)). Thus the two distributions provided by the above two cases
would violate requirements of the local tester assuming that c+ s ≤ 1− Ω(1).

16

Corollary 1.4. Let 0 ≤ k0 < k1 < · · · < km−1 < r be integers such that the family of Reed-Muller
codes RM(k0, r) ⊆ RM(k1, r) ⊆ · · · ⊆ RM(km−1, r) satisfies the Schur product condition. Let
0 < ε, c, s < 1 be constants and L be the lattice obtained from this family of codes using the code
formula construction:

L = RM(k0, r) + 2RM(k1, r) + · · ·+ 2m−1RM(km−1, r) + 2mZ2r .

Then, every (possibly 2-sided, adaptive) `1-tester T (ε, c, s, q) for L has query complexity

q = Ω(2km−1).

Proof. Suppose we have a tester T (ε, c, s, q) for L(〈RM(ki, r)〉m−1
i=0). By Theorem 1.2, we have

q ≥ max
i=0,1,...,m−1

qi(ε, c, s).

By Theorem 3.6, it follows that q = Ω(2km−1).

4 Tolerant Testing Code Formula Lattices

We first give a tolerant tester for testing membership in Zn. We will use this tester in the design of
a tolerant tester for testing membership in lattices obtained from the code formula construction.

Lemma 4.1. Let ε1, ε2, c, s > 0 such that ε2 > ε1 and γ = min{c, s} . There is a tolerant tester
TZ(ε1, ε2, c, s, qZ) for Zn which uses qZ = O(1/(ε2 − ε1)2 · log(1

γ)) queries.

Proof. The tester estimates the distance of the input from Zn by querying O(1/(ε2 − ε1)2 log(1
γ))

coordinates uniformly at random. If the estimated distance is at least (ε1+ε2)
2 n, then it rejects,

otherwise it accepts. The correctness and soundness follow from Chernoff bounds. We describe the
test formally as follows:

1. Query q := C/(ε2 − ε1)2 · log(1
γ) coordinates of the input t uniformly at random, for some

constant C to be determined later. Let I ⊆ [n] be the indices of the queried coordinates.

2. Let δ :=
∑

i∈I |ti−btie|
q .

3. If δ ≤ ε1+ε2
2 then Accept.

4. Else Reject.

Suppose d(t,Zn) ≤ ε1n, then d(t,Zn)/n =
∑n

i=1|ti − btie|/n ≤ ε1. Therefore, E[δ] ≤ ε1. By a

Chernoff bound, it follows that Pr[δ − ε1 > ε2−ε1
2] ≤ e−q(ε2−ε1)2/2 ≤ c for q ≥ C/(ε2 − ε1)2 · log(1

γ)
and a constant C > 0.

Now suppose d(t,Zn) > ε2n. Then, d(t,Zn)/n =
∑n

i=1 |ti − btie|/n ≥ ε2. Again, by a Chernoff

bound, and suitable choice of the constant C, it follows that Pr[ε2 − δ ≥ ε2−ε1
2] ≤ e−q(ε2−ε1)2/4 ≤ s

for q chosen as above.

We now describe a tolerant tester for code formula lattices.

17

Theorem 1.6. Let 0 < ε1, ε2, c, s < 1 and C0 ⊆ C1 ⊆ · · · ⊆ Cm−1 ⊆ {0, 1}n be a family of
binary linear codes satisfying the Schur product condition. Suppose every Ci has a tolerant tester
Ti(2ε1,

ε2
m2i+1 ,

c
m+1 , s, qi). Let γ = min{c/(m + 1), s}, ε2 > m2m+1ε1. Then there exists an `1-

tolerant-tester T (ε1, ε2, c, s, q) for the lattice L(〈Ci〉m−1
i=0) with query complexity

q = O

(
1

(ε2 − 2ε1)2
log

(
1

γ

))
+
m−1∑
i=0

qi.

Proof. We use the tolerant testers Ti for the codes Ci and the tolerant tester TZ for Zn to construct
a tolerant tester for L.

Let bte denote the vector obtained by rounding each coordinate of t to its nearest integer and
for any vector x, let x(j) denote the jth coordinate of x. Let t0, ..., tm−1 ∈ {0, 1}n where ti(j) is
the (i + 1)th least significant bit in the binary decomposition of the jth coordinate of bte. Define
tm = 1

2m (t−
∑m−1

i=0 2iti) ∈ Rn. Therefore, t can be written as t = t0 + 2t1 + · · ·+ 2m−1tm−1 + 2mtm,
where ti ∈ {0, 1}n for all i ∈ [m− 1] and tm ∈ Rn. Moreover, tm ∈ Zn if and only if t ∈ Zn.

The tolerant tester T (ε1, ε2, c, s, q) on input t ∈ Rn now proceeds as follows: Run TZ(ε1,
ε2
2 ,

c
m+1 , s, qZ)

on t and Ti(2ε1,
ε2

m2i+1 ,
c

m+1 , s, qi) on ti for all i ∈ {0, 1, . . . ,m − 1}. Accept if and only if all tests
accept. The query complexity of T (ε1, ε2, c, s, q) is therefore:

q(ε1, ε2, c, s) =
m−1∑
i=0

qi + qZ ,

where we recall that qZ is the query complexity of TZ(ε1,
ε2
2 ,

c
m+1 , s, qZ). From Lemma 4.1, we

know that qZ = O(1
(ε2−2ε1)2

log(1
γ)), where γ = min{ c

m+1 , s}. We now analyze the soundness and

completeness of this test.

Soundness

Suppose d(t, L) ≥ ε2n. We first show that either t is far from Zn or the closest integer vector to t
is far from the lattice.

Claim 4.2. d(t, L) ≤ d(bte, L) + d(t,Zn)

Proof. Let u be the closest lattice vector to bte. Then

d(t, L) ≤ ‖t− u‖1 = ‖(t− bte) + (bte − u)‖1 ≤ ‖t− bte‖1 + ‖bte − u‖1

Since ‖t− bte‖1 = d(t,Zn), it follows that d(t, L) ≤ d(bte, L) + d(t,Zn).

Therefore, if d(t, L) ≥ ε2n, then from Claim 4.2, either d(bte, L) ≥ ε2n/2 or d(t,Zn) ≥ ε2n/2. If
d(t,Zn) ≥ ε2n/2, then TZ rejects t with probability at least 1− s. If d(bte, L) ≥ ε2n/2, then from
Claim 3.1 proved in Section 3 we can conclude that there exists some i ∈ {0, 1, . . . ,m − 1} such
that 2id(ti, Ci) ≥ ε2n/2m, and Ti(ti, 2ε1, ε2/m2i+1) will reject ti with probability at least 1 − s.
Thus, if d(t, L) ≥ ε2n, then T rejects t with probability with at least 1− s.

18

Completeness

Suppose d(t, L) ≤ ε1n. Then d(t,Zn) ≤ ε1n, since L ⊆ Zn. So, TZ(ε1,
ε2
2 ,

c
m+1 , s, qZ) will accept

t with probability at least 1 − c
m+1 . We now show that each ti is also close to the corresponding

linear code Ci.
For the sake of contradiction, suppose d(ti, Ci) > 2ε1n for some i ∈ [m− 1]. We will show that

d(t, L) > ε1n. We do this in two steps. First we show in Lemma 4.3 that d(bte, L) > 2ε1n. Then
by Claim 4.5 and the fact that d(t,Zn) ≤ ε1n, we have that d(t, L) > ε1n, a contradiction.

Lemma 4.3. If d(ti, Ci) > 2ε1n for some i ∈ [m− 1], then d(bte, L) > 2ε1n.

Proof. Let v =
∑m−1

i=0 2ivi + 2mvm ∈ L be the closest lattice vector to bte. By definition of the
lattice, each vi ∈ Ci for i ∈ [m − 1] and vm ∈ Zn. Consider the vectors t0, t1, . . . , tm as defined
above (for which bte =

∑m−1
i=0 2iti + 2mtm). So, each ti ∈ {0, 1}n and tm ∈ Zn. The following

property of vectors with bounded entries will be used to prove the claim.

Claim 4.4. Let a0, a1, . . . , am−1 ∈ {−1, 0,+1}n and am ∈ Z. Define u = a0 + 2a1 + · · ·+ 2mam. If
there exists some k ∈ [m− 1] such that ‖ak‖1 > s, then ‖u‖1 > s.

Proof. Since ‖ak‖1 > s, and ak ∈ {−1, 0,+1}n, there exist at least s coordinates such that |ak(i)| =
1. Let S be the set of those indices, S = {i ∈ [n] : |ak(i)| = 1}. Since ‖ak‖1 > s, we know that
|S| > s. We now show that for all i ∈ S, |u(i)| ≥ 1. Therefore, ‖u‖1 > s.

Let i ∈ S. For each such coordinate, we can express u(i) =
∑m

j=0 2jaj(i). Let h ∈ [k] be the
smallest integer such that ah(i) 6= 0. We know that such h exists since ak(i) 6= 0. Therefore, we
know that u(i) mod 2h+1(= ah), is non-zero. Therefore, u(i) is also non-zero. Since u(i) ∈ Z, we
have that |u(i)| ≥ 1.

Therefore, |u(i)| ≥ 1 for all i ∈ S. and ‖u‖1 ≥ |S| > s.

Define ai = (ti − vi) for all i ∈ [m]. We note that each ai ∈ {−1, 0,+1}n for i ∈ [m − 1] and
that am ∈ Zn. The proof now follows from Claim 4.4 for s = 2ε1n.

The next claim is a straightforward application of the triangle inequality.

Claim 4.5. d(t, L) ≥ d(bte, L)− d(t,Zn)

Proof. Let u be the closest lattice vector to t.

d(bte, L) ≤ ‖bte − u‖1 = ‖bte − t+ t− u‖1.

By the triangle inequality, we have ‖bte−t+t−u‖1 ≤ ‖bte−t‖1+‖t−u‖1. Since u is the closest lattice
vector to t, d(t, L) = ‖t−u‖1. Also, ‖bte−t‖ = d(t,Zn), Therefore, d(bte, L) ≤ d(t, L)+d(t,Zn).

Thus, if d(t, L) ≤ ε1n, then TZ accepts t with probability at least 1− c
m+1 and each code tester

Ti accepts ti with probability at least 1− c
m+1 . Therefore, from the union bound, T accepts t with

probability at least 1−
∑m

i=0
c

m+1 = 1− c.

We next instantiate Theorem 1.6 for code-formula lattices obtained from Reed-Muller codes.
We first recall a simple observation made in [30] that any local test with individual queries uniformly
distributed is also a tolerant test.

19

Claim 4.6 ([30]). If a code C ⊆ {0, 1}n has a one-sided local test T (ε, 0, 1/3, q) whose queries are
each uniformly distributed, then C has a tolerant test T (ε1, ε2, 1/3, 1/3, q), with ε1 ≤ 1

3q and ε2 ≥ ε.

Using Claim 4.6 and Theorem 3.2, and by appropriately amplifying the success probability, we
get a tolerant test for Reed-Muller codes.

Corollary 4.7. For any k, r, c, s > 0 and γ = min{c, s}, there exists a tolerant test T (ε1, ε2, c, s, q)
for RM(k, r) such that ε1 ≤ c1

1
2k

, ε2 ≥ c2
1
2k

and q = O(2k log(1
γ)), for some c1, c2 > 0.

Proof. By Theorem 3.2 we know that there is a 1-sided tester T (ε, 0, 1/3, q) for RM(k, r) and
ε = O(1/2k) with query complexity q = O(2k) . From Claim 4.6, we know that we can obtain
a tolerant tester T (ε1, ε2, 1/3, 1/3, q) with O(2k) queries for any ε1 ≤ c1/2

k and ε2 ≥ c2/2
k. By

independently repeating the tester multiple times and taking majority vote to amplify the success
probability, for any 0 < c, s ≤ 1 and γ = min{c, s} we get a tolerant tester T (ε1, ε2, c, s, q) for
RM(n, k) with q = O(2k log(1

γ)) queries.

Using Corollary 4.7 and Theorem 1.6 we obtain the following immediate corollary.

Corollary 1.7. Let 0 ≤ k0 < k1 < · · · < km−1 < r be integers such that the family of Reed-Muller
codes RM(k0, r) ⊆ RM(k1, r) ⊆ · · · ⊆ RM(km−1, r) satisfies the Schur product condition. Let L be
the lattice obtained from this family of codes using the code formula construction:

L = RM(k0, r) + 2RM(k1, r) + · · ·+ 2m−1RM(km−1, r) + 2mZ2r .

Then there exists a `1-tolerant-tester T (ε1, ε2, 1/3, 1/3, q) for L for all ε1 ≤
c′1

2km−1
, ε2 ≥

c′2m

2k0−1 (for

some constants c′1 and c′2) with query complexity q = O(2km−1 · logm).

Proof. From Corollary 4.7, every RMki has a tolerant tester Ti(2ε1,
ε2

m2i+1 ,
1

3(m+1) ,
1
3 , qi) with query

complexity qi = O(2ki log(m+ 1)) for 2ε1 ≤ c1
2ki

and ε2
m2i+1 ≥ c2

2ki
for some constants c1, c2 > 0.

Using Theorem 1.6, we therefore conclude that L has a tolerant tester T (ε1, ε2,
1
3 ,

1
3 , q) with

query complexity q = O(1
(ε2−2ε1)2

log(m + 1)) +
∑m−1

i=0 O(2ki log(m + 1)) = O(2km−1 logm) for

2ε1 ≤ mini{ c12ki
} and ε2

m2i+1 ≥ maxi{ c22ki
}.

5 Reducing an arbitrary test to a non-adaptive linear test

In this section we sketch the proof of Theorem 1.8. Throughout this section, we focus on full-
rank integral lattices. Given a 2-sided adaptive `p-tester T (ε, c, s, q), with q = qT (ε, c, s) for an
integral lattice L, we construct a non-adaptive linear `p-tester T ′(ε, 0, c+s, q) with query complexity
q′ = qT (ε/2, c, s) + O((1/εp) log (1/s)). We reduce the inputs to a bounded set using the following
property of integral lattices.

Fact 5.1. [27] Given any full rank integral lattice L, there exists d ∈ Z such that d · Zn ⊆ L. In
particular |det(L)| · Zn ⊆ L for any lattice (where det(L) denotes the determinant of a lattice, a
parameter that can be computed given a basis of the lattice). For instance, we can take d = 2m for
the lattices of height m obtained using the code formula construction.

Let V = L mod d embedded in Zn (i.e., we treat V as a set of vectors in Zn each of which is
obtained by taking coordinate-wise modulo d of some lattice vector). Thus, V ⊆ Znd . We will need
the following properties of V , which we prove, for the sake of completeness.

20

Proposition 5.2. Let L ⊆ Zn be a full-rank lattice, d ∈ Z+ such that dZn ⊆ L, and let V =
L mod d ⊆ Zn. Then V satisfies the following properties:

1. v ∈ L if and only if v mod d ∈ V .

2. V = L ∩ Znd .

3. (v + V) mod d ⊆ V if and only if v ∈ L.

4. For any v ∈ Zn, dp(v, L) = dp(v mod d, L).

Proof. 1. If v ∈ L, then v mod d ∈ V by definition. For the opposite direction, let v ∈ Zn
be such that u = v mod d ∈ V . Then by the definition of V there exists v′ ∈ L such that
v′ = u = v (mod d). Then v − v′ ∈ dZn ⊆ L, and so v ∈ L.

2. By definition L ∩ Znd ⊆ V . To show that V ⊆ L note that by 1), if v ∈ V there exists v′ ∈ L
such that v′ = v mod d. As before, this implies that v ∈ L.

3. This statement follows by the fact that V ⊆ L and from the fact that lattices are closed under
addition.

4. Note that dp(v, L) = minu∈L dp(u, v) = minu∈L ‖v−u‖p. If v = dv1 +v2, since dv1 ∈ dZn ⊆ L,
it follows that minu∈L ‖v − u‖p = minu∈L ‖v2 − u‖p, since a lattice is closed under addition.

Theorem 1.8 will immediately follow by combining Lemmas 5.3, 5.4, 5.5, and 5.6 which will be
proved in the subsequent sections.

Lemma 5.3. Suppose a full-rank lattice L ⊆ Zn with dZn ⊆ L for d ∈ Z+ has an adaptive 2-
sided `p-tester T (ε, c, s, q) for inputs from the domain Znd . Then L has an adaptive linear `p-tester
T ′(ε, 0, c+ s, q) for inputs from the domain Znd .

Lemma 5.4. Suppose a full-rank lattice L ⊆ Zn with dZn ⊆ L for d ∈ Z+ has an adaptive linear
`p-tester T (ε, 0, s, q) for inputs from the domain Znd . Then L has a non-adaptive linear `p-tester
T ′(ε, 0, s, q) for inputs from the domain Znd .

Lemma 5.5. Let L ⊆ Zn be a full-rank lattice with dZn ⊆ L for d ∈ Z+. Then, L has a non-
adaptive linear `p-tester T (ε, 0, s, q) for inputs from the domain Znd if and only if L has a non-
adaptive linear `p-tester T ′(ε, 0, s, q) for inputs from the domain Zn.

Lemma 5.6. Suppose a full-rank lattice L ⊆ Zn has a non-adaptive `p-tester T (ε, c, s, q) for inputs
from the domain Zn. Then there exists a non-adaptive `p-tester T ′(ε, c, s, q′) for inputs in Rn with
query complexity q′ = q(ε/2, c, s) +O((1/εp) log (1/s)). Moreover, if T is a linear tester, then so is
T ′.

The proof of Lemma 5.6 uses the following tester for integer lattices which is based on querying
a random collection of coordinates and verifying whether all of them are integral.

Lemma 5.7. For every 0 < ε ≤ 1 and every 0 < s ≤ 1, there exists a non-adaptive linear `p-tester
Tp(ε, 0, s, qZ) for Zn with query complexity

qZ = O

(
1

εp
log

1

s

)
.

21

5.1 2-sided to Linear Tester

In this section, we prove Lemma 5.3. Given a 2-sided adaptive tester T (ε, c, s, q) for inputs x from
the domain Znd , we build an adaptive linear (thus one-sided) test T ′(ε, 0, c + s, q) for inputs from
the same domain Znd with the same query complexity as that of T in this section.

For an index set J ⊆ [n] and a vector w ∈ Znd , let X(w, J) := {x ∈ Znd | (∀ i ∈ J) xi = wi }.
For a subset of coordinates J ⊆ [n] and a vector w ∈ Znd , we say that there exists a dual witness
for X(w, J) if there exists α ∈ L⊥J such that 〈α,w〉 /∈ Z. That is, a dual witness α is a dual vector
entirely supported on J that proves none of the vectors in X(w, J) (and thus w) can be in the
lattice. Recall that V := L mod d where dZn ⊆ L.

If the input vector x is from the domain Znd , then each coordinate of the input has d possible
choices. Thus, any 2-sided adaptive tester T (ε, c, s, q) for inputs from the domain Znd , can be viewed
as a distribution over deterministic decision trees with each leaf being labeled 1 if accepting and
0 if rejecting. Therefore we will express the tester as T = (ΥT , DT), where ΥT is the set of all
decision trees (with at most q queries) and DT is a distribution over ΥT .

Let l be a leaf of a decision tree. We denote the coordinates queried along the path to l by
var(l). We denote the vector that is consistent with the queried coordinates along the path to l and
has zeros in the non-queried coordinates by sl. Let us define Vl to be the set of lattice vectors u
which are consistent with the queries along the path to l. Similarly, let V x

l be the set of vectors in
(x+V) mod d which are consistent with the queries along the path to l, i.e., Vl = X(sl, var(l))∩V
and V x

l = X(sl, var(l)) ∩ ((x + V) mod d). We need the following claim about the sizes of Vl and
V x
l .

Claim 5.8. For every leaf l in the decision tree Γ, if both Vl and V x
l are non-empty, then |Vl| = |V x

l |.

Proof. Let U denote the set of all the lattice vectors in Znd which have all 0’s in the positions
queried along the path to l. We know that U is non-empty because the all zeros vector is in U .

For every v ∈ Vl and u ∈ U , we have that (v + u) mod d is also in Vl since we are only
adding 0’s at the queried coordinates. Similarly, for every vector v′ ∈ V x

l and u ∈ U , we have that
(v′ + u) mod d is also in V x

l . Therefore, we know that (U + v) mod d ⊆ Vl for every v ∈ Vl and
similarly, (U + v′) mod d ⊆ V x

l for every vector v′ ∈ V x
l .

Further, for every two vectors u, v ∈ Vl, we have that (u− v) mod d is in U and since u and v
are both consistent along the path to l, the vector u−v has all zeros at the queried coordinates. So,
(u− v) mod d ∈ U . Therefore, (Vl − v) mod d ⊆ U for every v ∈ Vl and hence Vl ⊆ (U + v) mod d
for every v ∈ Vl. Similarly, for every vector v′ ∈ V x

l , we have that (V x
l − v′) mod d ⊆ U and hence

V x
l ⊆ (U + v′) mod d.

Therefore, if Vl and V x
l are non-empty, then (U + v) mod d = Vl for every vector v ∈ Vl and

(U + v′) mod d = V x
l for every vector v′ ∈ V x

l . Hence, |Vl| = |U | = |V x
l |.

We now show that if a linear test accepts, then there exists a lattice vector that is consistent
with the queried coordinates. In other words, if there is no dual witness then there is a lattice
vector that is accepted by the test.

In the following, let projJ(u) ∈ R|J | denote the projection of vector u to the coordinates in J
and projJ(S) denote the set of vectors obtained by projecting the vectors in S to the coordinates
in J . We note that the projection of a rational lattice to a set of coordinates gives a lattice again.

Proposition 5.9. Let J ⊆ [n], w ∈ Znd . If 〈α, projJ(w)〉 ∈ Z for every α ∈ projJ(L⊥J), then
V ∩X(w, J) 6= ∅.

22

Proof. We recall that the dual of a projection of a lattice is the set of vectors in the projected space
which have integral dot products with all points in the projected lattice. The following proposition
shows that the dual of a projected lattice is the projection of the set of vectors in the dual lattice
whose support is contained in the projection.

Proposition 5.10. Let J ⊆ [n]. Then

(projJ(L))⊥ = projJ

(
L⊥J

)
.

Proof. Let αJ ∈ projJ(L⊥J). Let us extend the vector αJ to α ∈ Rn by setting the coordinates
that are not in J to zero. We note that α ∈ L⊥J . Hence 〈α, x〉 ∈ Z for every x ∈ L. Therefore
〈αJ , xJ〉 ∈ Z for every xJ ∈ projJ(L). Thus, αJ ∈ (projJ(L))⊥.

Let αJ ∈ (projJ(L))⊥. Then for every vJ ∈ projJ(L), we have 〈αJ , vJ〉 ∈ Z. Consequently for
every v ∈ L, we have 〈αJ ,projJ(v)〉 ∈ Z. Let us extend the vector αJ to α ∈ Rn by setting the
coordinates that are not in J to zero. Then 〈α, v〉 ∈ Z for every v ∈ L. Therefore α ∈ L⊥ and
hence αJ ∈ projJ(L⊥J).

We have that 〈α,projJ(w)〉 ∈ Z for every α ∈ projJ(L⊥J). Therefore projJ(w) ∈ (projJ(L⊥J))⊥.
By Proposition 5.10, we have that projJ(w) ∈ projJ(L). Hence, there exists x ∈ X(w, J) ∩ L =
X(w, J) ∩ V .

Note that it is possible to determine if there exists a dual witness for X(w, J) and if so, find
one efficiently as shown in Proposition 5.11.

Proposition 5.11. Given w ∈ Znd and J ⊆ [n], we can find a dual witness for X(w, J) if one
exists or confirm that no dual witness for X(w, J) exists in time O(|J |ω), where O(mω) is the time
to compute the inverse of a m×m real matrix.

Proof. A basis for projJ(L) can be obtained by projecting the basis for L. Now a basis for the
dual of the projected lattice, namely projJ(L)⊥ = projJ(L⊥J), can be computed in time O(|J |ω).
We observe that for every α ∈ L⊥J , we have 〈α,w〉 ∈ Z if and only if for every basis vector b of
projJ(L⊥J), we have 〈b,projJ(w)〉 ∈ Z. Hence it is sufficient to only verify the inner product of
projJ(w) with the basis vectors of projJ(L⊥J).

We now have the ingredients needed to prove Lemma 5.3.

Lemma 5.3. Suppose a full-rank lattice L ⊆ Zn with dZn ⊆ L for d ∈ Z+ has an adaptive 2-
sided `p-tester T (ε, c, s, q) for inputs from the domain Znd . Then L has an adaptive linear `p-tester
T ′(ε, 0, c+ s, q) for inputs from the domain Znd .

Proof. We first relabel the decision tree according to the rule required for a linear test: Given a
decision tree Γ for the tester T , we say that it is optimally labeled if the label of any leaf l is 0
whenever there exists a dual witness for X(sl, var(l)) and 1 otherwise. We denote the tree obtained
from Γ by optimally relabeling to be ΓOPT (the relabeling for a given leaf of a tree Γ can be done
efficiently by Proposition 5.11). We build a tester T ′ as follows:

1. On input x ∈ Znd , choose a tree Γ according to DT .

2. Choose a uniformly random vector v in V (recall that V := L mod d).

23

3. Answer according to the relabeled decision tree ΓOPT on input (x+ v) mod d.

It is clear that T ′ is a linear test and has the same query complexity as that of T . We now show
that the probability of acceptance by T ′ of any vector w which is ε-far from L, does not exceed
c+ s. Let us define the following for a tester T̄ :

ρT̄ := avg
y∈V

Pr[T̄ (y) = 1],

ρT̄x := avg
y∈(x+V) mod d

Pr[T̄ (y) = 1].

Due to the randomness in the choice of the tester T ′, we have

ρT
′

= Pr[T ′(x) = 1 | x ∈ V],

ρT
′

x = Pr[T ′(x) = 1].

Since T ′ is a 1-sided tester, we have that ρT
′

= 1. Since T accepts lattice vectors with probability
at least 1 − c, we have ρT ≥ 1 − c. Let x ∈ Znd be ε-far from L. For every v ∈ V , we have that
(x + v) mod d is also ε-far from L by Proposition 5.2. Therefore, ρTx ≤ s. Using Claim 5.12, we
have

ρT
′

x ≤ ρT
′ − ρT + ρTx ≤ 1− (1− c) + s = c+ s.

Claim 5.12. For every x ∈ Znd ,

ρT
′

x ≤ ρT
′ − ρT + ρTx .

Proof. Let x be a vector in Znd . We analyze the effect of relabeling a single leaf l of the decision
tree Γ. We show that relabeling l optimally preserves the claim and hence by repeated relabeling,
we can deduce the claim.

Case (i). There exists a dual witness for X(sl, var(l)). Then the leaf l is relabeled from 1 to 0. If
input y ∈ X(sl, var(l)), then y cannot be a lattice vector (if y is a lattice vector, then there cannot
exist a dual witness for X(sl, var(l))). Therefore, the probability of acceptance of lattice vectors is
not changed due to relabeling, i.e., ρT

′
= ρT . If the leaf l is reached for input y ∈ Znd \ V , then T ′

rejects. Thus, relabeling does not increase the probability of acceptance of non-lattice vectors, i.e.,
ρT
′

y ≤ ρTy . Therefore, ρT
′

x ≤ ρT
′ − ρT + ρTx holds for this case.

Case (ii). There does not exist a dual witness for X(sl, var(l)). Then the leaf l is relabeled from
0 to 1.

The set of vectors in Vl ∪ V x
l were rejected by T and, after optimal relabeling of the leaf l, are

now accepted by T ′. The rest of the vectors in V and (x+V) mod d are rejected/accepted equally
by both T and T ′.

Now, if y was a lattice vector, then the probability of accepting a lattice vector increases because
of the relabeling of l. Among the vectors in V , the vectors in Vl are precisely the ones which were
rejected before relabeling and are now accepted after relabeling. Since we average over all possible
vectors y ∈ V in the definition of ρT , the fractional change in the acceptance probability given that
T ′ and T chose the decision tree Γ is exactly |Vl|/|V |. Therefore,

ρT
′

= ρT +DT (Γ)
|Vl|
|V |

.

24

Among the vectors in (x + V) mod d, the vectors in V x
l are the only vectors which were

rejected before relabeling and are now accepted after relabeling. Thus, the fractional change in the
acceptance probability of (x + v) mod d given that T ′ and T chose the decision tree Γ is exactly
|V x
l |/|V |. Therefore,

ρT
′

x = ρTx +DT (Γ)
|V x
l |
|V |

.

Combining the two equations, we get

ρT
′

x = ρT
′ − ρT + ρTx +

DT (Γ)

|V |
(|V x

l | − |Vl|).

Using Claim 5.8, we know that |V x
l | ≤ |Vl| if Vl is non empty. Since there does not exist a dual

witness for l, by Proposition 5.9, we have that Vl is non-empty. Hence the claim follows.

5.2 Adaptive to Non-adaptive

In this section we show that given an adaptive linear tester for a lattice, we can construct a non-
adaptive linear tester from it without increasing the query complexity or the acceptance probability
of non-lattice vectors.

Lemma 5.4. Suppose a full-rank lattice L ⊆ Zn with dZn ⊆ L for d ∈ Z+ has an adaptive linear
`p-tester T (ε, 0, s, q) for inputs from the domain Znd . Then L has a non-adaptive linear `p-tester
T ′(ε, 0, s, q) for inputs from the domain Znd .

Proof. Let T (ε, 0, s, q) be an adaptive linear tester for inputs from the domain Znd with query
complexity q. We construct a non-adaptive linear tester T ′(ε, 0, s, q) for inputs from the domain
Znd as follows:

1. On input x ∈ Znd , choose a random vector v ∈ V .

2. Run T on input v. Let J denote the set of coordinates that are queried.

3. Query x on all the coordinates in J .

4. Reject if and only if there exists a dual witness for X(x, J).

We note that T ′ is a linear test and the query complexity of T ′ is the same as the query
complexity of T . Since the queries depend only on a random v ∈ V and not on the input x, the
test T ′ is non-adaptive. It remains to bound the acceptance probability of non-lattice vectors by
T ′. We will show that there is no dual witness for X(x, J) if and only if there exists a vector
y ∈ (x+ V) mod d that is consistent with the queried coordinates of v. As a consequence, we will
show that the probability that T ′ accepts x is identical to the average acceptance probability of
x+ v for random vectors v ∈ V by T . Before analyzing the acceptance probability, we introduce a
few notations and observations.

For a decision tree Γ ∈ ΥT , we denote the set of leaves of Γ which are labeled 1 by l1(Γ). For a
leaf l of Γ and a vector x ∈ Znd , let Ixl be a boolean (indicator) variable which takes a value of 1 if
and only if 〈α, x〉 ∈ Z for every α ∈ L⊥var(l).

Let Γ̄ be the decision tree chosen by the tester T ′ on input x. The random vector v ∈ V chosen
by T ′ corresponds to a leaf labeled 1 in Γ̄. This is because T is a linear test and hence a lattice
vector v cannot have any dual witness. Therefore, v ∈ Vl̄ for some l̄ ∈ l1(Γ̄). Since T ′ is a linear
test it is clear that T ′ accepts x if and only if Ix

l̄
= 1.

25

Claim 5.13. Let l be a leaf of a decision tree Γ ∈ ΥT , x ∈ Znd and y ∈ (x + V) mod d.We have
that Ixl = 1 if and only if Iyl = 1.

Proof. If y ∈ (x+ V) mod d, then x− y ∈ L. If x, y ∈ Zn belong to the same coset of L, then for
every a ∈ L⊥, we have that 〈x, a〉 ∈ Z if and only if 〈y, a〉 ∈ Z. Therefore, there exists α ∈ L⊥var(l)
such that 〈α, x〉 /∈ Z if and only if there exists α ∈ L⊥var(l) such that 〈α, y〉 /∈ Z. Hence Ixl = 1 if

and only if Iyl = 1 for every y ∈ (x+ V) mod d.

Claim 5.14. Let x ∈ Znd and l be a leaf of a decision tree Γ ∈ ΥT such that l ∈ l1(Γ). Then
|V x
l | = Ixl |Vl|.

Proof. We know that for every leaf l which is labeled 1, the set Vl is non-empty since T is a linear
tester (using Proposition 5.9). By Claim 5.8 we know that |V x

l | = |Vl| if V x
l is also non-empty.

Therefore it is sufficient to show that Ixl = 1 if and only if V x
l is non-empty

If V x
l is non-empty, then by definition, there is a vector y ∈ (x+ V) mod d which is consistent

with all the queries along the path to l. Since l is labeled 1, we know that T accepts y. Since T
is a linear tester, this implies that there does not exist an α ∈ L⊥var(l) such that 〈α, x〉 /∈ Z. Hence

Iyl = 1. By Claim 5.13, we know that Ixl is also 1.
If Ixl = 1, then for every α ∈ L⊥var(l), we have 〈α, x〉 ∈ Z. By Proposition 5.9, there exists a

vector v ∈ V ∩ X(x, var(l)). Hence, we have a vector v ∈ V whose entries are identical to that
of x at the coordinates in var(l). We observe that the vector (x − v) mod d has all 0 entries
at the coordinates in var(l). Further, Vl is non-empty since l is labeled 1. Let u ∈ Vl. Then
((x − v) + u) mod d is consistent with all queries along the path to l, and is in (x + V) mod d.
Therefore V x

l is non-empty.

We now show that the acceptance probability of T ′ is equal to the average acceptance probability
of T . Let

ρx := avg
v∈V

Pr[T ((x+ v) mod d) = 1].

We note that this quantity is 1 if x ∈ V and is at most s if x is ε-far from the lattice L. The
following claim shows that T ′ accepts an input vector x with probability 1 if x ∈ V and with
probability at most s if x is ε-far from the lattice L.

Claim 5.15. Let x ∈ Znd . Then Pr[T ′(x) = 1] = ρx.

Proof. The average acceptance probability of T can be viewed as follows: we pick a decision tree
Γ according to DT . Then we pick a leaf l labeled 1 with probability proportional to the fraction of
vectors in x+ V mod d that are consistent with the queries along the path to l. Therefore,

ρx =
∑

Γ∈ΥT

DT (Γ)

 ∑
l∈l1(Γ)

|V x
l |
|V |

 .

We have seen that T ′(x) = 1 if and only if for the random vector v ∈ V chosen by T ′, and
a leaf l̄ ∈ l1(Γ̄) such that v ∈ Vl̄, we have Ix

l̄
= 1. Thus the execution of T ′ can be treated as

follows: First, pick a decision tree Γ ∈ ΥT according to DT (Γ), then choose a leaf l labeled 1 in Γ
with probability proportional to the fraction of vectors in V that are consistent with the queries

26

to the coordinates in l. Finally, query x on the variables in var(l) and accept if and only if Ixl = 1.
Therefore, the acceptance probability of T is given by

Pr[T (x) = 1] =
∑

Γ∈ΥT

DT (Γ)

 ∑
l∈l1(Γ)

|Vl|
|V |
· Ixl

 .

By Claim 5.14, we see that ρx = Pr[T ′(x) = 1].

5.3 Handling real-valued inputs

In this section, we build a tester for real-valued inputs using a tester for bounded integral inputs.
We first show how to handle all integral inputs using a tester for integral inputs from a bounded
domain.

Lemma 5.5. Let L ⊆ Zn be a full-rank lattice with dZn ⊆ L for d ∈ Z+. Then, L has a non-
adaptive linear `p-tester T (ε, 0, s, q) for inputs from the domain Znd if and only if L has a non-
adaptive linear `p-tester T ′(ε, 0, s, q) for inputs from the domain Zn.

Proof. If we have a tester T ′(ε, c, s, q) for integral inputs, then the same tester can be applied to
inputs in Znd with the same completeness and soundness parameters and the same query complexity.
Given a tester T (ε, c, s, q) for inputs from the domain Znd , we construct the tester T ′(ε, c, s, q) for
arbitrary integral inputs as follows: On input x ∈ Zn run T (ε, c, s, q) on w := x mod d, and output
the result.

If x is a lattice vector, then from Proposition 5.2, we know that w is also a lattice vector, and
therefore T ′ accepts x with probability at least 1− c. If x is ε-far from the lattice, then again from
Proposition 5.2, we know that w is also ε-far from the lattice and T ′ will accept x with probability
at most s. We note that the query complexity of T ′ is identical to that of T .

To address the case of real inputs, we will design a tester for the integer lattice.

Lemma 5.7. For every 0 < ε ≤ 1 and every 0 < s ≤ 1, there exists a non-adaptive linear `p-tester
Tp(ε, 0, s, qZ) for Zn with query complexity

qZ = O

(
1

εp
log

1

s

)
.

Proof. The test queries O((1/εp) log(1/s)) coordinates of the input uniformly at random and accepts
iff all the queried coordinates are integral.

If the input is in the lattice, then all the queried coordinates will be integral, and hence the
tester will accept. If the input w is at `p distance at least ε · ‖1n‖p, then at least εpn coordinates
of the input are non-integral. Thus the tester will reject with probability at least 1− s.

We note that the tester is a linear test: the test described can be viewed as picking independent
uniform random standard basis vectors ei ∈ Zn ⊆ L⊥ (where ei is the indicator vector of the index
i), for i ∈ [n], and testing if the input w satisfies 〈w, ei〉 ∈ Z.

Lemma 5.6. Suppose a full-rank lattice L ⊆ Zn has a non-adaptive `p-tester T (ε, c, s, q) for inputs
from the domain Zn. Then there exists a non-adaptive `p-tester T ′(ε, c, s, q′) for inputs in Rn with
query complexity q′ = q(ε/2, c, s) +O((1/εp) log (1/s)). Moreover, if T is a linear tester, then so is
T ′.

27

Proof. Suppose we have a `p-tester T (ε, c, s, q) for integer inputs. We can build a tester T ′ for real
valued inputs as follows:

1. On input x ∈ Rn, run the `p-tester T̄ (ε/2, 0, s, qZ) for Zn from Lemma 5.7 on input x. If the
tester T̄ rejects, then reject.

2. Else, run T (ε/2, c, s, q′) on x where q′ = q(ε/2, c, s) and reject immediately if any of the
coordinates queried are not integers; otherwise output the result of T .

If x is a lattice vector, then the acceptance probability of T ′ is the same as that of T since the tester
used in step 1 is a linear tester. If dp(x, L) ≥ ε · ‖1n‖p, then dp(x, bxe) + dp(bxe, L) ≥ dp(x, L) ≥
ε · ‖1n‖p and therefore either dp(x, bxe) or dp(bxe, L) is at least 1

2ε · ‖1
n‖p. If dp(x, bxe) ≥ 1

2ε · ‖1
n‖p,

then dp(x,Zn) = dp(x, bxe) ≥ 1
2ε · ‖1

n‖p and therefore step 1 rejects with probability at least 1− s.
If dp(bxe, L) ≥ 1

2ε · ‖1
n‖p, then step 2 rejects with probability at least 1− s.

The number of queries made by the tester T ′ is q(ε/2, c, s) +O((1/εp) log (1/s)). We note that
since the tester used in step 1 is a non-adaptive linear tester, T ′ would be a non-adaptive linear
tester if T is a non-adaptive linear tester.

Remark 5.16. We note that the test described in the proof of Theorem 1.1 is not a linear test by
definition. We now describe a linear test for the code-formula lattice which is equivalent to the test
described in Section 3.1.

Let Tp denote the tester for Zn. We assume that each code tester Ti for the code Ci is linear
[5] (i.e Ti queries the input ti ∈ {0, 1}n at Ii = {i1, · · · , iq} ⊆ [n] coordinates according to some
distribution and accepts it if and only if 〈ti, v〉 ≡ 0 mod 2 for every v ∈ C⊥Ii). Consider the following
variant of the test, that we call Tlinear, which by definition is a linear test:

1. Let each Ti query Ii ⊆ [n] coordinates and let Tp query Ip coordinates.

2. Let I = ∪iIi ∪ Ip.

3. Accept t if 〈t, x〉 ∈ Z for all x ∈ (L⊥)I

4. Reject otherwise.

Note that the query complexity of Tlinear is upper bounded by the query complexity of T .
If the input is a lattice vector; i.e., t ∈ L, then by definition, the inner product of t with every

dual lattice vector would be an integer. Therefore, the test is 1-sided.
We now show that Tlinear rejects all inputs t which are rejected by T and hence, Tlinear performs

at least as well as T . If T rejects t, then there is some i ∈ {0, 1, . . . ,m− 1} such that ti is rejected
by Ti or t is rejected by Tp. We note that each code tester Ti and also Tp are linear. Therefore, if
Ti rejects ti, then there are no codewords of Ci which agree with ti on the coordinates Ii queried
by Ti. So, for the set I which contains Ii, there are no codewords of Ci which agree with ti on
the coordinates in I. If Tp rejects t, then there is some non-integral coordinate in Ip and hence
in I. By definition of the code formula construction, t is a lattice vector if and only if for each
i = 0, . . .m − 1, ti is a codeword in Ci and t ∈ Zn. Hence, no lattice vector of L agrees with t on
those set of coordinates. Therefore, there exists a dual lattice vector supported on I, which does
not have an integral inner product with t. Therefore, Tlinear also rejects t (and thus, has at least
as good a soundness as the original test T).

28

6 Testing membership of inputs outside the span of the lattice

In this section we prove Theorems 1.9, 1.10, Corollary 1.11 and Theorem 1.12. We first recall the
definitions. Let L be a rank k lattice in Zn. Let S denote the span(L) and S⊥ be the subspace
orthogonal to S. Let U = [u1, · · · , un−k]T ∈ R(n−k)×n be an orthonormal basis for S⊥. Let P ⊆ [n]
be the set of coordinates that support the vectors in S⊥ i.e.,

P :=
⋃

i∈[n−k]

supp(ui).

Theorem 1.9. Let L ⊆ Zn be a lattice of rank k. Let P ⊆ [n] be the support of the vectors in
span(L)⊥. Let 0 < ε, c, s < 1. Every non-adaptive `p-tester T (ε, c, s, q) for L for inputs in Rn has
query complexity

q = Ω(|P |).

Proof. To show the Ω(|P |) lower bound, we use Yao’s principle: we setup a distribution D on far
inputs such that every deterministic algorithm requires Ω(|P |) queries to distinguish whether the
input is 0 ∈ L or is far from L. We define D as follows: pick j uniformly at random from P , and

set t(j) := Dej , where D ≥ ε·‖1n‖p
min

i,j:ui,j 6=0
|ui,j | . The following claim shows that the distance of each such

t(j) from L is at least ε · ‖1n‖p.

Claim 6.1. dp(t
(j), L) ≥ ε · ‖1n‖p for every j ∈ P .

Proof. It is sufficient to show that t(j) is far from S, since L ⊆ S. Let t(j) = t(j)‖ + t(j)⊥, where
t(j)‖ is the component of t(j) in S and t(j)⊥ is the component of t in S⊥. By definition,

t(j)⊥ = projS⊥(t(j)) =
∑

`∈[n−k]

〈t(j), u`〉u`.

Since U is an orthonormal basis of S⊥,

‖t(j)⊥‖pp =
∑

`∈[n−k]

|〈t(j), u`〉|p =
∑

`∈[n−k]

(Du`,j)
p ≥ (ε · ‖1n‖p)p.

The last inequality follows from the choice of D and the fact that there exists at least one u`,j 6= 0
since j ∈ P . Therefore, the distance of t(j) from S and hence from L, is at least ε · ‖1n‖p.

By the choice of the distribution, every deterministic test fails on inputs drawn from D with
probability 1/|P |. Thus any randomized test requires Ω(|P |) queries in order to succeed with
constant probability.

Theorem 1.10. Let L ⊆ Zn be a lattice of rank k. Let P ⊆ [n] be the support of the vectors in
span(L)⊥. Let 0 < ε, c, s < 1, and suppose L has an `p-tester T (ε, c, s, q) for inputs t ∈ span(L).
Then L has a tester T ′(2ε, c, s, q′) for inputs in Rn with query complexity

q′ ≤ q + |P |.

29

Proof. Let T (ε, c, s, q) be an `p-tester for L for inputs in span(L) with query complexity q = q(ε).
We now design a tester T ′(ε′, c′, s′, q′) for L for inputs t = (t1, t2, · · · , tn) ∈ Rn. By making an
additional |P | queries, T ′ can compute the coordinates of the projection of t onto S. If t is far from
L, then either (i) t is far from S or (ii) t is close to S but far from L. The coordinates in P would
identify if t is far from S and enable rejection. If t is close to S but far from L, the tester T would
reject the projection of t onto S thus enabling rejection. We now formalize this intuition.

Let t = (t1, t2, · · · , tn) ∈ Rn be the input to the tester T ′. We compute the projection of t on
span(L) by querying all the coordinates in P . Let t⊥ be the projection of t onto S⊥. Since U is an
orthonormal basis for S⊥, we have

t⊥ =
∑

`∈[n−k]

〈t, u`〉u`.

Each inner product in this expression can be computed using only the coordinates in P and there-
fore, t⊥ can be computed from t by querying just |P | coordinates. If ‖t⊥‖p ≥ ε′/2 · ‖1n‖p, then T ′

rejects t immediately. So we now assume ‖t⊥‖p < ε′/2 · ‖1n‖p The projection of t onto S is:

t
‖
j =

{
tj if j /∈ P
tj − t⊥j if j ∈ P

Now we run the tester for T on input t‖ for distance parameter ε = ε′/2 and accept t if and only if
T accepts.

If t ∈ L, then t⊥ = 0 and T would accept with probability at least 1− c. If dp(t, L) ≥ ε′ · ‖1n‖p,
then

dp(t
‖, L) ≥ ε′ · ‖1n‖p − dp(t⊥, S) ≥ ε′/2 · ‖1n‖p = ε · ‖1n‖p.

Therefore, T would reject with probability at least 1 − s. Finally, note that q′(ε′) ≤ q(ε′/2) +
|P |.

6.1 Testing Knapsack Lattices

Corollary 1.11. Let a1, . . . , an be integers and 0 < ε, c, s < 1. Every non-adaptive `p-tester
T (ε, c, s, q) for La1,...,an has query complexity

q = Ω(n).

Proof. We note that L has rank n− 1 and the vector (a1, a2, . . . , an−1,−1) generates the subspace
orthogonal to span(L), hence the set P of elements in the support of this space has size |P | = n,
and the lower bound follows from Theorem 1.9.

We now prove Theorem 1.12, namely that knapsack lattices can be tested with a constant
number of queries if the inputs come from the span of the lattice. In fact, we will show that testing
such lattices simply reduces to testing membership in Zn.

Theorem 1.12. Let a1, . . . , an be integers with M = maxi∈[n] |ai|p and 0 < ε, s < 1. There exists

a non-adaptive `p-tester T (ε, 0, s, q) for La1,...,an with query complexity q = O
(
M
εp · log 1

s

)
, if the

inputs are guaranteed to lie in span(L).

30

Proof. Let L = La1,...,an−1 . Let w ∈ span(L) denote the input. Any vector w ∈ span(L) is of the
form

w =

(
α1, · · · , αn−1,

n−1∑
i=1

aiαi

)
for some real values α1, . . . , αn−1. Let w′ ∈ Rn−1 denote the projection of w on the first n − 1
coordinates. Let Tp(ε

′, 0, s′, q′) denote the `p-tester for Zn−1, where q′ = O
((

1
ε′p

)
log 1

s′

)
.

The tester proceeds as follows: Run the tester Tp(ε
′ = ε/(M + 1)1/p, 0, s, q = O

((
M
εp

)
log 1

s

)
) on

input w′. Accept if and only if the tester Tp accepts.
The query complexity of the tester is immediate. If w ∈ L, then each coordinate is integral.

Therefore the test accepts w with probability 1. We use the following claim to analyze the soundness
of the test.

Claim 6.2. Let w ∈ span(L), and w′ = (w1, · · · , wn−1) ∈ Rn−1 then,

d(w,L)p ≤ (M + 1) · d(w′,Zn−1)p

Proof. Consider the following vector v ∈ L:

v = (bw1e, · · · , bwn−1e,
n−1∑
i=1

aibwie)

where bwie denotes the rounding of wi the nearest integer. We now upper bound the distance of w
from L using this lattice vector v.

d(w,L)p ≤ d(w, v)p = ‖w − v‖pp

=
n−1∑
i=1

|wi − bwie|p + |wn −
n−1∑
i=1

aibwie|p

=
n−1∑
i=1

|wi − bwie|p + |
n−1∑
i=1

aiwi −
n−1∑
i=1

aibwie|p

≤
n−1∑
i=1

|wi − bwie|p +
n−1∑
i=1

|ai(wi − bwie)|p

≤
n−1∑
i=1

|wi − bwie|p +M

n−1∑
i=1

|wi − bwie|p

= (M + 1) ·
n−1∑
i=1

|wi − bwie|p

= (M + 1) · d(w′,Zn−1)p

It remains to bound the soundness error probability. If d(w,L) ≥ ε‖1n‖p, then from Claim 6.2,
we get that d(w′,Zn−1) ≥ (ε/(M + 1)1/p)‖1n‖p. Therefore, the tester Tp rejects w with probability
at least 1− s.

31

7 Discussion

In this paper we defined a notion of local testing for a new family of objects: point lattices. Our
results demonstrate connections between lattice testing and the ripe theory of locally testable codes,
and bring up numerous avenues for further research (particularly, Questions 1 and 2).

We remark that the notion of being ‘ε-far’ from the lattice may be defined differently than in
Definition 1, depending on the application of interest. In particular, in applications like IP and
cryptography, it is natural to ask for a notion of testing that ensures that scaling the lattice does
not change the query complexity. An alternate definition of ε-far based on the covering radius of
the lattice could be helpful to achieve this property. The covering radius of a lattice L ⊆ Rn (similar
to codes) is the largest distance of any vector in Rn to the lattice. It is trivial to design a tester to
verify if a point is in the lattice or at distance more than the covering radius from the lattice (simply
accept all inputs). In order to have a tester notion where scaling preserves query complexity, we
may define a vector as being ε-far from the lattice, if the distance of the vector to every lattice
point is at least ε times the covering radius of the lattice. We note that the covering radius of any
integral lattice is Ω(‖1n‖p). Indeed, the densest possible integral lattice, namely the integer lattice
Zn, has covering radius (1/2)‖1n‖p, as exhibited by the point v = (1/2, . . . , 1/2) ∈ Rn. Thus, by
asking the tester to reject points at distance more than ε‖1n‖p in Definition 1, we have settled upon
a strong notion of being ε-far from the lattice (i.e., the definition would in particular imply that
vectors that are farther than ε times the covering radius would be rejected by the tester). This
definition is essentially equivalent to the current Definition 1 if the covering radius of the lattice is
Θ(n). With the modified definition of local testers using covering radius as described above, the
equivalent Question 1 is to identify a family of lattices that can be tested using a constant number
of queries, achieves constant rate and whose ratio of minimum distance to covering radius is also
at least a constant.

Acknowledgments. We thank Chris Peikert for mentioning to us about the potential application
to cryptanalysis, and anonymous reviewers for helpful comments and pointers.

References

[1] D. Aharonov and O. Regev. Lattice problems in NP ∩ coNP . J. ACM, 52(5):749–765, 2005.

[2] N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn, and D. Ron. Testing Reed-Muller codes.
IEEE Transactions on Information Theory, 51(11):4032–4039, 2005.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the hardness
of approximation problems. J. ACM, 45(3):501–555, 1998.

[4] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP. J.
ACM, 45(1):70–122, 1998.

[5] E. Ben-Sasson, P. Harsha, and S. Raskhodnikova. Some 3CNF properties are hard to test.
SIAM Journal on Computing, 35(1):1–21, 2005. Earlier version in STOC’03.

[6] P. Berman, S. Raskhodnikova, and G. Yaroslavtsev. Lp-testing. In Symposium on Theory of
Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 164–173, 2014.

32

[7] A. Bhattacharyya, S. Kopparty, G. Schoenebeck, M. Sudan, and D. Zuckerman. Optimal
testing of reed-muller codes. In 51th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 488–497, 2010.

[8] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical
problems. Journal of Computer and System Sciences, 47:549–595, 1993.

[9] J. Conway, N. Sloane, and E. Bannai. Sphere Packings, Lattices and Groups. A series of
comprehensive studies in mathematics. Springer, 1999.

[10] F. Eisenbrand. Fast integer programming in fixed dimension. In Algorithms - ESA 2003, 11th
Annual European Symposium, Budapest, Hungary, September 16-19, 2003, Proceedings, pages
196–207, 2003.

[11] U. Erez, S. Litsyn, and R. Zamir. Lattices which are good for (almost) everything. IEEE
Transactions on Information Theory, 51(10):3401–3416, 2005.

[12] G. D. Forney. Coset codes-I: Introduction and geometrical classification. IEEE Transactions
on Information Theory, 34(5):1123–1151, 1988.

[13] K. Friedl and M. Sudan. Some improvements to low-degree tests. In Proceedings of the 3rd
Annual Israel Symposium on Theory and Computing Systems, 1995.

[14] P. Gaborit and G. Zémor. On the construction of dense lattices with a given automorphisms
group. In Annales de l’institut Fourier, volume 57, pages 1051–1062, 2007.

[15] O. Goldreich. Short locally testable codes and proofs: A survey in two parts. In Property
Testing - Current Research and Surveys, pages 65–104, 2010.

[16] V. Guruswami and A. Rudra. Tolerant locally testable codes. In Proceedings of RAN-
DOM/APPROX 2005, pages 306–317, 2005.

[17] R. Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper. Res.,
12(3):415–440, August 1987.

[18] R. M. Karp. Reducibility among combinatorial problems. In Proceedings of a symposium on
the Complexity of Computer Computations, pages 85–103, 1972.

[19] T. Kaufman and M. Sudan. Algebraic property testing: The role of invariance. In STOC,
pages 403–412, 2008.

[20] S. Kopparty and S. Saraf. Tolerant linearity testing and locally testable codes. In Proceedings
of RANDOM, pages 601–614, 2009.

[21] W. Kositwattanarerk and F. E. Oggier. Connections between construction D and related
constructions of lattices. Des. Codes Cryptography, 73(2):441–455, 2014.

[22] J. Leech and N. Sloane. Sphere packings and error-correcting codes. Canad. J. Math, 23(4):718–
745, 1971.

[23] H. Lenstra Jr. Integer programming with a fixed number of variables. Mathematics of Opera-
tions Research, 8(4):538–548, 1983.

33

[24] Y. Liu, V. Lyubashevsky, and D. Micciancio. On bounded distance decoding for general
lattices. In Proceedings of RANDOM, pages 450–461, 2006.

[25] R. C. Merkle and M. E. Hellman. Hiding information and signatures in trapdoor knapsacks.
Information Theory, IEEE Transactions on, 24(5):525–530, 1978.

[26] D. Micciancio. The LLL Algorithm: Survey and Applications, chapter Cryptographic functions
from worst-case complexity assumptions, pages 427–452. Information Security and Cryptog-
raphy. Springer, December 2009. Prelim. version in Proc. of LLL25, 2007.

[27] D. Micciancio. Lecture notes on lattice algorithms and applications, Winter 2012, Lecture 2,
2012.

[28] D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: a cryptographic perspective,
volume 671 of The Kluwer International Series in Engineering and Computer Science. Kluwer
Academic Publishers, Boston, Massachusetts, March 2002.

[29] A. M. Odlyzko. The rise and fall of knapsack cryptosystems. Cryptology and computational
number theory, 42:75–88, 1990.

[30] M. Parnas, D. Ron, and R. Rubinfeld. Tolerant property testing and distance approximation.
Journal of Computer and System Sciences, 72(6):1012–1042, 2006.

[31] O. Regev. Lattice-based cryptography. In Advances in Cryptology - CRYPTO 2006, 26th
Annual International Cryptology Conference, Santa Barbara, California, USA, August 20-24,
2006, Proceedings, pages 131–141, 2006.

[32] O. Regev. The learning with errors problem (invited survey). In IEEE Conference on Com-
putational Complexity, pages 191–204, 2010.

[33] R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with applications to
program testing. SIAM Journal on Computing, 25:252–271, 1996.

[34] A. Shamir. A polynomial time algorithm for breaking the basic merkle-hellman cryptosystem.
In Advances in Cryptology, pages 279–288. Springer, 1983.

[35] L. A. Wolsey and G. L. Nemhauser. Integer and combinatorial optimization. John Wiley &
Sons, 2014.

[36] A. Yao. Probabilistic computations: Toward a unified measure of complexity. In Proceedings
of Annual IEEE Symposium on Foundations of Computer Science, pages 222–227, 1977.

34

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

