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Abstract

We prove that for every n and 1 < t < n any t-out-of-n threshold secret sharing
scheme for one-bit secrets requires share size log(t + 1). Our bound is tight when
t = n− 1 and n is a prime power. In 1990 Kilian and Nisan proved the incomparable
bound log(n − t + 2). Taken together, the two bounds imply that the share size
of Shamir’s secret sharing scheme (Comm. ACM ’79) is optimal up to an additive
constant even for one-bit secrets for the whole range of parameters 1 < t < n.

More generally, we show that for all 1 < s < r < n, any ramp secret sharing
scheme with secrecy threshold s and reconstruction threshold r requires share size
log((r + 1)/(r − s)).

As part of our analysis we formulate a simple game-theoretic relaxation of secret
sharing for arbitrary access structures. We prove the optimality of our analysis for
threshold secret sharing with respect to this method and point out a general limitation.

1 Introduction

In 1979, Shamir [Sha79] and Blakley [Bla79] presented a method for sharing a piece of secret
information among n parties such that any 1 < t < n parties can recover the secret while any
t− 1 parties learn nothing about the secret. These methods are called (t, n)-threshold secret
sharing schemes. This sharp threshold between secrecy and reconstruction is fundamental
in applications where a group of mutually suspicious individuals with conflicting interests
must cooperate. Indeed, threshold secret sharing schemes have found many applications in
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cryptography and distributed computing; see the extensive survey of Beimel [Bei11] and the
recent book of Cramer et al. [CDN15].

Threshold secret sharing was generalized by Ito et al. [ISN93] to allow more general
structures of subsets to learn the secret, while keeping the secret perfectly hidden from all
other subsets. The collection of qualified subsets is called an access structure.

A significant goal in secret sharing is to minimize the share size, namely, the amount
of information distributed to the parties. Despite the long history of the subject, there are
significant gaps between lower and upper bounds both for general access structures and for
the special case of threshold structures.

Threshold access structures. For (t, n)-threshold access structures (denoted by THRnt )
and a 1-bit secret, Shamir [Sha79] gave a very elegant and efficient scheme: the dealer picks a
random polynomial of degree t−1 conditioned on setting the free coefficient to be the secret,
and gives the i-th party the evaluation of the polynomial at the point i. The computation
is done over a field F of size q > n.

The correctness follows because one can recover the unique polynomial from any t points
(and thus recover the secret). Security follows by a counting argument showing that given
less than t points, all possibilities for the free coefficient are equally likely. The share of each
party is an element in the field F that can be represented using log q ≈ log n bits (all our
logarithms are base 2). The efficiency of this scheme makes it very attractive for applications.

A natural question to ask is whether log n-bit shares are necessary for sharing a 1-bit
secret for threshold access structures. Kilian and Nisan [KN90]1 showed that log n bits are
necessary when t is not too large. Specifically, they showed a log(n− t+ 2) lower bound on
share size for (t, n)-threshold schemes. For large values of t, especially those close to n, their
bound does not rule out schemes with shares much shorter than log n bits. Their bound
leaves open the possibility that, in particular, (n − 1, n)-threshold schemes with two-bit
shares exist.

Ramp schemes are a generalization of threshold schemes that allow for a gap between
the secrecy and reconstruction parameters. In an (s, r, n)-ramp scheme, we require that any
subset of at least r parties can recover the secret, while any subset of size at most s cannot
learn anything about the secret.2 When r = s + 1, an (s, r, n)-ramp scheme is exactly an
(r, n)-threshold scheme. Ramp schemes, defined by Blakley and Meadows [BM84], are useful
for various applications (see e.g. [SW99, CC06, MPS11]) since if r − s is large, they can
sometimes be realized with shorter shares than standard threshold schemes (especially in
the case of long secret).

Generalizing the lower bound of Kilian and Nisan, Cascudo et al. [CCX13] showed that

1Their result is unpublished and independently obtained (and generalized in various ways) by [CCX13].
The original argument of Kilian an Nisan appears in [CCX13, Appendix A] and was referenced earlier
in [BC94, Bei96, BF07].

2Another common definition (See [FHKP14, Definition 2.7] and [FMP16, Example 2.11] for examples)
for a ramp scheme is where the information about the secret increases with the size of the set. We focus
only on the definition in which sets of size below a certain threshold have no information about the secret,
while sets of size larger than some threshold can recover it.

2



log((n − s + 1)/(r − s))-bit shares are necessary to realize an (s, r, n)-ramp scheme. When
s = n−O(1), however, their share size bound is a constant independent of n. Paterson and
Stinson [PS13] showed that this bound is tight for specific small values of s.

General access structures. For most access structures, the best known secret sharing
schemes require shares of size 2O(n) for sharing a 1-bit secret. Specifically, viewing the access
structure as a Boolean indicator function for qualified subsets, the schemes of [ISN93, BL88,
KW93] result with shares of size proportional to the DNF/CNF size, monotone formula size,
or monotone span program size of the function, respectively. Thus, even for many access
structures that can be described by a small monotone uniform circuit, the best schemes have
exponential size shares.3 On the other hand, the best known lower bound on share size for
sharing an `-bit secret is ` · n/ log n bits, by Csirmaz [Csi97] (improving on [CSGV93]).

Bridging the exponential gap between upper and lower bounds is the major open problems
in the study of secret sharing schemes. While it is widely believed that the lower bound
should be exponential (see e.g. [Bei96, Bei11]), no major progress has been obtained in the
last two decades. Moreover, a non-explicit linear lower bound is not known, that is, whether
there exists an access structure that requires linear size shares.4

1.1 Our results

Share size lower bound. We close the gap in share size for threshold secret sharing up
to a small additive constant. We assume for simplicity that all parties are given equally long
shares.

Theorem 1. For every n ∈ N and 1 < t < n, any (t, n)-threshold secret sharing scheme for
a 1-bit secret requires shares of at least log(t+ 1) bits.

The assumption 1 < t < n is necessary, as (1, n)-threshold and (n, n)-threshold secret
sharing schemes with share size 1 do exist.

Our bound is tight when t = n − 1 and n is the power of a prime; see Appendix A. By
combining Theorem 1 with the lower bound of Kilian and Nisan, we determine the share size
of threshold schemes up to a small additive constant. That is, we get that any such scheme
requires shares of size

max{log(n− t+ 2), log(t+ 1)} ≥ log
n+ 3

2
. (1)

Theorem 1 is a special case of the following theorem, which applies more generally to
ramp schemes.

3One such notable example is the directed connectivity access structure: the parties correspond to edge
slots in the complete directed graph and the qualified subsets are those edges that connect two distinguished
nodes s and t.

4The usual counting arguments do not work here since one needs to enumerate over the sharing and
reconstruction algorithms whose complexity may be larger than the share size.
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Theorem 2. For every n ∈ N and 1 ≤ s < r < n, any (s, r, n)-ramp secret sharing scheme
for a 1-bit secret requires shares of at least log((r + 1)/(r − s)) bits.

By combining Theorem 2 with the lower bound of [CCX13], we get that any (s, r, n)-ramp
secret sharing scheme must have share size at least

max

{
log

n− s+ 1

r − s
, log

r + 1

r − s

}
≥ log

n+ r − s+ 2

2 · (r − s)
. (2)

Proof technique and limitations. We prove our lower bounds by analyzing a new game-
theoretic relaxation of secret sharing. Here, we focus on threshold schemes, although our
argument also applies to ramp schemes.

Given an access structure A and a real-valued parameter θ > 0 we consider the following
zero-sum game G(A, θ): Alice and Bob pick sets A and B in the access structure A, respec-
tively, and the payoff is (−θ)|A\B|, where A \ B denotes set difference. We say Alice wins if
she has a strategy with non-negative expected payoff, and Bob wins otherwise.

We show (in Lemma 8) that if Bob wins in the game G(A, 1/(q − 1)), then no secret
sharing scheme with share size log q exists. We prove Theorem 2 by constructing such a
strategy for Bob.

On the negative side, we show that our analysis is optimal for threshold access structures,
so the lower bound in Theorem 1 is tight with respect to this method:

Theorem 3. For all 1 < t < n and 0 < θ ≤ 1/t, Alice wins in the game G(THRnt , θ).

We also show that, for any total access structure A, this method cannot prove a lower
bound exceeding log|minA| ≤ log

(
n
bn/2c

)
= n − Ω(log n), where minA = {A ∈ A : ∀B ∈

A, B 6⊂ A} is the set of min-terms in A.

Theorem 4. For every access structure A and every 0 < θ ≤ 1/(|minA| − 1) Alice wins in
the game G(A, θ).

1.2 Related work

Known frameworks for proving lower bounds. The method of Csirmaz [Csi97] is one
of the only previously known general frameworks for proving lower bounds on share size in
various access structures.5 Csirmaz’s framework is a linear programming relaxation whose
variables are the entropies of the joint distributions of the shares, one for each subset of
the parties. Using several Shannon information inequalities, Csirmaz was able to prove an
n/ log n lower bound on the entropy of shares (in a specific access structure) which, in turn,
imply the same lower bound on share size (for a 1-bit secret).

We note that Csirmaz’s framework does not give any non-trivial lower bounds on share
size for sharing a 1-bit secret for the threshold access structure. Indeed, Csirmaz’s method

5Some lower bounds were proven using other methods such as counting arguments and other tools from
information theory.
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gives a lower bound on the information ratio of an access structure,6 namely on the ratio
between the size of the shares and the size of the secret, and for threshold schemes this ratio
is 1 (using Shamir’s scheme for a long enough secret; see Claim 9). Kilian and Nisan’s [KN90]
proof is the only known argument for threshold schemes and it does not seem to be useful
for any other access structure, including the (t, n)-threshold access structures with t being
close to n.

Csirmaz [Csi97] showed that his framework cannot be used to show a super-linear lower
bound on share size for any access structure. This claim was strengthened by Beimel and
Orlov [BO11] who showed that certain additional “non-Shannon type” information inequal-
ities cannot bypass the linear share size barrier (see [MPY16] for a follow-up).

Linear schemes. A secret sharing scheme is linear if the reconstruction procedure is a
linear function of the shares (over some abelian group). Most previously known schemes are
linear (see [BI01, BIVW16, KNY16] for exceptions) and super-polynomial lower bounds for
linear schemes were given in [BGW99, BGP97, Gál01] via its equivalence to monotone span
programs [KW93]. In a very recent work, Cook et al. [CPRR16] gave the first exponential
lower bound for linear secret sharing schemes by giving an exponential lower bound for
monotone span programs.

For linear (2, n)-threshold secret sharing schemes for a 1-bit secret, a log n lower bound
on share size was proven by Karchmer and Wigderson [KW93]. This was generalized by
Cramer et al. [CFS05] (via a duality argument) to get a lower bound as in Equaiton (1).
For linear (s, r, n)-ramp secret sharing schemes, Cramer et al. obtained a lower bound as in
Equation (2). We emphasize that our lower bounds match the lower bounds of [CFS05] but
are not restricted to linear (ramp) secret sharing schemes.

2 Access Structures and Secret Sharing

Let P , {1, . . . , n} be a set of n parties. A collection of subsets A ⊆ 2P is monotone
(upward-closed) if for every B ∈ A and B ⊆ C it holds that C ∈ A. The collection is
anti-monotone if for every B ∈ A and C ⊆ B it holds that C ∈ A.

Definition 5. A (partial) access structure A = (S,R) is a pair of non-empty disjoint collec-
tions of subsets R and S of 2P such that R is monotone and S is anti-monotone. Subsets
in R are called qualified and subsets in S are called unqualified.

The access structure is total if R and S form a partition of 2P . If A = (S,R) is total we
write R ∈ A for R ∈ R and S 6∈ A for S ∈ S. Our work is mostly about the following two
types of access structures:

• The threshold access structure THRnt is a total access structure over n parties in which
any t parties can reconstruct and secrecy is guaranteed against any subset of t − 1

6We thank a reviewer for pointing this out.
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parties:
S = {S : |S| ≤ t− 1} R = {R : |R| ≥ t}.

• More generally, in the ramp access structure RAMPns,r, any r parties can reconstruct
and secrecy is guaranteed against any s parties:

S = {S : |S| ≤ s} R = {R : |R| ≥ r}.

A secret sharing scheme involves a dealer who has a secret, a set of n parties, and a
partial access structure A = (S,R). A secret sharing scheme for A = (S,R) is a method by
which the dealer distributes shares to the parties such that any subset in R can reconstruct
the secret from its shares, while any subset in S cannot reveal any information on the secret.
We restrict our definition to 1-bit secrets.

Definition 6 (Secret sharing). A secret sharing scheme of a 1-bit secret for a partial access
structure A = (S,R) over n parties over share alphabet Σ is a pair of probability distributions
p0 and p1 over Σn with the following properties:

Reconstruction: For every R ∈ R the marginal distributions7 of p0 and p1 on the set R
are disjoint.

Secrecy: For every S ∈ S the marginal distributions of p0 and p1 on the set S are identical.

An implementation of a secret sharing scheme consists of a sharing algorithm that samples
the shares from the probability distribution p0 or p1 depending on the value of the secret
and of a reconstruction algorithm that recovers the secret from the joint values of the shares
of any qualified subsets of parties. The disjointness requirement ensures that recovery by
qualified subsets of parties is possible with probability 1. The secrecy requirement ensures
that unqualified subsets of parties can extract no information about the secret. Thus, our
definition is equivalent to the ones given, for example, in [Bei96, Definition 3.6] and in [Bei11,
Definitions 2 and 3].

An alternative formulation of secret sharing. Here is an equivalent formulation of
secret sharing. For x ∈ Znq , we use [x] to denote the set of non-zero entries of x, namely

[x] = {i : xi 6= 0}, and [x]{ for the complementary set of zero entries. In this notation, [x−y]
is the set of coordinates that x and y differ on and [x−y]{ is the set of coordinates that they
agree on. A function φS : Znq → C is an S-junta if the value φS(x1, . . . , xn) is determined by
the inputs xi : i ∈ S.

Lemma 7. A secret sharing scheme of a 1-bit secret for a partial access structure A = (S,R)
over share alphabet Zq exists if and only if there exists a function f : Znq → R that is not
identically zero satisfying the following properties:

7Given two random variables X and Y whose joint distribution is known, the marginal distribution of X
is the probability distribution of X averaging over all possible values of Y . Namely, it is Pr[X = x] =∑

y Pr[X = x, Y = y].
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Reconstruction: For all x, y ∈ Znq such that [x− y]{ ∈ R, f(x) · f(y) ≥ 0.

Secrecy: For every S ∈ S and every S-junta φS : Znq → C, E[f(x)φS(x)] = 0, where the
expectation is over the uniform probability distribution of x ∈ Znq .

Proof. For a secret sharing scheme p0, p1, we set f(x) = p0(x) − p1(x). The functions p0
and p1 have disjoint support (otherwise even reconstruction by all parties is impossible) so
f cannot be identically zero. The reconstruction implies that if [x − y]{ ∈ R, then at least
one of p0 and p1 must assign zero probability to both x and y, so f(x) · f(y) equals either
p0(x) · p0(y) or (−p1(x)) · (−p1(y)). In either case f(x) · f(y) ≥ 0. For secrecy, since p0 and
p1 have the same marginals on S ∈ S, E[p0(x)φS(x)] = E[p1(x)φS(x)] so E[f(x)φS(x)] = 0.

In the other direction, let p0(x) = C · max{f(x), 0} and let p1(x) = C · max{−f(x), 0}
for a suitable scaling constant C > 0 that makes p0 and p1 be valid probability distributions
(it exists since f is nonzero). We show reconstruction by contrapositive: If p0 and p1 did not
have disjoint support on some set R ∈ R, there would exist x, y ∈ Znq such that p0(x) > 0,

p1(y) > 0, and [x− y]{ = R, implying f(x) > 0, f(y) < 0, and therefore f(x) · f(y) < 0. For
secrecy, by construction we have f = (p0−p1)/C, so E[p0(x)φS(x)] = E[p1(x)φS(x)] for every
test function φS that only depends on coordinates in S ∈ S. Since no φS can distinguish
between p0 and p1 on S, the statistical distance between the marginal distribution of p0 and
p1 on S is zero, so the two are identical.

3 A Zero-Sum Game and Proof of Theorem 2

Given a partial access structure A = (S,R) and a real parameter θ > 0 we define the
following zero-sum game G(A, θ) between Alice and Bob. The actions are a set A 6∈ S for
Alice and a set B ∈ R for Bob. The payoff of the game is (−θ)|A\B|. We say Alice wins if she
has a strategy with non-negative expected payoff and we say Bob wins if he has a strategy
with negative expected payoff (the expectations are over the randomness of Alice and Bob,
respecively). By von Neumann’s minimax theorem the game has a unique winner.

Lemma 8. If there exists a secret sharing scheme for A with alphabet size q ∈ N, then Alice
wins in the game G(A, 1/(q − 1)).

Our proof of Lemma 8 uses Fourier analysis, which we briefly recall here. The characters
of the group Znq are the complex-valued functions χa : Znq → C, where a ranges over Znq ,

defined as χa(x) = ω〈a,x〉, ω = e2πi/q. The characters are an orthonormal basis with respect
to the inner product 〈f, g〉 = Ex[f(x)·g(x)] with x chosen uniformly from Znq . The characters
inherit the group structure: χa · χb = χa+b and χ−1a = χa = χ−a. Every function f : Znq → C
can then be uniquely written as a linear combination f =

∑
a∈Zn

q
f̂(a) · χa with the Fourier

coefficients f̂(a) given by f̂(a) = 〈f, χa〉 = Ex[f(x) · χa(x)].

Proof of Lemma 8. We show that Alice has a winning strategy. That is, we show that
Alice has a strategy such that for every possible action of Bob, the expected payoff of the
game is non-negative.
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We identify the alphabet with the elements of the group Zq. Let f : Znq → R be the func-

tion f(x) = p0(x)−p1(x). Alice plays set A with probability proportional to
∑

a : [a]=A|f̂(a)|2.
By the secrecy part of Lemma 7, E[f(x) · χa(x)] = 0 whenever [a] ∈ S, so Alice’s strategy is
indeed supported on sets outside S.

Now let B be an arbitrary set in R. By the reconstruction part of Lemma 7 and the fact
that f is real-valued, for every x ∈ Zqn and every z ∈ Zqn such that [z]{ = B, we have that

f(x) · f(x− z) = f(x) · f(x− z) ≥ 0. (3)

Let x be uniform in Znq and z be uniform in Znq conditioned on [z]{ = B. Averaging over this
distribution, we have

Ex,z[f(x) · f(x− z)] =
∑
a,b∈Zn

q

f̂(a) · f̂(b) · Ex,z[χa(x) · χb(x− z)]

=
∑
a

|f̂(a)|2 · Ez[χa(z)]

=
∑
a

|f̂(a)|2 ·
∏
i∈[a]

Ez[ω
aizi ],

where the first equality follows by writing f(x) and f(x− z) using their Fourier represen-
tation and using linearity of expectation, the second equality follows since x and z are
independent and since Ex[χa(x) · χb(x)] = 0 for a 6= b, and the last equality follows since z
is chosen from a product distribution.

The expression E[ωaizi ] evaluates to one when i is in B (since zi is fixed to zero). Oth-
erwise, zi is uniformly distributed over the set Zq \ {0} and

Ez[ω
aizi ] =

1

q − 1

∑
zi∈Zq\{0}

ωaizi =
1

q − 1

(∑
zi∈Zq

ωaizi − 1
)

= − 1

q − 1
.

Therefore,
∏

i∈[a] Ez[ω
aizi ] = (−1/(q − 1))|[a]\B|, and by Equation (3)

∑
a

|f̂(a)|2 ·
(
−1

q − 1

)|[a]\B|
≥ 0.

Grouping all a’s for which [a] = A, we get that∑
A

(∑
a : [a]=A

|f̂(a)|2
)
·
(
− 1

q − 1

)|A\B|
≥ 0 for all B ∈ R.

Therefore, Alice’s strategy has non-negative expected payoff with respect to every possible
action of Bob.
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Proof of Theorem 2. It is sufficient to prove Theorem 2 in the case n = r + 1: If a
secret sharing scheme for RAMPns,r existed, then a secret sharing for RAMPr+1

s,r over the same
alphabet can be obtained by discarding the remaining n− r − 1 parties and their shares.

We now give a winning strategy for Bob in the game G(RAMPr+1
s,r , θ) for any θ > (r −

s)/(s + 1). By Lemma 8 it then follows that no secret sharing scheme over an alphabet of
size (r + 1)/(r − s) exists.

Bob’s strategy is to uniformly choose a set B of size r (which is in R). Then for every
set A 6∈ S, either A ⊆ B and then |A \ B| = 0, or A 6⊆ B and then |A \ B| = 1 (since B
includes all parties except one). Thus, for every A 6∈ S, the expected payoff is

EB

[
(−θ)|A\B|

]
= 1 ·PrB[A ⊆ B]− θ ·PrB[A 6⊆ B]

= 1 · r + 1− |A|
r + 1

− θ · |A|
r + 1

≤ r − s
r + 1

− θ · s+ 1

r + 1
, (4)

where the inequality follows since |A| ≥ s + 1. If θ > (r − s)/(s + 1) this expression is less
than zero, i.e., Bob wins.

It is also possible to deduce Theorem 2 directly from Lemma 8 by showing the existence
of a winning strategy for Bob in the game G(RAMPns,r, θ) whenever θ > (r−s)/(s+1) (rather

than for G(RAMPr+1
s,r , θ), as we did above). Let R be a random subset of r+ 1 parties. Bob’s

strategy has the form B = B0 ∪ B1, where B0 is a uniformly random subset of R of size
r and B1 is a random subset of R{ obtained by including each element independently with
probability p = θ/(1 + θ). The value of p is chosen so that a random variable that equals 1
with probability p and −θ with probability 1− p is unbiased.

Let A, where |A| ≥ s + 1, be any action of Alice. For a fixed choice of R, if A \ R is
nonempty, by our choice of probability p the expected payoff is zero. Otherwise, A is a subset
of R, and by Equation (4) the expected payoff is at most −(s + 1) · θ + (r − s) < 0. Since
the event A ⊆ R has positive probability the expected payoff is negative and Bob wins.

4 Limitations of the Game Relaxation

In the case of threshold access structures Theorem 2 shows that Bob has a winning strategy
in the game G(THRnt , θ) whenever θ > 1/t. We now prove Theorem 3, which states that our
analysis is optimal: There exists a winning strategy for Alice when θ ≤ 1/t.

We also prove Theorem 4: For every total access structure A over n parties, Alice has a
winning strategy in G(A, θ) for every θ ≤ 1/(|A| − 1). As the proof of Theorem 4 is simpler
we present that one first. We remark Theorem 4 can be generalized to any partial access
structure (S,R) by replacing A by R in the proof.

Proof of Theorem 4. Alice’s strategy is uniformly random over all minterms A ∈ minA.
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Then, for every B ∈ A and θ < 1, it holds that

EA[(−θ)|A\B|] = EA[(−θ)|A\B| | A ⊆ B] ·PrA[A ⊆ B]+

EA[(−θ)|A\B| | A 6⊆ B] ·PrA[A 6⊆ B]

≥1 ·PrA[A ⊆ B]− θ ·PrA[A 6⊆ B]

=(1 + θ) ·PrA[A ⊆ B]− θ

≥(1 + θ) · 1

|minA|
− θ.

This is non-negative when θ ≤ 1/(|minA| − 1).

Proof of Theorem 3. Let a0, . . . , an be the following sequence of integers:

a0 = · · · = at−1 = 0, at = 1, as = kt · as−1 + · · ·+ k0 · as−t−1

for t+1 ≤ s ≤ n, where kj is the coefficient of xj in the formal expansion of (x+1)t ·(1/θ−x).
By expanding this expression according to the Binomial formula, we see that the numbers
k0, . . . , kt are non-negative when θ ≤ 1/t because

kj =

(
t

j

)(1

θ
− j

t− j + 1

)
≥ 0

for all 0 ≤ j ≤ t. Therefore as is also non-negative for all s.
Alice plays set A with probability proportional to the number a|A|. We will prove that

this is a winning strategy for Alice. When B = {1, . . . , n}, then EA[(−θ)|A\B|] = 1 and Alice
wins. Now let B ⊆ {1, . . . , n} be any set such that t ≤ |B| < n. Let

θj =

{
1, if j ∈ B,
−θ, if j 6∈ B.

Then,

EA[(−θ)|A\B|] ∝
∑
A

a|A|
∏
j∈A

θj =
n∑
s=0

asws where ws =
∑

A : |A|=s

∏
j∈A

θj.

The number ws can be represented as the coefficient of zs in the formal expansion of g0(z) =∏n
j=1(1+θjz). Since exactly |B| of the θj’s equal 1 and the other n−|B| equal −θ, it follows

that
g0(z) = (1 + z)|B| · (1− θz)n−|B|. (5)

The numbers a0, . . . , an (as defined in the beginning of the proof) are defined by an order t
homogeneous linear degree relation with constant coefficients whose characteristic equation
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is (x + 1)t · (1/θ − x) = 0. This equation has roots −1 (with multiplicity t) and 1/θ (with
multiplicity 1). Therefore,

as = C · θ−s +
t−1∑
i=0

ci · si · (−1)s

where c0, . . . , ct−1 and C are constants determined by the initial conditions on a0, . . . , at. We
can now write

n∑
s=0

as · ws = C ·
n∑
s=0

ws · θ−s +
t−1∑
i=0

ci ·
n∑
s=0

ws · si · (−1)s.

Recall that g0 is the generating function of ws which means that g0(z) =
∑n

s=0ws ·zs. So, the
term

∑n
s=0ws·θ−s equals g0(1/θ) = 0. To finish the proof, we show that

∑n
s=0ws·si·(−1)s = 0

for all i ≤ t− 1 (this implies that Alice’s strategy has a 0 payoff, which means that she wins
the game). Let gi(z) = z · g′i−1(z) for 1 ≤ i ≤ t− 1 where g′i−1 is the derivative of gi−1. On
the one hand, since −1 is a root of g0 of multiplicity t, gi(−1) = 0 for all i ≤ t− 1. On the
other hand, gi(z) has the formal expansion

∑n
s=0ws · si · zs. Therefore,

∑n
s=0ws · si · (−1)s

must equal zero.

5 Concluding Remarks

Theorem 1 requires that the shares given to all parties have the same length. Its proof
extends easily to yield the following generalization: For every n, every 1 < t < n, and
every (t, n)-threshold secret sharing scheme in which party i receives a log qi-bit share and
q1 ≤ q2 ≤ · · · ≤ qn it must hold that

1

q1
+ · · ·+ 1

qt+1

≤ 1. (6)

In particular, inequality (6) implies that the average share size must be at least log (t+ 1).
We sketch the Proof in Appendix B. Kilian and Nisan [KN90] prove the same for (n−t+1, n)-
threshold access structures.

By Theorem 3 our analysis of threshold secret sharing is tight within the game-theoretic
relaxation that we introduce here. As the lower bound of Kilian and Nisan [KN90] is in-
comparable with ours, their analysis cannot be cast in terms of a winning strategy in our
game. It is, however, possible to capture both our analysis and that of Kilian and Nisan by
a single linear program. We performed computer experiments to investigate the feasibility of
one such family of linear programs, but were unable to obtain better lower bounds on share
size.

We do not know what is the best possible lower bound on share size that our method can
give among all access structures on n parties. Theorem 1 shows a lower bound of log(n− 1)
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is attainable, while Theorem 4 shows that a lower bound of log
(

n
bn/2c

)
cannot be proved.

The best possible bound is the logarithm of

bn = minAmax
{
q : Bob wins in G(A, 1/(q − 1))

}
,

where the minimum is taken over all access structures A on n parties. We can prove that if
the payoff function is replaced by (−θ)|A4B|, where 4 is symmetric set difference, then the
quantity analogous to bn is upper bounded by O(n2).
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A On the Tightness of Theorem 2

We show that Theorem 2 is tight when t = n− 1 and n is the power of a prime. This result
is known (see e.g. [CDN15, Theorem 11.13]) and we give it here for completeness.

Claim 9. For every power of a prime n there exists a (n−1)-out-of-n secret sharing scheme
for log n-bit secrets with log n-bit shares.

Claim 9 follows by a small optimization of Shamir’s secret sharing scheme. We give the
construction and sketch the correctness proof.

To share a secret s ∈ Fn, let p(x) = sxn−2 + r(x), where r is a random polynomial of
degree n− 3 and all algebra is over the finite field Fn. The shares are the n values p(x) as x
ranges over Fq. Reconstruction is immediate as the polynomial p can be interpolated from
any n− 1 of its values.

For secrecy, we show for any s ∈ Fn and distinct elements x1, . . . , xn−2 ∈ Fn, the vector
(p(x1), . . . , p(xn−2)) is uniformly random in Fn−2n . Since p(x) = sxn−2 + r(x) it suffices to
show that (r(x1), . . . , r(xn−2)) is uniformly random. This is true because the evaluation map
that takes the coefficients of r into its values r(x1), . . . , r(xn−2) is a full-rank Vandermonde
matrix.

B Proof Sketch of Inequality (6)

The proof of inequality (6) is a direct extension of the proof of Theorem 1. We describe the
differences. The payoff function in the game G in Lemma 8 becomes

∏
i∈A\B −1/(qi−1). The

generalized lemma can be proved via Fourier analysis over the product group Zq1×· · ·×Zqn .
As in the proof of Theorem 1, it is sufficient to establish inequality (6) in the special case

t = n− 1. Bob then plays set B = {1, . . . , n} \ {i} with probability proportional to 1− 1/qi.
It can be verified that when

∑n
i=1 1/qi > 1 this is a winning strategy for Bob.

12
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