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Abstract

We show that if gap-3SAT has no sub-exponential time algorithms then
a weak form of the sliding scale conjecture holds. Namely, for every a > 0
any algorithm for n“-approximating the value of label cover must run in
time at least n©©P1/2) where 1 is the size of the instance.

Put differently, if there is a polynomial time algorithm for approximating
the value of label cover to within a factor of approximation of n°!) then
gap-3SAT (and thus, random-3SAT) must have faster-than-exponential-time
algorithms.

Our proof is a twist on the well-studied parallel repetition reduction
from 3SAT to label cover. Our key observation is that if we take unordered
repetition, replacing tuples by sets, then we can afford to take the number of
repetitions to be linear in 7, and generate an instance of size exp(rn) which
results in the claimed parameters.

1 Introduction

The PCP theorem [AS98, ALM 98] implies that every NP language can be checked
by a verifier that makes very few queries into a proof, and uses randomness.
A basic goal is to understand the tradeoff between the number of bits read by
the verifier and the soundness error, which is the probability that the verifier
accepts a false proof. Denoting by t the number of bits queried from the proof,
the soundness error cannot go below 27!, because even a proof chosen uniformly
at random will cause the verifier to accept with such probability!.

How close to the random threshold can the soundness error be? For t a
constant there is a developed theory pinpointing a precise threshold for the
soundness error. This threshold depends on the precise predicate computed by
the verifier (this threshold is established for some predicates, as pioneered in
[Has01], and in others it is based on Khot’s unique games conjecture [Kho02], see

IThis is true as long as for every local view of the verifier there is at least one accepting
configuration (such an assumption is guaranteed in the perfect completeness case, but is also
reasonable otherwise). The probability to see this configuration in a random proof is at least 27
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[Rag08, AMO9]). For larger t = w(1) the territory is less understood and a coarser
ballpark behavior must first be studied. A reasonable question is whether there
are always PCP verifiers that read t bits from the proof and whose soundness
error is a constant power of the random threshold, i.e. ¢ < exp(—t).

When t = w(1) one must take into account both the number of bits ¢ and the
number of queries. Making t one-bit queries is very different from making a
constant number of O(t)-bit queries. A t-query verifier is quite powerful and
small soundness for it is easy to prove. In contrast, a O(1)-query verifier is more
restricted, so proving soundness for it is more challenging. Such a verifier is
much more useful though, e.g. it corresponds to multi-prover interactive proofs
with a constant number of provers. It corresponds to hardness of label cover when
the number of queries is two, or to hardness of k-CSPs when the number of
queriesis2 <k < t.

The sliding scale conjecture of [BGLR93] says that there is a PCP verifier that
makes a constant number of queries, each query resulting in an answer whose
length is O(t) bits, has perfect completeness, and soundness error ¢ < exp(—t). Let
us call such PCP verifiers, namely that have perfect completeness and soundness
error that is exponentially small in the number of bits read from the proof,
sliding-scale verifiers. The current work focuses on the range of ¢ for which sliding
scale verifiers exist. Jumping ahead, sliding scale verifiers have been known to
exist for t = o(log n) and we are interested in the question of their existence when
t = Q(logn).2

Sliding scale conjecture in terms of hardness of approximation. The sliding
scale conjecture can be equivalently formulated in terms of hardness of approx-
imation of constraint-satisfaction problems (CSPs) with a constant number of
variables in each constraint. The soundness translates to the approximation
factor, and the number of bits read from the proof translates to the logarithm
of the alphabet size (i.e. the range of the variables). A PCP verifier that makes
exactly two queries corresponds to label-cover® (see definitions in Section 2). The
sliding scale conjecture in terms of label cover says that label cover with alphabet
size h(n) is hard to approximate to within a factor of h(1)®V. More generally
in terms of CSPs the sliding scale conjecture is that it is hard to approximate
the value of a CSP to within a factor that is a constant power of the alphabet
size. In these terms this work is concerned with finding the largest possible
hardness of approximation gap for CSPs and for label cover, while maintaining a
polynomial relation between the alphabet size and the gap. In particular, is there
a polynomially large hardness of approximation gap?

The sliding scale conjecture is only meaningful for values of ¢ up to the number of random bits
used by the verifier, i.e. t < O(logn).

3Label cover has a bipartite graph structure, but there is an easy reduction from the non-bipartite
to the bipartite case so this is without loss of generality.



Two queries or more. In terms of known results, there is a distinct difference
between PCPs that make two queries, and those that make three queries or more.
For three queries or more, sliding-scale PCP verifiers have been constructed
[RS97, AS97, DFK*11, DHK15] for all alphabet sizes up to 2(log ) £ any constant
B < 1. The conjecture is still quite open for polynomial alphabet sizes, i.e., for
h(n) = n® for some a > 0.

The case of two queries, corresponding to hardness of label-cover, is more
difficult to analyze. Here the only known way to construct "sliding-scale" PCP
verifiers is based on a direct product construction, called parallel repetition.
The parallel repetition reduction converts a gap-3SAT instance of size n to
an instance of size n' and soundness exp(—t). The resulting instance is used
often for tight hardness-of-approximation results (see, e.g. [Has01]) and is
sometimes called the Raz verifier because the soundness error is bounded
using Raz’s parallel repetition theorem [Raz98]. This reduction maintains
the desired inverse polynomial relation between the alphabet size and the
soundness error, while keeping the number of queries two. Its only drawback
is that it causes a super-polynomial blowup in the instance size. No matter
what t we choose, even if we allow a super-polynomial increase in the
instance size, the soundness error exp(—t) will never be inverse polynomial
in the instance size n' = exp(tlogn) (because exp(t) is not a constant power
of n). So this reduction falls short of outputting an instance with a polynomial gap.

This state of affairs (both for two queries and for more) has been stuck for
many years now, hinting that perhaps the sliding scale conjecture does not hold
for polynomial gaps, and suggesting to look for an approximation algorithm
with factor n® for all 6 > 0. Our result, in contrast, gives evidence in support
of a polynomial-gap sliding scale conjecture, showing that such an algorithm
would have very surprising implications for gap-3SAT. Specifically, we show
an exponential-time reduction from gap-3SAT to label cover instances with a
polynomial gap.

Our reduction is a twist on the well-studied parallel repetition reduction.
The key observation is that if we take unordered repetition, replacing tuples by
sets, then we can afford to take the number of repetitions f to be linear in 7, and
derive non-trivial sliding-scale PCP verifiers. Our main theorem is as follows
(see definitions in Section 2),

Theorem 1.1. Assume the exponential time hypothesis for gap-3SAT, namely,

For some constant ¢ > 0, any algorithm that is given a 3SAT formula
® on n variables and O(n) clauses, and decides between sat(®) = 1 and
sat(®) < 0.9 must run in time at least 2". (Here sat(®) denotes the
maximal fraction of satisfied clauses).

Then, for every a > 0 any algorithm that decides if a given label cover instance whose
size is n, and whose alphabet size is at most n, has value 1 or at most n=* must run in



time at least n®PCQ1/) Fyrthermore, one can assume that the label-cover has projection
constraints.

The theorem relates polynomial-gap label cover to a new hypothesis called
gap-ETH. We discuss this hypothesis, how likely it is to hold, and how it relates
to other well known hypotheses, in Section 2.2. Independently of this work, the
same hypothesis is introduced in a recent paper of Manurangsi and Raghavendra
[MR16] under the name ETHA. Our main result is proved in Section 3.

In Section 4, we explore whether Theorem 1.1 can be upgraded from relying on
gap-ETH, which is a new hypothesis, to relying on the well-studied exponential
time hypothesis of [[PZ01]. Our hope was to replace gap-3SAT, which serves as a
starting point of our reduction, by one of the existing low-soundness PCP verifiers
[RS97, AS97, DFK*11, MR10a, MR10b, DHK15]. However, our reduction falls
slightly short of yielding meaningful parameters, essentially since the existing
PCPs are not length-efficient enough. We conjecture that such length-efficient
PCPs, which we call “linear-size sliding scale verifiers”, do exist, for any gap ¢.

For constant ¢, the existence of a linear-size sliding scale verifier is equivalent
to having a linear-size reduction from 3SAT to gap-3SAT, and would certainly
suffice for our reduction. However, it seems particularly difficult to construct
such efficient reductions in the ¢ = O(1) regime because the reduction is not
allowed to incur even a multiplicative log n factor. Potentially it could be easier
to construct liner-size sliding scale verifiers for slightly smaller values of ¢, where
the initial log n factors would be swallowed by t. We show that the existence of
“linear-size sliding scale verifiers” for any gap ¢ already implies the polynomial-gap
sliding scale conjecture.

2 Preliminaries

We define label cover, the sliding scale conjecture, and the exponential time
hypothesis for gap-3SAT.

2.1 Label cover and the sliding scale conjecture

Definition 2.1 (Label Cover). A label cover instance is given by a bipartite graph G
with vertex sets U and V; an alphabet X and a constraint 7t : Y2 10,1} per each
edge (u,v). We allow parallel edges (and non-negative polynomially-bounded
weights). The value of the instance is the maximum, over all labelings f : U — T
and g : V — X of the fraction of satisfied constraints,

sat(G) = max P [muo(f(w), g(o)) =11

The gap problem label-cover,(1, €) is the problem of deciding if a given label
cover over n variables whose alphabet size is at most 7 has value 1 or at most ¢.



A label cover instance is called “projection” if the constraints on each edge
have a special projection form, in which the value to the first variable determines
only one valid value to the second variable.

Label-cover is a special case of the following,

Definition 2.2 (CSP). A constraint satisfaction problem (k-CSP) is a system of
constraints over n variables. Each constraintis specified by a tuplei = (i1, ..., i) €
[n]F and a function ¢ : ©F — {0, 1}. The CSP is called k-ary since each constraint
looks at at most k variables, and X is called the alphabet. The value of a CSP C is

sat(C) = max P i1),..., f(ix)) = 1].
© = max P (), fi) = 1]
The gap problem k-CSP{.(1, ¢) is the problem of deciding if a given CSP over
n variables taking values in X has value 1 or at most ¢.

The Sliding Scale Conjecture. The sliding scale conjecture was suggested
(somewhat implicitly) in the open problems section of [BGLR93]. It was made
more explicit in subsequent works, e.g. appearing as Conjecture 3 in [RS97]. The
conjecture has been proven for some of the parameter regime. We state here a
version of it that pertains to polynomially small error probability, which is the
most interesting, and wide open.

Conjecture 2.3 (Sliding Scale Conjecture with parameter ¢). There exists some
constant k > 1 and a polynomial-time reduction from SAT on n variables to k-

poly(n) ,
CSPlpoty(/en (- €)

Moshkovitz [Mos12] has studied the following special case (i.e. stronger
version) of this conjecture,

Conjecture 2.4 (Sliding Scale Conjecture - projection games variant). There exists
a polynomial-time reduction from SAT on n variables to a label-cover instance with
projection constraints, alphabet at most 1/ poly(¢), and a (1, €) gap.

2.2 Exponential Time Hypothesis for gap-3SAT

The Exponential Time Hypothesis [IPZ01] says that any algorithm that, on input
a 3SAT formula @ on n variables, must take at least 2" time to decide if it is
satisfiable or not. We shall entertain the following strengthening of this hypothesis

Hypothesis 2.5 (gap-ETH). There are constants ¢, D > 0 such that any algorithm
that, on input a 3SAT formula @ on n variables and at most Dn clauses, can distinguish
between sat(®) = 1 and sat(P) < 0.9, must run in time at least 2.

Several remarks are in order

— PCP: Hypothesis 2.5 with slightly weaker parameters follows from the
exponential time hypothesis [[PZ01]. This is a consequence of the length-
efficient PCP theorems [Din07, BS05] and the following claim,
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Claim 2.6. Suppose there is a reduction that runs in sub-exponential time
and converts a 3SAT instance on n variables into a gap-3SAT instance on
n - €(n) variables. Then, assuming ETH, no algorithm for 3SAT can run in
time less than 2¢2(*/{(),

In particular, since we know a length-efficient PCP theorem [Din07, BS05],
which gives a reduction as above with £(n) = polylog(n), we deduce,
assuming the ETH, that any algorithm for solving gap-3SAT must run in
time at least 2/ POy 198(") Moreover, if one were to prove an even stronger
PCP theorem in that it has a linear blowup in size (even if the reduction
itself were to run for sub-exponential time), then this would equate ETH
with gap-ETH. (This stronger PCP theorem is a special case of a conjecture
discussed in Section 4).

— Feige’s R3SAT: Hypothesis 2.5 follows from an exponentially-hard version
of Feige’s R3SAT hypothesis. To see why recall that a random 3SAT
formula with Dn clauses (obtained by choosing each clause independently
atrandom) has value very close to 7/8 < 0.9. Thus, the task of distinguishing
a random 3SAT from a satisfiable one is a special case of gap-ETH. This
task is exactly the subject of Feige’s R3SAT hypothesis [Fei02]. Feige
hypothesized that this task is “hard” (although he did not explicitly require
it to be exponential-time hard). Currently there is no known algorithmic
difference between random 3SAT and worst-case 3SAT in terms of the time
it takes to decide if the formula is satisfiable or not.

- Raghavendra and Manugrasi [MR16] in recent independent work intro-
duced the same hypothesis, under the name ETHA. They used this hypoth-
esis to prove tight results on hardness of dense CSPs. They point out that
the ()(n) Lasserre hierarchy cannot distinguish between a satisfiable 3SAT
formula and one that is only 7/8 + ¢ satisfiable, as shown in [SchO08].

— Goldreich’s One Way Function: Hypothesis 2.5 might be weaker than
Goldreich’s one-way-function assumption, although we don’t know how
to prove this at this point. Goldreich [Goll1] suggested that a certain
distribution of CSPs is a one-way function, and Applebaum [App13]
showed that this assumption implies that a certain distribution of CSPs is a
pseudorandom generator with linear stretch. Had Applebaum’s reduction
worked for exponential hardness (currently it is only known for super-
polynomial hardness) it would mean that a sub-exponential algorithm for
gap-3SAT can distinguish a pseudo-random output from a random one
and thus break Goldreich’s assumption.

We remark that the assumption regarding the number of clauses being a
constant multiple of 7 is for convenience only. This is without loss of generality
since if the hypothesis were true for some larger clause-variable ratio, then a
sparsification argument would imply it is true as written above. The reason is that



a randomly chosen set of Dn clauses is an instance with roughly the same value
with very high probability. (Note however that the sparse instance is randomly
constructed so the implication would be only for randomized algorithms). We
give a formal proof of this claim in a slightly more generalized setting, which
will be useful for a later section.

Claim 2.7 (Sparsification). Let @ be a k-ary CSP with m constraints over alphabet
X and let > 0. Assume val(®) < ¢ for ¢ such that |Z| =1/ eP. Let @ be obtained
from @ by selecting each constraint to participate in @’ independently with
probability t/m where t = pn/e?log1/e. Then with high probability val(®’) < 2e.

Proof. This is a standard union bound argument. For each assignment, at most
em of the constraints are satisfied. When we select ®’, we expect to see ¢t
satisfied constraints. The probability of seeing 2¢t or more is bounded, using the
Chernoff-Hoeffding bound, by

IP [number of unsat constraints > 2¢t] < 2 exp(2te?) < 2"

where the last inequality is due to the choice of t as a function of  and ¢. The
number of possible assignments is £ = ¢ " and thus with high probability none
of them satisfy more than 2¢t constraints in @'. m|

2.3 Binomial coefficient estimate

We rely on the following estimate, for large n and constant 6 > 0,

LA onH(©®) 5, 9onlog(1/0)
on

where = implies up to (1 + o(1)) multiplicative factors in the exponent, and
H(6) = —6log, 6 — (1 — 0)log,(1 — 0) is the entropy function.

3 Main Lemma

Our main theorem follows from the following lemma,

Lemma 3.1. For every 6 > 0 there is reduction mapping a 3SAT instance @ on n
variables and m = D - n clauses to a label cover instance U of size N = 20(+010g(D/0))
such that

— If sat(®) = 1 then sat(U) = 1
— Ifsat(®) < 0.9 then sat(U) < 2720 = N~1/¢log(D/9))
The reduction runs in time that is at most quadratic in the output size N.

Let us first derive the main theorem from the lemma, and then prove the
lemma.



Proof of Theorem 1.1. Assume the ETH for gap-3SAT holds with constants ¢, D > 0.
Let @ be a 3SAT formula on n variables and m = Dn clauses.

Fix @ > 0 and let = D - 271/% (so that log% = %). Let N = 2970/2 where ¢;
is the constant hidden in the O(:) notation of Lemma 3.1. By the completeness
and soundness of Lemma 3.1 an N*-time algorithm for deciding if the value of
U is 1 or at most N~ will distinguish the case that the value of @ is 1 from the
case it is at most 0.9. Hence it must be that 2" < N¥ < (2¢1"9/¢)k_ This means that
kdci/a > ¢, thatis, k > ca2l/%/Dcy = exp(Q(1/a)). m|

Proof of Lemma. The reduction can be summarized as follows: transform @ into a
two-player game, apply parallel repetition with ¢ = on rounds, and derive from
it a label-cover instance whose vertices are the unordered question-tuples. One
has to take care about implementing the construction in time polynomial in the
output size. Details follow. First, let us assume wlog* that each variable in ®
participates in the same number of clauses. Next, we take the three steps outlined
above.

1. Defining a two player game (standard): A 3SAT formula ® gives rise to the
following “clause vs. variable” player game: the referee selects a variable
x uniformly at random, and then selects a random clause c that contains
x. The referee sends the clause c to the clause player and the variable x to
the variable player. The clause player answers a number a € [7] which is
interpreted as one of seven possible assignments satisfying the clause. The
variable player outputs a bit assignment for the variable x. The game is
won if the answer of the clause player is consistent with the answer of the
variable player on x. Let us call this game Ggo. It is clear that sat(®) = 1
implies val(Go) = 1, whereas sat(®) < 0.9 implies val(Ga) < 0.99.

2. Parallel repetition (standard): The t-parallel-repetition of the above game is
the game in which the referee selects t variables x1, ..., x; independently
at random and ¢t clauses (cy, ..., ;) such that ¢; 5 x;. The answer of each
player is now a t-tuple of answers. By definition, the game is won if all ¢
answers of the clause player satisfy the t clauses and are consistent with
all t answers of the variable player. We denote this game by G/,. Clearly if
val(Go) = 1 then Val(GfD) = 1, and by the parallel repetition theorem [Raz98]
if val(Go) < 0.99 then val(Gfy) < 279", Note that the constant hidden in
the exponent is really an absolute constant (it only depends on 0.99).

It is important that this step is only conceptual and not really part of a
construction. In particular, the standard way of making a label cover out of
a parallel repetition instance would result in too large an instance size.

3. Label-cover (idealized weights): Here is where we crucially make a non-
standard move. Rather than considering a graph in which the vertices are

“There is a well-known transformation for converting ® into such form (by so-called “expander
replacement”) while increasing the number of variables at most linearly and losing a negligible
amount in val(®).



all possible ordered t-tuples, we consider a graph in which the vertices are
all possible multi-sets of size ¢.

We construct a label-cover instance. The underlying bipartite graph U =
(X, G E) has a vertex set C U X, where C has a vertex cs for every multiset
S of t clauses, and X has a vertex xr for every multiset of ¢ variables. The
number of vertices is thus® ("*/7) + ("*/71).

We put the edge (cs, x7) with weight given according to the probability of
getting the pair (S, T) in following random process: Select a random tuple
of variables (x1,...,x;) and then a random tuple of clauses ¢ = (cy,...,¢t)
such that ¢; 3 x;. Output S = {{c1,...,¢}} and T = {{xy, ..., x:}} where the
notation {{-}} stands for a multiset.

The label-set is [7]" for C and [2]’ for X. A labeling L : X — [2]',C — [7]
is interpreted as assigning each variable in xt a Boolean value, and each
clause in cs a number in® [7]. The constraint on an edge (cs, x7) will check
all the relevant consistency checks, that is, for every pair of variable x € T
and clause c € S such that x € c it checks that the assignment for cs gives
the same value to x as the assignment for x7.

Clearly if sat(®) = 1 then sat(U) = 1. We claim that sat(U) < sat(GiD). This
is because every labelling L : C — [7]', X — [2] specifies a strategy for the
players in the two player game. The value of this strategy lower bounds the
value of the labelling, because in the game only “aligned” constraints are
checked whereas in the label-cover constraints across different coordinates
are checked as well. In particular, if an edge (cs, x7) in U is satisfied by the
labelling then any question pair in G/, that is obtained by an ordering of S
and T will be satisfied by the corresponding strategy.

4. Efficiently implementing the weights: The whole point of this construction
is the super-polynomial savings we obtain by replacing all t-tuples by all
t-multisets. This reduces the size from 7' to (**/ ") which is the number
of distinct f-multi-sets. Thus, it is crucial that we can implement this
construction, and in particular the weights of the edges, in time that is
polynomial in (”+:_1) rather than n'.

For a multiset S, the weight of cg is the number of tuples that resulted in
cs, denoted w(S). This number clearly computable in time poly(t). Let us
think of the multiset S as a list (¢1,71), . .., (Cm, ¥m) Where r; > 0 indicates the
number of times the i-th clause is repeated, and }};7; = f. We enumerate
over all neighboring multisets T of variables in time exp(t) as follows. For
each o € [3] = T];[3"]] we think of 0 = (01,...,0,) where g; € {1,2,3}" isa
list of r; indices indicating which variables of the i-th clause are included in

5This can be easily seen through a bars and stars argument.

6This can be done by fixing an order on the clauses and then sorting the clauses in S according to
this order: (Cy,C,, ..., Cpg); then viewing a label (¢, ..., &) € [7]' as giving C; the value ¢;. Similarly
for the variables.



T. Foreachi=1,...,madd into T the variables of the i-th clause indexed
by o;. For each such pair (cs, x7) place an edge with weight w(S) (calculated
above). If a pair occurs more than once (this happens if the multiset T
happens to occur more than once as a neighbor of S), then we add up the
weights.

To conclude, if sat(®) < 0.9, then we get sat(U) < sat(G},) < 27" The size of U,
denoted N, is polynomial in the size of C, and denoting m’ = 6m + on,

on m -2

Cl = (m/) 3 ( m ) ~ 2 B108(D/0) ¢ p2n5log(D/o)
D

where the approximate equality is up to (1 + o(1)) in the exponent.
Expressing ¢ = 279" in terms of N gives ¢ = 1/N 1/1og(D/0) m|

4 Linear-size sliding-scale verifiers

In this section we show that sliding scale verifiers for smaller-than-polynomial
gaps can be used to obtain, via our reduction, a sliding scale verifier with a
polynomial gap. Our initial hope was that we could rely on pre-existing sliding
scale verifiers [RS97, AS97, DFK"11, DHK15] as a starting point of the reduction’,
instead of gap-3SAT. This would place our conclusion about polynomial gaps
for label cover on firmer ground, replacing gap-ETH with a more conventional
hypothesis such as ETH.

However, it turns out that our reduction is not strong enough to utilize
existing sliding scale verifiers, because they are not length-efficient. There is
a line of work [MR10a, MR10b] which tries to minimizes all three parameters
(soundness error, alphabet size, proof length) but unfortunately it does not meet
our needs. In particular, it does not have a polynomial relation between the gap
and the alphabet size.

We propose the following conjecture regarding the existence of linear size
sliding scale verifiers. The conjecture is parameterized by ¢, which is thought
of as some function of n. The point is (see Lemma 4.4 below) that existence of
a linear sliding scale verifier for some ¢, even much larger than 1/ poly(n), will
imply the sliding scale conjecture for ¢ = 1/ poly(n).

Conjecture 4.1 (¢-linear-sliding-scale conjecture - CSP phrasing). There exists
some k > 1 and a polynomial-time reduction from SAT on n variables to a k-CSP on
n/ poly(e) variables taking values in an alphabet of size 1/ poly(e), and a (1, €) gap.

Let us also include the equivalent phrasing in terms of PCP verifiers for NP,

Conjecture 4.2 (e-linear-sliding-scale conjecture - PCP verifier phrasing). There
exists some k > 1 such that every language in NP can be verified by a polynomial-time

7 Another issue that would need to be addressed in this approach is the need of a parallel
repetition theorem for more than two players.

10



verifier that makes k queries into a proof written over an alphabet of size poly(1/e).
. 1 . . .

The verifier uses logn + O(log ) random bits to decide on the queries, has perfect

completeness, and soundness error at most ¢.

We will sketch a reduction (very similar to the one in Lemma 3.1) that shows
that if the conjecture above held true for some value of ¢, then by unordered
parallel repetition we would get a result analogous to Theorem 1.1 based on the
exponential-time hypothesis for SAT rather than for gap-SAT. This is a weaker,
and much more widely studied assumption.

First, let us give a quick comparison between the verifier in the conjecture
and currently known constructions.

— When ¢ = O(1) if we consider a constant number of queries then the best
known proof length is n - poly log n [Din07, BS05]. Linear proof length is
achieved in [BKK"13] but with a number of queries that is nf for some
g>0.

— When ¢ = 27187 for some a > 0 two constructions are known. The
tirst, [RS97, AS97], constructs sliding scale verifiers whose proof length is
much larger than n/ poly(¢). The second, [MR10a], comes closer to this
goal and constructs verifiers with soundness ¢ but whose alphabet size
is 1/ gpoly(¢) and whose proof length and is 1/ qpoly(¢) (where qpoly(x)
denotes quasi-polynomial in x, i.e. xPoly(108x)),

Reduction 4.3 (Unordered parallel repetition from a k-query PCP verifier). Sup-
pose there exists a linear size sliding scale verifier that makes k queries. We
construct a new k-CSP instance as follows. We view the PCP verifier system as a
k-CSP, and sparsify by leaving a random set of 11/¢% constraints, as in Claim 2.7.
The new instance is constructed as follows. The new variables {xs} will corre-
spond to subsets S of old variables, such that |S| < t. The new constraints and
their weights are described by the following random process: Run the verifier ¢
times independently generating k t-tuples of variables. From each tuple “erase”
the order (say by sorting) and send it to one of the k provers.

The reduction clearly has perfect completeness. For k = 2 we can also
prove soundness based on the parallel repetition theorem for small soundness
[DS13, BG15]. For k > 2 a parallel repetition theorem is not known, let alone for
small soundness, but we believe such a theorem is correct. We summarize what
we can prove in the following lemma.

Lemma 4.4. Reduction 4.3 can be computed in time polynomial in the output size,
which itself is polynomially bounded by (”/fS) < exp(O(6 - n/ed -log1/0)).
— Completeness: The reduction is complete for all k. Namely, if the initial instance is
perfectly satisfiable, then so is the new instance.

— Soundness: If k = 2 then the reduction is sound. Namely, if the initial instance
has value at most ¢ then the resulting instance has value at most exp(—Q(on/e3 -
log1/¢)) = poly(1/N).

11



Proof. The size of the output instance is dominated by the number of constraints

which is at most N = ("/fs). We omit details of approximating the weights but
this can be done similarly to Lemma 3.1.

We now bound the value of the constructed instance, in case we started from
a SAT instance whose value was smaller than ¢. For the case of k = 2 we can
apply the low value parallel repetition theorem [DS13, BG15], then by similar
calculations to those in Lemma 3.1, the value of the new instance would be at
most

e = £Q0M — oxpn(—Q(on/e% - log 1/¢)),

which is polynomial in the output size N so long as 6 = poly(¢). m]

We conclude that Conjecture 4.1 implies (at least for k = 2), assuming the
“standard” exponential time hypothesis, that for some a > 0 there is no polynomial-
time algorithm that n® approximates the value of a binary CSP with alphabet size
n.

The interesting point in our opinion is that a sliding scale verifier with
polynomial gap can be obtained from a sliding scale verifier with any gap ¢, but
only if the latter has size that is linear in n and polynomial in 1/¢. This points
towards the question of constructing such verifiers.

5 Discussion

It is not known whether gap-3SAT is exponentially hard, but currently there is
no known algorithmic difference between random 3SAT and worst-case 3SAT in
terms of the time it takes to decide if the formula is satisfiable or not. If we think
that the sliding-scale conjecture is “very” false in that there is a polynomial-time
approximation for the value of label cover with an n°) factor of approximation,
then our result shows that random-3SAT can be refuted in faster-than-exponential
time.
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