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Abstract

Various combinatorial/algebraic parameters are used to quantify the
complexity of a Boolean function. Among them, sensitivity is one of the
simplest and block sensitivity is one of the most useful. Nisan (1989) and
Nisan and Szegedy (1991) showed that block sensitivity and several other
parameters, such as certificate complexity, decision tree depth, and degree
over R, are all polynomially related to one another. The sensitivity conjec-
ture states that there is also a polynomial relationship between sensitivity
and block sensitivity, thus supplying the “missing link”.

Since its introduction in 1991, the sensitivity conjecture has remained
a challenging open question in the study of Boolean functions. One nat-
ural approach is to prove it for special classes of functions. For instance,
the conjecture is known to be true for monotone functions, symmetric
functions, and functions describing graph properties.

In this paper, we consider the conjecture for Boolean functions com-
putable by read-k formulas. A read-k formula is a tree in which each
variable appears at most k times among the leaves and has Boolean gates
at its internal nodes. We show that the sensitivity conjecture holds for
read-once formulas with gates computing symmetric functions. We next
consider regular formulas with OR and AND gates. A formula is regular
if it is a leveled tree with all gates at a given level having the same fan-in

∗This work was done while the author was an intern at Microsoft Research, Bangalore,
India.
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and computing the same function. We prove the sensitivity conjecture for
constant depth regular read-k formulas for constant k.

1 Introduction

Sensitivity and block sensitivity are two important complexity parameters of
Boolean functions. The sensitivity conjecture states that these two parameters
are polynomially related. A long-standing open question is to prove (or disprove)
this conjecture. In this paper, we prove the conjecture for several subclasses of
functions computable by read-k formulas.

The sensitivity s(f) of a Boolean function f is the maximum (over all inputs)
number of coordinate dimensions along which the value of the function changes.
This notion was first introduced by Cook et al. [9] to prove lower bounds on
the parallel complexity (in the CREW PRAM model) of Boolean functions.
Nisan [16] introduced the more general definition of block sensitivity. The block
sensitivity bs(f) of a Boolean function f is the maximum (again, over all inputs)
number of disjoint subsets of coordinate dimensions such that flipping all values
of a given input in any of these subsets results in flipping the value of the func-
tion. Nisan proved that block sensitivity asymptotically captures the CREW
PRAM complexity of all Boolean functions. Remarkably, Nisan also showed
that several other complexity parameters of Boolean functions such as certifi-
cate complexity, decision tree depth, and randomized decision tree depth are
polynomially related to block sensitivity. Subsequently, Nisan and Szegedy [17]
showed that block sensitivity and degree of polynomials (approximately) repre-
senting a Boolean function over R are polynomially related.

Hence, a number of combinatorial/algebraic parameters describing complex-
ity of Boolean functions are all polynomially related to each other, but sensitivity
has so far resisted such a polynomial equivalence with any of these other parame-
ters. In fact, Nisan and Szegedy posed this as the sensitivity vs. block sensitivity
question and since then, this question has come to be known as the “sensitivity
conjecture”. More than two decades later, proving (or disproving) this conjec-
ture still remains a foundational challenge in the study of Boolean functions. In
recent times, this quest has become even more intriguing as other complexity
parameters such as quantum query complexity (both exact and two-sided error
versions) have been shown to be polynomially related to block sensitivity [5, 7].
At the same time, the sensitivity conjecture has been shown to be related to a
number of other conjectures and open questions in Boolean function complexity,
as illustrated in the survey [13].

The best known universal (applicable to all functions) upper bound on block
sensitivity remains exponential in sensitivity [19] (see [14], [3], [21] for more
refined upper bounds). In the other direction, Rubinstein [18] gives an example
function where the gap between sensitivity and block sensitivity is quadratic (see
[4] and references therein for improvements in constants). Thus the challenge
is to close this gap between quadratic and exponential relations between block
sensitivity and sensitivity.

Several approaches have been proposed in the literature to attack the sensi-
tivity conjecture. Gotsman and Linial [12] showed that the degree vs. sensitivity
problem is equivalent to a combinatorial problem on the maximum degree of
induced subgraphs of the Boolean cube. Aaronson [1] (see also [6]) stated a

2



problem about certain two-colorings of the integer lattice whose solution would
imply the sensitivity conjecture. Recently, Gilmer et al. [10] formulated an
approach to the degree vs. sensitivity problem using lower bounds on a two-
party communication game. Even more recently, Gopalan et al. [11] prove an
`2-approximate version of the degree vs. sensitivity conjecture (the original one
needs an `∞-approximation). They also formulate the notion of tree sensitivity
and a robust analog of the degree vs. sensitivity conjecture.

To make progress on our understanding of this problem, researchers also
studied the conjecture on special classes of Boolean functions. It is trivial to
see that the conjecture holds for monotone functions and symmetric functions.
A natural question, then, is if the sensitivity conjecture holds when the func-
tion is invariant under other groups of symmetries. Turán [22] proved that for
Boolean functions that describe graph properties (edges are the Boolean vari-
ables) sensitivity is Ω(

√
n) and hence the conjecture holds for graph properties.

Chakraborty [8] studied minterm-transitive Boolean functions and showed that
for such functions sensitivity is Ω(n1/3), thus showing the conjecture for this
class of functions. Sun [20] studied block sensitivity for Boolean functions in-
variant under any transitive permutation group and showed that such functions
must have block sensitivity Ω(n1/3).

Our Results: We prove the sensitivity conjecture for another restricted class
of Boolean functions, namely certain functions computed by read-k formulas.
A read-k formula is a tree whose internal nodes are Boolean gates, e.g., AND
and OR, and leaves are literals of input variables with the restriction that each
variable (as negated or non-negated literal) appears at most k times among the
leaves. Such a formula computes a Boolean function in a natural way from the
leaves to the root. A formula is called regular if all gates at a given depth are
the same type and have the same fan-in.

In what follows, we will mainly focus on formulas composed of OR and AND
gates. In particular we show that the sensitivity conjecture is true for read-log n
regular formulas whose bottom fanins are sufficiently large.

Theorem 1. Regular read-log n with large bottom fanin. Let f be a
Boolean function, dependent on n variables, computed by a regular read-(log n)
formula with bottom fan-in at least log2 n. Then

s(f) ≥ Ω̃
(

bs(f)1/4
)
,

where the Ω̃ notation hides some logarithmic terms.

We would like to remove the condition on the bottom fanin. We succeed in
doing so when the read and depth of the formula are constants.

Theorem 2. Regular read-constant and constant depth. Let f be com-
puted by a regular read-k formula of depth-d for constants k and d such that all
internal gates compute non-constant AND-OR functions. Then

s(f) = Ωk,d(
√

bs(f)),

where the hidden constant is a (rapidly decreasing) function of k and d.
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We present our main results (Theorem 1 and 2) on regular read-k formulas
with AND and OR gates in Section 4. A crucial ingredient of our proofs is an
application of the Lovász Local Lemma (LLL) to show that some literals can
be assumed to occur in their positive form in such a formula without increasing
the function’s sensitivity and ensuring that any satisfying assignment of such a
formula must have a large Hamming weight. However, in order to apply LLL,
we need the bottom fan-in of such formulas to be large enough. So, we first
prove the conjecture for formulas with large bottom fan-in. We then remove
the restriction on the bottom fan-in by switching AND’s of OR’s to OR’s of
AND’s (or vice versa). The idea is that if the formula is sufficiently large and
the depth small, there has to be a layer L with large fanin. Then, by switching,
we expand the layers under L and put L close to the bottom.

When specialized to read-once formulas with symmetric gates or to read-k
DNF’s our lower bounds on regular read-k formulas yield better dependence on
k.

Theorem 3. Read-once with symmetric gates. Let f be a Boolean function
dependent on n variables and computed by a read-once formula with symmetric
gates. Then, s(f) ≥

√
n.

We note that Hiroki Morizumi [15] proved a similar lower bound for read-
once AND-OR formulas.

Theorem 4. Read-k DNF. Let f be a Boolean formula dependent on n vari-
ables and computed by a read-k DNF. Then

s(f) ≥ n1/3/(k + 2).

In particular, if k ≤ n 1
3−ε − 2, then

s(f) ≥ nε ≥ bs(f)ε.

Our proof of the conjecture for read-once formulas with symmetric gates
appears in Section 3. The results on DNF’s appear in Section 5.

2 Notations and Preliminaries

• In this paper, log will always denote the logarithm to base two.

• We will always assume that f is a Boolean function on n variables and
moreover that it depends on all its variables.

2.1 Measures on Boolean functions

Let f : {0, 1}n → {0, 1} be a Boolean function. For x ∈ {0, 1}n and S ⊆ [n],
we denote by xS the vector obtained by flipping all the coordinates on x in S.
For x ∈ {0, 1}n and z ∈ {0, 1}, we denote by |x|z the number of coordinates of
x with the value z.

Definition 5. Sensitivity:
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• The sensitivity of f at x is defined as the number of coordinates of x,
which when flipped, will flip the value of f :

s(f, x) :=
∣∣∣{i ∈ [n] : f(x) 6= f

(
x{i}

)}∣∣∣ .
• For z ∈ {0, 1}, the z-sensitivity of f is defined as the maximum sensitivity

of f at an input in f−1(z): sz(f) := max{s(f, x) : f(x) = z}.

• Finally, the sensitivity of f is the maximum sensitivity of f among all
inputs: s(f) := max{s(f, x) : x ∈ {0, 1}n} = max{s0(f), s1(f)}.

Definition 6. The block sensitivity of f at x, denoted bs(f, x) is the maximum
number of disjoint subsets S1, . . . , Sb of [n] such that for every i, f(x) 6= f(xSi).
The z-block sensitivity and block sensitivity of f are defined similar to the case
of sensitivity. In particular, bs(f) := max{bs(f, x) : x ∈ {0, 1}n}.

Definition 7. A certificate of f on x is a subset S ⊆ [n] such that f(y) = f(x)
whenever yi = xi,∀i ∈ S. The size of the certificate S is |S|.

The certificate complexity of f on x denoted by C(f, x) is the size of a
smallest certificate of f on x. The certificate complexity of f denoted by C(f)
is maxx C(f, x). For z ∈ {0, 1}, the z-certificate complexity of f denoted by
Cz(f), is maxx∈f−1(z) C(f, x).

We will use the following known results.

Lemma 8. For any Boolean function f and z ∈ {0, 1}, Cz(f) ≥ bsz(f) ≥ sz(f).

The first inequality above is from [16] and the second inequality is obvious
from definitions.

Theorem 9 ([4]). For any Boolean function f and z ∈ {0, 1},

Cz(f) ≥ 3bs1−z(f)

2s1−z(f)
− 1

2
.

2.2 Formulas

Definition 10. Regular Read-k Formulas:

• A formula C is said to be (a1, . . . , ad)-regular if it is a layered tree of depth
d whose leaves are input variables or their negations and all internal nodes
at a given layer i, 1 ≤ i ≤ d, are gates of the same kind and the same
fanin ai. The layers are numbered 1 through d+ 1 from the root (output)
to the leaves (inputs). We will often denote the gates at the layer d by
bottom gates. In this paper, we only consider both formulas of alternating
layers of AND and OR gates (we could start at the root with either gate
and then alternate) and formulas with symmetric gates.

• A formula is read-k if each variable (either in its negated or non-negated
form) appears at most k times among its leaves.

One can argue that by replicating the arguments, we can always assume
that the formula is in regular form. However, this idea does not work
here because by doing this transformation, we would increase the read-
multiplicity of the formula.

5



2.3 Lovász local lemma

We will make use of the Lovász Local Lemmas:

Lemma 11. [The Lovász Local Lemma: Symmetric Case] Let A1, . . . , An be
events in an arbitrary probability space. Suppose that each event Ai is mutually
independent of a set of all the other events Aj but at most d and that Pr[Ai] ≤ p
for all 1 ≤ i ≤ n.

If ep(d+ 1) < 1, then Pr
[⋂

Ai
]
> 0.

We will also use the general version of this lemma. Both versions can be
found, e.g., in [2].

Lemma 12. [Lovász Local Lemma: General Case] Let A = {A1, . . . , An} be
events in an arbitrary probability space. For A ∈ A let Γ(A) denote a subset of
A such that A is independent from the collection of events A \ ({A} ∪ Γ(A)).

If there exists an assignment of reals x : A → (0, 1) to the events such that

∀A ∈ A : Pr(A) ≤ x(A)
∏

B∈Γ(A)
(1− x(B)),

then Pr
[⋂

Ai
]
> 0.

3 Read-once formulas with symmetric gates

In this section, we prove the sensitivity conjecture for read-once formulas with
symmetric gates. The read-multiplicity is more restrictive than the model we
will consider later but the gates we allow are more powerful.

Definition 13. Let g be a non-constant symmetric function on m inputs. We
define τ(g) to be the minimal weight of an input x ∈ {0, 1}m such that g(x) 6=
g(~0):

τ(g) := min
{
i | |x|1 = i =⇒ g(x) 6= g(~0)

}
.

Theorem 14. Let f be a Boolean function computed by a read-once formula C

with symmetric gates. Then, s0(f)s1(f) ≥ n.

Proof. We prove it by induction on the depth of the formula C. If the depth of
the formula is 1, then f is a symmetric function on n variables. Let z = f(~0)
and t := τ(f). By Definition 13, when |x|1 = t− 1, f(x) = z and when |y|1 = t,
f(y) = 1−z. It follows immediately that sz(f, x) ≥ n− t+1 and s1−z(f, y) ≥ t.
As 1 ≤ t ≤ n, we have s0(f)s1(f) ≥ t(n− t+ 1) ≥ n.

Now assume that the theorem is true for all depths ≤ d. We prove it for
depth d+ 1.

So f = h(g1, . . . , gm), where h is symmetric and each gi is computed by
a read-once formula with symmetric gates, of depth at most d. Let every gi
be a function on ni variables with ai = s0(gi) and bi = s1(gi). By the induc-
tive hypothesis, we know that aibi ≥ ni. Since n =

∑m
i=1 ni, we have that,∑m

i=1 aibi ≥ n. Without loss of generality, we may assume that a1 ≥ a2 ≥ . . . ≥
am and bπ(1) ≥ bπ(2) ≥ . . . ≥ bπ(m) for a suitable permutation π of [m]. Let

Aj :=
∑j
i=1 ai and Bj :=

∑j
i=1 bπ(i). Let t := τ(h) so h(x) = z for all x with

|x|1 = t− 1 and h(y) = 1− z for all y with |y|1 = t.
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Since the formula is read-once, the gi depend on disjoint sets of variables,
and so it is easy to see that for all S with |S| = t−1, we can find an assignment
σ to all the variables of f such that (i) gi(σi) = 1 for exactly those i ∈ S and
(ii) for i /∈ S, gi(σi) = 0 and gi has ai = s0(gi, σi) sensitive inputs. It follows
that

sz(f) ≥ max
S⊆[n]

|S|=m−t+1

{
∑
i∈S

ai} = Am−t+1.

Similarly,

s1−z(f) ≥ max
S⊆[n]
|S|=t

{
∑
i∈S

bi} = Bt.

So,

s0(f)s1(f) ≥ Am−t+1Bt = (a1 + . . .+ am−t+1)(bπ(1) + . . .+ bπ(t)).

The proof is completed by the following claim which is proved just after.

Claim 15. For any t, 1 ≤ t ≤ m, Am−t+1Bt ≥
∑m
i=1 aibi.

We therefore conclude that s0(f)s1(f) ≥ Am−t+1Bt ≥
∑m
i=1 aibi ≥ n.

Proof of Claim 15. Let A := Am−t+1 = {a1, . . . , am−t+1} and
B := Bt = {bπ(1), . . . , bπ(t)}.

Let S be the set of terms in the expansion of AB, i.e.
S = {ajbk | aj ∈ A, bk ∈ B}.

Consider the summation
∑m
i=1 aibi. For every term aibi we will find a unique

term in S which is greater equal aibi. Let us define A′ = A \ {am−t+1} and
B′ = B \ {bπ(t)}.

Here are the possible cases for ai, bi:

• ai ∈ A′, bi ∈ B′

The term aibi itself.

• ai ∈ A′, bi /∈ B′

The term aibπ(t) ≥ aibi since bπ(1) ≥ . . . ≥ bπ(t) ≥ . . . bπ(i) ≥ . . . ≥ bπ(m).

• ai /∈ A′, bi ∈ B′

The term am−t+1bi ≥ aibi since a1 ≥ . . . ≥ am−t+1 ≥ . . . ≥ am.

• ai /∈ A′, bi /∈ B′

Any term in AB will be greater or equal than aibi. Let the number of
terms matched in the 3 cases above be v, so the number of terms remaining
are m−v. As 1 ≤ t ≤ m we have that (m−t)(t−1) = t(m−t+1)−m ≥ 0
and so t(m− t+ 1)− v ≥ m− v. So we can match these remaining terms
uniquely.

Corollary 16. Let f be a Boolean function computed by a read once formula
C with symmetric gates. Then, s(f) ≥

√
n ≥

√
bs(f).
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Furthermore, this bound (i.e., the first inequality) is tight whenever n is a
perfect square. To see the tightness of the bound, consider an OR of fan-in√
n over

√
n disjoint AND’s on

√
n variables each. It is easy to see that both

0-sensitivity and 1-sensitivity of this function are exactly
√
n.

4 Read-k formulas

In the following, we will only consider AND-OR formulas (with positive and
negative literals). In this section, we prove the sensitivity conjecture for read-k
formulas with certain restrictions.

Theorem 17. Let f be computed by a regular read-k formula of depth d with
constants k and d such that any internal gate computes a non-constant function.
Then, s(f) = Ωk,d(

√
bs(f)), where the hidden constant is a (rapidly decreasing)

function of k and d.

We prove this theorem in two stages:

• In Section 4.1, we first prove a lower bound for s(f) in terms of bs(f) when
f is computed by a read-k regular formula with large bottom fanin.

• Then, in Section 4.2, we remove the condition on the bottom fanin by
defining a normal form for formulas and then reducing a formula with
small bottom fanin to one in the normal form where the previous step
applies.

Notation: When C is an (a1, . . . , ad)-regular formula with AND-OR gates we
will use A(C, j) to denote the product,

A(C, j) =
∏
l∈[j]

l is a ∧-gates level

al.

As most of the times, the function A will be used on the parameters C and
j = d− 2, we will denote A(C, d− 2) by A.

4.1 Large bottom fan-in

In this section, we give a lower bound for sensitivity in terms of block sensitivity
for read-k regular formulas with large bottom fanin.

4.1.1 1-Sensitivity when bottom gates are AND gates

We will first prove a lower bound on the 1-sensitivity of such formulas. We
will show that given a formula C it is possible to get an equivalent formula C′

which has certain nice properties. Specifically, all inputs on which C′ evaluates
to 1 have large Hamming weight, which directly implies that the 1-sensitivity
for this function is large.

Definition 18. A parse tree P of a formula C computing f is a subcircuit which
is recursively defined as follows:

• The output gate of C is in P .
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• If an ∧-gate belongs to P then all its children are also in P .

• If an ∨-gate belongs to P then exactly one of its children is in P .

It is easy to see that f evaluates to 1 on an input x if and only if C contains
a parse tree all of whose gates evaluate to 1. A simple induction also shows that
every parse tree of a regular formula has A(C, d− 1) = A bottom gates.

Definition 19. The parse-read of C is the maximum number of times any vari-
able appears in any parse tree.

We will now consider two models. The first model is a (natural) restriction
of our model of regular formulas: a variable can appear at most once under the
same bottom gate. The second model is the general one without this restriction.

Lemma 20. Let (a1, . . . , ad) ∈ (N \ {0})d with ad ≥ 2 log 4k. Let f be a
non-constant function computed by an (a1, . . . , ad)-regular read-k and parse-read
p formula such that the bottom gates are ∧-gates and such that each variable
appears at most once under any bottom gate. Then

s1(f) ≥
(
ad − 2 log 4k + 1

2p log 4k

)
A.

Proof. By regularity, any bottom gate of C is the parent of ad literals. Let us
group these literals into groups of size α whose value will be chosen later. The
last group will be of size ad modulo α. So we get bad/αc groups of α literals
under every bottom gate. We want to modify C to C′ such that each group
contains at least one positive literal.

Let us randomly negate each variable. Each variable is independently chosen
as positive or negative with probability 1

2 . Let Ai be the event that the ith group
has no positive literals (where the ith group is taken over all groups under all
bottom gates). So Pr [Ai] = 1

2α . Every event Ai is dependent on at most kα
other Aj ’s. Using the symmetric version of the Lovász Local Lemma we get
that, if e(kα+ 1) ≤ 2α then Pr

[⋂
Ai
]
> 0.

Notice that α = b2 log(4k)c satisfies the previous inequality for all positive
integers k. So there exists a new formula C′ such that every group will have at
least one positive literal. Let g be the function computed by C′. Note that we
now have a fixed σ such that for all x, f(x⊕ σ) = g(x).

On any input x ∈ g−1(1) we get at least one parse tree in C′ all of whose
gates evaluate to 1. Consequently, on any input x in g−1(1), there are at least
A bottom ∧-gates of C′ which evaluate to 1. As each variable can appear at
most p times in any parse tree, we have that ∀x ∈ g−1(1),

|x|1 ≥
⌈
A

p

⌊ad
α

⌋⌉
≥ A(ad − 2 log 4k + 1)

2p log 4k
.

Taking the input x ∈ g−1(1) with least Hamming weight we get that,

s1(f, x⊕ σ) = s1(g, x) ≥ |x|1 ≥
(
ad − 2 log 4k + 1

2p log 4k

)
A.
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It is interesting to notice that the proof can be turned into an algorithm
for finding an input which has high sensitivity given any 1-input x. Namely,
one just have to run the algorithmic version of Lovász Local Lemma to get the
above bijection ⊕σ. Then find (by flipping the 1’s from x) a locally minimal
weight (under ⊕σ) assignment that still gives the output 1.

We will now remove the condition that every variable can occur at most once
under any bottom gate. In doing so we will lose a factor of k in the lower bound
while also demanding a stronger constraint on the bottom fanin.

Lemma 21. Let (a1, . . . , ad) ∈ (N \ {0})d with ad ≥ k log(3k). Let f be a non-
constant function computed by an (a1, . . . , ad)-regular read-k and parse-read p
formula such that the bottom gates are ∧-gates. Then

s1(f) ≥
(
ad − k log(3k) + 1

kp log(3k)

)
A.

Proof. By regularity, any bottom gate of C is the parent of ad literals. Let us
group these literals into groups of size α (the last group will be of size ad modulo
α). So we get bad/αc groups of α literals under every bottom gate. We now get
C′ from C by ensuring that each group contains at least one positive literal.

Let us randomly negate each variable. Each variable is independently chosen
as positive or negative with probability 1

2 . Let Ai be the event that the ith group
Gi has no positive literals and A be the set of these events. Let us also denote
the set of variables present in Gi by Vi and its cardinality by di. We notice that
if a variable appears in Gi positively and negatively, then Pr(Ai) = 0. So, in
all cases, Pr [Ai] ≤ 1/2di . Let Γ(Ai) be the set of the events in A \ {Ai} which
are dependent of Ai. It means that for each event Aj ∈ Γ(Ai) the set Vi ∩ Vj is
not empty. As the function is read-k and as the variables in Vi already appear
α times in Gi, it implies that |Γ(Ai)| ≤ (kdi − α).

Let us choose α = bk log(3k)c ≥ k log(2k). We want to use Lemma 12 with
the assignment of reals x(A) = 1− 2−1/k for each event A ∈ A. We have

1

Pr(Ai)
x(Ai)

∏
B∈Γ(Ai)

(1− x(B)) ≥ 2di
(

1− 2−1/k
)

2−(kdi−α)/k

≥
(

1− 2−1/k
)

2α/k

≥
(

1−
(

1− 1

2k

))
2α/k

≥ 2α/k

2k
≥ 1.

Then by Lemma 12, Pr
[⋂

Ai
]
> 0. It means that there exists a new formula

C ′ (where C ′ is derived from C by negating some variables) such that every
group has at least one positive literal. Let g be the function computed by C ′.
As seen before, g(x) = 1, implies that there is at least one parse tree which
has A bottom ∧-gates which evaluate to 1. As each variable appears at most p
times in this parse tree, we have that ∀x ∈ g−1(1),

|x|1 ≥
A

p

⌊ad
α

⌋
≥ A(ad − k log(3k) + 1)

kp log(3k)
.
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Taking the input x ∈ g−1(1) with least Hamming weight we get that,

s1(f, x) ≥ |x|1 ≥
A(ad − k log(3k) + 1)

kp log(3k)
.

4.1.2 The Sensitivity Conjecture for large bottom fan-in case

We will now combine previously known results with the statements proved in the
section above to obtain some relations between sensitivity and block sensitivity.

The next lemma will help us relate the bound obtained for s1(f) to C1(f)
of read-k regular formulas.

Lemma 22. Let f be a Boolean function computed by an (a1, . . . , ad)-regular
formula C. Then, C1(f) ≤ A(C, d).

Proof. Let us prove it by induction on d.

• If d = 0, then f is just a literal r associated to one variable xi. The set
{i} is a certificate for any input of f , and so C1(f) ≤ 1.

• Let us assume now that the lemma is true for a fixed d and prove it for
formulas of depth d+ 1. So f is one of the following forms

1. g1 ∨ g2 ∨ . . . ∨ ga1
2. or g1 ∧ g2 ∧ . . . ∧ ga1

where (g1, . . . , ga1) are a1 Boolean functions computed by some (a2, . . . , ad+1)-
regular formulas.

– In the first case, for any x ∈ f−1(1), at least one of the functions gi is
evaluated to 1. Hence C1(f) ≤ max(C1(gi)) and so, by the induction
hypothesis,

C1(f) ≤
∏

l∈[2,d+1]
l is a ∧-gates level

al

=
∏

l∈[1,d+1]
l is a ∧-gates level

al.

The last equality comes from the fact that the first layer is a layer of
∨-gates.

– In the second case, for any x ∈ f−1(1), all the functions gi are eval-
uated to 1. Hence C1(f) ≤

∑a1
i=1 C1(gi)). Then by the induction

hypothesis,

C1(f) ≤ a1

∏
l∈[2,d+1]

l is a ∧-gates level

al

=
∏

l∈[1,d+1]
l is a ∧-gates level

al.

The last equality comes from the fact that the first layer is a layer of
∧-gates.
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Theorem 23. Let f be a non-constant Boolean formula computed by an (a1, . . . , ad)-
regular read-k formula with parse-read p such that its bottom fanin ad is larger
or equal to (3 log 4k) and such that any variable appears at most one time under
each bottom gate. Then

s(f) ≥

√
bs(f)

10p log 4k
.

Moreover, when a variable can occur multiple times under each bottom gate
and the bottom fan-in ad ≥ 2k log 3k, we have

s(f) ≥

√
3bs(f)

10kp log 3k
.

Proof. Let us start by the first point of the theorem. By considering f or ¬f ,
we can assume that the bottom layer is composed of ∧-gates. By Lemma 20,
we have that,

s1(f) ≥
(
ad − 2 log 4k + 1

2p log 4k

)
A.

From Lemma 22 we have C1(f) ≤ adA. Since ad ≥ 3 log 4k, ad−2 log 4k ≥ ad/3,

s1(f) ≥ 3A+ C1(f)

6p log 4k
≥ C1(f) + 1/2

6p log 4k
.

Using Lemma 8 we get, s(f) ≥ s1(f) ≥ bs1(f)
6p log 4k . We also get by Theorem 9,

s(f)2 ≥ s1(f) · s0(f) ≥ bs0(f)

4p log 4k
.

Since bs(f) = max(bs1(f),bs0(f)),

5s2 ≥ 2s2 + 3s ≥ bs0(f)

2p log 4k
+

bs1(f)

2p log 4k
≥ bs(f)

2p log 4k
.

Consequently, s ≥

√
bs(f)

10p log 4k
, proving the first part. The second part of

the theorem follows analogously using Lemma 21.

The following corollary follows from the lower bound for sensitivity proved
in [19].

Corollary 24. Let f be a non-constant Boolean formula computed by an (a1, . . . , ad)-
regular read-(log n) formula with bottom fan-in at least log2 n. Then

s(f) ≥ Ω̃
(

bs(f)1/4
)

where the Ω̃ notation hides some logarithmic terms.
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Proof. From the hypothesis on f , 2k log 3k ≤ 2 log(n) log(3 log n). Hence, for n
sufficiently large (in fact as soon as n ≥ 854), by Theorem 23,

s(f) ≥ 1

log n

√
3bs(f)

10 log(3 log n)
. (1)

• Suppose 3 log n ≤ bs
1
4 (f). Then, from Equation (1) we get,

s(f) ≥ 3bs(f)1/4√
log bs(f)

.

• Suppose, on the other hand, 3 log n > bs
1
4 (f).

We use the following lower bound on sensitivity which was proved in [19]:
for all Boolean functions f which depend on all their variables.

s(f) ≥ 1

2
log n− 1

2
log log n+

1

2
.

When n ≥ 2, we have that log n > 2 log log n, so using the condition on
bs(f) we get,

s(f) ≥ 1

4
log n ≥ 1

12
bs(f)1/4.

Combining the two cases we get when n is large enough,

s(f) ≥ min

(
3√

log bs(f)
,

1

12

)
bs(f)1/4.

4.2 Removing the condition on the bottom fan-in

In this section, we complete the proof of Theorem 17. We note that when the
depth is constant but the size of the formula is large enough, there has to be
a level at which the fanin is sufficiently large. If one of the last two fanins is
large, we can apply an argument quite similar to the one in the previous section.
Otherwise, we can switch these two layers while incurring a significant blow-up
(but still only as a function of depth and read-multiplicity) in certain circuit
parameters, while reducing the depth of the circuit. We continue switching the
last two layers until one of their fanins is sufficiently large, which is ensured
because the circuit is of constant depth.

4.2.1 Normal form by switching:

For notational convenience, we number the layers of a depth-d circuit as L1, . . . , Ld
with L1 being just the root (output) gate and Ld the bottom layer (with inputs
feeding into them) of gates. Also, we define the following function over N for
later reference:

H(x) := 24 · (3x)2xx4 log 3x. (2)

13



As mentioned above, we will transform our formula into an equivalent formula
where the fanin in the last or the last but one layer is sufficiently large. Such a
representation for Boolean functions will be called a normal form:

Definition 25. A formula is in (k; a1, . . . , ad)-normal form if the following
properties hold:

1. the formula is alternating and (a1, . . . , ad)-regular, i.e., fanin of all gates
in Li is ai,

2. the formula is read-k,

3. the bottom layer Ld is composed of ∧-gates,

4. at least one of the two following conditions on the fanins of the two bottom
layers Ld−1 and Ld is true:

• ad ≥ 2k log 3k,

• under each ∨-gate in Ld−1, i.e., one layer above the bottom layer,
there are at least H(k) non-constant ∧-bottom gates.

As we will switch adjacent layers of the formula, let us start by bounding
the increase we get by such a procedure. Let the size and width of a DNF
(respectively CNF) be the fanin of its first layer and second layer respectively.

Lemma 26. If f is a function computed by a read-k regular DNF (respectively
CNF) of size (top fanin) a and width b, then it is also computed by a read-
(kb(a−1)) CNF (respectively DNF) of size ba and width a.

Now we will focus on the last two layers we get after some number of switches
in the formula. We will recursively define certain functions Ti below. Intuitively,
T1 is the fanin of the bottom layer without any switches and Ti+2 is the fanin of
the layer just above the bottom layer after i switching steps. Note that a depth
d circuit becomes a depth d − i circuit after i switches and merges of adjacent
layers (after switching) of gates of the same type. Thus Ti+2 is the fanin of layer
Ld−i−1 in the transformed circuit after i applications of switching and merging.

Formally, the family of functions Ti : Ni → N, where i is a positive integer,
is defined as

T0 = 1

T1(a) = a

Tp(a1, . . . , ap) = a1 · (Tp−2(a3, . . . , ap))
Tp−1(a2,...,ap)

if p ≥ 2.

In what follows, the function Ti will almost always be evaluated on the fanins of
the last i layers of the formula. So, we will sometimes use the shorter notation
Ti(a) to designate Ti(ad−i+1, . . . , ad).

Observe that most of the non-regular formulas can be converted into a regu-
lar one by inserting gates or subtrees of gates that compute identically constant
functions. Since we want to avoid this, we will define purely regular formulas as
regular formulas in which each internal gate computes a non-constant Boolean
function.

In the next claim, we compute the parameters of our new formula after
several switches.

14



Claim 27. Suppose f is computed by a purely (a1, . . . , ad)-regular read-k for-
mula. Then for all integers i ∈ [0, d−2], f is computable by an (a1, . . . , ad−i−2, u, v)-

regular read-
(
kuv/(

∏d
j=d−i−1 aj)

)
formula where

u = Ti+2(ad−i−1, . . . , ad) and v = Ti+1(ad−i, . . . , ad)

such that under any gate in layer Ld−i−1, i.e., one layer above the bottom layer
of gates, there are at least ad−i−1 non-constant bottom gates.

Proof. Let us prove the claim by induction on the number of switchings i ∈
[0, d− 2]. For the sake of the proof we will modify the hypothesis by adding the
condition that every gate which is not in the last layer is non-constant.

• If i = 0. Then,

u = T2(ad−1, ad) = ad−1, v = T1(ad) = ad and k
uv

ad−1ad
= k.

and indeed, f is computed by an (a1, . . . , ad)-regular read-k formula. Also,
since the circuit is purely regular all the gates under the last but one
bottom gate are non-constant, so that there are at least ad−1 non-constant
bottom gates under any last but one bottom gate and every other gate is
also non-constant.

• Let us assume that the claim is true for a given i in [0, d − 3]. We
will show it for i + 1. By Induction Hypothesis, f is computed by an

(a1, . . . , ad−i−2, u, v)-regular read-
(
kuv/(

∏d
j=d−i−1 aj)

)
formula where

u = Ti+2(ad−i−1, . . . , ad) and v = Ti+1(ad−i, . . . , ad).

Then, by switching the last two layers, Lemma 26 implies that we get
a formula whose last layer is of fanin u and last but one layer of fanin
vu. Now since the last but one layer and the layer above it are com-
posed of the same gates we can merge them to get that f is computed by

an (a1, . . . , ad−i−3, ad−i−2v
u, u)-regular read-

(
kuv∏d

j=d−i−1 aj
vu−1

)
formula.

We have that,

u′ = ad−i−2v
u

= ad−i−2 · (Ti+1(ad−i, . . . , ad))
Ti+2(ad−i−1,...,ad)

= Ti+3(ad−i−2, . . . , ad),

v′ = u

= Ti+2(ad−i−1, . . . , ad),

and k′ =
kuv∏d

j=d−i−1 aj
vu−1

= k
u′v′∏d

j=d−i−2 aj
.

Since every last but one bottom gate before switching is non-constant,
after switching the last two layers (but before merging), under every last
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but one bottom gate there is at least one non-constant bottom gate. Now
when we merge the last but one layer with the layer above that we get
at least ad−i−2 bottom gates which are non-constant under every last but
one bottom gate. In this process we did not modify the function computed
by any gate which is not in the last layer so all the gates which were non-
constant before switching remain so even after switching. This proves the
induction hypothesis and hence the claim.

Recall the function H(x) from (2). We inductively define Ri(k) as{
R0(k) = R1(k) = k

Rp(k) = k
∏p−1
j=1 Tj(H(Rj−1(k)), . . . ,H(R0(k)))Tj+1(H(Rj(k)),...,H(R0(k)))−1 if p ≥ 2.

Intuitively, the Ri(k)’s bound the read value of the formula after i− 1
switches of the bottom layers. As the functions Rp will always be used on
the parameter k (the read value of the original formula), we will usually denote
Rp(k) by the simpler notation Rp.

We are now ready to prove that we can transform a sufficiently large regular
formula into a formula in normal form.

Lemma 28. If f is computed by a purely (a1, . . . , ad)-regular read-k formula
with size larger than H(Rd) then there exists i ∈ [0, d − 2] such that either f
or ¬f can be computed by a formula in (Ri+1; a1, . . . , ad−i−2, u, v)-normal form
with

u = Ti+2(ad−i−1, . . . , ad) and v = Ti+1(ad−i, . . . , ad).

Moreover,

• the index i is such that for any p ≥ d− i we have ap ≤ H(Rd−p), and

• under each gate in one layer above the bottom one, i.e., Ld−i−1, there are
at least ad−i−1 non-constant gates, where ad−i−1 ≥ H(Ri+1).

Proof. We need to prove here that there exists i such that after i switching
steps, the four conditions of the normal form are satisfied.

Let us first notice that Claim 27 ensures that condition (1) is satisfied after
any number of switching steps. Then, by considering, a posteriori, f or ¬f , we
can always assume that the bottom layer is composed of ∧-gates (which is the
third condition).

Consequently, we just need to show that after some number of switches, the
fourth condition is satisfied with the read value bounded by Ri+1.

First, if ad is larger than 2k log(3k), then the first point of the fourth condi-
tion is already satisfied and the bound k ≤ R1 holds. So, let us assume this is
not the case. Let us consider the set

I = {i ∈ [0, d− 2] | ad−i−1 ≥ H(Ri+1)}.

In particular, as by hypothesis the size a1 . . . ad is larger than H(Rd)

a1 . . . ad ≥ H(Rd) ≥ H(Rd−1) · . . . ·H(R0).
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Hence I is not empty (since ad ≤ H(R0)) and we can define i0 = min I. By
minimality of i0 we have that ad−i0−1 ≥ H(Ri0+1) and for each i ≤ i0, ad−i <
H(Ri).

By Claim 27, f is computed by an (a1, . . . , ad−i0−2, u, v)-regular read-k′

formula with

u = Ti0+2(ad−i0−1, . . . , ad), v = Ti0+1(ad−i0 , . . . , ad), and k′ =
kuv∏d

j=d−i0−1 aj

and such that under each last but one bottom gate, there are at least ad−i0−1

non-constant bottom gates. In particular,

k′ =
kuv∏d

j=d−i0−1 aj
= kTi0(a)Ti0+1(a)Ti0+1(a)

ad

i0∏
j=1

1

ad−j

= kTi0(a)Ti0+1(a)Ti0+1(a)

T1(a)

i0∏
j=1

Tj−1(a)Tj(a)

Tj+1(a)
= k

i0∏
j=1

Tj(a)Tj+1(a)−1.

Since for each i ≤ i0, ad−i < H(Ri) and since the functions Tj ’s are non-
decreasing with respect to all their variables,

k′ ≤ k
i0∏
j=1

Tj(H(Rj−1), . . . ,H(R0))Tj+1(H(Rj),...,H(R0))−1 = Ri0+1.

Consequently, after i0 switching steps, under each last but one bottom gate,
there are at least ad−i0−1 ≥ H(Ri0+1) non-constant bottom gates. This ensures
the second point of the fourth condition thus concluding the proof.

Now since our new formula’s last or last but one fanin is sufficiently large,
we can prove a lower bound on the sensitivity as was done in Theorem 23. The
sketch of the proof is similar to the one of Theorem 23, but the fact that we
now consider the last two layers (instead of the last layer only) makes details a
bit more complicated.

Theorem 29. If f is computed by a purely (a1, . . . , ad)-regular read-k formula
with size larger than H(Rd(k)), then

s(f) ≥

√
3bs(f)

5Rd−1(k)H(Rd−1(k))(d+1)/2
= Ωk,d(

√
bs(f)).

Since the function Rd−1(k) only depends on d and k, Theorem 17 immedi-
ately follows. One can notice that the order of magnitude of the hidden constant

in this theorem is approximatively the inverse of the tetration 2d−2k = kk
··
k︸︷︷︸

2d−2

.

Proof of Theorem 29. By Lemma 28, we know that f (or ¬f) can be com-
puted by a (k′, a1, . . . , ad′−2, u, v)-regular formula in normal form where k′ =
Rd−d′+1(k). Here d′ is the depth of the new (equivalent) formula after applying
d− d′ switches and merges. If the bottom fanin is larger than 2k′ log(3k′) (the
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first condition for the fanins in the normal form) then using Theorem 23 we get
that,

s(f) ≥ 1

k′

√
3bs(f)

10 log 3k′
≥

√
3bs(f)

5Rd−1(k)H(Rd−1(k))(d+1)/2
.

Otherwise we have that under each gate in Ld′−1, there are at least ad′−1 ≥
H(Rd−d′+1) non-constant bottom gates.

In this case, we want to give a similar argument as in proof of Lemma 20
for the last but one layer instead of the last layer. Hence, we would like to
have ∧-gates at the last but one layer. So we will consider (¬f) if necessary.
By Lemma 28, such a bottom ∧-gate of C is the parent of at least ad′−1 non-
constant bottom ∨-gates. Let us group these non-constant ∨-gates into groups
of size α = bH(k′)/2c. We now get C′ from C so that each group contains at
least one ∨-gate which has only positive literals under it. Let g be the function
computed by C′.

Using a similar argument as in the proof of Lemma 20 we get the following
claim which is proved just after,

Claim 30. For all x in g−1(1)

|x|1 ≥
⌈
A′

k′

⌊ad′−1

α

⌋⌉
≥ A′(2ad′−1 −H(k′) + 1)

k′H(k′)
with A′ = A(C, d′ − 2).

Taking the input x ∈ g−1(1) with least Hamming weight we get that,

s1(g, x) ≥ |x|1

≥ A′(2ad′−1 −H(k′) + 1)

k′H(k′)

≥ A′ad′−1 + 1

k′H(k′)

≥ A(C, d) + 1

k′H(k′)H(Rd−3)(d−d′+1)/2

since for any p ≥ d′+1 we have that ap ≤ H(Rd−p) ≤ H(Rd−3) and we only
need to consider alternate layers in the definitions of A and A′.

Since the circuit is in normal form we know that k′ ≤ Rd−d′+1(k) ≤ Rd−1(k).
Using a proof similar to Lemma 20 we get that,

s(f) ≥

√
3bs(f)

5Rd−1(k)H(Rd−1(k))(d+1)/2
.

Proof of Claim 30. Let us randomly negate each variable. Each variable is inde-
pendently chosen as positive or negative with probability 1

2 . Since each variable
occurs at most k′ times, in every group we get a set Si of α

k′v ∨-gates, no two of
which share a variable. Furthermore, each ∨-gate in the group is not constant:
a variable cannot appear in its positive and negated form under any ∨-gate in
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Si. Let Ai be the event that no ∨-gate in Si has only positive literals. Hence
since these ∨−gates are independent,

Pr [Ai] ≤
(

1− 1

2v

) α
k′v

.

Every event Ai is dependent on at most k′ αk′vv = α other Aj ’s. Using the
Lovász Local Lemma, if

e(α+ 1)

(
1− 1

2v

) α
k′v

≤ 1 (3)

then Pr
[⋂

Ai
]
> 0.

Since v ≤ 2k′ log(3k′), α = b12(3k′)2k′k
′4 log 3k′c = bH(k′)

2 c satisfies In-
equality (3).

So there exists a new formula C′ (where C′ is derived from C by negating
some variables) such that every group will have at least one ∨-gate with only
positive literals. Let g be the function computed by C′.

As in Lemma 20, g(x) = 1 implies that the output evaluates to one and there
are at least A(C′, d′ − 2) = A(C, d′ − 2) = A′ last but one bottom ∧-gates which
evaluate to 1. Under each group of α ∨-gates there is at least one ∨-gate which
has only positive literals. From every such ∨-gate we get one variable which is
instantiated to 1 in x. As each variable appears at most k′ times in these gates,
it proves the claim.

5 Sensitivity Lower Bounds for DNFs

In this section, we get sensitivity lower bounds for functions computed by read-
restricted DNFs. A DNF is said to be minimal if no proper sub-formula of such
a DNF computes the same function.
Notation: For a DNF C let a1 denote its top fanin and a21, . . . , a2a1 its bottom
fanins, with a2 = a21 ≥ a22 ≥ . . . ≥ a2a1 .

5.1 Regular read-k DNFs of large width

We can adapt Corollary 24 in the case where the DNF in question is regular
and its width is sufficiently large:

Corollary 31. Let f be a Boolean function computed by a minimal and regular
DNF of size nc, for some c > 0 with width larger than or equal to 6 + 3c log n.
Then,

s(f) ≥ bs(f)1/3

2
√

5 max(2, c)
.

Proof. Since f is computed by a DNF of size nc, the DNF is a read-nc formula.
As each variable appears only once under any bottom gate, its parse-read is 1.

By Theorem 23 we get,

s(f) ≥

√
bs(f)

10 log 4nc
. (4)

We have the following cases.
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• log n ≤ bs
1
3 (f)

From Equation (4) we get,

s(f) ≥

√
bs(f)

20 + 10cbs1/3
.

If 20 > 10cbs1/3, then s(f) ≥ bs1/2√
40
≥ bs1/3

2
√

10
. Otherwise, s(f) ≥ bs1/3

2
√

5c
.

• log n > bs
1
3 (f)

As in the proof of Corollary 24, we have

s(f) ≥ 1

4
log n.

So

s(f) ≥ 1

4
bs(f)1/3 ≥ 1

2
√

10
bs(f)1/3.

Combining the two cases we get,

s(f) ≥ bs(f)1/3

2
√

5c′
,

where c′ = max(c, 2).

5.2 Read-k DNFs of small size

In this section we will remove the constraints of regularity and large width for
DNFs, thus proving the sensitivity conjecture for all functions computed by
read-k DNFs.

The first lemma ensures a lower bound on s0(f) for functions computed by
read-k DNFs.

Lemma 32. Let f be a Boolean formula computed by a minimal read-k DNF
C. Then

s0(f) ≥ a1

ka2
.

Proof. Consider the setB of bottom ∧−gates. We can get a set I ⊆ B, |I| = a1
ka2

,
of ∧−gates such that no two of these gates share a common variable. This can
be done using a trivial algorithm where we select a gate and remove all the
other gates that share a variable with this gate, that is at most ka2 of them,
from consideration. Since no two gates in I share a variable, we negate variables
to get an equivalent circuit C′ so that all the variables under gates in I appear
positively. Consequently, on any input x ∈ g−1(0), each of the gates in I
gives us one variable which is instantiated to 0. We have that ∀x ∈ g−1(0),
|x|0 ≥ a1

ka2
. Taking the input x ∈ g−1(0) with largest Hamming weight, we get,

s0(f, x) ≥ a1
ka2

.

The second lemma states that the sensitivity of a read-k DNF is lower
bounded by a function of its maximum bottom fanin.
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Lemma 33. Let f be a Boolean function computed by a minimal read-k DNF
C. Then,

s1(f) + (1 + k)s0(f) ≥ a2.

Proof. Let the bottom ∧−gates be W1, . . . ,Wa1 with fanins a2 = a21 ≥ . . . ≥
a2a1 respectively. Let the variables under Wi be xi1, . . . , xia2i .

Let us define two sets:

• z ∈ P1 if and only if W1(z) = 1 and for all j > 1, Wj(z) = 0,

• y ∈ P2 if and only if W1(y) = 1 and y is sensitive on the variable x11.

By minimality of C, we can find an input

• z0 in P1, otherwise removing the gate W1 would not modify the function,

• y0 in P2, otherwise we can remove the leaf corresponding to x11 from W1.

In fact it would be great to find an input which belongs to both P1 and P2, but
unfortunately, it is not always possible. However, we show we can find such a
pair (z, y) such that the Hamming distance between them is small.

Let us fix z1 = z0. We show that the closest input to z1 which belongs to
P2 is close enough. We know that y0 is in P2, so P2 is not empty. Let y1 be an
input in P2 which minimizes the Hamming distance δ = dH(z1, y1).

We will prove that δ ≤ s0 − 1. Let us consider y′ = y
{x11}
1 , i.e. the input

we get by flipping the variable x11 in y1. We know that f(y′) = 0 and that
y′ is sensitive on the variable x11 which appears under the gate W1. Let v be
one of the δ variables which is instantiated differently on z1 and on y1. As,
W1(z1) = W1(y1) = 1, the variable v does not appear under the gate W1.

Moreover, if f(y′{v}) = 0, it would imply that y
{v}
1 is in P2 contradicting the

minimality of δ. So y′ is sensitive on the variable v. Thus, y′ is sensitive on at
least δ + 1 variables, hence, there exists a pair of inputs (z1, y1) ∈ P1 × P2 such
that the Hamming distance between z1 and y1 is at most s0(f)− 1.

Let J ⊆ [2, a2] be the variables which appear under W1 and which are
sensitive on z1, so s1(f) ≥ |J |. Let J̄ = [2, a2] \ J .

Let us define for all variables v in J̄ ,

Gv =
{
u |Wu

(
z
{v}
1

)
= 1
}
.

As the variables from J̄ are not sensitive on z1, all these sets Gv are non empty.
Moreover for any gate Wu in Gv, the variable v appears with a different sign in
W1 and Wu but for any other variable v′ in W1, either it appears with the same
sign in Wu, or it does not appear. So we can first notice that if v1 6= v2 ∈ J̄ ,
then Gv1 ∩ Gv2 = ∅. Now we will remove from our consideration any variable v
from J̄ such that Gv contains a gate Wu which either depends on the variable
x11 or depends on a variable which distinguishes z1 from y1. As the formula is
read-k, there are at most ks0(f)−1 such gates (W1 contains x11 but is not such
a gate), and as the Gv’s are disjoint, they are at most ks0(f)− 1 such variables
v. So we can extract a subset J0 ⊆ J̄ such that |J0| ≥ |J̄ |−ks0(f) + 1 and such
that for any variable v in J0 and every u in Gv, the gate Wu does not depend
on the variable x11 and on the variables which distinguish z1 from y1.
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Let us show that all the variables from J0 are sensitive on y
{x11}
1 . By the

definition of y1, we have f
(
y
{x11}
1

)
= 0. For any variable v in J0, let us choose

a gate Wu corresponding to u in Gv. As Wu does not depend on x11 and on the
variables which distinguish z1 from y1, we have:

Wu

(
y
{x11,v}
1

)
= Wu

(
y
{v}
1

)
= Wu

(
z
{v}
1

)
= 1.

The last equality comes from the definition of Gv. So, f
(
y
{x11,v}
1

)
= 1 as

required.
Hence, s0 ≥ |J̄ | − ks0 + 1, which proves the lemma.

Theorem 34. Let f be a Boolean formula computed by a read-k DNF. Then

(k + 2)s(f) ≥ n1/3.

In particular, if k ≤ n 1
3−ε − 2, we get

s(f) ≥ nε ≥ bs(f)ε.

Proof. Using Lemma 33 we get that, (k + 2)s(f) ≥ s1(f) + (1 + k)s0(f) ≥ a2.
By Lemma 32 we know that,

s0(f) ≥ a1

ka2
≥ n

ka2
2

.

Combining these two inequalities we get,

s3(f) ≥
(

a2

k + 2

)2
n

ka2
2

≥ n

k(k + 2)2

and so (k + 2)s(f) ≥ n1/3. In particular, when k + 2 ≤ n 1
3−ε, we get

s(f) ≥ nε ≥ bs(f)ε.
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