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Abstract

Khot and Shinkar (RANDOM, 2016) recently describe an adaptive, O(nlog(n)/e)-query
tester for unateness of Boolean functions f : {0,1}" — {0,1}. In this note, we describe a
simple non-adaptive, O(nlog(n/e)/e) -query tester for unateness for real-valued functions over
the hypercube.

1 Introduction

Let f be a function f :{0,1}" — R defined over the Boolean hypercube where R is some ordered
range. We use ¢; to denote the unit vectors in {0,1}" that has 1 in the ith coordinate, and Os at
other coordinates. The i-th partial derivate at z is f(z @ e;) — f(z) if x; = 0 and f(z) — f(z D e;)
is #; = 1. This is denoted by the function 0;f. Note that a function is monotonically increasing
(or simply monotone), if 9;f(z) > 0 for all z € {0,1}".

Unateness is a generalization of monotonicity. A function is unate if in every coordinate it is
either monotone or anti-monotone. More precisely, a function f is unate if for all i € [n], either
O0if(xz) > 0 for all z, or 9;f(z) < 0 for all x. The problem of unateness testing was introduced
by Goldreich et al. [GGLT00] in their seminal paper on testing monotonicity. For Boolean func-
tions f : {0,1}" — {0,1}, [GGL*00] described a non-adaptive O(n3/?/e)-query tester (while for
monotonicity of Boolean functions they described a non-adaptive O(n/e)-query tester). To our
knowledge, there was no further progress on this problem, until the recent result of Khot and
Shinkar [KS16] that gives an adaptive O(nlog(n)/e)-query tester for Boolean functions. Our main
theorem is the following.

Theorem 1.1. Consider functions f : {0,1}" — R, where R is an arbitrary ordered set. There
exists an one-sided error, non-adaptive, O((n/c)log(n/e))-time tester for unateness.

Monotonicity testing has been extensively studied in the past two decades [GGLT00, DGL ™99,
EKK*00, HK03, HK08, BGJT09, BCGSM12, CS14, CS13, BRY14, CST14, CDST15, CDJS15,
BB16]. We employ a previous result on testing derivative bounded properties by Chakrabarty et
al. [CDJS15]. That paper provides general theorems about the testability of properties that are
specified in terms of the partial derivative being bounded.

Definition 1.2. Given an n-dimensional bit vector b, call a function f : {0,1}" — R b-monotone
if for all i with b; = 0 we have 0;f(x) > 0 for all x, and for all i with b; = 1 we have 0;f(x) < 0
for all z.
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Note that 0-monotonicity is simply the standard notion of monotonicity. Also note that a function
is unate iff it is b-monotone for some b.

The property of b-monotonicity is a derivative-bounded property, in the language of [CDJS15].
A dimension reduction theorem for derivative properties (Theorem 8 in Arxiv version of [CDJS15]),
when instantiated for b-monotonicity, implies the following theorem.

Theorem 1.3. Fiz bit vector b and function f :{0,1}" — R. Let ¢ denote the distance of f to b-
monotonicity. Let u; be the fraction of points where 0; f violates b-monotonicity, that is, the number
of hypercube edges across dimension i which violate b-montonicity is j1,2". Then Yy . u; > /4.

The above theorem (in fact a stronger version without the 4 in the denominator) can also be
obtained by observing that f is b-monotone (resp, e-far from being b-monotone) iff the function
g(z) := f(x @ b) is monotone (resp, e-far from being monotone). Every hypercube edge that
violates monotonicity for g violates b-monotonicity for f. A previous result of the authors shows
that if a function g is e-far from being monotone, then it has €2"~! hypercube edges violating
monotonicity [CS13]. (Such results were previously known for the case of Boolean range [GGLT00],
and weaker results for general range [DGLT99]. Refer to [CS13] for more details.)

One can show that it suffices to query 9;f at O(1/u;) points to detect a violation to unateness.
We need to “interpolate” between two opposite scenarios: exactly one p; = (¢) and all others
are 0 versus all y; = ©(e/n). An efficient strategy for achieving this is Levin’s investment strategy
(refer to Section 8.2.4 of Goldreich’s book [Goll5]). A tighter analysis of this method is given by
Berman et al [BRY14], which is effectively what we use. For the sake of completeness, we repeat
the calculations of [BRY14] for a complete proof.

2 The Tester

Unate-test(f,¢)
1. Forr=1,2,...,L:= [log(8n/e)]:
Repeat s, = [222] times
(a) Sample u.a.r. dimension i.
(b) Sample a set R; of 3-2" u.a.r. points in the hypercube and evaluate 0;f at all
these points.
(c) If there is some x € R; such that 0;f(z) > 0 and y € R; such that 0;f(y) <0,
reject and abort.
2. Accept (since tester has not rejected so far)

It is evident that this is a non-adaptive, one-sided tester. Furthermore, the running time is
O((n/e)log(n/e)). It suffices to prove the following.

Theorem 2.1. If f is e-far from being unate, Unate-test rejects with probability at least 1 —1/e.

Proof. For dimension 4, let U; be the set of points in {0,1}" where 0;f(z) > 0. Analogous, let D;
be the set of points where 0; f(x) < 0. The tester rejects iff it finds a triple ¢, z,y such that x € U;
and y € D;. Let p; := min(|U,|, | D;])/2™.

Define the n-dimensional bit vector b as follows: b; = 0 if |U;| > |D;| and b; = 1 otherwise.
Observe that the fraction of points where 0;f violates b-monotonicity is precisely p;. Since f is
e-far from being unate, f is e-far from being b-monotone. By Theorem 1.3, >, u; > €/4.

For any integer r > 1, define S, := {i € [n] : p; € (1/27,1/2"71]}.



Claim 2.2. Y5 |5,]/2" > ¢/16.

Proof. Observe that Y _; |S,|/2" < (¢/8n) 3, |S;| = €/8 since ), |S,| = n. Since for any i € S,
we have ZT% > pi, we get that > |S,|/2" > >, pi/2 > €/8 from Theorem 1.3. We subtract these
bounds to prove the claim. ]

Fix r. Let p, be the probability that Step la, Step 1b, and Step 1lc reject for this . Then the
probability that the tester rejects is

L
1-TlA=p) > 1— e Simaprs 1
p

r=1

We now lower bound p,. The tester rejects iff the set R; in Step 1b contains a point in U; and
in D;. The probability that R; does not contain a point in U; or D; is at most (1 — |U;|/2m)/Fl 4
(1- |Di|/2”)u:""'| < 2(1—p;) /il Note that if the sampled dimension i lies in S,., then this probability
is at most 2 (1 —1/27)*% < 1/6. Therefore, we get p, > 5. % Since s, > 22 we get

L
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where the second inequality follows from Claim 2.2. Substituting in (1), we get the theorem. [J
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