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1 Introduction

In this paper, we prove bounds on the number of rounds needed to compute a given function in a dis-
tributed manner. In our paper a problem is a tuple ( f ,G ,K ), where G = (V ,E) is the underlying commu-

nication graph (which is assumed to be undirected), K is a set of k
def= |K | terminals (or players), and we

are interested in computing the function f : ({0,1}n)K → {0,1}: i.e. all terminals in K need to know the
final answer after the protocol is done.1 Unless stated otherwise, the k inputs are assigned in worst-case
manner to the terminals in K .

All communication in a protocol is point-to-point (as opposed to the broadcast mode of communica-
tion) and a bit transmitted over an edge e = (u, v) is private to u and v . Further, we assume a synchronous
model and in each round, each node u ∈ V sends a (potentially different) bit2 to each of its neighbors.
We assume the two directions of an edge (u, v) can be used simultaneously. We will further assume that
the protocols have full knowledge of G and all nodes (for randomized protocols) use public randomness.
In this paper, we are interested in the round complexity: i.e. the total number of rounds needed by a
protocol to compute the output. Note that this notion corresponds to the time taken by the distributed
protocol to compute the answer. Given a problem P we will use Rε(P ) to denote the minimum number
of rounds needed for the worst-case input of any randomized protocol that errs on all input with proba-
bility at most ε. WLOG for randomized protocols one can assume that ε= 1/3 and we will in most cases
refer to R1/3(P ) by just R(P ). Note that R0(P ) denotes the deterministic round complexity.3 To simplify
our presentation we will ignore in our bounds poly-logarithmic factors in both the size of G and n. In
particular, we will use the notation Õ(·),Ω̃(·) and Θ̃(·) to denote the usual asymptotic notation that ignore
poly-log factors (in size of G and n).

Our model above is very similar to the well studied CONGEST model in distributed computing [Pel00]
with the following differences. First, for proving upper bounds on the CONGEST model, it is assumed
that a node in V only knows about its neighbors while in our setup we assume that the protocol knows
the structure of G . This makes our lower bounds potentially stronger. Second, typically in the distributed
computing literature the function f itself depends on the underlying network G (e.g. check if a given sub-
graph of G is a spanning tree [DSHK+12]) while in our setup the function f is independent of the network
topology G . This assumption makes sense in the current state of affairs where many such functions are
computed in a distributed manner over the same network. Recent works (including those of Drucker at
al. [DKO14] and Klauck et al. [KNPR15]) have proved bounds for functions that were independent of G
(for the special case where G is the complete graph). Finally, in most of the existing work it is assumed
that K = V , while we consider the more general case when K ⊆ V . This more general case makes sense
e.g. in a data warehouse where any given function that needs to be computed could only depend on
inputs that are stored at some subset of the servers.

Recently there has been work that deals with the graph communication model as above but instead
of minimizing the round complexity, these results are for the case of minimizing the total communi-
cation of the protocols. Most of the work in this area has been for specific classes of G . For example,
the early work of Tiwari [Tiw87] considered deterministic total communication complexity on cases of
G being a path, grid or ring graph. There has been a recent surge of interest for proving lower bounds

1It turns out if one terminal knows the answer than it can send to all others via a simple Steiner tree based protocol whose
cost is dominated by all our bounds.

2By creating parallel edges, our results extend to the case where in each round each edge e ∈ E can send ce bits. However, for
notational simplicity we will only consider the case of ce = 1 in this paper; that is, G is a simple graph.

3We note that in communication complexity literature, R0 is used to denote the zero-error randomized communication
complexity but we use this convention since it makes our theorem statements cleaner.
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on total communication for the case when G is a star [PVZ12, WZ12, WZ13, BEO+13, WZ14, CM15]. This
work was generalized to arbitrary topology by Chattopadhyay et al. [CRR14] who proved tight bounds
for certain functions for all network topologies. A followup work extended the results to some more
functions [CR15].

Both of these strands of work (on round complexity and total communication) coincide for the spe-
cial case when G is just an edge. Note that in this case we have two players and the model coincides with
the very well studied model of two-party communication complexity introduced by Yao [Yao79], which
has proved to be an extremely worthwhile model to study with applications in diverse areas of theoretical
computer science.

Given the importance of round complexity in distributed computing, it is natural to ask

Can we prove tight topology sensitive bounds for round complexity?

We would like to point out that optimal protocols for total communication need not be optimal for
round complexity and vice-versa. To see this, consider the case where G contains two terminals {a,b} and
many parallel edge-disjoint paths between a and b: there is one path of length 1, and

p
n paths of lengthp

n. a receives n bits and wants to send those n bits to b. The optimal protocol for total communication
would be to send the n bits on the length-1 path, which has O(n) total communication but takes Ω(n)
rounds. On the other hand, an (almost) optimal protocol in terms of number of rounds would be splitting
the n bits into

p
n blocks of

p
n bits and send each block using one of the

p
n paths of length

p
n. This

protocol has round complexity O(
p

n) but total communicationΩ(n
p

n).
In this work, we prove tight bounds on round complexity for several families of functions. We believe

that the proof techniques presented, and not just the concrete results, are of independent interest. Pretty
much all of the previous work in the total communication regime proved their lower bounds via two
steps. The first step was to ‘divide’ up the problem into a bunch of two party communication complexity
problems. The second step is to ‘stitch’ together the lower bounds for these two party communication
problems. Our proofs also have the same two step structure but our implementations of both these steps
are very different. The first step in previous works is implemented by constructing a family of cuts and
then considering the two-party problem induced on each cut. In our proofs, we consider a more general
set of edges E ′ (which might not form a cut) and then simulate our original protocol on G projected down
to E ′ via a two-party communication protocol. The second step in previous work used a common hard
distribution across all chosen cuts and then used linearity of expectation to ‘add up’ the lower bounds.
In contrast, we use the notion of a timed graph (that is independent of the hard distributions) so that
we can use different hard distributions for the different two party communication problems to deduce
something about the same timed graph. The stitching then occurs by proving various ‘gluing’ results
on Steiner tree packing and multi-commodity flow problems on graphs. This difference allows us to
prove lower bounds for both randomized and deterministic protocols with the same proof while e.g. the
results of [CRR14] could not prove tight deterministic bounds for functions whose zero-error randomized
complexity is much smaller than its deterministic complexity.

1.1 Overview of our results

We prove our bounds for two classes of functions, as in [CR15]. Roughly speaking in the total commu-
nication setting, one class has an optimal protocol that combines inputs upwards on a Steiner tree and
in the second class of problems the optimal protocol involves all players sending their inputs to a desig-
nated node. Next, we define two functions that are representatives of these two classes. (See Theorems 14
and 19 for the exact definitions of these two classes.)
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We start our overview with the well studied k-party set disjointness problem, which is defined as fol-

lows. Each player u ∈ K gets a string xu ∈ {0,1}n (which can be thought of as a subset of [n]
def= {1,2, . . . ,n})

and the output is
DISJK ,n

(
{xu}u∈K

)= ∨
i∈[n]

∧
u∈K

xu[i ],

i.e. the output is 1 if and only if all the k sets have an element in common.
For DISJK ,n as shown in [CR15], the optimal protocol (up to poly-logarithmic factors) for total com-

munication is to first compute the minimum Steiner tree on G with K as the set of terminals and then
to compute the intersection of the k sets in a bottom-up fashion. For the round complexity, it seems
natural to try this scheme in ‘parallel’: i.e. try to pack as many edge disjoint Steiner trees of small di-
ameter as possible and to compute the set intersection on appropriate parts of the universe [n] up the
trees in parallel. It turns out that this is indeed the optimal protocol for round complexity. We prove the
following result (where ST(G ,K ,∆) denotes the optimal value of Steiner tree packing with terminals K
and diameter ∆ in G ; formal definition appears in Section 2):

Theorem 1. For any graph G and subset of players K , we have for every ε≥ 0

Rε(DISJK ,n ,G ,K ) = Θ̃
(

min
∆∈[|V |]

(
n

ST(G ,K ,∆)
+∆

))
.

The other function is the element distinctness problem (shortened to ED), which is defined as fol-
lows. Each player u ∈ K gets a string xu ∈ {0,1}n (which can be thought as a number in [0,2n −1]) and the
output is

EDK ,n
(
{xu}u∈K

)= ∧
u 6=v∈K

xu 6= xv .

For EDK ,n as shown in [CRR14], the optimal randomized protocol for total communication is for the
k players to send the hash of their inputs to the median node w.r.t. K in G . A natural protocol would
be to run a multi-commodity flow problem where the demands correspond to each of the k players
sending their bits to the median node. However, it turns out that this is not optimal for round complexity.
Intuitively the main reason this fails is because the median node has too much incoming flow. The next
natural idea would be to somehow have a different multi-commodity flow problem where each node has
a ‘balanced load’. Indeed we are able to show this to be possible by using a small circuit for EDK ,n as our
guide. Let τMCF(G ,K ,n′) denote the smallest number of rounds τ needed to simultaneously route n′/k
units flow from u to v for every u, v ∈ K . Then we show that

Theorem 2. For any G and K , we have for any constant ε> 0

Rε(EDK ,n ,G ,K ) = Θ̃ (τMCF(G ,K ,1))

and
R0(EDK ,n ,G ,K ) = Θ̃ (τMCF(G ,K ,n)) .

In particular, we generalize the construction in Drucker et al. [DKO14] to show how to convert any
bounded fan-in and fan-out circuit for any function f into a protocol for f . Drucker et al. proved such a
result for the special case of G being the complete graph.4 More specifically, we show that

4However, [DKO14] do not lose any Õ(1) factors like we do.

3



Lemma 3. Let f : ({0,1}n)k → {0,1} have a circuit with constant fan-in and constant fan-out gates and
depth d. Further, each level i ∈ [d ] has si gates in it. Then

R0( f ,G ,K ) ≤
d∑

i=1
Õ

(
τMCF

(
G ,K ,

si

k

))
.

Finally, we can upper bound the above by Õ
(
d ·τMCF

(
G ,K , s

k

))
as well as Õ

( s
k ·τMCF (G ,K ,1)

)
.

Like the results of Drucker et al., this connection implies a barrier to proving quantitatively better
lower bounds. In particular, if we could exhibit an explicit function f that we could prove requires asymp-
totically larger number of rounds than Õ (d ·τMCF (G ,K ,n)), then we would have shown a super-linear
size lower bound for circuits computing f with depth d .

We also apply our general lower bounds to prove lower bounds for the following distributed graph
problems. In these problems each player u ∈ K gets a graph Hu as input and the goal is to check if the
overall graph H = ⋃

u∈K Hu has certain properties. In particular, we consider the following four prob-
lems that check if H (i) is connected, (ii) contains a triangle, (iii) is acyclic, (iv) is connected. We show

a lower bound of Ω̃(τMCF

(
G ,K , |V (H)|+|E(H)|

k

)
. Our lower bounds generalize some of the lower bounds

in [KNPR15] to general topologies. In particular, we generalize the lower bounds for connectivity to gen-
eral topologies while [KNPR15] does not provide any lower bounds for the triangle detection problem.5

We also show, by simple adaptation of upper bounds in [DKO14,KNPR15], that as long as H is large, these
bounds are also tight.

Finally, we highlight a technical result that we believe is of independent interest. We will use R(2)
ε ( f )

to denote the randomized round complexity for the two party case (we assume Alice and Bob can send a
bit to each other simultaneously in each round), where we allow Alice and Bob to have inputs of different
sizes. We will also need to consider R(→)

ε ( f ) for the one-way round complexity where (say) Alice (or Bob)
sends a single message to Bob (Alice resp.) and Bob (Alice resp.) computes the answer based solely on
the single message he (she resp.) received from Alice (Bob resp.) as well as his (her resp.) input. Let
τroute(G , {u, v},n′) denote the minimum number of rounds in which u can route n′ bits to v in G ; since G
is undirected, this is the same as the minimum number of rounds in which v can route n′ bits to u in G ;
thus the notation is well-defined.

Theorem 4. For any function f : {0,1}n × {0,1}n → {0,1}, and any graph G we have that

τroute(G , {a,b},R(2)
ε ( f )) ≤ 4Rε( f ,G , {a,b}).

Notice the above inequality implies that τroute(G ,{a,b},R (→)
ε ( f ))

Rε( f ,G ,{a,b}) ≤ 4
⌈

R (→)
ε ( f )

R (2)
ε ( f )

⌉
, by Claim 8 (stated in Sec-

tion 2). The technical result implies that when using the obvious one-way communication algorithm to
solve f for the case of k = 2, the penalty we incur on any graph is no worse than a constant factor when
used on the case when G is just the edge (u, w) (i.e. the traditional two party communication complexity
setting).

1.2 Overview of our proof techniques.

We now present an overview of our proof techniques specialized to the case of DISJK ,n and EDK ,n . To
begin with we will assume that n is much larger than the size of G . In this case the common way to prove

5However, we note that [KNPR15]’s lower bound for connectivity holds for random distribution of H while our lower bounds
assume worst-case distribution. See Section 6.1 for more on this.
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a lower bound is via the so called communication bottleneck argument: if m bits have to transmitted over
a cut C with δ(C ) crossing edges, then the obvious lower bound on round complexity is m

|δ(C )| .
We begin with DISJK ,n . Using the communication bottleneck argument and the linear lower bound

on the two-party communication complexity of DISJ [Raz92], we get a lower bound of Ω
(

n
λK (G)

)
for

DISJK ,n (where λK (G) is the size of the min cut separating K ). For the upper bound, we invoke a re-
sult of Lau [Lau07] to argue that we can pack T = Ω (λK (G)) many edge disjoint Steiner trees in G with

terminals K . If n is large enough then the number of rounds needed is O
( n

T

) = O
(

n
λK (G)

)
, giving a tight

bound.
We now consider the case of EDK ,n with large enough n. The communication bottleneck argument

along with known relations between multi-commodity flow and sparsity of a graph [LR99, LLR95] gives
us a randomized lower bound of Ω̃(τMCF(G ,K ,1)). The trivial protocol of all players sending (the hash
of their) inputs to one player r gives us an upper bound of Õ(τMCF(G ,K ,k)). The mis-match is because
in this case r has an incoming flow of Ω(k). To avoid this we adapt the argument in [DKO14] to have
Õ(1) phases, where each phase is a more ‘balanced’ multi-commodity flow problem that can be solved
in Õ(τMCF(G ,K ,1)) number of rounds. The flow problems in these phases are guided by a small circuit
that computes the ED function, as in Lemma 3.

It turns out that for the above results for EDK ,n to hold (for randomized complexity), n has to be ex-
ponentially larger than the size of G , which is not ideal (and something we would like to avoid assuming).
It turns out that the reason we need n to be large enough for the above arguments is that the results for
Steiner tree packing [Lau07] and those of multicommodity flow [LR99, LLR95] are only proved without
any constraints on the diameter of the Steiner trees and the dilation (i.e. the length of the longest flow)
of the multicommodity flow. In our arguments, we take both of these factors into account. In particular,
for the upper bounds we simply ‘pick’ the best Steiner tree packing and multicommodity flows based on
delay constraints.

However, the Steiner-tree packing result of [Lau07] and the flow-cut-gap results of [LR99, LLR95]
break down if we impose the diameter constraints on the Steiner-trees, or the dilation constraint on the
multi-commodity flow. We need to use other techniques to handle these constraints. For the Steiner-
tree packing problem with diameter constraints, we apply the techniques for bi-criteria network design
in [MRS+98]. In particular, [MRS+98] gave an

(
O(log |V |),O(log |V |))-approximation algorithm for the

bounded diameter minimum Steiner tree problem, where the first O(log |V |) factor is for the violation
of the diameter constraint and the second O(log |V |) factor is for the cost of the Steiner tree. Using the
duality between maximizing Steiner-tree packing and minimizing cost of a Steiner tree, we are able to
give a good Steiner-tree packing that approximately satisfies the diameter constraint.

For the multi-commodity flow problem with the dilation constraint, we could not give a good bi-
criteria approximation for all demand functions. However, for certain demand functions (including the
demand function corresponding to ED), we can apply the cut-matching-game technique in [KRV09] for
constructing expanders. For these demand functions, for every equal partition (A,B) of K , we can route
many matchings between A and B using short paths. The cut-matching game technique allows us to find
a small-congestion “embedding” of an expander in G using short paths. The properties of the expander
allow us to route the demand using short paths.

A crucial ingredient in our lower bound proofs is the notion of a timed graph, which was introduced
in the context of network coding in the study of cyclic networks [ACLY00]. Timed graphs have found
several applications in the network coding literature including in the study of time constrained network
communication, memory constrained network communication, and gossip protocols, e.g., [HKM11,WC14,
CKKV15]. Informally, the τ-timed version graph of G , which we denote by G (τ) is a graph with τ+1 layers
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(with τ+1 copies of V ) with the edge set of E repeated between the i and (i +1)th layer (for 0 ≤ i < τ).
The crucial property of the timed graph is that there exists protocol Π over G with round complexity τ if
and only if there exists a protocol on G (τ) where each edge is used at most once.

Finally, we present an overview of how we argue for the presence of good Steiner tree packing and
good multi commodity flow in G (τ), where τ is the number of rounds taken by the optimal protocol. The
obvious thing to try here would be to again appeal to two party communication complexity lower bounds
on cuts on G (τ) itself and then appeal to known results relating Steiner tree packing and multicommodity
flow on directed graphs to the corresponding functions on cuts. There are two issues. First, for Steiner
tree packing and multi commodity flow the gap between these two quantities for general directed graphs
are either unknown or unbounded. We get around this issue by explicitly using the fact that G (τ) is a
special graph: i.e. a timed graph of an undirected graph. The second issue is that directly applying the
two party communication complexity lower bounds across a cut in G (τ) is typically not enough since
these only imply a lower bound on number of crossing edges in both directions across a cut in G (τ),
while our argument require a lower bound on the number of edges going from ‘left’ to ‘right’ in a cut.
We address this issue by invoking the two party communication complexity not across a cut in G (τ) but
invoking it on a carefully chosen subgraph of G (τ).

Organization of the paper

We start off with some preliminaries in Section 2. We prove Theorem 4 in Section 3. We prove The-
orem 1 (and its generalization Theorem 14) in Section 4. We prove Theorem 2 (and its generalization
Theorem 19) in Section 5. Finally, we present our bounds for distributed graph problems in Section 6.

2 Preliminaries

2.1 Notations

Let f :
(
{0,1}n

)K → {0,1} be a function, and A,B ⊆ K be two disjoint non-empty sets and x̃ ∈ (
{0,1}n

)K \(A∪B).

Define f A,B ,x̃ :
(
{0,1}n

)A × (
{0,1}n

)B → {0,1} to be the function such that for every xA ∈ (
{0,1}n

)A and

xB ∈ (
{0,1}n

)B , we have f A,B ,x̃(xA ,xB ) = f (x̃ ◦ xA ◦ xB ), where x̃ ◦ xA ◦ xB denotes the vector y ∈ ({0,1}n)K

such that y[v] = xA[v] if v ∈ A, y[v] = xB [v] if v ∈ B and y[v] = x̃[v] if v ∈ K \ (A ∪B). For every pair
A,B ⊆ K of disjoint non-empty sets, we use G A,B to denote the graph G with vertices in A identified, and
vertices in B identified. We shall use v A and vB to denote the two new vertices in G A,B .

2.2 The timed graph

We now define a graph related to G that will be crucial in our arguments. Given an integer τ ≥ 1, we
define a directed and layered graph G (τ) = (Vτ,Eτ), where

Vτ =V × [0,τ],

and Eτ is defined as follows. For every (u, v) ∈ E , we have the following edges in Eτ:

{((u, i ), (v, i +1))|0 ≤ i < τ}∪ {((v, i ), (u, i +1))|0 ≤ i < τ}.
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Finally we add to Eτ infinitely many parallel edges ((u, i ), (u, i +1)) for every u ∈ V and 0 ≤ i < τ that we
call memory edges.6

A useful property of G (τ) is that given a protocol with congestion c on G (τ) one can easily construct a
protocol with no congestion on G (c·τ), i.e. we can get a valid protocol on G with delay cτ. This makes our
arguments simpler since in the Steiner tree packing and multi-commodity flow solutions we can tolerate
Õ(1) congestion.

2.3 Graph background

We recall two graph problems that have been studied extensively and will be crucial in our analysis.

Steiner Tree Packing. We begin with the problem of Steiner tree packing. Given the graph G and set of
terminals K , we call a tree T a Steiner tree if it connects all vertices in K only using edges in G . We con-
sider the (fractional) Steiner tree packing problem, which we will represent by the following well-studied
LP. In particular, we would be interested in Steiner trees with diameter (between any two terminals) of
∆– let T∆,K denote the set of all such Steiner trees.

max
∑

T∈T∆,K

zT s.t.
∑
T3e

zT ≤ 1 for every e ∈ E , zT ≥ 0,∀T ∈T∆,K .

Let ST(G ,K ,∆) denote the optimal value of the above LP.

Multi-commodity flow. We will also use the well-studied multi-commodity flow problem. A demand
function D is some vector in RK×K

≥0 . In this demand, we need to send Du,v units of flow from u to v for
every u ∈ K , v ∈ K . Since we are interested in the minimum number of rounds to route the demand
function D , it is convenient to view the demand as directed and not necessarily symmetric: for every
u, v ∈ K , we need to send Du,v units of flow from u to v and Dv,u units of flow from v to u, where Du,v

and Dv,u may be different. In the problem, we assume that in each round for every edge (u, v) ∈ E , we
can send at most 1 unit flow from u to v and at most 1 unit flow from v to u.

Definition 5. For any real number n′ > 0, we say a demand function D ∈RK×K
≥0 is n′-bounded, if for every

u ∈ K , we have
∑

v∈K Du,v ≤ n′ and
∑

v∈K Dv,u ≤ n′.

Definition 6. For every n′ > 0, let τMCF(G ,K ,n′) to be the minimum number of rounds τ such that we
can simultaneously send n′/k units flow from u to v in G, for every u, v ∈ K . For every a,b ∈ V , let
τroute(G , {a,b},n′) denote the minimum number of rounds τ such that a can send n′ units flow to b.

In other words, τMCF(G ,K ,n′) is minimum number of rounds to route D , for the function D with
Du,v = n′/k for every u, v ∈ K . Note that

Proposition 7. When G is a clique on k vertices, we have

τMCF(G ,K ,n′) =
⌈

n′

k

⌉
.

We first note a simple property of τMCF and τroute.

6We only need large enough memory edges. However, we choose to say there are infinite of them to avoid having to specify
the exact number of such edges.
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Claim 8. For every n′ > 0 and n′′ > 0 and a,b ∈ V , we have τMCF(G ,K ,n′′) ≤
⌈

n′′
n′

⌉
τMCF(G ,K ,n′), and

τroute(G , {a,b},n′′) ≤
⌈

n′′
n′

⌉
τroute(G , {a,b},n′).

Next, we note that the definition of τMCF is enough to capture all n′-bounded demands.

Lemma 9. For every n′-bounded demand D over K , we can route D with 2τMCF(G ,K ,n′) rounds.

Proof. Without loss of generality, we assume for every u ∈ K we have
∑

v∈K Du,v = n′ and
∑

v∈K Dv,u = n′.
We route the demand D in 2 stages, each with delay τMCF(G ,K ,n′). We color the commodities by their
destinations. So at the beginning, there are Du,v ′ units of commodity of color v ′ at u, for every u, v ′ ∈ K . In
the first stage, we send n′/k units of commodity from every u ∈ K to every v ∈ K , such that the commodity
of each color is split evenly: v is getting Du,v ′/k units of commodity of color v ′ from u, for every color
v ′ ∈ K . Thus, at the end of the first stage, every vertex u has n′/k units commodity of each color v ′. Then,
in the second stage, we send the commodity of each color v ′ to v ′. Notice that in each of the two stages,
we are sending n′/k units of flow from every u to every v and thus the delay is τMCF(G ,K ,n′); so overall
the delay is 2τMCF(G ,K ,n′).

Facts about expanders. Given a graph H = (VH ,EH ), the expansion of H is defined as

Φ(H) := min
S⊆VH :|S|≤|VH |/2

|EH (S,VH \ S)|
|S| ,

where EH (S,VH \ S) is the set of edges in EH with one endpoint in S and the other endpoint in VH \ S. We
say a graph is an α-expander if its expansion is at least α.

Let H be a d-regular graph and A be the adjacency matrix of H : for every u, v ∈ K , Au,v is the number
of edges between u and v in X . Since A is symmetric, it has n real eigenvalues. The largest eigenvalue
of A is λ1 = d . Let λ2 ≤ d be the second largest eigenvalue of A. Cheeger’s inequality relates λ2 and the
expansionΦ(H) of H .

Theorem 10 (Cheeger’s Inequality). d−λ2
2 ≤Φ(H) ≤

√
2d(d −λ2).

We are interested in the following lazy random walk on a d-regular graph H . We start from an initial
vertex v ∈ VH , chosen randomly according to some initial distribution q . In each step, with probability
1/2, we stay at the current vertex; with the remaining 1/2 probability, we move to a randomly selected
neighbor of the current vertex. Then, (I + A/d)/2 is the transition matrix of the lazy random walk, where
I is the identity matrix. The following theorem says that the mixing time of the lazy random walk on an
expander is small.

Theorem 11 (Lazy random walk on expanders). Let H = (VH ,EH ) be a d-regular graph with |VH | = NH , A
be its adjacency matrix and λ2 be the second largest eigenvalue of A. Let µ= (

µv = 1
NH

)
v∈VH

be the uniform

distribution over vertices in VH . For any initial distribution q ∈ [0,1]VH over VH and integer T ≥ 0, we have∥∥∥∥∥
(

I + A/d

2

)T

q −µ
∥∥∥∥∥

1

≤
√

NH

(
1+λ2/d

2

)T

.
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2.4 Circuits

We will consider circuits that compute a function f . In particular, we will consider circuits with gates of
fan-out and fan-in at most two: (i) AND, (ii) OR, (iii) NOT and (iv) duplication gate7. We will call such a
circuit (s,d)-bounded if it has at most s wires and has depth d . In this paper we almost exclusively deal
with the case of d = Õ(1). Also for uniformity, we will think of each input bit as a ‘constant gate.’

3 The case of k = 2

In this section we consider the special case of K = {a,b} (for Alice and Bob) but still over an arbitrary
graph G . Our main result is Theorem 4, which we prove in this section and is re-stated below:

Theorem 4 (Restated). For any function f : {0,1}n × {0,1}n → {0,1}, and any graph G we have that

τroute(G , {a,b},R(2)
ε ( f )) ≤ 4Rε( f ,G , {a,b}).

We would again like to stress that our proof does not proceed by invoking two party communication
complexity lower bounds on two party functions induced by cuts.

Proof of Theorem 4. It would be convenient to consider the set ~E of directed edges, obtained from E by
replacing each edge (u, v) ∈ E with two directed edges (u, v) and (v,u). Consider the protocol in graph
G that computes the function f in τ := Rε( f ,G , {a,b}) steps. For every (u, v) ∈ ~E , let x t

u,v be the bit sent
from u to v at time t (recall that we allow both directions of an edge in E to be used simultaneously).
The bit x t

u,v is a function of the bits received by u by time t − 1 (and the public random string); here
we assume that a received the input string xa and b received the input string xb at time 0. We assume

towards the contradiction that τroute

(
G , {a,b},R(2)

ε ( f )
)
> 4τ. By Claim 8, we have τroute (G , {a,b}, N ) > 2τ,

where N =
⌈

R(2)
ε ( f )/2

⌉
. This says that one cannot route N bits in 2τ rounds from a to b.

Lemma 12. Given a graph G = (V ,E) and a,b ∈V , assume there is no protocol that sends N bits from a to
b in T rounds. Then there exists a vector ` ∈ {0,1,2, · · · ,T +1}V such that `a = 0,`b = T +1 and∑

(u,v)∈E
max{|`u −`v |−1,0} < N .

Proof. We consider the time graph G (T ). Since there is no protocol that sends N bits from a to b in time
T , we can not send N units of flow from (a,0) to (b,T ) in G (T ) (with congestion 1). By the max-flow-min-
cut theorem, there is a cut of size strictly smaller than N in G (T ) that separates (a,0) from (b,T ). Let (A,B)
be the cut in G (T ). For every t ∈ {0,1,2, · · · ,T }, let At = {v ∈ V : (v, t ) ∈ A}. Since there are infinitely many
memory edges ((v, t ), (v, t+1)), no such edge can be cut, and we have that a ∈ A0 ⊆ A1 ⊆ A2 ⊆ ·· · ⊆ AT 63 b.
Now, the (A,B) cut value is exactly

T−1∑
t=0

∑
u∈At

∑
v 6∈At+1

1(u,v)∈E < N .

For each t ∈ 1,2,3, · · · ,T , we define Vt = At \ At−1. Define V0 = A0 and VT+1 = V \ AT . Thus, a ∈ V0

and b ∈ VT+1 and (V0,V1,V2, · · · ,VT+1) forms a partition of V . For each v ∈ V , let `v be the index such

7This gate takes one bit as input and outputs two copies of the input bit.
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that v ∈V`v . We claim that in the above sum, each (u, v) ∈ E is counted exactly max{0, |`u −`v |−1} times.
Without loss of generality assume `u ≤ `v . Then, u ∈ At and v 6∈ At+1 for `u ≤ t < `v −1. Thus, (u, v) is
counted exactly max{|`u −`v |−1,0} times. Thus, we have∑

(u,v)∈E
max{|`u −`v |−1,0} < N ,

which concludes our assertion.

Applying Lemma 12 with T = 2τ, we obtain vector ` ∈ {0,1,2, · · · ,2τ+ 1}V satisfying the properties
stated in the lemma. We shall use a two-party protocol to simulate the protocol on G ; we use a′ and b′

to denote the two parties participating in the two-party protocol. We assume a′ knows the input string
xa and b′ knows the input string xb . The two-party protocol has τ rounds that correspond to the τ time
steps of the protocol on G and is defined as follows. In each round t for t = 1 to τ, for each bit x t

u,v sent
from u to v in the original protocol on G , x t

u,v is either sent from a′ to b′, or from b′ to a′, or not sent at
all according to the following conditions:

• If `u < t < `v then bit x t
u,v is sent from a′ to b′ in the two-party protocol.

• If `v < 2τ+1− t < `u then bit x t
u,v is sent from b′ to a′ in the two-party protocol.

• Otherwise bit x t
u,v is not sent in the two-party protocol.

We now claim that (i) the number of bits sent in the two-party protocol is at most 2N − 2, and (ii) the
protocol is valid in the sense that the two parties can compute the bits transmitted during its execution,
and once completed, both parties a′ and b′ know the output of the graph protocol. The fact that the
round complexity is bounded by 2N − 2 follows directly by our definitions. Namely, in the two-party
protocol, for any edge e = (u, v) ∈ E , there are at most 2(|`u −`v | −1) different t ’s for which the bit x t

u,v

or x t
v,u is sent between a′ and b′. As by Lemma 12,

∑
(u,v)∈E max{|`u −`v |−1,0} ≤ N −1 we conclude (i)

above. We now prove the validity of the protocol.

Lemma 13. Let t ∈ [0,τ]. (1) At the end of round t: if `v ≤ 2τ− t , then a′ knows all the bits received by v; if
`v ≥ t +1, then b′ knows all the bits received by v. (2) If t < τ then in round t +1, a′ knows all the bits she
needs to send to b′, and b′ knows all the bits he needs to send to a′.

Proof. We first show that for each t ∈ [0,τ−1], (1) implies (2). If a′ needs to send x t+1
u,v to b′ in round t +1,

then we must have `u < t +1. x t+1
u,v depends on all the bits received by u by the end of round t . Since

`u < t +1 < 2τ− t , (1) implies that a′ knows all these bits and thus can compute x t+1
u,v . Thus, a′ knows all

the bits she needs to send to b′ in round t +1; similarly, b′ knows all the bits he needs to send to a′.
We now prove the lemma by induction on t ; for each t we only need to prove (1). The base case is

t = 0; at the end of round 0, a′ knows all the bits received by v if v 6= b and b′ knows all the bits received
by v if v 6= a. So, (1) holds since `a = 0 and `b = 2τ+1.

Consider some t ≥ 1 and assume (1) holds for t − 1. We prove (1) for t ; we only need to prove the
statement for b′, since the statement for a′ can be proved symmetrically. Let `v ≥ t +1 and we need to
prove that b′ knows all the bits received by v before the end of round t . Since `v ≥ (t − 1)+ 1, by the
induction hypothesis, b′ knows all the bits received by v before the end of round t −1. We only need to
show that b′ knows all the bits received by v at round t .

Focus on a vertex u such that (u, v) ∈ ~E . In the graph protocol, the bit x t
u,v is sent from u to v at time

t . We consider two cases. First consider the case that `u ≥ t . Thus `u ≥ (t − 1)+ 1; by the induction
hypothesis, b′ knows all the bits received by u before the end of round t −1; thus b′ can compute x t

u,v .
For the other case, we have `u < t < `v . In the two-party protocol, a′ sends x t

u,v to b′, implying that b′
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knows x t
u,v by the end of round t (notice that by induction hypothesis, (2) holds for t −1; thus a′ knows

x t
u,v ). This finishes the proof of the lemma.

Lemma 13 implies point (ii) above. Indeed, at the end of round τ, a knows the output; a′ knows all
bits received by a as `a = 0 ≤ 2τ−τ. So a′ knows the output. Similarly b′ knows the output. Notice that
2N−2 < R(2)

ε ( f ). The error of the two-party protocol on every input (xa ,xb) is exactly the same as the error
of the graph protocol on this input. Thus, we obtain a two-party protocol with total communication less
than R(2)

ε ( f ) and error ε; this contradicts the definition of R(2)
ε ( f ). So the theorem holds.

4 Steiner Tree Packing Bounds

In this section we consider general sets K . We first present a lower bound on Rε( f ,G ,K ) based on the
notion of Steiner tree packing. We then explore the potential optimality of conceptually simple protocols
that preform computation of f over a (collection of) Steiner trees that span K .

We prove the following general lower bound result:

Theorem 14. Let G ,K , f :
(
{0,1}n

)K → {0,1}, ε ≥ 0 be defined as usual. Assume for some n′ > 0 that the

following is true: for every pair of distinct players a,b ∈ K , there exists some x̃ ∈ (
{0,1}n

)K \{a,b}, such that
R(2)
ε ( f{a},{b},x̃) ≥ n′. Then,

min
∆∈[|V |]

(
n′

ST(G ,K ,∆)
+∆

)
≤ Õ

(
Rε( f ,G ,K )

)
.

We sketch the proof of the above result for the case of DISJK ,n . We apply Theorem 4 to get many edge
disjoint paths between every pair of terminals in K with length at most Õ(τ), where the optimal protocol
takes τ rounds. Then using tools developed in earlier work on packing Steiner trees with bounded diam-
eter by Marathe et al. [MRS+98], we show that we can stitch these sets of edge disjoint path to obtain a
large enough set of edge disjoint Steiner tree packings with diameter Õ(τ). This is enough to prove our
lower bound for DISJK ,n . Next, we prove the result for general f .

Proof of Theorem 14. Assume that Rε( f ,G ,K ) = τ. In particular, for any a and b in K it holds that Rε( f{a},{b},x̃,G , {a,b}) ≤
τ. By Theorem 4, for f ′ = f{a},{b},x̃, and the fact that n′ ≤ R(2)

ε ( f ′),

τroute(G , {a,b},n′) ≤ τroute(G , {a,b},R(2)
ε ( f ′)) ≤ 4Rε( f ′,G , {a,b}) ≤ 4τ.

Thus, there exists n′ edge-disjoint paths connecting (a,0) and (b,4τ) in G (4τ). This in turn implies n′

fractional edge disjoint paths in G of length at most 4τ in which each path has fractional value 1
4τ , yielding

a total value of n′
4τ fractional edge disjoint paths (of length at most 4τ). The analysis above holds for

all pairs a and b in K . In what follows (in Theorem 15 given below), we show that the latter implies a

fractional Steiner Tree packing in G of value Ω̃
(

n′
τ

)
with tree diameter at most Õ(τ). Implying that:

(
min
∆∈[|V |]

(
n′

ST(G ,K ,∆)
+∆

))
≤ Õ(τ) = Õ(Rε( f ,G ,K )).

We now address the missing assertion in the proof of Theorem 14. We start with some notation.
Given a (partial) matching M over K and a set P of |M | edge-disjoint paths in G , we say P supports M if
for every (a,b) ∈ M , there is a path in P connecting a and b. We prove that
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Theorem 15. Let K = {u0,u1, . . . ,uk−1}. Assume that for every ui ∈ K \ {u0} there is a collection Qi of
fractional edge-disjoint paths of length at most D from ui to u0 in G with total value p. Then, there is a
Steiner tree packing of value Ω̃(p) in G with tree diameter at most Õ(D).

Proof. We use the following lemma:

Lemma 16. There is a randomized algorithm that given K ′ ⊆ K of even cardinality outputs a matching M
over K ′ and a set P of |M | edge disjoint paths supporting M such that (i) |M | ≥ |K ′|/4, (ii) all paths in P

have length at most 16D, and (iii) for every e ∈ E, Pr[e is used by paths in P ] ≤ 4/p.

Proof. Let E ′ be the set of all edges used by paths in ∪ui∈K ′Qi , let we ≤ 1 be the total weight of paths in
Qi that use e, and let w(E ′) be the sum of edge weights of edges in E ′. So w(E ′) ≤ |K ′|pD . Let G ′ = (V ,E ′)
with edge capacities we . By [LL04] we can find a fractional Steiner tree packing (T ′, z ′) of value p/2 in
G ′. However, there is no guarantee for the diameters of the trees in T ′. Focus on each tree T ∈ T ′. It is
not hard to find a perfect matching M over K ′, and a set of |M | edge-disjoint paths P in T that supports
M . Here, one needs to pair the elements of K ′ iteratively starting from the pair with the least common
ancestor which is furthest from a predefined root, removing that pair, and recursing. We say a path P ∈P

is short if its length is at most 16D ; otherwise, we say P is long. We say that T is bad if the number of long
paths in P is at least |K ′|/4; otherwise, we say T is good. It follows that

∑
T∈T ′:T bad z ′

T ≤ p/4, as otherwise
we have w(E ′) > 16D ×|K ′|/4×p/4 = |K ′|pD . A contradiction. Thus, Z ′ =∑

T∈T ′:T good z ′
T ≥ p/4.

The randomized algorithm now works as follows. We first randomly choose a good tree T ∈T ′ with
probability z ′

T /Z ′. Then we take the perfect matching M over K ′ and the set of |M | edge-disjoint paths
P in T that support M . We remove all long paths from P and their corresponding pairs from M . Then
we output (M ,P ). As each edge e ∈ E ′ has we ≤ 1, we have that

Pr[e is used by paths in P ] =
∑

T∈T ′:T good,T3e z ′
T

Z ′ ≤ we

Z ′ ≤
4

p
.

This finishes the proof of Lemma 16.

We now proceed to the proof of Theorem 15. We shall define a randomized algorithm to output a
Steiner tree T over K of diameter at most Õ(D). The final packing is implicitly defined by the randomized
algorithm. That is, a tree T has zT value proportional to the probability that the randomized algorithm
outputs T . The algorithm is a simple application of Lemma 16 above and proceeds as follows: Initially,
set K ′ ← K , T ←;. Now, repeat the following steps until |K ′| = 1: (i) apply Lemma 16 to find a matching
M over K ′ and its corresponding supporting paths P , (ii) add the edges in P to T , and (iii) for every
(u, v) ∈ M , arbitrarily remove one of the two vertices in {u, v} from K ′. Finally, return T . Note that this
procedure recurses

⌈
log4/3 k

⌉ ≤ 4logk many times (and the final diameter and congestion in the worst-
case gets multiplied by 4logk). Lemma 16 implies that the diameter of T is at most 64D logk = Õ(D).
Moreover, for every e ∈ E , the probability that e ∈ T is at most 16

p logk.
To obtain the fractional Steiner Tree packing, let pT be the probability that tree T is returned by the

randomized algorithm. It follows that zT = p
16logk pT is a solution to the Steiner Tree packing LP of value

p
16logk = Ω̃(p). This finishes the proof of Theorem 15.

4.1 Steiner tree upper bounds

We consider a reasonably large class of composed functions. In particular, given a function g : {0,1}n →
{0,1}, the class of functions g ◦SYMM if the class of all functions f : ({0,1}n)K → {0,1} such that there exits
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‘inner’ symmetric functions hi : {0,1}K → {0,1} for i ∈ [n] such that

f ({xu}u∈K ) = g (h1({xu[1]})u∈K , . . . ,hn({xu[n]})u∈K ) .

Note that DISJK ,n is a special case when g is the n-bit OR and hi is the k-bits AND. Next, we argue that
all such functions have a simple Steiner tree type upper bound. We now show that

Lemma 17. For any graph G and subset of players K , let f be in g◦SYMM for an arbitrary g : {0,1}n → {0,1}.
Then

R0( f ,G ,K ) ≤ Õ

(
min
∆∈[|V |]

(
n

ST(G ,K ,∆)
+∆

))
.

Proof. Let ∆ ∈ [|V |] and consider an optimal fractional solution to the ∆-diameter Steiner Tree (ST)
packing LP of value ST(G ,K ,∆). Such a solution can be rounded to an integral ST packing of value
Ω̃(ST(G ,K ,∆) [RT87]. Let u0 ∈ K . For every tree in the ST packing it is straightforward to schedule the
transmission of a stream of bits from each terminal in K \ {u0} towards u0 such that vertex u0 receives
for all i ∈ [n], the sum of the i th bits in K \ {u0}. Note that since the hi ’s are symmetric functions this
is enough for u0 to compute the value of f . If each terminal u holds m bits xu ∈ {0,1}m , using a single
tree, vertex u0 will be able to compute the sum of the collection {xu ∈ {0,1}m}u∈K in at most m

⌈
logk

⌉+∆
rounds. Using the Ω̃(ST(G ,K ,∆) trees in parallel one may set m = Õ

(
n

ST(G ,K ,∆)

)
on each tree to conclude

our assertion.

4.2 Some tight bounds

As noted earlier, DISJK ,n is a special case of the composed function from Section 4.1. Lemma 17 along
with Theorem 14 (where we use the well-known lower bounds for two-party DISJ [Raz92] and setting x̃
to be the all 1s vector) proves Theorem 1.

We sketch how this result can be extended to a larger family of composed functions.

Proposition 18. Consider the class of all composed functions (in the sense of Section 4.1) where all the
inner symmetric functions hi ’s are not the constant function, the parity (or its negation). Further, the outer
function is such that g (x[1]∨y[1], . . . ,x[n]∨y[n]) has two party-communication complexity ofΩ(n). Then
for any ε≥ 0, every function f in this class satisfies:

Rε( f ,G ,K ) = Θ̃
(

min
∆∈[|V |]

(
n

ST(G ,K ,∆)
+∆

))
.

Note that ¬DISJK ,n belongs to this class of functions.

Proof Sketch of Proposition 18. Lemma 17 proves an upper bound of Õ
(
min∆∈[|V |]

(
n

ST(G ,K ,∆) +∆
))

. Fur-

ther, since the hi ’s are not one of the four ruled out functions, there is always a way to fix any k −2 of the
inputs (other than say the terminals a and b) such that value of f is determined by g ′(xa ,xb) = g (xa[1]∨
xb[1], . . . ,xa[n]∨xb[n]). Indeed, by the choice of hi , for every i ∈ [n], there exist a value 0 ≤ ci < k−1 such
that hi evaluates to different values on inputs with ci and ci +1 ones. Further, it evaluates to the same
value on inputs of size ci + 1 and ci + 2. In other words, if we pick x̃ such that the sum of the number
of ones among x̃[u] for all u ∈ K \ {a,b} in the i th position is exactly ci , then we note that f{a},{b},x̃ is ex-
actly g (xa[1]∨xb[1], . . . ,xa[n]∨xb[n]). By assumption g ′ hasΩ(n) two party communication complexity,

which by Theorem 14 implies an overall lower bound of Ω̃
(
min∆∈[|V |]

(
n

ST(G ,K ,∆) +∆
))

.
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5 Multicommodity flow type bounds

5.1 Circuits to Protocols

Here we sketch the proof of Lemma 3, which we re-state below:

Lemma 3 (Restated). Let f : ({0,1}n)k → {0,1} have a circuit with constant fan-in and constant fan-out
gates and depth d. Further, each level i ∈ [d ] has si gates in it. Then

R0( f ,G ,K ) ≤
d∑

i=1
Õ

(
τMCF

(
G ,K ,

si

k

))
. (1)

Finally, we can upper bound the above by Õ
(
d ·τMCF

(
G ,K , s

k

))
as well as Õ

( s
k ·τMCF (G ,K ,1)

)
.

The proof is a adaptation of an idea that was used in [DKO14] to design protocols for G being a clique
(i.e. the CONGEST-CLIQUE model). Let C be the given circuit for f . Then one can assign each gate of
C to each terminal in K and then we evaluate each layer by setting up a multi-commodity flow problem
where for each gate g in the current level all the input gates (or their assigned terminals) send their value
to g (or the player that is assigned to g ). Since at level i , C has si gates it can be shown via the probabilistic
method that there exists an assignment of gates such that each terminal only has a total requirement of
Õ(si /k). We now present the details.

Proof of Lemma 3. Assuming (1) is correct, we note that the second bound follows by the simple obser-
vation that si ≤ s. Further, the third bound follows from Claim 8 and the fact that

∑d
i=0 si ≤ s.

We now argue (1). Let C be the given (s,d)-bounded circuit for f . For every 0 ≤ i ≤ d , let si be the
number of gates a level i . (Note that s0 = nk and sd = 1.) The idea is to evaluate the circuit C in the given
delay. We will do so by evaluating all gates in a given level one at a time. In particular, we will argue that
we can evaluate the gates at level i with delay Õ

(
τMCF

(
G ,K , si

k

))
. Note that this suffices to prove (1).

We will need a map from the gates of C to terminals in K with certain properties. To show the exis-
tence of such a map, let π denote a random map from the s gates of C to the k players. We note that by
a standard balls and bins argument, any set of Θ(si ) gates are assigned to any specific player with load
Li = O

( si
k logkd

)
with probability > 1−1/(2d). (We will see shortly that this is enough to handle all bad

cases that may arise in the rest of our arguments.) We begin with level 0. Note that in this case the s0 = nk
input bits would need to be re-routed according toπ. By the balls and bins argument, this means we have
a demand set where each player has load L0 + s0/k. (Recall that initially each player has n = s0/k bits.)
Thus, we can ‘evaluate’ level 0 with delay τMCF (G ,K ,L0 + s0/k), which by Claim 8 is Õ

(
τMCF

(
G ,K , s0

k

))
, as

desired.
Assume by induction we have evaluated all levels up to level i ≥ 0. Now consider level i +1. Consider

an arbitrary gate g whose inputs are gates g ′ (and possibly) g ′′. We add a demand pair with requirement
1 between the pairs (π(g ),π(g ′)) and (π(g ),π(g ′′)). Note that since there are si+1 such gates g and at most
2si+1 input gates from previous levels. Thus, by the balls and bins argument, each player has at most
3Li+1 of the gates at level i + 1 and their inputs. This implies that τMCF (G ,K ,3Li+1) rounds suffice to
evaluate level i +1, which by Claim 8 is Õ

(
τMCF

(
G ,K , si+1

k

))
, as desired.

Finally we note that we had at most 2d −1 bad events (where a bad event is at level i some player has
more than Li gates from level i or one of its input gates assigned to it) that we would like π to avoid. By
the union bound, there exists a map π that makes the protocol above go through with the required round
complexity.
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5.2 The lower bound

We are now ready to state our most general lower bound.

Theorem 19. Let G ,K , f :
(
{0,1}n

)K → {0,1},ε≥ 0 be defined as usual, and assume k is even. Let h : [k/2]×
[k/2] → R≥0. Assume the following is true: for every pair of disjoint sets A,B ⊆ K such that |A|, |B | ≤ k/2,
there exists some x̃ ∈ (

{0,1}n
)K \(A∪B), such that R(2)

ε

(
f A,B ,x̃

)≥ h
(|A|, |B |). Then,

τMCF
(
G ,K ,n′)≤ Õ

(
Rε( f ,G ,K )

)
, (2)

where n′ = miny,z∈[0,k/2]:y+z>k/2
h(y,z)

y+z−k/2 .

The above implies lower bounds for the EDK ,n function:

Corollary 20. For any G and K , if n ≥ 1+2
⌈

logk
⌉

, then we have

τMCF
(
G ,K ,1

)≤ Õ
(
R(EDK ,n ,G ,K )

)
, and τMCF

(
G ,K ,n

)≤ Õ
(
R0(EDK ,n ,G ,K )

)
.

Proof. Let f = EDK ,n . Fix some A,B ⊆ K such that A ∩ B = ; and |A| ≤ |B | ≤ k/2. We shall let x̃ ∈(
{0,1}n

)K \(A∪B) be a vector so that x̃v,1 = 1 for every v ∈ K \(A∪B), and the |K \(A∪B)| vectors {x̃v }v∈K \(A∪B)

are different. This is possible since n ≥ 1+ 2
⌈

logk
⌉

. Then for the function fx̃,A,B (xA ,xB ), we are inter-
ested in the input pairs (xA ,xB ) such that xA,v [1] = 0 for every v ∈ A and xB ,v [1] = 0 for every v ∈ B .
Thus, f x̃,A,B (xA , xB ) = 1 if and only if the |A| + |B | strings {xA[v]}v∈A ∪ {xB [v]}v∈B are all different. In
other words, we want to compute the two party DISJ problem on the sets {xA[v]}v∈A and {xB [v]}v∈B .
It is well-known that R(2)

(
f A,B ,x̃

) ≥Ω(|A|) ( [HW07]). We argue from first principles in Theorem 38 that
R(2)

0

(
f A,B ,x̃

)≥Ω(n|A|).
Let ε = 1/3. Let n′ = Ω̃(1) be small enough. Let h(y, z) = n′ min{y, z} for every y, z ∈ [k/2]. Then

miny,z∈[k/2]:y+z>k/2
h(y,z)

y+z−k/2 = min0≤y≤z≤k/2:y+z>k/2
yn′

y+z−k/2 = n′. Thus, if n′ is small enough, then the
condition for Theorem 19 holds. Thus, we have

τMCF
(
G ,K ,n′)≤ Õ

(
R(EDK ,n ,G ,K )

)
.

Then by Claim 8, τMCF(G ,K ,1) ≤ ⌈ 1
n′

⌉
τMCF(G ,K ,n′) ≤ Õ(1)τMCF(G ,K ,n′) ≤ Õ

(
R(EDK ,n ,G ,K )

)
.

Let ε= 0. Let n′ =Ω(n) be small enough. Let h(y, z) = n′ min{y, z} for every y, z ∈ [k/2]. Again, if n′ is
small enough, then the condition for Theorem 19 holds. Thus, we have

τMCF
(
G ,K ,n′)≤ Õ

(
R0(EDK ,G ,K ,n)

)
.

Then τMCF(G ,K ,n) ≤ ⌈ n
n′

⌉
τMCF(G ,K ,n′) ≤O(1)τMCF(G ,K ,n′) ≤ Õ

(
R0(EDK ,n ,G ,K )

)
, by Claim 8.

In Section 6 we make use of other corollaries of Theorem 19.
We now sketch the proof of Theorem 19 (specialized to R(EDK ,n ,G ,K )). First we note that any cut

separating k ′ terminals from the rest of the k −k ′ terminals induces a two party communication com-
plexity problem that needs Ω(min(k ′,k −k ′)) communication across the cut. This in conjunction with
our argument for k = 2 implies that there areΩ(min(k ′,k −k ′)) edge disjoint paths between the two sub-
sets in G (τ). We now use the cut-matching game framework of Khandekar, Rao and Vazirani [KRV09] to
argue that we can construct an expander graph each of whose edges can be embedded into G (τ) in the
sense that each edge in the expander corresponds to a path in G (τ) (and these paths have low conges-
tion). Since the multicommodity flow with a total demand requirement of Õ(k) from each terminal can
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be done with d = Õ(1) delay on the expander graph, we can route these paths in G (d ·τ). (We need to make
sure that the paths in the expander are not too long but this can be done.) This implies a protocol for the
multi-commodity flow problem that we need to solve for the upper bound with delay Õ(τ), as desired.

We now formally prove Theorem 19. Fix any two disjoint sets A,B ⊆ K such that |A|, |B | ≤ k/2. Let
x̃ ∈ (

{0,1}n
)K \(A∪B) be the vector satisfying the condition of the theorem for the pair (A,B).

By Theorem 4, we have that

τroute(G A,B , {v A , vB },R(2)
ε ( f A,B ,x̃)) ≤ 4Rε( f A,B ,x̃,G , {v A , vB }).

where we overload notation for Rε and R(2)
ε by allowing input function to have inputs from different

domains: i.e. unlike the original definition, f A,B ,x̃ : ({0,1}n)A × ({0,1}n)B has two inputs from different
domains.8

It is easy to see that Rε

(
f A,B ,x̃,G A,B ,

{
v A , vB

}) ≤ Rε

(
f ,G ,K

)
, since every protocol to compute f in G

among K leads to a protocol to compute f A,B ,x̃ in G A,B between v A and vB . Let τ= ⌈
4Rε

(
f ,G ,K

)⌉
. Then,

τroute

(
G A,B , {v A , vB },R(2)

ε

(
f A,B ,x̃

))≤ τ.

Since R(2)
ε

(
f A,B ,x̃

) ≥ h
(|A|, |B |), we have τroute

(
G A,B , v A , vB ,h

(|A|, |B |)) ≤ τ. Thus, there are h
(|A|, |B |)

edge disjoint paths from (v A ,0) to (vB ,τ) in Gτ
A,B . This implies that there are h

(|A|, |B |) edge-disjoint

paths from A × {0} to B × {τ} in Gτ. To see this, focus on each of the h
(|A|, |B |) edge-disjoint paths from

(v A ,0) to (vB ,τ) in Gτ
A,B . Let t be the smallest number such that (vB , t ) is in the path; let t ′ be the largest

number such that t ′ < t and (v A , t ′) is in the path. Then, we modify this path as follows: we travel from
(v A ,0) to (v A , t ′) using memory edges and then then use the segment of the path from (v A , t ′) to (vB , t ),
and then travel from (vB , t ) to (vB ,τ) using the memory edges. After the modifications, the h

(|A|, |B |)
edge-disjoint paths in Gτ

A,B can be naturally mapped back to h
(|A|, |B |) edge-disjoint paths in Gτ from

A× {0} to B × {τ}. Next, we argue that these paths have even more structure.

Lemma 21. For partition (A,B) of K such that |A| = |B | = k/2, we can find n′k/2 edge-disjoint paths from
A× {0} to B × {τ} in Gτ, such that every vertex in A× {0} is the origin of exactly n′ paths, and every vertex in
B × {τ} is the destination of exactly n′ paths.

Proof. Construct a directed graph G̃ as follows. We start from Gτ, and add a super source s and a super
sink t . Then for every u ∈ A, we add n′ edges from s to (u,0). For every v ∈ B , we add n′ edges from (v,τ)
to t . To prove the lemma, it suffices to show that there are n′k/2 edge-disjoint paths from s to t in G̃ .
Assume otherwise. Then, there is an s-t cut (S,T ) in G̃ whose size is strictly less than n′k/2. Let A′ be
the subset of A such that S ∩ (A× {0}) = A′× {0}; let B ′ be the subset of B such that T ∩ (B × {τ}) = B ′× {τ}.
The number of edges in the cut that are incident to s or t is exactly n′

(
|T ∩ (A × {0})| + |S ∩ (B × {τ})|

)
=

n′(|A \ A′|+|B \B ′|) = n′(k−|A′|−|B ′|). It implies that the number of edges in Gτ in the (S,T ) cut is strictly
less than n′k/2−n′(k −|A′|− |B ′|) = n′(|A′|+ |B ′|−k/2

)≤ h(|A′|, |B ′|), by the definition of n′. (Note that if
|A′|+ |B ′| ≤ k/2 then the inequality is trivially true since h is always positive.) Thus, we find a cut in the
original graph Gτ of size strictly less than h(|A′|, |B ′|) separating A′×{0} and B ′×{τ}, a contradiction. This
finishes the proof of the lemma.

We use the cut-matching game of Khandekar, Rao and Vazirani [KRV09]. In this game, we are given
a set VX of NX vertices, where NX is even, and two players: a cut player, whose goal is to construct
an expander X = (VX ,EX ) on the set VX of vertices, and a matching player, whose goal is to delay its
construction. The game is played in iterations. We start with the graph X = (VX ,;).

8This is the only place in this paper where we will need this overloading of notation.
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In each iteration j , the cut player computes a bi-partition (A j ,B j ) of VX into two equal-sized sets, and
the matching player returns some perfect matching M j between the two sets. The edges of M j are then
added to EX . Khandekar, Rao and Vazirani have shown that there is a strategy for the cut player, guar-
anteeing that after O(log2 NX ) iterations we obtain a 1/2-expander with high probability. Subsequently,
Orecchia et al. [OSVV08] have shown the following improved bound:

Theorem 22 (Cut-Matching Game [OSVV08]). There is a probabilistic algorithm for the cut player, such
that, no matter how the matching player plays, after O(log2 NX ) iterations, graph X is an αCMG(NX ) =
Ω(log NX )-expander, with constant probability.

Definition 23. Let E ′ be a set of edges over K , τ̃> 0 be an integer. Let E ′ be the set of directed edges obtained
from E ′ by replacing every undirected edge e = (u, v) ∈ E ′ with two directed edges (u, v) and (v,u). An

embedding of E ′ in G τ̃ is a set P =
{

Pe : e ∈ E ′
}

of paths, where Pe for a directed edge e = (u, v) is a path

connecting (u,0) to (v, τ̃) in G τ̃.

Lemma 24. There is a randomized algorithm that outputs an O(log2 k)-regular Ω(logk)-expander X =
(K ,EX ), and an embedding P of EX in Gτ, such that the expected number of paths in P that use each edge
e in Gτ is at most O(log2 k/n′).

Proof. We run the cut-matching game over K . Initially, P =; and EX =;.
In the j -th iteration of the game, the cut-player finds a partition (A j ,B j ) of K according to his strategy.

Then by Lemma 21, we can find a set Q j of n′|A j | = n′k/2 edge-disjoint paths from A j × {0} to B j ×
{τ} in Gτ, such that every vertex in A j × {0} is the origin of exactly n′ paths and every vertex in B j × {τ}
is the destination of exactly n′ paths. These paths naturally define an n′-regular bipartite graph H =
(A j ,∪B j ,EH ) between A j and B j , where for each edge e = (u, v) ∈ EH ,u ∈ A j , v ∈ B j , e is associated with
a unique path Qe ∈ Q j connecting (u,0) to (v,τ) in Gτ. We can break EH into n′ matchings between A j

and B j . Then, the matching player will randomly choose a matching M j , out of the n′ matchings, each
with probability 1/n′. The matching player will play M j ; so we shall add M j to EX .

Let Q′
j =

{
Qe : e ∈ M j

}
be the set of paths corresponding to M j , and let Q′′

j be the set of mirrored paths

of paths in Q′
j . The mirrored edge of an edge ((u, t −1), (v, t )) in Gτ is the edge ((v,τ− t ), (u,τ− t +1)). The

mirrored path of a path P is constructed by concatenating the mirrored edges of all edges in P . Thus, if
P connects (u,0) to (v,τ) in Gτ, then the mirrored edge of P connects (v,0) to (u,τ) in Gτ. Thus, Q′

j ∪Q′′
j

is an embedding of M j in Gτ. Since paths in Q j are edge-disjoint, each edge in Gτ belongs to Q′
j with

probability at most 1/n′. Thus, each edge belongs to Q′′
j with probability at most 1/n′. Moreover, Q′

j ∪Q′′
j

causes congestion at most 2 in Gτ. We add Q′
j ∪Q′′

j to P .

Considering all the O(log2 k) iterations together, P is an embedding of EX in Gτ. The paths in P

cause congestion at most O(log2 k), and the expected number of paths in P that use an edge e in Gτ is at
most O(log2 k)/n′. By Theorem 22, the graph X we obtained is an O(log2 k)-regular αCMG(k)-expander.
The algorithm succeeds with constant probability and thus we can repeat the algorithm until it succeeds.
The expected number of times we run the algorithm is a constant; this can only increase the expected
number of paths in P that use an edge by a constant factor.

We emphasize that we are not interested in the efficiency of the algorithm in Lemma 24 as it is only
used for the analysis. Indeed, we need an exponential time algorithm to check whether X is anαCMG(k)-
expander or not since the problem is NP-hard.

We use Lemma 24 to find a d-regular Ω(logk)-expander X = (K ,EX ), for some d = O(log2 k), and an

embedding P =
{

Pe : e ∈ EX

}
of EX in Gτ. Let A be the adjacency matrix of X andλ2 be the second largest
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eigenvalue of A. Then, by Cheeger’s Inequality, we haveΦ(X ) ≤
√

2d(d −λ2). Thus λ2 ≤ d−φ2(X )/(2d) ≤
d −Ω(1), since φ2(X )/(2d) =Ω(log2 k)/O(log2 k) =Ω(1).

We consider the lazy random walk on X , starting from some vertex v ∈ K . By Theorem 11, the dif-
ference between the distribution we obtain after T steps of random walk and the uniform distribution

is at most
p

k
(

1+λ2/d
2

)T
, in terms of the L1 distance. Notice that 1+λ2/d

2 ≤ 2−Ω(1/d)
2 = 1−Ω

(
1

log2 k

)
. If we

let T =O(log3 k) to be large enough, then the difference is at most 1/(2k). Thus, after T steps of the lazy
random walk, the probability that we are at each vertex u ∈ K is at least 1/(2k).

Using the random walk, we show how to send 1/(2k) units of flow from v to u in X , for every ordered
pair (v,u) ∈ K 2. We have k types of commodity, indexed by K . Initially, for every vertex v ∈ K , v has 1
unit of commodity v . At each time step we do the following. For every v ∈ K , and a commodity type
v ′ ∈ K , we send 1/(2d) fraction of commodity v ′ to each of the d neighbors of v ; thus, 1/2 fraction of the
commodity v ′ will remain at v . After T steps, every vertex u ∈ K has at least 1/(2k) units of commodity
v ′, for every v ′ ∈ K . Since X is regular, at each time, the total amount of commodity at each vertex v is 1.
In each step, the amount of commodity sent through each edge e ∈ EX in each direction is exactly 1/(2d).

Now, we can simulate the flow in the time graph Gτ′ , for τ′ = Tτ. Recall that P = {PE : e ∈ EX } is
the embedding of EX in Gτ. Initially, for each vertex v ∈ K and a commodity type v ′ ∈ K , there is 1 unit
of commodity v ′ at (v,0). Suppose at the t-th step, we sent x units of commodity v ′ from v ∈ K to its
neighbor u ∈ K , using edge e in EX . Let e ′ ∈ EX be edge e directed from v to u. Then in graph Gτ′ , we sent
x units of commodity v ′ from (v, (t −1)τ) to (u, tτ), using the path Pe ′ , shifted by (t −1)τ units of time.
That is, the shifted path contains ((v ′, (t − 1)τ+ i − 1), (u′, (t − 1)τ+ i )), for every edge ((v ′, i − 1), (u′, i ))
in Pe ′ . If x units of commodity v ′ remains at v , then we send x units of commodity v ′ from (v, (t −1)τ)
to (v, tτ) using the memory edges at v . Thus, we have a multi-commodity flow in Gτ′ , where for each
ordered pair (v,u) ∈ K 2, we sent at least 1/2k units of flow from (v,0) to (u,τ′).

If an edge ((v ′, i −1), (u′, i ) in Gτ is used by p paths in P , then for every t ∈ [T ], the amount of flow
sent through the ((v ′, (t −1)τ+ i −1), (v ′, (t −1)τ+ i )) is p/(2d). By Lemma 24, the expected amount of
flow sent through each edge e in Gτ is at most 1/(2d)×O(lg2 k/n′) = O(1/n′), where the expectation is
over the randomness of X and P . Taking all pairs (X ,P ) in the probability space (again, we are not
interested in the efficiency of the algorithm), and scaling the multi-commodity flow by a factor of 2n′, we
obtain a multi-commodity flow in Gτ′ , where for each ordered pair (v,u) ∈ K 2, we sent at least n′/k units
of flow from (v,0) to (u,τ′). The flow causes congestion O(1) in Gτ′ . By, scaling τ′ by a constant factor,
we can reduce the congestion to 1. This proves that τMCF(G ,K ,n′) ≤ O(Tτ) = O(lg3 k) · ⌈4Rε( f ,G ,K )

⌉ =
Õ(Rε( f ,G ,K )), finishing the proof of Theorem 19.

5.3 Bounds for ED

The proof of the upper bound in Theorem 2 will crucially use the following result on existence of a small
circuit for ED:

Lemma 25. EDK ,m has an (O(km logk),O(m logk))-bounded circuit.

Proof. We first recall that there exists sorting networks that sort k numbers with O(k logk) swaps and
depth O(logk) [AKS83]. By swap we mean a gate that takes as input two numbers and outputs the smaller
number as the “first" output and the larger number as the “second" output. Note that if the numbers are
m-bits then such a swap can be implemented with an (O(m),O(m)) bounded circuit. This implies that
there exists a (O(km logk),O(m logk))-bounded circuit to sort k numbers (each of which is m bits).
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Assume that the sorted numbers are x1, . . . ,xk . Then note that the final answer is

∧k−1
i=1 ¬EQ(xi ,xi+1),

where EQ(x,y) = 1 if and only if x = y. Note that one can implement the EQ function with a (O(m),O(logm))-
bounded circuit. This implies that we can compute EDK ,m(x1, . . . ,xk ) with a (O(km),O(logkm)) bounded
circuit (assuming x1, . . . ,xk are sorted in that order).

Thus, combining the two circuits, we get an (O(km logk),O(m logk))-bounded circuit for EDK ,m , as
desired.

It is known that EDK ,n can be solved by solving EDK ,O(logk) (by using O(logk) random hashes for each
input)– see e.g. [CRR14]. By Lemma 25, there exists a randomized (O(k log2 k),O(log2 k))-bounded circuit
to solve EDK ,n . Lemma 3 and Claim 8 then show that R(EDK ,n ,G ,K ) ≤ Õ (τMCF(G ,K ,1)). Similarly using
Lemma 25 with m = n we have that R0(EDK ,n ,G ,K ) ≤ Õ (τMCF(G ,K ,n)). Note that these upper bounds
match the lower bounds in Corollary 20, which in turn proves Theorem 2.

6 Applications

We now consider distributed graph problems. For such problems every player u ∈ K receives a subgraph
Hu and the goal of the players is to compute some (Boolean) function on the overall graph

H
def= ⋃

u∈K
Hu .

We define NH , MH and ∆H to be the number of vertices in H , number of edges in H and the max-
imum degree in H respectively. We will present our bounds in terms of these parameters (as well as
parameters that depend on the underlying topology).

6.1 Distribution of the input

In this section, we tackle issues related to how the inputs {Hu}u∈K are represented and distributed among
the players in K . We will assume that Hu ’s (and hence H) are presented in the adjacency list represen-
tation and that all players know the set of vertices V (H). In other words, the only knowledge that is
distributed is the set of edges E(H). There are two natural ways of distributing the edges set that we
consider in this section:

1. Node distribution: In this case the adjacency list of a vertex is assigned to a terminal in K as a
whole. Further, we will assume that for every u ∈ V (H), all terminals know the location of the
assigned terminal for u.9 However, only the assigned terminal knows the adjacency list of u.

2. Edge distribution: In this case the edge set E(H) is distributed among the k terminals and in this
case all the terminals only know about the identity of V (H).

Finally, we will assume that in either distribution all of the Hu ’s are roughly of the same size.

9This is a relatively mild assumption since these mappings in practical applications are done by publicly known hash map-
pings.
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Definition 26. A node (edge resp.) distribution of H among the k players is called M-balanced if for every
u ∈ K , the size of Hu is at most M.10

It turns out that one can convert a balanced edge distribution into a random balanced node distri-
bution.

Lemma 27. If H is represented by an Õ(MH /k +∆H )-balanced edge distribution then it can be converted
into an Õ(MH /k+∆)-balanced node distribution in Õ(τMCF(G ,K , MH /k+∆H )) rounds of communication.
Further, in the latter, every node is assigned uniformly and independently at random to the terminals in K .

Proof. The argument basically follows from a technical result in [KNPR15]. Let π : V (H) → K be a
completely random map (i.e. each vertex is mapped independently and uniformly randomly to K ).
Then [KNPR15, Lemma 4.1] argues that size of the newly mapped Hu is Õ(MH /k +∆H ). It is easy to see
that we can move from the edge distribution to the random node distribution with a multicommodity
flow problem with Õ(MH /k +∆H )-bounded demands, which completes the proof.

It turns out that the extra pre-processing round complexity of Õ(τMCF(G ,K , MH /k +∆H )) can always
be absorbed in the upper bounds that we can prove and so for the rest of the section, when talking about
upper bounds we will assume that H is node distributed such that each node is randomly assigned a
terminal in K . Note that this implies that our upper bounds hold for worst-case balanced node or edge
distribution. However, our upper bounds do not hold when the distribution of H over the terminals is
skewed. Skew is a known issue in parallel processing and handling it is left as an open problem.

Our lower bounds work for both Õ(MH /k +∆H )-balanced node and edge distribution representa-
tions. However, unlike the results of [KNPR15], our lower bounds assume a worst-case partition of the
input among the terminals.

6.2 Some hard problems

In this section, we define some hard problems that we will reduce to our distributed graph problems.
The two problems, which we dub OR-DISJK ,n and AND-DISJK ,n respectively, informally are the log-

ical OR (and logical AND resp.) of
(k

2

)
independent copies of the two-party DISJ problem. In particular,

each player u ∈ K gets k −1 strings {xu,v }v∈K \{u}. Then the players want to compute

OR-DISJK ,n
(
{xu,v }u∈K ,v∈K \{u}

)= ∨
{u,v}∈(K

2)

( ∨
i∈[n]

xu,v [i ]∧xv,u[i ]

)
,

and

AND-DISJK ,n
(
{xu,v }u∈K ,v∈K \{u}

)= ∧
{u,v}∈(K

2)

( ∨
i∈[n]

xu,v [i ]∧xv,u[i ]

)
,

where for a set S, we use
(S

2

)
to denote the set of all unordered pairs from S.

We show the hardness of the two above functions by recalling the large communication complexity
of two closely related functions in the classical two-party model: Let Alice (Bob) get m strings, x1, . . . ,xm

(y1, . . . ,ym), with each xi ∈ {0,1}n (yi ∈ {0,1}n). Let OR-DISJ-2PARTYm,n denote the problem of determin-
ing if any pair of strings (xi ,yi ) have a 1 at a common index. Then, the following is a simple implication
of Bar-Yossef et.al [BYJKS04].

10In the case of node distribution, the size of Hu is the sum of the degree of the vertices assigned to u while in the case of edge
distribution, the size of Hu is the number of edges assigned to u.
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Theorem 28. R(2)
1/3

(
OR-DISJ-2PARTYm,n

)≥Ω(mn).

Similarly, define AND-DISJ-2PARTYm,n as the 2-party problem of determining if all pairs of strings
(xi ,yi ) have a 1 at a common index. This is also called the TRIBESm,n problem. The following establishes
its hardness.

Theorem 29 (Jayram et al. [JKS03]). R(2)
1/3

(
TRIBESm,n

)≥Ω(mn).

Theorem 19 implies the following results:

Corollary 30. For any G and K , we have

R(OR-DISJK ,n ,G ,K ) ≥ Ω̃(
τMCF(G ,K ,nk)

)
.

Proof. Let f = OR-DISJK ,n . Fix some A,B ⊆ K such that A ∩B = ; and |A|, |B | ≤ k/2. We shall let x̃ ∈(
{0,1}nk

)K \(A∪B) be an all-0 vector. Note that f A,B ,x̃ is exactly an OR-DISJ-2PARTY|A|·|B |,n problem. Thus,
by Theorem 28, we have that R(2)

1/3

(
f A,B ,x̃

)≥Ω(|A| · |B | ·n).
Let ε = 1/3. Let n′′ = Ω(n) be small enough; let n′ = n′′k/2; let h(y, z) = n′′y z for every y, z ∈ [k/2].

Then miny,z∈[k/2]:y+z>k/2
h(y,z)

y+z−k/2 = miny,z∈[k/2]:y+z>k/2
n′′y z

y+z−k/2 = n′′k/2 = n′, where the second equality

holds since (k/2− y)(k/2− z) ≥ 0 implies y z ≥ (y + z −k/2)k/2, and y = 1, z = k/2 implies y z
y+z−k/2 = k/2.

Thus, if n′′ is small enough, then the condition for Theorem 19 holds. Thus, we have

τMCF
(
G ,K ,n′)≤ Õ

(
R(OR-DISJK ,n ,G ,K )

)
.

Then τMCF(G ,K ,kn) ≤
⌈

kn
n′

⌉
τMCF(G ,K ,n′) ≤ O(1)τMCF(G ,K ,n′) ≤ Õ

(
R(OR-DISJK ,n ,G ,K )

)
, by Claim 8.

Corollary 31. For any G and K , we have

R(AND-DISJK ,n ,G ,K ) ≥ Ω̃(
τMCF(G ,K ,nk)

)
.

Proof. Let f = AND-DISJK ,n . Fix some A,B ⊆ K such that A ∩B = ; and |A|, |B | ≤ k/2. We shall let

x̃ ∈ (
{0,1}nk

)K \(A∪B) be an all-1 vector. Note that f A,B ,x̃ is a TRIBES|A|·|B |,n problem. Thus, by Theorem 29,
we have that R(2)

1/3

(
f A,B ,x̃

) ≥Ω(|A| · |B | ·n). The rest of the proof is the same as that of Corollary 30 and is
omitted.

6.3 Reductions from OR-DISJ

In this section we consider the following three problems:

Acyclicity. Given Hu to each player u ∈ K , the players have to decide if H is acyclic or not.

Triangle-Detection. Given Hu to each player u ∈ K , the players have to decide if H has a triangle or not.
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Bipartiteness. Given Hu to each player u ∈ K , the players have to decide if H is bipartite or not.
The argument below follows from a simple adaptation of the reduction used to prove hardness of

these problems for the total communication case in [CRR14].

Theorem 32. Each of the problems of acyclicity, triangle-detection and bipartiteness for input H on topol-

ogy G with set of player K needs Ω̃
(
τMCF

(
G ,K , MH+NH

k

))
rounds of communication (even for randomized

protocols). Further, these results hold for the case when H is O(MH /k +∆H )-balanced node (or edge) dis-
tributed.

Proof. We will use a reduction from OR-DISJK ,n to construct an instance H such that either (i) H is a
forest or (ii) H has a triangle (depending on the output of the OR-DISJ instance). Note that a protocol
for any of acyclicity, triangle-detection or bipartiteness can distinguish between the two cases. Thus,
to complete the proof we present the construction of H from a given instance of {xu,v }u∈K ,v∈K \{u} of
OR-DISJK ,n . We will argue explicitly for node distribution and mention where the reduction needs to
be modified to make it work for edge distribution.

Fix any u ∈ K . We will define the subgraph Hu . Hu is the disjoint union of subgraphs Hu,w =
(Vu,w ,Eu,w ) for every w ∈ K \ {u}. In particular, Vu,w consists of one vertex for each domain element
of the universe corresponding to the two party DISJ corresponding to (u, w) and two special vertices
corresponding to the pair {u, w}. In other words we have

Vu,w =
{
∪i∈[n]x

{u,w}
i

}
∪ {yu,w , y w,u}.

The edge set Eu,w consists of the edge (yu,w , y w,u) plus edges between elements that are present in xu,w

and yu,w . In other words,

Eu,w =
{(

x{u,w}
i , yu,w

)
|xu,w [i ] = 1

}
∪{

(yu,w , y w,u)
}

.11

See Figure 1 for an illustration of this reduction.
To complete the argument we make the following observations. First if OR-DISJK ,n

(
{xu,v }u∈K ,v∈K \{u}

)=
1, then H has a triangle otherwise H is a forest. Indeed first note that for every {u, w} ∈ (K

2

)
, the subgraphs

Hu,w ∪Hw,u are node disjoint. Thus, H has a triangle if and only if Hu,w ∪Hw,u has a triangle for some
{u, w} ∈ (K

2

)
. Next, we note that if (xu,w [i ]∧xw,u[i ]) = 1 for some i ∈ [n], then the triple {yu,w , y w,u , xu,w

i }
forms a triangle. Otherwise, yu,w and y w,u are connected via edges to disjoint set of the vertices in
{x{u,w}

i }i∈[n], which implies that Hu,w ∪Hw,u is a forest. This argues the correctness of the reduction.
Second, for every u ∈ K , the player u can construct Hu from its input {xu,w }w∈K \{u}. Finally, note that

in this construction both NH , MH areΘ(nk2). Further, each Hu is of size O(nk), which is O(MH /k +∆H ).
All of the above along with Corollary 30 completes the proof. 12

6.3.1 Upper Bounds

We defer the discussion of the upper bounds for acyclicity and bipartiteness to Section 6.4.1.
We next outline a protocol (which is simple generalization of the protocol in [DKO14]) to detect

whether H contains a triangle or not.

11For edge distribution, we assign the edge (yu,w , y w,u ) to exactly one of Hu or Hw .
12The fact that MH is Ω(nk2) follows from the fact that sets in the hard distribution in Corollary 30 have sets whose size is

linear in the size of the universe.
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Figure 1: Illustration of the reduction in proof of Theorem 32 for n = k = 3. In this example the overall
graph H has a triangle and the three participating nodes are colored in orange. (Note that in this case
OR-DISJ{1,2,3},3 is 1.)

Proposition 33. Assuming that for every ε > 0, there exists arithmetic circuits of size O(n2+ε) for com-
puting n ×n matrix multiplication over F2, the problem of triangle detection on H can be solved with

Õ
(
τMCF

(
G ,K , (NH )2+ε

k

))
rounds of randomized communication.

Note that the above bound is within any polynomial factor of the lower bound in Theorem 32 for the
case of graphs with MH ≥Ω(N 2

H ).

Proof Sketch of Proposition 33. First, recall that cubing the adjacency matrix of H over the Boolean semir-
ing is enough to detect triangles. This is because a triangle is present if and only if the cubed matrix has
a non-zero diagonal entry. It can be shown (see Section 2.1 of [DKO14]) that there exists a randomized
reduction of this problem to a few matrix multiplications over the field F2. Now the conjecture about
matrix multiplication yields arithmetic circuits of O(n2+ε) size for these matrix multiplications. A fur-
ther argument shows, exploiting the structure of matrix multiplication [BCS97], that such circuits can be
made to have few wires and poly-logarithmic depth. Given such a circuit, an application of our Lemma 3

yields the distributed protocol with Õ
(
τMCF

(
G ,K , (NH )2+ε

k

))
rounds.
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6.4 Reductions from AND-DISJ

In this section we consider the following two problems:

Connectivity. Given Hu to each player u ∈ K , the players have to decide if H is connected or not.

Connected Components. Given Hu to each player u ∈ K , the players have to compute the number of
connected components of H .

Since a lower bound for connectivity implies a lower bound for the connected components, we only
present the lower bound for the latter. This reduction again is a simple adaptation of the corresponding
one for total communication in [CRR14].

Theorem 34. The connectivity problem for input H on topology G with set of player K needs Ω̃
(
τMCF

(
G ,K , MH+NH

k

))
rounds of communication (even for randomized protocols). Further, these results hold for the case when H
is O(MH /k +∆H )-balanced node (or edge) distributed.

We note that by Proposition 7, the above implies a lower bound of Ω̃((MH+NH )/k2) for the case when
G is a clique on k terminals. This quantitatively recovers the bound for connectivity proved in [KNPR15].

Proof of Theorem 34. We will use a reduction from AND-DISJK ,n to construct an instance H such that
H is connected or not depending on output of the AND-DISJK ,n instance. To complete the proof we
present the construction of H from a given instance of {xu,v }u∈K ,v∈K \{u} of AND-DISJK ,n . (The argument
holds for both node and edge distributions.)

Fix any u ∈ K . We will define the subgraph Hu . Hu is the union of subgraphs Hu,w = (Vu,w ,Eu,w )
for every w ∈ K \ {u}. We next present the description of Hu,w . For the rest of the proof, we will assume
that there is a pre-determined total order among the players, i.e. given any two u, w ∈ K , the comparison
u < w is well-defined.

In particular, Vu,w consists of one vertex for each domain element of the the universe corresponding
to the two party DISJ corresponding to (u, w) and two special vertices corresponding to the pair {u, w}.
In other words, we have if u < w

Vu,w =
{
∪i∈[n]x

{u,w}
i

}
∪ {`{u,w},r }

and otherwise
Vu,w =

{
∪i∈[n]x

{u,w}
i

}
∪ {r },

where the node r is shared across all subgraphs. The edge set Eu,w consists of the following: Consider
the case u < w . If xu,w [i ] = 1, then the edge

(
x{u,w}

i ,`{u,w}
)

is present. If xu,w [i ] = 0, the edge
(
x{u,w}

i ,r
)

is

present. In the other case of u > w , edge
(
x{u,w}

i ,r
)

is present if xu,w [i ] = 1. See Figure 2 for an illustration
of this reduction.

To complete the argument we make the following observations. First note that if AND-DISJK ,n
(
{xu,v }u∈K ,v∈K \{u}

)=
1, then H is connected otherwise H is not. Second, for every u ∈ K , the player u can construct Hu from its
input {xu,w }w∈K \{u}. Finally, note that in this construction both NH , MH are Θ(nk2). Further, each Hu is
of size O(nk), which is O(MH /k+∆H ). All of the above along with Corollary 31 completes the proof.13

13The claim that MH ≥Ω(nk2) follows from the fact that in the hard distribution in Corollary 31, the individual sets are of size
Ω(n).
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Figure 2: Illustration of the reduction in proof of Theorem 34 for n = k = 3. (For clarity singleton nodes
in each of the player’s subgraphs are not shown.) In this example the overall graph H has two connected
components: the nodes shaded blue form one connected component and the rest of the vertices form
another connected component. (Note that in this case AND-DISJ{1,2,3},3 is 0.)

6.4.1 Upper Bounds

We outline how we can adapt the argument of [KNPR15] to implement BFS in our framework and then
argue that for large enough inputs H , the lower bound for connectivity in Theorem 34 is tight. (Recall
that we are assuming that the original input H is randomly partitioned across the terminals in a node
distribution: we’ll call this the random node distribution.)

Theorem 35. Let H be a random node distributed graph. Then if H is large enough compared to G, we can

solve the connectivity problem on H with Õ
(
τMCF

(
G ,K , MH+NH

k

))
randomized rounds of communication.

Before we prove Theorem 35, we will need the following fact about multi commodity flows (which is
only needed to prove the tightness of our upper bound):

Lemma 36. There exists a constant c > 0 such that given any G and K , there exists an integer B0 such that
for every B ≥ B0 we have that

τMCF(G ,K ,B) ≥ c ·
(

B

B0
·τMCF(G ,K ,B0)

)
.

We remark that the above is not implied by Claim 8. In particular, note that for n′′ ≤ n′, Claim 8 only
shows that τMCF(G ,K ,n′′) ≤ τMCF(G ,K ,n′), which is not enough to prove Lemma 36.
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Proof Sketch of Theorem 35. The basic idea is to run BFS with an arbitrary starting vertex in H . A player
s ∈ K is determined as the start player and s picks an arbitrary node in Hs as the start vertex for the BFS.14

The idea is to simulate the BFS on H in our framework. Let D denote the diameter of H . We will use
the flooding version of BFS. In particular, s sends a token to all the neighbors of its chosen vertex in Hs .
In future phases, every node in H when it first receives a token, it sends the token to all of its neighbors.
If the node has already received the token, then it just ignores the future receipt of the token.15

Consider the layered graph corresponding to the above run of the BFS on H . For layer 0 ≤ i < D , let
Hi denote the subgraph of H that is involved in transfer of token when building layer (i +1) from layer
i . For notational simplicity let ni be the number of nodes in layer i , mi = |E(Hi )| and ∆i denote the
maximum degree of any node in layer i . Note since H is randomly node distributed, then so is Hi .16

Consider the case when we are building layer (i + 1) from layer i . Then the concentration bound
proved in [KNPR15, Lemma 4.1] implies that the corresponding multicommodity flow problem is for
Õ(mi /k +∆i )-bounded demands. This implies that we can simulate the BFS with

D∑
i=0

Õ
(
τMCF

(
G ,K ,

mi

k
+∆i

))
(3)

many rounds, where we have that
D∑

i=0
mi =Θ(MH ), (4)

and
D∑

i=0
∆i =O(NH ). (5)

Now we assume that H is large enough so that

MH

D ·k
≥ B0,

where B0 is as defined in Lemma 36. Now note that for every 0 ≤ i ≤ D such that mi < MH
D , we have that

τMCF

(
G ,K ,

mi

k
+∆i

)
≤ τMCF

(
G ,K ,

MH

D ·k
+∆i

)
.

Thus the total contribution of all such i to the bound in (3) is at most

D∑
i=0

τMCF

(
G ,K ,

MH

D ·k
+∆i

)
≤O

(
τMCF

(
G ,K ,

MH

k
+NH

))
,

where the inequality follows from Lemma 36 and (5). Now for all 0 ≤ i ≤ D such that mi ≥ MH
D , from

Claim 8, we have that their contribution to (3) is O
(

mi
MH

·τMCF

(
G ,K , MH

k +∆i

))
. Then by (4) and (5), we

have that the total contribution over all such i is also Õ
(
τMCF

(
G ,K , MH

k +NH

))
.

14To be completely correct, we have to make sure that Hs is not empty. But this can be done by a simple leader election
algorithm via a Steiner tree style protocol (where each internal node passes on one of the incoming IDs to its parent and the ID
picked by the root is declared the leader), which would be smaller than the bound we are after and hence, we should be able to
ignore this.

15The protocol needs to figure out a termination condition. By a simple Steiner tree type protocol one can count the number
of nodes that have the token and we can stop if this number does not increase. To prevent overuse of this check, we can perform
this in geometrically increasing round numbers.

16All the bounds used in this proof hold with high enough probability so that we can apply union bound.
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Thus, we have argued that (3) is upper bounded by Õ
(
τMCF

(
G ,K , MH

k +NH

))
. If H is large enough,

then MH /k ≥ NH , which would imply the claimed upper bound.

Next we briefly state how we can use the standard extensions to BFS to extend the protocol in the
proof above to work for other problems. To compute the connected components, change the above
protocol so that when no more vertices are added to the current component, we check by the Steiner
tree based leader election protocol to pick the next starting terminal s and continue till we cannot. For
the acyclicity problem, the above protocol should halt whenever a node receives the token more than
once. Finally for bipartiteness, we pass two kinds of tokens: one for the odd rounds and one for the
even rounds of the protocol and the graph is not bipartite if and only if a node received two different
kinds of tokens. (For both the latter two modifications, we might also have to go through all connected
components of H .) All this discussion implies that

Theorem 37. Let H be a random node distributed graph. Then if H is large enough compared to G, we can

solve the connected components, acyclicity and bipartiteness problems on H with Õ
(
τMCF

(
G ,K , MH+NH

k

))
randomized rounds of communication.
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A A useful 2-party communication complexity result

Consider the following 2-party problem. Alice (Bob) gets k (k ′) strings x1, . . . ,xk (y1, . . . ,yk ′), each n-bit
long. They have to determine if one of Alice’s strings is the same as that of one of Bob’s, i.e. does there
exist a pair (i , j ), such that xi = y j . (Note that this is same as checking whether the sets {x1, . . . ,xk } and

{y1, . . . ,yk ′} are disjoint.) Let us denote this problem as DISJk,k ′
n .

Theorem 38. The deterministic 2-party communication complexity of DISJk,k ′
n is Ω

(
min

{
k,k ′} · n

)
for

k,k ′ = 2o(n).

Proof. WLOG assume k ≤ k ′. Pick some t = k ′− k strings from {0,1}n . Let the set of remaining 2n − t
strings be called T . Alice and Bob each get k strings from T in the following way: partition T into k equal
disjoint chunks, T1, . . . ,Tk . Consider the problem where Alice and Bob each get k strings, x1, . . . ,xk and
y1, . . . ,yk respectively, with xi ,yi ∈ Ti . They have to determine if for all i , xi 6= yi . Clearly if Alice and Bob
had a deterministic protocol of cost c for solving DISJk,k ′

n , then they would also be able to solve this new
problem P with cost c just as a special case. Note that P is essentially AND◦NEQ. The i -th NEQ instance
has a Boolean matrix of dimension |Ti | × |Ti | whose rank is |Ti | = 2n−t

k . Then, AND ◦NEQ matrix is the
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tensor product of these k matrices. So its rank is
(

2n−t
k

)k
. Using the fact that communication is lower

bounded by the log of rank, we get that c ≥ k(log(2n − t )− logk). The claim follows.
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