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Abstract

We prove near-optimal trade-offs for quantifier depth versus number of variables in first-order
logic by exhibiting pairs of n-element structures that can be distinguished by a k-variable first-
order sentence but where every such sentence requires quantifier depth at least nΩ(k/ log k). Our
trade-offs also apply to first-order counting logic, and by the known connection to the k-dimensional
Weisfeiler–Leman algorithm imply near-optimal lower bounds on the number of refinement itera-
tions.

A key component in our proof is the hardness condensation technique recently introduced by
[Razborov ’16] in the context of proof complexity. We apply this method to reduce the domain size
of relational structures while maintaining the minimal quantifier depth to distinguish them in finite
variable logics.

1 Introduction

The k-variable fragment of first-order logic Lk consists of those first-order sentences that use at most
k different variables. A simple example is the L2 sentence

∃x∃y(Exy ∧ ∃x(Eyx ∧ ∃y(Exy ∧ ∃xEyx))) (1.1)

stating that there exists a directed path of length 4 in a digraph. Extending Lk with counting quan-
tifiers ∃≥ix yields Ck, which can be more economical in terms of variables. As an illustration, the
L8 sentence

∃x∃y1 · · · ∃y7

(∧
i 6=j yi 6= yj ∧

∧
iExyi

)
(1.2)

stating the existence of a vertex of degree at least 7 in a graph can be written more succinctly as the
C2 sentence

∃x∃≥7yExy . (1.3)

Bounded variable fragments of first order logic have found numerous applications in finite model theory
and related areas (see [Gro98] for a survey). Their importance stems from the fact that the model check-
ing problem (given a finite relational structure A and a sentence ϕ, does A satisfy ϕ?) can be decided in
polynomial time [Imm82, Var95]. Moreover, the equivalence problem (given two finite relational struc-
tures A and B, do they satisfy the same sentences?) for Lk and Ck can be decided in time nO(k) [IL90],
i.e., polynomial for constant k.

∗This is the full-length version of a paper with the same title which appeared in Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS ’16).
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NEAR-OPTIMAL LOWER BOUNDS ON QUANTIFIER DEPTH

1.1 Quantifier Depth

If A and B are not equivalent in Lk or Ck, then there exists a sentence ϕ that defines a distinguishing
property, i.e., such that A |= ϕ and B 6|= ϕ, which certifies that the structures are non-isomorphic. But
how complex can such a sentence be? In particular, what is the minimal quantifier depth of an Lk or
Ck sentence that distinguishes two n-element relational structures A and B? The best upper bound for
the quantifier depth of Lk and Ck is nk−1 [IL90], while to the best of our knowledge the strongest lower
bounds have been only linear in n [CFI92, Gro99, Fü01]. In this paper we present a near-optimal lower
bound of nΩ(k/ log k).

Theorem 1.1. There exist ε > 0, K0 ∈ N such that for all k, n with K0 ≤ k ≤ n1/12 there is a pair
of n-element (k − 1)-ary relational structures An,Bn that can be distinguished in k-variable first-order
logic but satisfy the same Lk and Ck sentences up to quantifier depth nεk/ log k.

Note that any two non-isomorphic n-element σ-structures A and B can always be distinguished by a
simple n-variable first-order sentence of quantifier depth n, namely

∃x1 · · · ∃xn

(∧
i 6=j

xi 6= xj ∧
∧
R∈σ,

(vi1 ,...,vir )∈RA

Rxi1 , . . . , xir ∧
∧
R∈σ,

(vi1 ,...,vir )/∈RA

¬Rxi1 , . . . , xir

)
. (1.4)

Since our nΩ(k/ log k) lower bound for k-variable logics grows significantly faster than this trivial upper
bound n on the quantifier depth as the number of variables increases, Theorem 1.1 also describes a trade-
off in the super-critical regime above worst-case investigated by Razborov [Raz16]: If one reduces one
complexity measure (the number of variables), then the other complexity parameter (the quantifier depth)
increases sharply even beyond its worst-case upper bound.

The equivalence problem for Ck+1 is known to be closely related to the k-dimensional Weisfeiler–
Leman algorithm (k-WL) for testing non-isomorphism of graphs and, more generally, relational struc-
tures. It was shown by Cai, Fürer, and Immerman [CFI92] that two structures are distinguished by k-WL
if and only if there exists a Ck+1 sentence that differentiates between them. Moreover, the quantifier
depth of such a sentence also relates to the complexity of the WL algorithm in that the number of itera-
tions k-WL needs to tell A and B apart coincides with the minimal quantifier depth of a distinguishing
Ck+1 sentence. Therefore, Theorem 1.1 also implies a near-optimal lower bound on the number of
refinement steps required in the Weisfeiler–Leman algorithm. We discuss this next.

1.2 The Weisfeiler–Leman Algorithm

The Weisfeiler–Leman algorithm, independently introduced by Babai in 1979 and by Immerman and
Lander in [IL90] (cf. [CFI92] and [Bab16] for historic notes), is a hierarchy of methods for isomorphism
testing that iteratively refine a partition (or colouring) of the vertex set, ending with a stable colouring
that classifies similar vertices. Since no isomorphism can map non-similar vertices to each other, this
reduces the search space. Moreover, if two structures end up with different stable colourings, then we
can immediately deduce that the structures are non-isomorphic. The 1-dimensional Weisfeiler–Leman
algorithm, better known as colour refinement, initially colours the vertices according to their degree
(clearly, no isomorphism identifies vertices of different degree). The vertex colouring is then refined
based on the colour classes of the neighbours. For example, two degree-5 vertices get different colours
in the next step if they have a different number of degree-7 neighbours. This refinement step is repeated
until the colouring stays stable (i.e., every pair of equally coloured vertices have the same number of
neighbours in every other colour class). This algorithm is already quite strong and is extensively used in
practical graph isomorphism algorithms.

In k-dimensional WL this idea is generalized to colourings of k-tuples of vertices. Initially the
k-tuples are coloured by their isomorphism type, i.e., two tuples ~v = (v1, . . . , vk) and ~w = (w1, . . . , wk)
get different colours if the mapping vi 7→ wi is not an isomorphism on the substructures induced on
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{v1, . . . , vk} and {w1, . . . , wk}. In the refinement step, we consider for each k-tuple ~v = (v1, . . . , vk)
and every vertex v the colours of the tuples ~vj := (v1, . . . , vj−1, v, vj+1, . . . , vk), where v is substituted
at the jth position in the tuple ~v. We refer to the tuple (c(~v1), . . . , c(~vk)) of these k colours as the colour
type t(~v, v) and let v be a t-neighbour of ~v if t = t(~v, v). Now two tuples ~v and ~w get different colours if
they are already coloured differently, or if there exists a colour type t such that ~v and ~w have a different
number of t-neighbours. The refinement step is repeated until the colouring stays stable. Since in every
round the number of colour classes grows, the process stops after at most nk steps. The colour names
can be chosen in such a way that the stable colouring is canonical, which means that two isomorphic
structures end up with the same colouring, and such a canonical stable colouring can be computed in
time nO(k).

This simple combinatorial algorithm is surprisingly powerful. Grohe [Gro12] showed that for every
nontrivial graph class that excludes some minor (such as planar graphs or graphs of bounded treewidth)
there exists some k such that k-WL computes a different colouring for all non-isomorphic graphs, and
hence solves graph isomorphism in polynomial time on that graph class. Weisfeiler–Leman has also been
used as a subroutine in algorithms that solve graph isomorphism on all graphs. As one part of his very
recent graph isomorphism algorithm, Babai [Bab16] applies k-WL for polylogarithmic k to relational
(k-ary) structures and makes use of the quasi-polynomial running time of this algorithm.

Given the importance of the Weisfeiler–Leman procedure, it is a natural question to ask whether the
trivial nk upper bound on the number of refinement steps is tight. By the correspondence between the
number of refinement steps of k-WL and the quantifier depth of Ck+1 [CFI92], our main result implies
a near-optimal lower bound even up to polynomial, but still sublinear, values of k (i.e., k = nδ for small
enough constant δ).

Theorem 1.2. There exist ε > 0, K0 ∈ N such that for all k, n with K0 ≤ k ≤ n1/12 there is an
n-element k-ary relational structureAn for which the k-dimensional Weisfeiler–Leman algorithm needs
nεk/ log k refinement steps to compute the stable colouring.

In addition to the near-optimal lower bounds for a specific dimension (or number of variables) k,
we also obtain the following trade-off between the dimension and the number of refinement steps: If
we fix two parameters `1 and `2 (possibly depending on n) satisfying `1 ≤ `2 ≤ n1/6/`1, then there
are n-element structures such that k-WL needs nΩ(`1/ log `2) refinement steps for all `1 ≤ k ≤ `2. A
particularly interesting choice of parameters is `1 = logc n for some constant c > 1 and `2 = n1/7. This
implies the following quasi-polynomial lower bound on the number of refinement steps for Weisfeiler–
Leman from polylogarithmic dimension all the way up to dimension n1/7.

Theorem 1.3. For every c > 1 there is a sequence of n-element relational structures An for which
the k-dimensional Weisfeiler–Leman algorithm needs nΩ(logc−1 n) refinement steps to compute the stable
colouring for all k with logc n ≤ k ≤ n1/7.

1.3 Previous Lower Bounds

In their seminal work [CFI92], Cai, Fürer and Immerman established the existence of non-isomorphic
n-vertex graphs that cannot be distinguished by any first-order counting sentence with o(n) variables.
Since every pair of non-isomorphic n-element structures can be distinguished by a Cn (or even Ln)
sentence (as shown in (1.4) above), this result also implies a linear lower bound on the quantifier depth
of Ck if k = Ω(n). For all constant k ≥ 2, a linear Ω(n) lower bound on the quantifier depth of Ck

follows implicitly from an intricate construction of Grohe [Gro99], which was used to show that the
equivalence problems for Lk and Ck are complete for polynomial time. An explicit linear lower bound
based on a simplified construction was subsequently presented by Fürer [Fü01].

For the special case of C2, Krebs and Verbitsky [KV15] recently obtained an improved (1 − o(1))n
lower bound on the quantifier depth, nearly matching the upper bound n. In contrast, Kiefer and
Schweitzer [KS16] showed that if two n-vertex graphs can be distinguished by a C3 sentence, then
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there is always a distinguishing sentence of quantifier depth O(n2/ log n). Hence, the trivial n2 upper
bound is not tight in this case.

As far as we are aware, the current paper presents the first lower bounds that are super-linear in the
domain size n.

1.4 Discussion of Techniques

The hard instances we construct are based on propositional XOR (exclusive or) formulas, which can
alternatively be viewed as systems of linear equations over GF(2). There is a long history of using
XOR formulas for proving lower bounds in different areas of theoretical computer science such as, e.g.,
finite model theory, proof complexity, and combinatorial optimization/hardness of approximation. Our
main technical insight is to combine two methods that, to the best of our knowledge, have not been used
together before, namely Ehrenfeucht-Fraı̈ssé games on structures based on XOR formulas and hardness
amplification by variable substitution.

More than three decades ago, Immerman [Imm81] presented a way to encode an XOR formula into
two graphs that are isomorphic if and only if the formula is satisfiable. This can then be used to show
that the two graphs cannot be distinguished by a sentence with few variables or low quantifier depth
using Ehrenfeucht-Fraı̈ssé games. Arguably the most important application of this method is the result
in [CFI92] establishing that a linear number of variables is needed to distinguish two graphs in first-order
counting logic. Graph constructions based on XOR formulas have also been used to prove lower bounds
on the quantifier depth of Ck [Imm81, Fü01]. We remark that for our result we have to use a slightly
different encoding of XOR formulas into relational structures rather than graphs.

In proof complexity, various flavours of XOR formulas (usually called Tseitin formulas when used
to encode the handshaking lemma saying that the sum of all vertex degrees in an undirected graph has
to be an even number) have been employed to obtain lower bounds for proof systems such as resolu-
tion [Urq87], polynomial calculus [BGIP01], and bounded-depth Frege [Ben02a]. Such formulas have
also played an important role in many lower bounds for the Positivstellensatz/sums-of-squares proof sys-
tem [Gri01, KI06, Sch08] corresponding to the Lasserre semidefinite programming hierarchy, which has
been the focus of much recent interest in the context of combinatorial optimization.1 Another use of
XOR in proof complexity has been for hardness amplification, where one takes a (typically non-XOR)
formula that is moderately hard with respect to some complexity measure, substitutes all variables by ex-
clusive ors over pairwise distinct sets of variables, and then shows that the new XORified formula must be
very hard with respect to some other (more important) complexity measure. This technique was perhaps
first made explicit in [Ben02b] (attributed there to personal communication with Michael Alekhnovich
and Alexander Razborov, with a note that it is also very similar in spirit to an approach used in [BW01])
and has later appeared in, e.g., [BP07, BN08, BN11, BNT13, FLM+13].

An even more crucial role in proof complexity is played by well-connected so-called expander
graphs. For instance, given a formula in conjunctive normal form (CNF) one can look at its bipartite
clause-variable incidence graph (CVIG), or some variant of the CVIG derived from the combinatorial
structure of the formula, and prove that if this graph is an expander, then this implies that the formula
must be hard for proof systems such as resolution [BW01] and polynomial calculus [AR03, MN15].

In a striking recent paper [Raz16], Razborov combines XORification and expansion in a simple (with
hindsight) but amazingly powerful way. Namely, instead of replacing every variable by an XOR over
new, fresh variables, he recycles variables from a much smaller pool, thus decreasing the total number of
variables. This means that the hardness amplification proofs no longer work, since they crucially use that
all new substitution variables are distinct. But here expansion come into play. If the pattern of variable
substitutions is described by a strong enough bipartite expander, it turns out that locally there is enough
“freshness” even among the recycled variables to make the hardness amplification go through over a
fairly wide range of the parameter space. And since the formula has not only become harder but has also

1No proof complexity is needed in this paper, and so readers unfamiliar with these proof systems need not worry—this is
just an informal overview.
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had the number of variables decreased, this can be viewed as a kind of hardness compression or hardness
condensation.

What we do in this paper is to first revisit Immerman’s old quantifier depth lower bound for first-
order counting logic [Imm81] and observe that the construction can be used to obtain an improved scal-
able lower bound for the k-variable fragment. We then translate Razborov’s hardness condensation
technique [Raz16] into the language of finite variable logics and use it—perhaps somewhat amusingly
applied to XORification of XOR formulas, which is usually not the case in proof complexity—to re-
duce the domain size of relational structures while maintaining the minimal quantifier depth required to
distinguish them.

1.5 Outline of This Paper

The rest of this paper is organized as follows. In Section 2 we describe how to translate XOR formulas
to relational structures and play combinatorial games on these structures. This then allows us to state our
main technical lemmas in Section 3 and show how these lemmas yield our results. Turning to the proofs
of these technical lemmas, in Section 4 we present a version of Immerman’s quantifier depth lower
bound for XOR formulas, and in Section 5 we apply Razborov’s hardness condensation technique to
these formulas. Finally, in Section 6 we make some concluding remarks and discuss possible directions
for future research. Some proofs of technical results needed in the paper are deferred to Appendix A.

2 From XOR Formulas to Relational Structures

In this paper all structures are finite and defined over a relational signature σ. We use the letters X , E,
and R for unary, binary, and r-ary relation symbols, respectively, and let XA, EA, and RA be their
interpretation in a structure A. We write V (A) to denote the domain of the structure A. The k-variable
fragment of first-order logic Lk consists of all first-order formulas that use at most k different variables
(possibly re-quantifying them as in Equation (1.1)). We also consider k-variable first-order counting
logic Ck, which is the extension of Lk by counting quantifiers ∃≥ixϕ(x), stating that there exist at least i
elements u ∈ V (A) such that (A, u) |= ϕ(x). For a survey of finite variable logics and their applications
we refer the reader to, e.g., [Gro98].

An `-XOR clause is a tuple (x1, . . . , x`, a) consisting of ` Boolean variables and a Boolean value
a ∈ {0, 1}. We refer to ` as the width of the clause. An assignment α satisfies (x1, . . . , x`, a) if
α(x1) + · · ·+ α(x`) ≡ a (mod 2). An `-XOR formula F is a conjunction of XOR clauses of width at
most ` and is satisfied by an assignment α if α satisfies all clauses in F .

For every `-XOR formula F on n variables we can define a pair of 2n-element structuresA = A(F )
and B = B(F ) that are isomorphic if and only if F is satisfiable. The domain of the structures contains
two elements x0

i and x1
i for each Boolean variable xi. There is one unary predicate Xi for every vari-

able xi identifying the corresponding two elements x0
i and x1

i . Hence these unary relations partition the
domain of the structures into two-element sets, i.e., XAi = XBi = {x0

i , x
1
i }. To encode the XOR clauses,

we introduce one m-ary relation Rm for every 1 ≤ m ≤ ` and set

RAm =
{(
xa1i1 , . . . , x

am
im

) ∣∣(xi1 , . . . , xim , a) ∈ F,
∑

i ai ≡ 0 (mod 2)
}

(2.1a)

and

RBm =
{(
xa1i1 , . . . , x

am
im

) ∣∣(xi1 , . . . , xim , a) ∈ F,
∑

i ai ≡ a (mod 2)
}
. (2.1b)

Every bijection β between the domains of A(F ) and B(F ) that preserves the unary relations Xi can be
translated to an assignment α for the XOR formula via the correspondence

α(xi) = 0⇔ β(x0
i ) = x0

i ⇔ β(x1
i ) = x1

i (2.2a)

and

α(xi) = 1⇔ β(x0
i ) = x1

i ⇔ β(x1
i ) = x0

i . (2.2b)
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Figure 1: Structure encoding of F = {(x7, x8, 1)}.

Moreover, it is not hard to show that such a bijection defines an isomorphism between A(F ) and B(F )
if and only if the corresponding assignment satisfies F . See Figure 1 for a small example illustrating the
construction.

This kind of encodings of XOR formulas into relational structures have been very useful for proving
lower bounds for finite variable logics in the past. Our transformation of XOR clauses of width ` into
`-ary relational structures resembles the way Gurevich and Shelah [GS96] encode XOR formulas as
hypergraphs. It is also closely related to the way Cai, Fürer, and Immerman [CFI92] obtain two non-
isomorphic graphs G and H from an unsatisfiable 3-XOR formula F in the sense that G and H can be
seen to be the incidence graphs of our structures A(F ) and B(F ).

In order to prove our main result, we make use of the combinatorial characterization of quantifier
depth of finite-variable logics in terms of pebble games for Lk and Ck, which are played on two given
relational structures. Since in our case the structures are based on XOR formulas, for convenience we
will consider a simplified combinatorial game that is played directly on the XOR formulas rather than
on their structure encodings. We first describe this game and then show in Lemma 2.1 that this yields an
equivalent characterization.

The r-round k-pebble game is played on an XOR formula F by two players, whom we will refer
to as Player 1 and Player 2. A position in the game is a partial assignment α of at most k variables
of F and the game starts with the empty assignment. In each round, Player 1 can delete some variable
assignments from the current position (he chooses some α′ ⊆ α). If the current position assigns values
to exactly k variables, then Player 1 has to delete at least one variable assignment. Afterwards, Player 1
chooses some currently unassigned variable x and asks for its value. Player 2 answers by either 0 or 1
(independently of any previous answers to the same question) and adds this variable assignment to the
current position.

A winning position for Player 1 is an assignment falsifying some clause from F . Player 1 wins
the r-round k-pebble game if he has a strategy to win every play of the k-pebble game within at most
r rounds. Otherwise, we say that Player 2 wins (or survives) the r-round k-pebble game. Player 1 wins
the k-pebble game if he wins the r-round k-pebble game within a finite number of rounds r. Note that
if Player 1 wins the k-pebble game, then he can always win the k-pebble within 2knk+1 rounds, because
there are at most

∑k
i=0 2i

(
n
i

)
≤ 2knk+1 different positions with at most k pebbles on n-variable XOR

formulas. We say that Player 1 can reach a position β from a position α within r rounds if he has a
strategy such that in every play of the r-round k-pebble game starting from position α he either wins or
ends up with position β.

As a side remark, we note that if we expand the XOR formula to CNF, then our pebble game is the
same as the so-called Boolean existential pebble game played on this CNF encoding and therefore also
characterizes the resolution width required for the corresponding CNF formula as shown in [AD08]. In-
tuitively, it is this correspondence that enables us to apply the proof complexity techniques from [Raz16]
in our setting. We will not need to use any concepts from proof complexity in this paper, however, but
will present a self-contained proof, and so we do not elaborate further on this connection.

Let us now show that the game described above is equivalent to the pebble game for Lk and to the
bijective pebble game for Ck played on the structures A(F ) and B(F ).

Lemma 2.1. Let k, p, r be integers such that r > 0 and k ≥ p and let F be a p-XOR formula giving rise
to structures A = A(F ) and B = B(F ) as described in the paragraph preceding (2.1a)–(2.1b). Then
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the following statements are equivalent:

(a) Player 1 wins the r-round k-pebble game on F .

(b) There is a k-variable first-order sentence ϕ ∈ Lk of quantifier depth r such that A(F ) |= ϕ and
B(F ) 6|= ϕ.

(c) There is a k-variable sentence in first-order counting logic ϕ ∈ Ck of quantifier depth r such that
A(F ) |= ϕ and B(F ) 6|= ϕ.

(d) The (k − 1)-dimensional Weisfeiler–Leman procedure can distinguish between A(F ) and B(F )
within r refinement steps.

Proof sketch. Let us start by briefly recalling known characterizations in terms of Ehrenfeucht-Fraı̈ssé
games of Lk [Bar77, Imm82] and Ck [CFI92, Hel96]. In both cases the game is played by two players,
called Spoiler and Duplicator, on the two structuresA and B. Positions in the games are partial mappings
p =

{
(u1, v1), . . . , (ui, vi)

}
from V (A) to V (B) of size at most k. The games start from the empty

position and proceed in rounds. At the beginning of each round in both games, Spoiler chooses p′ ⊆ p
with |p′| < k.

• In the Lk-game, Spoiler then selects either some u ∈ V (A) or some v ∈ V (B) and Duplicator
responds by choosing an element v ∈ V (B) or u ∈ V (A) in the other structure.

• In the Ck-game, Duplicator first selects a global bijection f : V (A)→ V (B) and Spoiler chooses
some pair (u, v) ∈ f . (If |V (A)| 6= |V (B)|, Spoiler wins the Ck-game immediately.)

The new position is p′ ∪ {(u, v)}. Spoiler wins the r-round Lk /Ck game if he has a strategy to reach
within r rounds a position p that does not define an isomorphism on the induced substructures. Both
games characterize equivalence in the corresponding logics: Spoiler wins the r-round Lk /Ck game if
and only if there is a sentence ϕ ∈ Lk /Ck of quantifier depth r such that A |= ϕ and B 6|= ϕ.

When these games are played on the two structures A(F ) and B(F ) obtained from an XOR for-
mula F , it is not hard to verify that both games are equivalent to the k-pebble game on F . To see this, we
identify Spoiler with Player 1, Duplicator with Player 2, and partial mappings p = {(xaii , x

bi
i ) | i ≤ `}

with partial assignments α = {xi 7→ ai ⊕ bi | i ≤ `}. Because of the Xi-relations, we can assume that
partial assignments of any other form will not occur as they are losing positions for Duplicator.

If Spoiler asks for some x0
i or x1

i in the Lk-game, which corresponds to a choice by Player 1 of
xi ∈ Vars(F ), the only meaningful action for Duplicator is to choose either x0

i or x1
i in the other

structure, corresponding to an assignment to xi by Player 2. With any other choice Duplicator would
lose immediately because of the unary relations Xi. Thus, there is a natural correspondence between
strategies in the Lk-game and the k-pebble game.

The players in the k-pebble game can be assumed to have perfect knowledge of the strategy of the
other player. This means that at any given position in the game, without loss of generality we can think
of Player 1 as being given a complete truth value assignment to the remaining variables, out of which
he can pick one variable assignment. By the correspondence in (2.2a)–(2.2b) we see that this can be
translated to a bijection f chosen by Duplicator in the Ck-game (which has to preserve the Xi relations).
Therefore, Spoiler picking some pair of the form (xai , x

b
i) from f can be viewed as Player 1 asking about

the assignment to xi and getting a response from Player 2 in the game on F (again using the above-
mentioned correspondence between partial mappings p and partial assignments α). Finally, we observe
that by design a partial mapping that preserves the Xi-relations defines a local isomorphism if and only
if the corresponding α does not falsify any XOR clause.

Formalizing the proof sketch above, it is not hard to show that statements (a)–(c) in the lemma are
all equivalent. The equivalence between (c) and (d) was proven in [CFI92]. The lemma follows.
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3 Technical Lemmas and Proofs of Main Theorems

To prove our lower bounds of the quantifier depth of finite variable logics in Theorem 1.1 and the number
of refinement steps of the Weisfeiler–Leman algorithm in Theorems 1.2 and 1.3, we utilize the charac-
terization in Lemma 2.1 and show that there are n-variable XOR formulas on which Player 1 is able to
win the k-pebble game but cannot do so in significantly less than nk/ log k rounds. The next lemma states
this formally and also provides a trade-off as the number of pebbles increases.

Lemma 3.1 (Main technical lemma). There is an absolute constant K0 ∈ N+ such that for inte-
gers klo, khi, and n satisfying K0 ≤ klo ≤ khi ≤ n1/6/klo there is an XOR formula F with n vari-
ables such that Player 1 wins the klo-pebble game on F , but does not win the khi-pebble game within
nklo/(10 log khi)−1/5 rounds.

Note that there is a limit to how far klo and khi can be from each other for the lemma to make
sense—the statement becomes vacuous if klo ≤ 2 log khi. Let us see how this lemma yields the theorems
in Section 1.

Proof of Theorem 1.1. This theorem follows immediately from Lemmas 2.1 and 3.1, but let us write
out the details for clarity. By setting klo = khi = k in Lemma 3.1, we can find XOR formulas with
n variables such that Player 1 wins the k-pebble game on Fn but needs more than nεk/ log k rounds in
order to do so (provided we choose ε < 1/10 and K0 large enough). We can then plug these XOR
formulas into Lemma 2.1 to obtain n-element structures An = A(Fn) and Bn = B(Fn) that can be
distinguished in the k-variable fragments of first-order logic Lk and first-order counting logic Ck, but
where this requires sentences of quantifier depth at least nεk/ log k.

Proof of Theorem 1.2. If we let Fn be the XOR formula from Lemma 3.1 for klo = khi = k + 1, then
by Lemma 2.1 it holds that the structures A(Fn) and B(Fn) will be distinguished by the k-dimensional
Weisfeiler–Leman algorithm, but only after nε(k+1)/ log(k+1) ≥ nεk/ log k refinement steps. Hence, com-
puting the stable colouring of either of these structures requires at least nεk/ log k refinement steps (since
they would be distinguished earlier if at least one of the computations terminated earlier).

Proof of Theorem 1.3. This is similar to the proof of Theorem 1.2, but setting klo = blog ncc + 1 and
khi =

⌈
n1/7

⌉
+ 1 in Lemma 3.1.

The proof of the trade-off between the number of pebbles versus number of rounds in Lemma 3.1
splits into two steps. We first establish a rather weak lower bound on the number of rounds in the pebble
game played on suitably chosen m-variable XOR formulas for m� n. We then transform this into a
much stronger lower bound for formulas over n variables using hardness condensation. To help the
reader keep track of which results are proven in which setting, in what follows we will write `lo and `hi

to denote parameters depending on m and klo and khi to denote parameters depending on n.
To implement the first step in our proof plan, we use tools developed by Immerman [Imm81] to

establish a lower bound as stated in the next lemma.

Lemma 3.2. For all `hi,m ≥ 3 there is an m-variable 3-XOR formula F `him on which Player 1

(a) wins the 3-pebble game, but

(b) does not win the `hi-pebble game within max
(
3, 1
dlog `hiem

1/(1+dlog `hie) − 2
)

rounds.

We defer the proof of Lemma 3.2 to Section 4, but at this point an expert reader might wonder why
we would need to prove this lower bound at all, since a much stronger Ω(m) bound on the number of
rounds in the pebble game on 4-XOR formulas was already obtained by Fürer [Fü01]. The reason is that
in Fürer’s construction Player 1 cannot win the game with few pebbles. However, it is crucial for the
second step of our proof, where we boost the lower bound but also significantly increase the number of
pebbles that are needed to win the game, that Player 1 is able to win the original game with very few
pebbles.
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3 Technical Lemmas and Proofs of Main Theorems

The second step in the proof of our main technical lemma is carried out by using the techniques
developed by Razborov [Raz16] and applying them to the XOR formulas in Lemma 3.2. Roughly speak-
ing, if we set klo = khi = k for simplicity, then the number of variables decreases from m to n ≈ m1/k,
whereas the m1/ log k round lower bound for the k-pebble game stays essentially the same and hence
becomes nk/ log k in terms of the new number of variables n. The properties of hardness condensation
are summarized in the next lemma, which we prove in Section 5. To demonstrate the flexibility of this
tool we state the lemma in its most general form—readers who want to see an example of how to apply
it to the XOR formulas in Lemma 3.2 can mentally fix p = 3, `lo = 3, `hi = khi, r ≈ m1/ log khi , and
∆ ≈ khi/3 when reading the statement of the lemma below.

Lemma 3.3 (Hardness condensation lemma). There exists an absolute constant ∆0 ∈ N+ such that
the following holds. Let F be anm-variable p-XOR formula and suppose that we can choose parameters
`lo > 0, `hi ≥ ∆0`lo and r such that Player 1

(a) has a winning strategy for the `lo-pebble game on F , but

(b) does not win the `hi-pebble game on F within r rounds.

Then for any ∆ satisfying ∆0 ≤ ∆ ≤ `hi/`lo and (2`hi∆)2∆ ≤ m there is an (∆p)-XOR formula H
with

⌈
m3/∆

⌉
variables such that Player 1

(a’) has a winning strategy for the (∆`lo)-pebble game on H , but

(b’) does not win the `hi-pebble game on H within r/(2`hi) rounds.

Taking Lemmas 3.2 and 3.3 on faith for now, we are ready to prove our main technical lemma
yielding an nΩ(k/ log k) lower bound on the number of rounds in the k-pebble game.

Proof of Lemma 3.1. Let ∆0 be the constant in Lemma 3.3. We let

K0 ≥ 3∆0 + 9 (3.1)

be an absolute constant, the precise value of which will be determined by calculations later in the proof.
We are given khi, klo, and n satisfying the conditions

K0 ≤ klo ≤ khi ≤ n1/6/klo (3.2)

in Lemma 3.1. Let us set

`hi := khi (3.3a)

and

m := nbklo/9c (3.3b)

and apply Lemma 3.2 (which is in order since `lo ≥ 3 and m ≥ 3 by (3.1) and (3.2)). This yields an
m-variable 3-XOR formula on which Player 1 wins the 3-pebble game but cannot win the `hi-pebble
game within

r := 1
dlog `hiem

1/(1+dlog `hie) − 2 (3.3c)

rounds. As a side remark we note that this lower bound term might vanish if klo and khi were to far
apart from each other (klo ≤ 2 log khi), but recall that in this case the statement of Lemma 3.1 becomes
vacuous anyway. Now we can apply hardness condensation as in Lemma 3.3 to the formula provided by
Lemma 3.2, where we fix parameters

p := 3 , (3.4a)

`lo := 3 , (3.4b)

9
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and

∆ := 3bklo/9c . (3.4c)

To verify that our choice of parameters is legal, note that in addition to r ≥ 1 we also have `lo > 0 and

`hi = khi ≥ K0 > 3∆0 = ∆0`lo . (3.5)

Thus, the assumptions needed for (a) and (b) are satisfied by the XOR formula obtained from Lemma 3.2.
To confirm that ∆ chosen as in (3.4c) satisfies the conditions in Lemma 3.3, observe that

∆0 ≤ 3bK0/9c ≤ 3bklo/9c = ∆ ≤ klo/3 ≤ khi/3 = `hi/`lo . (3.6)

Furthermore, since ∆ ≤ klo/3 and `hi = khi ≤ n1/6/klo we get

(2`hi∆)2∆ ≤
(

2

3
n1/6

)2∆

≤ n∆/3 = m . (3.7)

Note, finally, that n = nbklo/9c3/∆ = m3/∆. Now Lemma 3.3 provides us with an n-variable klo-XOR
formula on which according to (a’) Player 1 has a winning strategy for the (3∆)-pebble game and hence
also for the game with klo ≥ 9bklo/9c = 3∆ pebbles. Moreover, by (b’) it holds that Player 1 needs
more than r/(2khi) rounds to win the khi-pebble game. To complete the proof, we observe that if we
choose K0 large enough, then for n > khi ≥ klo ≥ K0 it holds that

r

2khi
=

1

2khidlog khie
nbklo/9c/(1+dlog khie) − 1

khi

[
by (3.3b) and (3.3c)

]
≥ 6n1/5

n1/6 log n
nbklo/9c/(1+dlog khie)−1/5 − 1

khi

[
since khi ≤ n1/6

]
(3.8)

≥ nklo/(10 log khi)−1/5
[
for large enough n, khi, and klo.

]
We now choose the constant K0 large so that all conditions encountered in the calculations above are
valid. This establishes the lemma.

4 XOR Formulas over High-Dimensional Pyramids

We now proceed to establish the k-pebble game lower bound stated in Lemma 3.2. Our XOR formulas
will be constructed over directed acyclic graphs (DAGs) as described in the following definition.

Definition 4.1. Let G be a DAG with sources S and a unique sink z. The XOR formula xor(G) contains
one variable v for every vertex v ∈ V (G) and consists of the following clauses:

(a) (s, 0) for every source s ∈ S,

(b) (v, w1, . . . , w`, 0) for all non-sources v ∈ V (G) \ S with in-neighbours N−(v) = {w1, . . . , w`},

(c) (z, 1) for the unique sink z.

Note that the formula xor(G) is always unsatisfiable, since all source vertices are forced to 0 by (a),
which forces all other vertices to 0 in topological order by (b), contradicting (c) for the sink. Incidentally,
these formulas are somewhat similar to the pebbling formulas defined in [BW01], which have been very
useful in proof complexity (see the survey [Nor13] for more details). The difference is that pebbling
formulas state that a vertex v is true if and only if all of its in-neighbours are true, whereas xor(G) states
that v is true if and only if the parity of the number of true in-neighbours is odd.

It is clear that one winning strategy for Player 1 is to ask first about the sink z, for which Player 2 has
to answer 1 (or lose immediately) and then about all the in-neighbours of the sink until the answer for
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4 XOR Formulas over High-Dimensional Pyramids

one vertex v is 1 (if there is no such vertex, Player 2 again loses immediately). At this point Player 1 can
forget all other vertices and then ask about the in-neighbours of v until a 1-labelled vertex w is found,
and then continue in this way to trace a path of 1-labelled vertices backwards through the DAG until
some source s is reached, which contradicts the requirement that s should be labelled 0. Formalizing this
as an induction proof on the depth of G shows that if the in-degree is bounded, then Player 1 can win the
pebble game on xor(G) with few pebbles as stated in the next lemma.

Lemma 4.2. Let G be a DAG with a unique sink and maximal in-degree d. Then Player 1 wins the
(d+ 1)-pebble game on xor(G).

As a warm-up for the proof of Lemma 3.2, let us describe a very weak lower bound from [Imm81]
for the complete binary tree of height h (with edges directed from the leaves to the root), which we
will denote Th. By the lemma above, Player 1 wins the 3-pebble game on xor(Th) in O(h) steps by
propagating 1 from the root down to some leaf. On the other hand, Player 2 has the freedom to decide
on which path she answers 1. Hence, she can safely respond 0 for a vertex v as long as there is some
leaf with a pebble-free path leading to the lowest pebble labelled 1 without passing v. In particular, if
Player 2 is asked about vertices at least ` layers below the lowest pebbled vertex for which the answer 1
was given, then she can answer 0 for 2` − 1 queries. It follows that the height h provides a lower bound
on the number of rounds Player 1 needs to win the game, even if he has an infinite amount of pebbles.
We remark that this proof in terms of pebble-free paths is somewhat reminiscent of an argument by
Cook [Coo74] for the so-called black pebble game corresponding to the pebbling formulas in [BW01]
briefly discussed above.

The downside of this lower bound is that the height is only logarithmic in the number of vertices and
thus too weak for us as we are shooting for a lower bound of the order of n1/ log k. To get a better bound
for the black pebble game Cook instead considered so-called pyramid graphs as in Figure 2(a). These
will not be sufficient to obtain strong enough lower bounds for our pebble game, however.2 Instead,
following Immerman we consider a kind of high-dimensional generalization of these graphs, for which
the lower bound on the number of rounds in the k-pebble game is still linear in the height h while the
number of vertices is roughly hlog k.

Definition 4.3 ([Imm81]). For d ≥ 1 we define the (d + 1)-dimensional pyramid of height h, denoted
by Pdh , to be the following layered DAG. We let L, 0 ≤ L ≤ h be the layer number and set qd(L) :=
bL/dc and rd(L) := L (mod d). Hence, for any L we have L = qd(L) · d+ rd(L). For integers xi ≥ 0
the vertex set is

V
(
Pdh
)

=
{

(x0, . . . , xd−1, L)
∣∣ L ≤ h; xi ≤ qd(L)+1 if i<rd(L); xi ≤ qd(L) if i≥rd(L)

}
, (4.1a)

where we say that L is the layer of the vertex (x0, . . . , xd−1, L). The edge set E
(
Pdh
)

consists of the
pair of edges (

(x0, . . . , xrd(L), . . . , xd−1, L+ 1), (x0, . . . , xrd(L), . . . , xd−1, L)
)
,(

(x0, . . . , xrd(L) + 1, . . . , xd−1, L+ 1), (x0, . . . , xrd(L), . . . , xd−1, L)
) (4.1b)

for all vertices (x0, . . . , xd−1, L) ∈ V (Pdh) and layers L < h, so that every vertex in layer L has exactly
two in-neighbours from layer L+ 1.

It might be easier to parse Definition 4.3 by noting that the (kd)th layer of Pdh is a d-dimensional
cube of side length k. Intuitively, we then want to have incoming edges to each vertex u at the (kd)th

2For readers knowledgeable in pebbling, we comment that the problem is that the open-path argument in [Coo74] does not
work in a DAG-like setting for the XOR pebble game. To see this, consider a pyramid with a vertex row u, v, w and a second
row p, q, r, s immediately below such that the edges are (p, u), (q, u), (q, v), (r, v), (r, w), (s, w). Then if the values of u,w
on the upper row and p, s on the lower row are known, there is still an open path via (q, v) or (r, v), which is enough for the
black pebbling lower bound for pyramids in [Coo74]. But in the XOR pebble game this means that r and q are already fixed
because of the XOR constraints, and so there is no “open path” with unconstrained vertices.
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(a) 2D pyramid (b) 3D pyramid

Figure 2: Examples of high-dimensional pyramids.

layer from all vertices v in the d-dimensional cube of side length k + 1 such that all coordinates of v
are at distance 0 or +1 from the coordinates of u. This would give a fan-in larger than 2, however, and
to avoid this we expand in one dimension at a time to obtain a sequence of multidimensional cuboids
where in each consecutive cuboid the side length increases by one in one dimension, until d layers later
we have a complete cube with side length k + 1. We refer the reader to Figure 2(a) for an illustration
of a 2-dimensional pyramid generated by stacking 1-dimensional cubes on top of one another and to
Figure 2(b) for a 3-dimensional pyramid generated from 2-dimensional cuboids (where all the edges in
the figures are assumed to be directed upwards). The vertex (0, . . . , 0) at the top of the pyramid is the
unique sink and all vertices at the bottom layer h are sources. Observe that it follows from the definition
that

∣∣V (Pdh)∣∣ ≤ (h+ 1)d+1.
As high-dimensional pyramids have in-degree 2, Lemma 4.2 implies that Player 1 wins the 3-pebble

game on Pdh . Recall that, as discussed in the proof sketch of the lemma, Player 1 starts his winning
strategy in the 3-pebble game by pebbling the sink of the pyramid and its two in-neighbours. One of
them has to be labelled 1. Then he picks up the two other pebbles and pebbles the two in-neighbours of
the vertex marked with 1 and so on. Continuing this strategy, he is able to “move” the 1 all the way to the
bottom, reaching a contradiction, in a number of rounds that is linear in the height of the pyramid. This
strategy turns out to be nearly optimal in the sense that in order to move a 1 from the top to the bottom
in Pdh , as long as the total number of available pebbles is at most 2d it makes no sense for Player 1 at
any point in the game to pebble a vertex that is d or more levels away from the lowest level containing a
pebble.

The next lemma states a key property of pyramids in this regard. In order to state it, we need to make
a definition.

Definition 4.4. We refer to a partial assignment M of Boolean values to the vertices of a DAG G as
a labelling or marking of G. We say that M is consistent if no clause of type (b) or (c) in the XOR
formula xor(G) in Definition 4.1 is falsified byM. We also say thatM′ is consistent withM ifM∪M′
is a consistent labelling of G.

That is, a consistent labelling does not violate any constraint on any non-source vertex, but source
vertex constraints (a) may be falsified. Such labellings are easy to find for high-dimensional pyramids.

Lemma 4.5 ([Imm81]). LetM be any consistent labelling of all vertices in a pyramid Pdh from layer 0
to layer L. Then for every set S of 2d− 1 vertices on or below layer L+ d there is a consistent labelling
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4 XOR Formulas over High-Dimensional Pyramids

of the entire pyramid that extendsM and labels all vertices in S with 0.

To get some intuition why Lemma 4.5 holds, note that the d-dimensional pyramids are constructed in
such a way that they locally look like binary trees. In particular, every vertex v ∈ V (Pdh) together with
all its predecessors at distance at most d form a complete binary tree. By the same argument as for the
binary trees above, it follows that if v is labelled with 1, Player 2 can safely answer 0 up to 2d − 1 times
when asked about vertices d layers below v. However, the full proof of Lemma 4.5 is more challenging
and requires some quite subtle reasoning. For the convenience of the reader we now present a slightly
modified version of the proof in [Imm81] with notation and terminology adapted to this paper.

To formalize the intuitive argument above, we need some additional notation and technical defini-
tions. Let us use the shorthand ~x = (x0, . . . , xd−1). For a pyramid Pdh , a coordinate j ∈ {0, . . . , d− 1},
and a layer L, we let

slen(j, L) := max
{
xj
∣∣(~x, L) ∈ V

(
Pdh
)}

(4.2)

be the side length in the jth dimension of the cuboid in layer L, i.e., the maximal value that can be
achieved in the jth coordinate in layer L, and for L′ ≥ L we write

∆slen(j, L, L′) := slen(j, L′)− slen(j, L) (4.3)

to denote how much the cuboids in Pdh grow in the jth dimension in betwen layers L and L′.
We define the frustum PdL,h to be the subgraph of Pdh induced on the set

{(
~x, L′

) ∣∣L′ ≥ L} of all
vertices on layer L and below. We say that the wedge W(j, a, L) is the subgraph of Pdh induced on
the vertices (x0, . . . , xj−1, a, xj+1, . . . , xd−1, L) with fixed jth coordinate xj = a together with all
predecessors of these vertices. That is, the vertex set ofW(j, a, L) is

V
(
W(j, a, L)

)
=
{(
~x, L′

)
∈ V

(
Pdh
) ∣∣L′ ≥ L, a ≤ xj ≤ a+ ∆slen(j, L, L′)

}
. (4.4)

An important part in our proof will be played by subgraphs obtained by deleting wedges from frustums.
We define these subgraphs next.

Fix a frustum PdL,h, two disjoint subsets of coordinates Ilo, Ihi ⊆ {0, . . . , d − 1}, and a mapping
α : Ilo ∪ Ihi → N0 such that α(j) ≤ slen(j, L). We let the restricted frustum PdL,h[Ilo, Ihi, α] be the
subgraph of the frustum PdL,h induced on the vertex set{(

~x, L′
)
∈ V (PdL,h)

∣∣ ∀j∈Ilo : xj > α(j) + ∆slen(j, L, L′); ∀j∈Ihi : xj < α(j)
}

(4.5)

where no coordinates in Ilo∪Ihi are expanded, i.e., the cuboids will not grow in size in dimensions Ilo∪Ihi
as we move down the layers. For dimensions in Ihi the coordinate set stays the same, and for dimensions
in Ilo the coordinate set shifts by an additive +1 every time the pyramid graph grows in this direction.
We say that a layered directed graph is a (d, q)-frustum if it is a restricted frustum PdL,h[Ilo, Ihi, α] where
q coordinates are restricted, i.e., |Ilo

.
∪ Ihi| = q.

To see how restricted frustums are obtained by deleting wedges from frustums, note that after re-
moving the wedge W(j, a, L) from the frustum PdL,h, the remaining graph is the disjoint union of the
restricted frustums PdL,h[{j}, ∅, {j 7→ a}] and PdL,h[∅, {j}, {j 7→ a}]. Figure 3 shows a 3D pyramid with
a wedge and a restricted frustum .

We prove Lemma 4.5 by inductively cutting the pyramid into a wedge and restricted frustums to
the left and right of this wedge. It will be convenient to focus on (d, q)-frustums which grow in the
dimensions corresponding to the topmost d− q layers (as the one in Figure 3). More formally, we say
that an (d, q)-frustum PdL,h[Ilo, Ihi, α] is top-expanding if

{(L+ j) mod d | 0 ≤ j ≤ d− 1− q} ∩ (Ilo ∪ Ihi) = ∅ . (4.6)

As we have done for digraphs with unique sinks in Definition 4.1, we identify with each (restricted)
frustum P the corresponding XOR formula xor(P) containing all clauses given in Definition 4.1(a)
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layer

0

1

· · ·

L

L+ 1

L+ d

L+ d+ 1

· · ·

h

Figure 3: Pyramid with wedgeW(0, 2, L+ 1) and restricted frustum P2
L+1,10[∅, {0}, {0 7→ 2}] .

and (b). We do not include hard-coded labels on the sources at the top layer as in (c) but instead will
always provide a labelling of that layer.3

We now state our inductive claim. Lemma 4.5 follows immediately once this claim has been es-
tablished, as the subgraph of a pyramid Pdh on or below layer L is an (unrestricted) top-expanding
(d, 0)-frustum PdL,h and, in particular, xor

(
Pdh
)

with all vertices on or above layer L consistently la-
belled is equivalent to xor

(
PdL,h

)
with the same labelling of layer L.

Claim 4.6. Let P be a top-expanding (d, q)-frustum andML be a labelling of its top layer L. Then for
every set S of 2d−q − 1 vertices on or below layer L+ d− q there is a consistent labelling of all vertices
in P that extendsML and labels every vertex in S with 0.

The following proposition summarizes the core properties of frustums that we will use when estab-
lishing Claim 4.6.

Proposition 4.7. Let P = PdL,h[Ilo, Ihi, α] be a restricted frustum with a labellingML of all vertices in
the top layer L. Then the following holds:

(a) There is a labellingML+1 of all vertices in layer L+ 1 of P that is consistent withML.

(b) LetML+1 be any labelling of layer L + 1 in P that is consistent withML and suppose that P
expands coordinate j from layer L to layer L+ 1, i.e., j = rd(L) and j /∈ Ilo ∪ Ihi. Then for any

3For readers more familiar with proof complexity language, our subgraphs correspond to formulas obtained by applying
restrictions to xor

(
Pd

h

)
.
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(a) j /∈ Ilo ∪ Ihi (b) j ∈ Ihi (c) j ∈ Ilo

Figure 4: Shapes of connected component between layers L and L+ 1 expanding in dimension j.

vertex (~y, L+ 1) in P it holds that the labellingM~y
L+1 defined by

M~y
L+1(~x, L+ 1) :=

{
1−ML+1(~x, L+ 1) if xi = yi for all i 6= j,
ML+1(~x, L+ 1) otherwise

is also consistent withML.

Proof. We first note that the set of XOR constraints between two layers L and L+ 1 can be partitioned
into several connected components. Each of the components forms a “one-dimensional line” in the
direction of the expanding coordinate j = rd(L). More formally, two vertices from layers L and L + 1
are on the same line if and only if they agree on the coordinates xi for all i 6= j. These lines form the
connected components of the graph induces on layers L and L + 1. All such lines between layers L
and L+ 1 isomorphic and their shape depends on whether j ∈ Ilo, j ∈ Ihi, or j /∈ Ilo ∪ Ihi. See Figure 4
for an illustration. We remark that in Figures 4(b) and 4(c) the vertex with in-degree 1 and its predecessor
form a binary XOR clause in xor(P).

If the layer is not expanding (as depicted in Figures 4(b) and 4(c)) and the upper layer L is entirely
labelled, then it is not hard to see that there is a unique consistent labelling of the lower-level vertices
of each line (determined by propagating values from right to left in Figure 4(b) and from left to right
in Figure 4(c)). As all lines are disjoint this gives a unique labelling of the entire layer L + 1 that is
consistent with the labelling of layer L. If the layer expands (i.e., , if j /∈ Ilo ∪ Ihi as illustrated in
Figure 4(a)), then we have more freedom. Indeed, if we label either the rightmost or the leftmost vertex
at the bottom layer with 0, then we have the same situation as in Figures 4(b) and 4(c), respectively. This
concludes the proof of item (a) in the proposition.

For item (b), first observe that the condition j /∈ Ilo ∪ Ihi means that we are in the case depicted
in Figure 4(a). This means that if we have a consistent labelling of the upper and lower part of a line,
then flipping all values at the lower level yields another consistent labelling. This is so since every
XOR clause contains exactly two vertices from the lower part. Hence, flipping both of these vertices
does not change the parity of the variables in the XOR clause but leaves the clause satisfied. As all
lines between layers L and L+ 1 are disconnected from each other, flipping all values in one line gives
another consistent labelling for the whole layer L + 1, which is precisely what is claimed in item (b).
The proposition follows.

Proof of Claim 4.6. The proof is by induction over decreasing values of q, the base case being q = d.
As |S| = 2d−q − 1 = 0 if q = d, in this case we only have to ensure that there is a consistent labelling
of the entire frustum that is consistent with the labelling of the top layer. This follows from inductively
applying Proposition 4.7(a) layer by layer.

For the inductive step, assume that the claim holds for all top-expanding (d, q + 1)-frustums. We
want prove it for a top-expanding (d, q)-frustum P = PdL,h[Ilo, Ihi, α]. Let j = rd(L) = L mod d be the
dimension that expands from layer L to L+ 1. As P is top-expanding and q < d we have j /∈ Ilo ∪ Ihi.
For some well-chosen a ∈ [0, slen(j, L + 1)] to be specified shortly, we partition P on and below layer
L+ 1 into the wedge

W(j, a, L+ 1) (4.7a)

and two disjoint (d, q + 1)-frustums: the “right” frustum

PdL+1,h[Ilo ∪ {j}, Ihi, α ∪ {j 7→ a}] (4.7b)
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and the “left” frustum (depicted by in Figure 3)

PdL+1,h[Ilo, Ihi ∪ {j}, α ∪ {j 7→ a}] . (4.7c)

We choose the position a of the wedge so that both (d, q + 1)-frustums in (4.7b) and (4.7c) contain at
most (|S| − 1)/2 ≤ 2d−(q+1) − 1 vertices from S (which implies that the wedge (4.7a) contains at least
one vertex from S). To be more specific, we choose the largest a ≥ 0 such that the left frustum (4.7c)
contains at most (|S| − 1)/2 vertices Sa ⊆ S. Such an a exists as S0 = ∅.

If a reached the maximum slen(j, L+1), then empty right frustum (4.7b) clearly contains no vertices
from S. Otherwise let Sa+1 be the set of vertices from S left of the wedge at position a + 1. By the
choice of a we have |Sa+1| > (|S| − 1)/2. Furthermore, because all vertices in S are below layer L+ 1
it follows that Sa+1 \ Sa is contained in the wedge (4.7a) at position a. Hence the right frustum (4.7b)
contains at most |S \ Sa+1| ≤ (|S| − 1)/2 vertices.

Now we proceed as follows. First we use Proposition 4.7(a) to obtain any consistent labelling of all
vertices in layer L + 1. Consider the set of all vertices v = (~x, L + 1) in layer L + 1 with xj = a,
i.e., the topmost vertices in the wedge (4.7a). Note that this set of vertices form a hyperplane through,
and perpendicular to, the disconnected parallel lines discussed in Proposition 4.7. We go over these
vertices v one by one and flip every 1-labelled v to 0. As j is the expanding coordinate from layer L
to L+ 1, after every such flip we can apply Proposition 4.7(b) to relabel the rest of the line through v
as needed. In this way, all vertices in the top layer of the wedge (4.7a), get labelled by 0, and we label
all other vertices in the wedge with 0 also. It follows from repeated application of Proposition 4.7(b)
that the end result is a labelling of layer L+ 1 that is consistent withML. Note that this labels every
vertex from S within the wedge with 0 and moreover, layer L + 1 contains no vertices from S outside
of the wedge. This is because if some vertex from S is on layer L + 1, then we have by the assumption
in Claim 4.6 that |S| = 1 and hence this one labelled vertex is guaranteed to be in the wedge by the
choice of a. In this way we obtain a labelling for the top layer of both (d, q+ 1)-frustums, and we then
apply induction to consistently label all vertices in both frustums in such a way that every vertex in S is
set to 0. Now we argue that the disjoint union of the all-zero labelling of the wedge and the consistent
labellings of both frustums is a consistent labelling of P . Clearly, every (non-source) clause in xor(P)
that is entirely contained in the wedge is satisfied by the all-zero labelling of the wedge. In the same way,
every clause that is entirely contained in one of the two frustums is satisfied by their consistent labellings.
It remains to consider clauses that contain variables from the wedge as well as from one of the frustums.
By construction, those clauses have the form (v, w1, w2, 0), for a vertex v with in-neighbours w1, w2,
where the vertex v and one of its neighbours (say w1) is within the frustum and the other neighbour is
inside the wedge. As the edge (w1, v) inside the frustum forms the binary clause (v, w1, 0) it follows
that the consistent labelling of the frustum guarantees that the parity of v and w1 is even. Because w2 is
labelled 0 in the wedge, the merged labelling satisfies (v, w1, w2, 0). The claim follows.

As noted above, our proof of Claim 4.6 also establishes Lemma 4.5.
In [Imm81] log n-dimensional pyramids (where n is the number of vertices) are used to prove a

Ω
(
2
√

logn
)

lower bound on the quantifier depth of full first-order counting logic. The next lemma shows
that if we instead choose the dimension to be logarithmic in the number of variables (i.e., pebbles) in the
game, we get an improved quantifier depth lower bound for the k-variable fragment.

Lemma 4.8. For every d ≥ 2 and height h, Player 1 does not win the 2d-pebble game on xor
(
Pdh
)

within h/(d− 1)− 1 rounds.

Proof. We show that Player 2 has a counter-strategy to answer consistently for at least bh/(d− 1)c − 1
rounds and therefore Player 1 needs at least bh/(d− 1)c > h/(d− 1)− 1 rounds to win. Starting at the
top layer L1 = 0, she maintains the invariant that at the start of round r she has a consistent labelling of
all vertices from layer 0 to layer Lr with the property that there is no pebble on layers Lr+1 to Lr+d−1.

Whenever Player 1 places a pebble on or above layer Lr, Player 2 responds according to the con-
sistent labelling and whenever Player 1 puts a pebble on or below layer Lr + d, she answers 0, and in
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5 Hardness Condensation

both cases sets Lr+1 = Lr. Note that as long as Player 1 places pebbles in this way, the game can go on
forever. Since there are never more than 2d − 1 pebbles left on vertices on or below layer Lr + d (when
Player 1 runs out of pebbles the next move must be a removal), the conditions needed for Lemma 4.5 to
apply are never violated.

Thus, the interesting case is when Player 1 places a pebble between layer Lr + 1 and Lr + d − 1.
Then Player 2 uses Lemma 4.5 to extend her labelling to the first layer Lr+1 > Lr such that there is no
pebble on layers Lr+1 + 1 to Lr+1 + d − 1, after which she answers the query according to the new
labelling. It is worth noting that when Player 2 skips downward from layer Lr to layer Lr+1 she might
jump over a lot of layers in one go, but if so there is at least one pebble for every (d− 1)th layer forcing
such a big jump. We see that following this strategy Player 2 survives for at least bh/(d−1)c−1 rounds,
and this establishes the lemma.

Putting the pieces together, we can now present the lower bound for the k-pebble game in Lemma 3.2.

Proof of Lemma 3.2. Recall that we want to prove that for all `hi ≥ 3 and m ≥ 3 there is an m-variable
3-XOR formula F on which Player 1 wins the 3-pebble game but cannot win the `hi-pebble game within

1
dlog `hiem

1/(1+dlog `hie) − 2 rounds. If m < (5dlog `hie)(dlog `hie+1), then the round lower bound is trivial
and we let F be, for instance, the 3-variable formula xor

(
P1

1

)
plus m − 3 auxiliary variables on which

Player 1 needs 3 rounds to win. Otherwise, we choose the formula to be F = xor
(
Pdh
)

for parameters
d = dlog `hie and h =

⌊
m1/(d+1)

⌋
− 1. Note that Pdh contains less than (h + 1)d+1 ≤ m vertices and

we can add dummy variables to reach exactly m. Since the graph Pdh has in-degree 2, Lemma 4.2 says
that Player 1 wins the 3-pebble game as claimed in Lemma 3.2(a). The lower bound for the `hi-pebble
game in Lemma 3.2(b) follows from Lemma 4.8 and the oberservation that because h ≥ 5d− 1 we have
h/(d− 1) ≥ (h+ 1)/d and hence

h/(d− 1)− 1 ≤ (h+ 1)/d− 1 = 1
dlog `hie

⌊
m1/(1+dlog `hie)

⌋
− 1 (4.8)

≤ 1
dlog `hiem

1/(1+dlog `hie) − 2 . (4.9)

The lemma follows.

5 Hardness Condensation

In this section we establish Lemma 3.3, which shows how to convert an XOR formula into a harder
formula over fewer variables. As discussed in the introduction, this part of our construction relies heavily
on Razborov’s recent paper [Raz16]. We follow his line of reasoning closely below, but translate it from
proof complexity to a pebble game argument for bounded variable logics.

A key technical concept in the proof is graph expansion. Let us define the particular type of expander
graphs we need and then discuss some crucial properties of these graphs. We use standard notation,
letting G = (U

.
∪ V,E) denote a bipartite graph with left vertex set U and right vertex set V . We let

NG
(
U ′
)

=
{
v
∣∣{u, v} ∈ E(G), u ∈ U ′

}
denote the set of neighbour vertices on the right of a left vertex

subset U ′ ⊆ U (and vice versa for right vertex subsets).

Definition 5.1 (Boundary expander). A bipartite graph G = (U
.
∪ V,E) is an m × n (s, c)-boundary

expander graph if |U | = m, |V | = n, and for every set U ′ ⊆ U , |U ′| ≤ s, it holds that
∣∣∂G(U ′)

∣∣ ≥ c|U ′|,
where the boundary ∂G(U ′) is the set of all v ∈ NG(U ′) having a unique neighbour in U ′, meaning that∣∣NG(v) ∩ U ′

∣∣ = 1. An (s,∆, c)-boundary expander is an (s, c)-boundary expander where additionally∣∣NG(u)
∣∣ ≤ ∆ for all u ∈ U , i.e., the graph has left degree bounded by ∆.

In what follows, we will omit G from the notation when the graph is clear from context.
In any (s, c)-boundary expander with expansion c > 0 it holds that any left vertex subset U ′ ⊆ U of

size |U ′| ≤ s has a partial matching into V where in addition the vertices in U ′ can be ordered in such
a way that every vertex ui ∈ U ′ is matched to a vertex outside of the neighbourhood of the preceding
vertices u1, . . . , ui−1. The proof of this fact is sometimes referred to as a peeling argument.
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Lemma 5.2 (Peeling lemma). Let G = (U
.
∪ V,E) be an (s, c)-boundary expander with s ≥ 1 and

c > 0. Then for every set U ′ ⊆ U , |U ′| = t ≤ s there is an ordering u1, . . . , ut of its vertices and a
sequence of vertices v1, . . . , vt ∈ V such that vi ∈ N(ui) \N({u1, . . . , ui−1}).

Proof. The proof is by induction on t. The base case t = 1 is immediate since s ≥ 1 and c > 0
implies that no left vertex can be isolated. For the inductive step, suppose the lemma holds for t − 1.
To construct the sequence v1, . . . , vt we first fix vt to be any vertex in ∂(U ′), which has to exist since∣∣∂(U ′)

∣∣ ≥ c|U ′| > 0. The fact that vt is in the boundary of U ′ means that there is a unique ut ∈ U ′ such
that

∣∣N(vt) ∩ U ′
∣∣ = {ut}. Thus, for this pair (ut, vt) it holds that vt ∈ N(ut) \N

(
U ′ \ {ut}

)
. By the

induction hypothesis we can now find sequences u1, . . . , ut−1 and v1, . . . , vt−1 for U ′ \ {ut} such that
vi ∈ N(ui) \N({u1, . . . , ui−1}), to which we can append ut and vt at the end. The lemma follows.

For a right vertex subset V ′ ⊆ V in G = (U
.
∪ V,E) we define the kernel Ker

(
V ′
)
⊆ U to be the set

of all left vertices whose entire neighbourhood is contained in V ′, i.e.,

Ker
(
V ′
)

=
{
u ∈ U

∣∣N(u) ⊆ V ′
}
. (5.1)

We let G \V ′ denote the subgraph of G induced on
(
U \Ker(V ′)

) .
∪
(
V \V ′

)
. In other words, we obtain

G \ V ′ from G by first deleting V ′ and afterwards all isolated vertices from U (assuming that there were
no isolated left vertices before, which is true if G is expanding).

The next lemma states that if G is an expander graph, then for any small enough right vertex set V ′

we can always find a closure γ
(
V ′
)
⊇ V ′ with a small kernel such that the subgraph G \ γ(V ′) has good

boundary expansion. The proof of this lemma (albeit with slightly different parameters) can be found
in [Raz16], but we also include it in Appendix A for completeness.

Lemma 5.3 ([Raz16]). Let G be an (s, 2)-boundary expander. Then for every V ′ ⊆ V with |V ′| ≤ s/2
there exists a subset γ

(
V ′
)
⊆ V with γ(V ′) ⊇ V ′ such that

∣∣Ker
(
γ
(
V ′
))∣∣ ≤ ∣∣V ′∣∣ and the induced

subgraph G \ γ(V ′) is an (s/2, 1)-boundary expander.

Note that Lemma 5.3 is a purely existential result. We do not know how the closure is constructed
and, in particular, if we want to choose closures of minimal size, then V1 ⊆ V2 does not necessarily
imply γ(V1) ⊆ γ(V2).

In order for Lemmas 5.2 and 5.3 to be useful, we need to know that there exist good enough boundary
expanders. To prove this, one can just fix a left vertex setU of sizem and a right vertex set V of size n and
then for every u ∈ U choose ∆ neighbours from V uniformly and independently at random. A standard
probabilistic argument shows that with high probability this random graph is anm×n (s,∆, 2)-boundary
expander for appropriately chosen parameters. We state this formally as a lemma below. A similar lemma
is proven in [Raz16] but we also provide a proof in Appendix A for the convenience of the reader.

Lemma 5.4. There is an absolute constant ∆0 ∈ N+ such that for all integers ∆, s, and m satisfying
∆ ≥ ∆0 and (s∆)2∆ ≤ m there exist m×

⌈
m3/∆

⌉
(s,∆, 2)-boundary expanders.

For readers familiar with expander graphs from other contexts, it might be worth pointing out that the
parameters above are different from what tends to be the standard expander graph settings of s = Ω(m)
and ∆ = O(1). Instead, in Lemma 5.4 we have s growing sublinearly in m and ∆ need not be constant
(although we still need ∆ / logm/ log logm in order to satisfy the conditions of the lemma).

In what follows, unless otherwise stated G = (U
.
∪ V,E) will be an (s, 2)-boundary expander for

s = 2k. We will use such expanders when we do XOR substitution in our formulas as described formally
in the next definition. In words, variables in the XOR formula are identified with left vertices U in G, the
pool of new variables is the right vertex set V , and every variable u ∈ U in an XOR clause is replaced
by an exclusive or

⊕
v∈N(u) v over its neighbours v ∈ N(u). We emphasize that in “standard” XOR-

ification as found in the proof complexity literature all new substituted variables would be distinct, i.e.,
N(u1) ∩N(u2) = ∅ for u1 6= u2. While this often makes formulas harder, it also increases the number
of variables. Here, we use the approach in [Raz16] to instead recycle variables from a much smaller
set V in the substitutions, thus decreasing the total number of variables.
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5 Hardness Condensation

Definition 5.5 (XOR substitution with recycling). Let F be an XOR formula with Vars(F ) = U and
let G = (U

.
∪ V,E) be a bipartite graph. For every clause C = (u1, . . . , ut, a) in F we let C[G] be the

clause (v1
1, . . . , v

z1
1 , . . . , v

1
t , . . . , v

zt
t , a), where N(ui) = {v1

i , . . . , v
zi
i } for all 1 ≤ i ≤ t. Taking unions,

we let F [G] be the XOR formula F [G] = {C[G] | C ∈ F}.

When using an m × m3/∆ (s,∆, 2)-boundary expander as in Lemma 5.4 for substitution in an
m-variable XOR formula F as described in Definition 5.5, we obtain a new XOR formula F [G] where
the number of variables have decreased significantly to m3/∆. The next lemma, which is at the heart of
our logic-flavoured version of hardness condensation, states that a round lower bound for the k-pebble
game on F implies a round lower bound for the k-pebble game on F [G].

Lemma 5.6. Let k be a positive integer and let G be an m × n (2k, 2)-boundary expander. Then if F
is an XOR formula over m variables such that Player 2 wins the r-round k-pebble game on F , she also
wins the r/(2k)-round k-pebble game on F [G].

By way of comparison with [Raz16], we remark that a straightforward translation of Razborov’s
technique would start with formulas on which Player 1 can win with few pebbles, but needs an almost
linear number of rounds to win the game, even if he has an infinite amount of pebbles.4 Applying this
without modification to Immerman’s construction, we would obtain very weak bounds (and, in particular,
nothing interesting for constant k). Instead, as input to our hardness condensation lemma we use a
construction that has a round lower bound of n1/ log k, and show that for hardness condensation it is not
necessary that the original formula is hard over the full range.

Before embarking on a formal proof of Lemma 5.6, which is rather technical and will take the rest
of this section, let us discuss the intuition behind it. The main idea to obtain a good strategy for Player 2
on the substituted formula F [G] is to think of the game as being played on F and simulate the survival
strategy there for as long as possible (which is where boundary expansion comes into play).

Let G = (U
.
∪V,E) be an (2k, 2)-boundary expander as stated in the lemma. We have Vars(F ) = U

and Vars(F [G]) = V . Given a strategy for Player 2 in the r-round k-pebble game on F , we want to
convert this into a winning strategy for Player 2 for the r/(2k)-round k-pebble game on F [G]. A first
approach (which will not quite work) is the following.

While playing on the substituted formula F [G], Player 2 simulates the game on F . For every
position β in the game on F [G], she maintains a corresponding position α on F , which is defined
on all variables whose entire neighbourhood in the expander is contained in the domain of β, i.e.,
Vars(α) = Ker(Vars(β)). The assignments of α should be defined in such a way that they are consis-
tent with β, i.e., so that α(u) =

⊕
v∈N(u) β(v). It then follows from the description of XORification in

Definition 5.5 that α falsifies an XOR clause of F if and only if β falsifies an XOR clause of F [G].
Now Player 2 wants to play in such a way that if β changes to β′ in one round of the game

on F [G], then the corresponding position α also changes to α′ in one round of the game on F . In-
tuitively, this should be done as follows. Suppose that starting from a position β, Player 1 asks for
a variable v ∈ V . If v is not the last unassigned vertex in a neighbourhood of some u ∈ U , i.e.,
Ker(Vars(β)) = Ker(Vars(β) ∪ {v}), then Player 2 can make an arbitrary choice as α = α′ is con-
sistent with both choices. If v is the last free vertex in the neighbourhood of exactly one vertex u, i.e.,
{u} = Ker(Vars(β) ∪ {v}) \ Ker(Vars(β)), then Player 2 assumes that she was asked for u in the
simulated game on F . If in her strategy for the r-round k-pebble game on F she would answer with an
assignment a ∈ {0, 1} which would yield the new position α′ = α ∪ {u 7→ a}, then in the game on
F [G] she now sets v to the right value b ∈ {0, 1} so that the new position β′ = β ∪ {v 7→ b} satisfies the
consistency property α′(u) =

⊕
v∈N(u) β

′(v). If Player 2 could follow this strategy, then the number
of rounds she would survive the game on F [G] would be lower-bounded by the number of rounds she
survives in the game on F .

There is a gap in this intuitive argument, however, namely how to handle the case when the queried
variable v completes the neighbourhood of two (or more) vertices u1, u2 at the same time. If it holds that

4In terms of resolution, this corresponds to formulas that are refutable in small width, but where every resolution refutation
has almost linear depth.
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{u1, u2} ⊆ Ker(Vars(β)∪{v})\Ker(Vars(β)), then we have serious problems. Following the strategy
above for u1 and u2 separately can yield two different and conflicting ways of assigning v, meaning that
for the new position β′ there will be no consistent assignment α′ of Ker(Vars(β′)).

To circumvent this problem and implement the proof idea above, we will use the boundary expansion
of G to ensure that this problematic case does not occur. For instance, suppose that the graph G′ = G \
Vars(β), which is the induced subgraph of G on U \Vars(α) and V \Vars(β), has boundary expansion
at least 1. Then the bad situation described above with two variables u1, u2 having neighbourhood
NG

′
(u1) = NG

′
(u2) = {v} in G′ cannot arise, since this would imply ∂G

′
({u1, u2}) = ∅, contradicting

the expansion properties of G′. Unfortunately, we cannot ensure boundary expansion of G \ Vars(β)
for every position β, but we can apply Lemma 5.3 and extend the current position to a larger one that
is defined on γ(Vars(β)) and has the desired expansion property. Since Lemma 5.3 ensures that the
domain Ker(γ(Vars(β))) of our assignment α under construction is bounded by |α| ≤ |β| ≤ k, such an
extension will still be good enough.

We now proceed to present a formal proof. When doing so, it turns out to be convenient for us to
prove the contrapositive of the statement discussed above. That is, instead of transforming a strategy for
Player 2 in the r-round k-pebble game on F to a strategy for the r/(2k)-round k-pebble game on F [G]
for an (2k, 2)-boundary expander G, we will show that a winning strategy for Player 1 in the game on
the substituted formula F [G] can be used to obtain a winning strategy for Player 1 in the game on the
original formula F .

Suppose that β is any position in the k-pebble game on F [G], i.e., a partial assignment of variables
in V . Since G is a (2k, 2)-boundary expander and |β| ≤ k, we can apply Lemma 5.3 to obtain a superset
γ(Vars(β)) ⊇ Vars(β) having the properties that |Ker(γ(Vars(β)))| ≤ |Vars(β)| and the induced
subgraph G \ γ(Vars(β)) is a (k, 1)-boundary expander. For the rest of this section, fix a minimal such
set γ(V ′) for every V ′ = Vars(β) corresponding to a position β in the k-pebble game. This will allow
us to define formally what we mean by consistent positions in the two games on F and F [G] as described
next.

Definition 5.7 (Consistent positions). Let α be a position in the pebble game on F , i.e., a partial
assignment of variables in U , and let β be a partial assignment of variables in V corresponding to a
position in the pebble game on F [G]. We say that α is consistent with β if there exists an extension
βext ⊇ β with Vars(βext) = N

(
Vars(α)

)
∪ Vars(β) such that for all u ∈ Vars(α) it holds that

α(u) =
⊕

v∈N(u) βext(v).
Let β be a position in the k-pebble game on the XOR-substituted formula F [G] and let γ(V ′) be the

fixed, minimal closure of β chosen above. Then we let Cons(β) denote the set of all positions α with
Vars(α) = Ker(γ(Vars(β))) in the pebble game on F that are consistent with β.

Observe that for α1 ⊆ α and β1 ⊆ β2 it holds that if α2 is consistent with β1 then so is α1, and if α1

is consistent with β2 then α1 is consistent also with β1. Furthermore, by Lemma 5.3 we have |α| ≤ |β|
for all α ∈ Cons(β). The next claim states the core inductive argument.

Claim 5.8. Let β be a position on F [G] for an (2k, 2)-boundary expander G and suppose that Player 1
wins the i-round k-pebble game on F [G] from position β. Then Player 1 has a strategy to win the
k-pebble game on F within 2ki rounds from every position α ∈ Cons(β).

We note that this claim is just a stronger version of (the contrapositive of) Lemma 5.6.

Proof of Lemma 5.6 assuming Claim 5.8. Note that if r/(2k) < 1, then the lemma is trivially true, as
Player 1 always needs at least one round to win the pebble game from the empty position. Otherwise,
we apply Claim 5.8 with parameters β = ∅ and i = r/(2k). Since Cons(∅) = {∅}, we directly get the
contrapositive statement of Lemma 5.6 that if Player 1 wins the r/(2k)-round k-pebble game on F [G],
then he wins the r-round k-pebble game on F .

All that remains for us to do now is to establish Claim 5.8, after which the hardness condensation
lemma will follow easily.
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Proof of Claim 5.8. The proof is by induction on i. For the base case i = 0 we have to show that if β
falsifies an XOR clause in F [G], then every assignment α ∈ Cons(β) falsifies an XOR clause in F . But
if β falsifies a clause of F [G], which by construction has the form C[G] for some clause C from F , then
by Definitions 5.5 and 5.7 it holds that every α ∈ Cons(β) falsifies C.

For the induction step, suppose that the statement holds for i − 1 and assume that Player 1 wins the
i-round k-pebble game on F [G] from position β. The ith round consists of two steps:

1. Player 1 first chooses a subassignment β′ ⊆ β.

2. He then asks for the value of one variable v ∈ V \ Vars
(
β′
)
, to which Player 2 chooses an

assignment b ∈ {0, 1} yielding the new position β′ ∪ {v 7→ b}.

As Player 1 has a strategy to win from β within i rounds, it follows that he can win from both β′∪{v 7→ 0}
and β′ ∪ {v 7→ 1} within i − 1 rounds. By the inductive assumption we then deduce for the set of
assignments

Cons
(
β′ ∗ v

)
:= Cons

(
β′ ∪ {v 7→ 0}

)
∪ Cons

(
β′ ∪ {v 7→ 1}

)
(5.2)

consistent with either β′ ∪ {v 7→ 0} or β′ ∪ {v 7→ 1} that the following statement holds.

Subclaim 5.9. Player 1 can win the k-pebble game on F within 2k(i − 1) rounds from all positions
in Cons

(
β′ ∗ v

)
.

Note that a position is in Cons
(
β′ ∗ v

)
if it is consistent with either β′ ∪ {v 7→ 0} or β′ ∪ {v 7→ 1}.

Therefore, Cons
(
β′ ∗ v

)
is the set of all positions over Ker

(
γ
(
β′
)
∪ {v}

)
that are consistent with β′.

What remains to show is that from every position α ∈ Cons(β) Player 1 can reach some position in
Cons

(
β′ ∗ v

)
within 2k rounds. We split the proof into two steps, corresponding to the two steps in the

move of Player 1 from position β.

Subclaim 5.10. From every position α ∈ Cons(β) Player 1 can reach some position in Cons
(
β′
)

for
β′ ⊆ β within k rounds.

Subclaim 5.11. From every position α ∈ Cons
(
β′
)

Player 1 can reach some position in Cons
(
β′ ∗ v

)
within k rounds.

Let us establish Subclaims 5.10 and 5.11 in reverse order.

Proof of Subclaim 5.11. Player 1 starts with an assignment αstart ∈ Cons
(
β′
)
, which is defined over

the variables Ustart = Ker
(
γ
(
Vars

(
β′
)))

, and wants to reach some assignment αend ∈ Cons
(
β′ ∗ v

)
defined over the variables Uend = Ker

(
γ
(
Vars

(
β′
)
∪ {v}

))
.

If Ker
(
γ
(
Vars

(
β′
)))

= Ker
(
γ
(
Vars

(
β′
)
∪ {v}

))
, then Player 1 can choose αend = αstart. To

see this, note that if αstart assigns a value to some u ∈ N(v), then since αstart ∈ Cons
(
β′
)

it holds by
Definition 5.7 that N(u) ⊆ γ

(
Vars

(
β′
))

, and thus αstart is already consistent with β′ ∪ {v 7→ b} for
some b ∈ {0, 1}. Hence, Player 1 need not ask any question in this case, but the induction hypothesis
immediately yields the desired conclusion.

The more interesting case is when Ker
(
γ
(
Vars

(
β′
)))
6= Ker

(
γ
(
Vars

(
β′
)
∪ {v}

))
. Now Player 1

first deletes all assignments of variables in Ustart \ Uend from αstart to get α0. Since α0 ⊆ αstart and
αstart is consistent with β′ by assumption, α0 is also consistent with β′. Afterwards, he asks for all
variables in U ′ = Uend \ Ustart. We need to argue that regardless of how Player 2 answers, it holds that
Player 1 reaches a position that is consistent with β′ .This is where the peeling argument in Lemma 5.2
is needed.

As discussed above, by our choice of the closure γ
(
Vars

(
β′
))

(obtained using Lemma 5.3) we know
that the bipartite graph G′ = G \ γ

(
Vars

(
β′
))

is a (k, 1)-boundary expander and furthermore that for
U ′ = Uend \ Ustart it holds that |U ′| ≤ |Uend| ≤

∣∣Vars(β′) ∪ {v}∣∣ ≤ k, as observed right after
Definition 5.7. Hence, we can apply Lemma 5.2 to G′ and U ′ to get an ordered sequence u1, . . . , ut
satisfying NG

′
(ui) \NG

′
({u1, . . . , ui−1}) 6= ∅. We will think of Player 1 as querying the (at most k)

vertices in U ′ in this order, after which he ends up with a position αend defined on the variables Uend.
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To argue that the position αend obtained in this way is consistent with β′ independently of how
Player 2 answers, and is hence contained in Cons

(
β′ ∗ v

)
, we show inductively that all positions en-

countered during the transition from αstart to αend are consistent with β′. As already noted, this holds
for the position α0 obtained from αstart by deleting all assignments of variables in Ustart \Uend. For the
induction step, let i ≥ 0 and assume inductively that the current position αi over

Ui := (Ustart ∩ Uend) ∪ {uj | 1 ≤ j ≤ i} (5.3)

is consistent with β′. Now Player 1 asks about the variable ui+1 and Player 2 answers with a value ai+1.
Since αi is consistent with β′, there is an assignment βext ⊇ β′ that sets the variables v ∈ N(Vars(αi))
to the right values such that αi(u) =

⊕
v∈N(u) βext(v) for all u ∈ Vars(αi). By our ordering of

U ′ =
{
u1, . . . , ut

}
chosen above we know that ui+1 has at least one neighbour on the right-hand side V

that is neither contained in NG(Ui) = NG(Vars(αi)) nor in the domain of β′. Hence, regardless of
which value ai+1 Player 2 chooses for her answer we can extend the assignment βext to the variables
NG(ui+1) \

(
NG
(
Vars(αi)

)
∪ Vars

(
β′
))

in such a way that
⊕

v∈N(ui+1) βext(v) = ai+1. This shows
that αi+1 defined over Ui+1 = (Ustart∩Uend)∪{uj | 1 ≤ j ≤ i+1} is consistent with β′. Subclaim 5.11
now follows by the induction principle. a

Before proving Subclaim 5.10, we should perhaps point out why this claim is not vacuous. Recalling
the discussion just below Lemma 5.3, this is because the condition V1 ⊆ V2 does not allow us to conclude
that γ(V1) ⊆ γ(V2).

Proof of Subclaim 5.10. The proof is similar to that of Subclaim 5.11 above. Player 1 starts with an
assignment αstart ∈ Cons(β) and wants to reach some assignment in Cons(β′) for β′ ⊆ β within
k rounds. By assumption, αstart is consistent with β and therefore (since β′ ⊆ β) is also consistent
with β′. Player 1 deletes all assignments from the domain Ustart = Ker(γ(Vars(β))) of αstart that do
not occur in the domain Uend = Ker(γ(Vars(β′))) of positions in Cons(β′), resulting in the position
α0 ⊆ αstart that is consistent with β′. Next, he applies Lemma 5.2 to G′ = G \ γ(Vars(β)) to obtain an
ordering of the remaining variables Uend \ Ustart. In the same way as above he can query the variables
in this order while maintaining the invariant that the current position is consistent with β′. a

Combining Subclaims 5.9, 5.10 and 5.11, we conclude that Player 1 wins from every position
α ∈ Cons(β) within 2ki rounds. This concludes the proof of Claim 5.8.

We are finally in a position to give a formal proof of Lemma 3.3.

Proof of Lemma 3.3. Let ∆0 ∈ N+ be the constant in Lemma 5.4. Suppose we are given an m-variable
p-XOR formula F and parameters `lo, `hi, r, ∆ satisfying the conditions in Lemma 3.3 that `hi/`lo ≥
∆ ≥ ∆0 and (2`hi∆)2∆ ≤ m.

Fix k := `hi and s := 2`hi. Since (s∆)2∆ ≤ m and ∆ ≥ ∆0, we appeal to Lemma 5.4 to obtain
an m× dm3/∆e (s,∆, 2)-boundary expander G = (U

.
∪ V,E), and applying XORification with respect

to G we construct the formula H := F [G]. Clearly, H is an (∆p)-XOR formula with
⌈
m3/∆

⌉
variables.

We want to prove that Player 1 has a winning strategy for the (∆`lo)-pebble game on H as guaranteed
by Lemma 3.3(a’), but that he does not win the `hi-pebble game on H within r/(2`hi) rounds as stated
in Lemma 3.3(b’).

For the upper bound in Lemma 3.3(a’), we recall that Player 1 has a winning strategy in the `lo-pebble
game on F by assumption (a) in the lemma. He can use this strategy to win the (∆`lo)-pebble game onH
as follows. Whenever his strategy tells him to ask for a variable u ∈ U = Vars(F ), he instead asks for
the at most ∆ variables in N(u) ⊆ V = Vars(H) and assigns to u the value that corresponds to the
parity of the answers Player 2 gives for N(u). In this way, he can simulate his strategy on F until he
reaches an assignment that contradicts an XOR clause C from F . As the corresponding assignment of
the variables {v | v ∈ N(u), u ∈ Vars(C)} falsifies the constraint C[G] ∈ H , at this point Player 1 wins
the (∆`lo)-pebble game on H .
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The lower bound in Lemma 3.3(b’) follows immediately from Lemma 5.6. By assumption (b) in
Lemma 3.3, Player 1 does not win the `hi-pebble game on F within r rounds. Since G is an m × n
(2k, 2)-boundary expander, Lemma 5.6 says that that he does not win the `hi-pebble game on H = F [G]
within r/(2`hi) rounds either. This concludes the proof of Lemma 3.3

6 Concluding Remarks

In this paper we prove an nΩ(k/ log k) lower bound on the minimal quantifier depth of Lk and Ck sen-
tences that distinguish two finite n-element relational structures, nearly matching the trivial nk−1 upper
bound. By the known connection to the k-dimensional Weisfeiler–Leman algorithm, this result im-
plies near-optimal nΩ(k/ log k) lower bounds also on the number of refinement steps of this algorithm.
The key technical ingredient in our proof is the hardness condensation technique recently introduced
by Razborov [Raz16] in the context of proof complexity, which we translate into the language of finite
variable logics and use to reduce the domain size of relational structures while maintaining the minimal
quantifier depth required to distinguish them.

An obvious open problem is to improve our lower bound. One way to achieve this would be to
strengthen the lower bound on the number of rounds in the k-pebble game on 3-XOR formulas in
Lemma 3.2 from n1/ log k to nδ for some δ � 1/ log k. By the hardness condensation lemma this
would directly improve our lower bound from nΩ(k/ log k) to nΩ(δk).

The structures on which our lower bounds hold are n-element relational structures of arity Θ(k)
and size nΘ(k). We would have liked to have this results also for structures of bounded arity, such as
graphs. However, the increase of the arity is inherent in the method of amplifying hardness by making
XOR substitutions. An optimal lower bound of nΩ(k) on the quantifier depth required to distinguish
two n-vertex graphs has been obtained by the first author in an earlier work [Ber14] for the existential-
positive fragment of Lk. Determining the quantifier rank of full Lk and Ck on n-vertex graphs remains an
open problem.

Another open question related to our results concerns the complexity of finite variable equivalence
for non-constant k. What is the complexity of deciding, given two structures and a parameter k, whether
the structures are equivalent in Lk or Ck? As this problem can be solved in time (‖A‖ + ‖B‖)O(k),
it is in EXPTIME if k is part of the input. It has been conjectured that this problem is EXPTIME-
complete [GKL+07], but it is not even known whether it is NP-hard. Note that the quantifier depth is
connected to the computational complexity of the equivalence problem by the fact that an upper bound
of the form nO(1) on n-element structures would have implied that testing equivalence is in PSPACE.
Hence, our lower bounds on the quantifier depth can be seen as a necessary requirement for establishing
EXPTIME-hardness of the equivalence problem.
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[Bab16] László Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the 48th Annual
ACM Symposium on Theory of Computing (STOC ’16), pages 684–697, June 2016.

[Bar77] Jon Barwise. On Moschovakis closure ordinals. Journal of Symbolic Logic, 42(2):292–296,
June 1977.

[Ben02a] Eli Ben-Sasson. Hard examples for the bounded depth Frege proof system. Computational
Complexity, 11(3-4):109–136, 2002.

[Ben02b] Eli Ben-Sasson. Size space tradeoffs for resolution. In Proceedings of the 34th Annual ACM
Symposium on Theory of Computing (STOC ’02), pages 457–464, May 2002. Journal version
in [Ben09].

[Ben09] Eli Ben-Sasson. Size-space tradeoffs for resolution. SIAM Journal on Computing,
38(6):2511–2525, May 2009. Preliminary version in STOC ’02.

[Ber14] Christoph Berkholz. The propagation depth of local consistency. In Proceedings of the 20th
International Conference on Principles and Practice of Constraint Programming (CP ’14),
pages 158–173, September 2014.

[BGIP01] Samuel R. Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps
between degrees for the polynomial calculus modulo distinct primes. Journal of Computer
and System Sciences, 62(2):267–289, March 2001. Preliminary version in CCC ’99.

[BN08] Eli Ben-Sasson and Jakob Nordström. Short proofs may be spacious: An optimal separation
of space and length in resolution. In Proceedings of the 49th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’08), pages 709–718, October 2008.

[BN11] Eli Ben-Sasson and Jakob Nordström. Understanding space in proof complexity: Separations
and trade-offs via substitutions. In Proceedings of the 2nd Symposium on Innovations in
Computer Science (ICS ’11), pages 401–416, January 2011.

[BN16] Christoph Berkholz and Jakob Nordström. Supercritical space-width trade-offs for resolution.
In Proceedings of the 43rd International Colloquium on Automata, Languages and Program-
ming (ICALP ’16), volume 55 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 57:1–57:14, July 2016.

[BNT13] Chris Beck, Jakob Nordström, and Bangsheng Tang. Some trade-off results for polyno-
mial calculus. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing
(STOC ’13), pages 813–822, May 2013.

[BP07] Joshua Buresh-Oppenheim and Toniann Pitassi. The complexity of resolution refinements.
Journal of Symbolic Logic, 72(4):1336–1352, December 2007. Preliminary version in
LICS ’03.

24

http://people.cs.uchicago.edu/~razborov/files/misha.pdf
http://people.cs.uchicago.edu/~razborov/files/misha.pdf


References

[BW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple. Jour-
nal of the ACM, 48(2):149–169, March 2001. Preliminary version in STOC ’99.
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A Existence and Properties of Expander Graphs

In this appendix we present proofs of Lemmas 5.3 and 5.4, starting with the latter lemma. We again
remark that most of this material can already be found in a similar form in [Raz16], although the exact
parameters are somewhat different. It also seems appropriate to point out that there is a significant
overlap with essentially identical technical lemmas in [BN16].

Just to avoid ambiguity, let us state explicitly that even though we have the Euler number e appearing
below, we still think of all logarithms as being taken to base 2 (though this should not really matter).

Lemma 5.4 (restated). There is an absolute constant ∆0 ∈ N+ such that for all ∆, s, m satisfying
∆ ≥ ∆0 and (s∆)2∆ ≤ m there exist m×

⌈
m3/∆

⌉
(s,∆, 2)-boundary expanders.

Proof. Let U and V be two disjoint sets of vertices of size |U | = m and |V | = n =
⌈
m3/∆

⌉
. For

every u ∈ U we choose ∆ times a neighbour v ∈ V uniformly at random with repetitions. This yields a
bipartite graph G = (U

.
∪ V,E) of left-degree at most ∆. In the sequel we show that G is likely to be an

(s,∆, 2)-boundary expander.
First note that for every set U ′ ⊆ U all neighbours v ∈ N (U ′) \ ∂(U ′) that are not in the boundary

of U ′ have at least two neighbours in U ′. Since there are at most ∆|U ′| − |∂(U ′)| edges between U ′ and
N (U ′) \ ∂(U ′), it follows that |N (U ′) \ ∂(U ′)| ≤ (∆|U ′| − |∂(U ′)|)/2 and hence

|N (U ′)| ≤ |∂(U ′)|+ ∆|U ′|
2

. (A.1)

If G is not an (s,∆, 2)-boundary expander, then there is a set U ′ of size
∣∣U ′∣∣ = ` ≤ s that has a

boundary ∂(U ′) of size
∣∣∂(U ′)

∣∣ < 2` and from (A.1) it then follows that |N (U ′)| < (1 + ∆/2)`. By a
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union bound argument (and relaxing to non-strict inequalities) we obtain

Pr[G is not an (s,∆, 2)-boundary expander] (A.2a)

≤
s∑
`=1

∑
U ′⊆U ; |U ′|=`

Pr
[
|∂(U ′)| ≤ 2`

]
(A.2b)

≤
s∑
`=1

∑
U ′⊆U ; |U ′|=`

Pr
[
|N (U ′)| ≤ (1 + ∆/2)`

]
(A.2c)

≤
s∑
`=1

(
m

`

)(
n

(1 + ∆/2)`

)(
(1 + ∆/2)`

n

)∆`

(A.2d)

≤
s∑
`=1

m`

(
en

(1 + ∆/2)`

)(1+∆/2)`((1 + ∆/2)`

n

)∆`

(A.2e)

=
s∑
`=1

m`(en)(1+∆/2)` ((1 + ∆/2)`)(∆/2−1)` n−∆` (A.2f)

≤
s∑
`=1

n(∆/3)`(en)(1+∆/2)` ((1 + ∆/2)`)(∆/2−1)` n−∆` (A.2g)

=
s∑
`=1

n(∆/3)`n
log e
logn

(1+∆/2)`
n

1
logn

log
(

(∆/2+1)`
)

(∆/2−1)`
n(−∆/2+1)` (A.2h)

≤
s∑
`=1

n

(
log e
logn

∆+ 1
logn

log(∆s)(∆/2−1)−∆/6+1
)
`
, (A.2i)

where in going from (A.2d) to (A.2e) we use the inequality
(
n
k

)
≤
(
en
k

)k for e ≈ 2.718 denoting the
Euler number, and in going from (A.2h) to (A.2i) we assume that ∆ ≥ 2 and also use that ` ≤ s.

In order to show that the expression (A.2i) is bounded away from 1—which implies that G is an
(s,∆, 2)-boundary expander with constant probability—it suffices to study the exponent and prove that
there is a constant ε > 0 such that

log e

log n
∆ +

1

log n
log(∆s)

(
∆

2
− 1

)
− ∆

6
+ 1 ≤ −ε < 0 , (A.3)

which holds if there is a constant ε′ = ε/∆ such that

log e

log n
+

1

log n
log(∆s)

(
1

2
− 1

∆

)
− 1

6
+

1

∆
≤ −ε′ < 0 . (A.4)

Since (s∆)2∆ ≤ m ≤ n∆/3 we have s∆ ≤ n1/6, and it follows that

log e

log n
+

log(∆s)(1/2− 1/∆)

log n
− 1

6
+

1

∆
(A.5a)

≤ log e

log n
+

log
(
n1/6

)
2 log n

− 1

6
+

1

∆
(A.5b)

=
log e

log n
− 1

12
+

1

∆
(A.5c)

≤ −ε′ < 0 (A.5d)

where we can make the last inequality hold for ε′ small enough and n and ∆ large enough. Fix ε′

satisfying 0 < ε′ < 1/12 and choose n0 so that the inequality between (A.5c) and (A.5d) holds for
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any n ≥ n0 and ∆ ≥ 13. Then we obtain that (A.2i) is bounded by
∑s

`=1 n
−ε′`. Insisting in addition

that n ≥ 31/ε′ , we can upper-bound (A.2i) by

s∑
`=1

n−ε
′` ≤

∞∑
`=1

(
1
3

)` ≤ 1
2 . (A.6)

It remains to calculate how to set ∆0 to make sure that all of these conditions hold. Note that by as-
sumption we have (s∆)2∆ ≤ m, which implies that ∆∆ ≤ m. It follows that we will always have n =⌈
m3/∆

⌉
≥ (∆∆)3/∆ = ∆3 ≥ (∆0)3 and hence it is sufficient to choose ∆0 ≥ max

(
n0

1/3, 31/3ε′ , 13
)
.

This concludes the proof of the lemma.

We next prove that in a good enough boundary expander it holds that for any small enough right
vertex set V ′ there is a superset γ

(
V ′
)
⊇ V ′ with a small kernel such that the induced subgraph G\γ(V ′)

(obtained from G by deleting V ′ and then all isolated vertices from U ) is also a good boundary expander.
Recall that we refer to this set γ

(
V ′
)

as the closure of V ′.

Lemma 5.3 (restated). Let G be an (s, 2)-boundary expander. Then for every V ′ ⊆ V with |V ′| ≤ s/2
there exists a subset γ

(
V ′
)
⊆ V with γ(V ′) ⊇ V ′ such that

∣∣Ker
(
γ
(
V ′
))∣∣ ≤ ∣∣V ′∣∣ and the induced

subgraph G \ γ(V ′) is an (s/2, 1)-boundary expander.

Proof. Let G = (U
.
∪ V,E) be an (s, 2)-boundary expander and let V ′ ⊆ V have size |V ′| ≤ s/2.

We construct an increasing sequence V ′ = V0 ⊂ V1 ⊂ · · · ⊂ Vτ = γ(V ′) such that G \ Vτ is an
(s/2, 1)-boundary expander as follows.

If G \ V0 is not an (s/2, 1)-boundary expander, then there exists a set U1 of size |U1| ≤ s/2 such
that

∣∣∂G\V0(U1)
∣∣ ≤ |U1|. Delete U1 and all its neighbours from G \ V0. If the resulting graph is not an

(s/2, 1)-boundary expander, we repeat this process and iteratively delete vertex sets that do not satisfy
the expansion condition. Formally, for i ≥ 1 fix Ui to be any set of size |Ui| ≤ s/2 such that∣∣∂G\Vi−1(Ui)

∣∣ ≤ |Ui| , (A.7)

where we set

Vi := V0 ∪
i⋃

j=1

N G(Uj) (A.8)

(and where we note that, formally speaking, what is deleted at the ith step is N G(Ui) together with the
kernel Ker(N G(Ui)) of this right vertex set). Since all sets Ui constructed above are non-empty, this
process must terminate for some i = τ and the resulting graph G \ Vτ is then an (s/2, 1)-boundary
expander (note that an empty graph without vertices vacuously satisfies the expansion condition). It
remains to verify that the size condition |Ker(Vτ )| ≤ |V0| for the kernel of the closure of V ′ holds. This
is immediately implied by the following inductive claim.

Claim A.1. Let V−1 = U0 = ∅ and suppose that i ≥ 0. Then for Ui satisfying (A.7) and Vi defined
by (A.8) the following properties hold:

1. For all U ′ such that Ker(Vi−1) ∪ Ui ⊆ U ′ ⊆ Ker(Vi) we have
∣∣∂G(U ′) \ V0

∣∣ ≤ |Ker(Vi)|.

2. The kernel of Vi has size |Ker(Vi)| ≤ |V0|.

For i = 0, Property 1 in Claim A.1 follows because U ′ ⊆ Ker(V0) implies that ∂G(U ′) ⊆ V0. For
Property 2, suppose that |Ker(V0)| ≤ s. Then expansion implies 2|Ker(V0)| ≤ |∂G(Ker(V0))|, and
combining this with ∂G(Ker(V0)) ⊆ V0 we obtain |Ker(V0)| ≤ 1

2 |V0|. If instead |Ker(V0)| > s, then
we can find a subset U ′ ⊆ Ker(V0) of size |U ′| = s. By expansion we have |∂G(U ′)| ≥ 2s, which is a
contradiction because as argued above we should have

∣∣∂G(U ′)
∣∣ ≤ |V0| ≤ s/2.

For the induction step, suppose that both properties hold for i− 1. Let U∗ = Ker(Vi−1) ∪ Ui and
consider any U ′ satisfying U∗ ⊆ U ′ ⊆ Ker(Vi). We claim that every boundary element in ∂G(U ′) is
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either a boundary element from ∂G(U∗) or is contained in V0. To see this, note that since U ′ ⊆ Ker(Vi)
we have ∂G(U ′) ⊆ Vi = V0 ∪

⋃i
j=1N G(Uj). Furthermore, it can be observed that

⋃i
j=1 Uj ⊆ U∗ ⊆ U ′

(this is basically due to the fact that N (Ker(V ′)) ⊆ V ′ for any V ′). Hence, if v ∈ ∂G(U ′) \ V0, then it
must hold that v ∈

⋃i
j=1N G(Uj), and so the unique neighbour of v on the left is contained in

⋃i
j=1 Uj

and therefore also in U∗, implying that v ∈ ∂(U∗). This yields that

∂G(U ′) \ V0 ⊆ ∂G(U∗) \ V0 (A.9)

as claimed, and in what follows we will show∣∣∂G(U∗) \ V0

∣∣ =
∣∣∂G(Ker(Vi−1) ∪ Ui) \ V0

∣∣ ≤ |Ker(Vi)| (A.10)

in order to prove Property 1.
Note that by construction every vertex in Vi−1\V0 has at least one neighbour in Ker(Vi−1). It follows

that all new boundary vertices in ∂G(Ker(Vi−1) ∪ Ui) \ ∂G(Ker(Vi−1)) are either from V0 or from the
boundary ∂G\Vi−1(Ui) of Ui outside of Vi−1. Therefore we have

∂G(U∗) \ V0 = ∂G
(
Ker(Vi−1) ∪ Ui

)
\ V0 ⊆

(
∂G(Ker(Vi−1)) \ V0

) .
∪ ∂G\Vi−1(Ui) . (A.11)

Since by assumption Ui does not satisfy the expansion condition we know that∣∣∂G\Vi−1(Ui)
∣∣ ≤ |Ui| (A.12)

and by the inductive hypothesis concerning Property 1 we have∣∣∂G(Ker(Vi−1)) \ V0

∣∣ ≤ |Ker(Vi−1)| . (A.13)

Combining (A.9) with (A.11)–(A.13) we deduce that∣∣∂G(U ′) \ V0

∣∣ ≤ ∣∣∂G(Ker(Vi−1) ∪ Ui) \ V0

∣∣ ≤ |Ker(Vi−1)|+ |Ui| ≤ |Ker(Vi)| , (A.14)

where the final inequality holds since Ker(Vi−1) and Ui are disjoint subsets of Ker(Vi). This concludes
the inductive step for Property 1.

To establish Property 2, assume first that |Ker(Vi)| ≤ s. Then by expansion and Property 1 applied
to U ′ = Ker(Vi) we have

2|Ker(Vi)| ≤
∣∣∂G(Ker(Vi))

∣∣ ≤ |V0|+ |Ker(Vi)| (A.15)

and hence
|Ker(Vi)| ≤ |V0| (A.16)

as desired. If instead |Ker(Vi)| > s, then by the inductive hypothesis we know that |Ker(Vi−1)| ≤ s/2
and by construction we have |Ui| ≤ s/2. Therefore we can find a set U ′ of size |U ′| = s satisfying
the condition Ker(Vi−1) ∪ Ui ⊆ U ′ ⊆ Ker(Vi) in Property 1. From the expansion properties of G we
conclude that |∂(U ′)| ≥ 2s, which is a contradiction because for sets U ′ satisfying the conditions in
Property 1 we derived (A.14), which implies that |∂(U ′)| ≤ |V0|+ |Ker(Vi−1)|+ |Ui| ≤ 3s/2.
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