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Abstract

Khot and Shinkar (RANDOM, 2016) recently describe an adaptive, O(n log(n)/ε)-query
tester for unateness of Boolean functions f : {0, 1}n 7→ {0, 1}. In this note we describe a simple
non-adaptive, O(n log(n/ε)/ε) -query tester for unateness for functions over the hypercube with
any ordered range.

1 Introduction

Let f be a function f : {0, 1}n 7→ R defined over the Boolean hypercube where R is some ordered
range. We use ei to denote the unit vectors in {0, 1}n that has 1 in the ith coordinate, and 0s at
other coordinates. The i-th partial derivate at x is f(x⊕ ei)− f(x) if xi = 0 and f(x)− f(x⊕ ei)
is xi = 1. This is denoted by the function ∂if . Note that a function is monotonically increasing
(or simply monotone), if ∂if(x) ≥ 0 for all x ∈ {0, 1}n.

Unateness is a generalization of monotonicity. A function is unate if in every coordinate it is
either monotone or anti-monotone. More precisely, a function f is unate if for all i ∈ [n], either
∂if(x) ≥ 0 for all x, or ∂if(x) ≤ 0 for all x. The problem of unateness testing was introduced
by Goldreich et al. [GGL+00] in their seminal paper on testing monotonicity. For Boolean func-
tions f : {0, 1}n → {0, 1}, [GGL+00] described a non-adaptive O(n3/2/ε)-query tester (while for
monotonicity of Boolean functions they described a non-adaptive O(n/ε)-query tester). To our
knowledge this problem was not studied after this, till very recently Khot and Shinkar[KS16] gave
the first improvement for Boolean functions by designing an adaptive O(n log(n)/ε)-query tester.
Our main theorem is the following.

Theorem 1.1. Consider functions f : {0, 1}n 7→ R, where R is an arbitrary ordered set. There
exists an one-sided error, non-adaptive, O((n/ε) log(n/ε))-time tester for unateness.

Monotonicity testing has been extensively studied in the past two decades [GGL+00, DGL+99,
EKK+00, HK03, HK08, BGJ+09, BCGSM12, CS14, CS13, CST14, CDST15, CDJS15, BB16]. We
employ a previous result on testing derivative bounded properties by Chakrabarty et al. [CDJS15].
That paper provides general theorems about the testability of properties that are specified in terms
of the partial derivative being bounded.

Definition 1.2. Given an n-dimensional bit vector b, call a function f : {0, 1}n → R b-monotone
if for all i with bi = 0 we have ∂if(x) ≥ 0 for all x, and for all i with bi = 1 we have ∂if(x) ≤ 0
for all x.
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Note that 0-monotonicity is simply the standard notion of monotonicity and 1-monotonicity is the
notion of anti-monotonicity. Also note that a function is unate iff it is b-monotone for some b.

The property of b-monotonicity is a derivative-bounded property, in the language of [CDJS15].
A dimension reduction theorem for derivative properties (Theorem 8 in Arxiv version of [CDJS15]),
when instantiated for b-monotonicity, immediately implies the following theorem.

Theorem 1.3. Fix bit vector b and function f : {0, 1}n → R. Let ε denote the distance of f to b-
monotonicity. Let µi be the fraction of points where ∂if violates b-monotonicity, that is, the number
of hypercube edges across dimension i which violate b-montonicity is µi2

n. Then
∑n

i=1 µi ≥ ε/4.

The above theorem can also be obtained by observing that f is b-monotone (resp, ε-far from
being b-monotone) iff the function g(x) := f(x⊕b) is monotone (resp, ε-far from being monotone).
Furthermore, every hypercube edge that violates monotonicity for g also violates b-monotonicity
for f . A previous result of the authors shows that if a function g is ε-far from being monotone,
then it has ε2n−1 hypercube edges violating monotonicity [CS13].

2 The Tester

Unate-test(f, ε)

1. For r = 1, 2, . . . , L := dlog(8n/ε)e:
Repeat sr = d 20nε·2r e times
(a) Sample u.a.r. dimension i.
(b) Sample a set Ri of 3 · 2r u.a.r. points in the hypercube and evaluate ∂if at all

these points.
(c) If there is some x ∈ Ri such that ∂if(x) > 0 and y ∈ Ri such that ∂if(y) < 0,

reject and abort.
2. Accept (since tester has not rejected so far)

It is evident that this is a non-adaptive, one-sided tester. Furthermore, the running time is
O((n/ε) log(n/ε)). It suffices to prove the following.

Theorem 2.1. If f is ε-far from being unate, Unate-test rejects with probability at least 2/3.

Proof. For dimension i, let Ui be the set of points in {0, 1}n where ∂if(x) > 0. Analogous, let Di

be the set of points where ∂if(x) < 0. The tester rejects iff it finds a triple i, x, y such that x ∈ Ui

and y ∈ Di. Let µi := min(|Ui|, |Di|)/2n.
Define the n-dimensional bit vector b as follows: bi = 0 if |Ui| > |Di| and bi = 1 otherwise.

Observe that the fraction of points where ∂if violates b-monotonicity is precisely µi. Since f is
ε-far from being unate, f is ε-far from being b-monotone. By Theorem 1.3,

∑
i µi ≥ ε/4.

For any integer r ≥ 1, define Sr := {i ∈ [n] : µi ∈ (1/2r, 1/2r−1]}.

Claim 2.2.
∑L

r=1 |Sr|/2r ≥ ε/8.

Proof. Observe that
∑

r>L |Sr|/2r ≤ (ε/8n)
∑

r |Sr| = ε/8 since
∑

r |Sr| = n. Also,
∑

r |Sr|/2r ≥∑
i µi ≥ ε/4 from Theorem 1.3. We subtract these bounds to prove the claim.
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Fix r. Let pr be the probability that Step 1a, Step 1b, and Step 1c reject for this r. Then the
probability that the tester rejects is

1−
L∏

r=1

(1− pr)sr ≥ 1− e−
∑L

r=1 prsr (1)

We now lower bound pr. The tester rejects iff the set Ri in Step 1b contains a point in Ui and
in Di. The probability that Ri does not contain a point in Ui or Di is at most (1− |Ui|/2n)|Ri| +

(1− |Di|/2n)|Ri| ≤ 2(1−µi)|Ri|. Note that if the sampled dimension i lies in Sr, then this probability

is at most 2 (1− 1/2r)3·2
r

< 1/6. Therefore, we get pr >
5
6 ·
|Sr|
n . Since sr ≥ 20n

ε·2r , we get

L∑
r=1

prsr ≥
L∑

r=1

5

6
· |Sr|
n
· 20n

ε2r
≥ 100

6ε

L∑
r=1

|Sr|
2r
≥ 2

where the second ineqauality follows from Claim 2.2. Substituting in (1), we get the theorem.
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