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Abstract

A Boolean k-monotone function defined over a finite poset domain D alternates between the
values 0 and 1 at most k times on any ascending chain in D. Therefore, k-monotone functions are
natural generalizations of the classical monotone functions, which are the 1-monotone functions.

Motivated by the recent interest in k-monotone functions in the context of circuit complexity
and learning theory, and by the central role that monotonicity testing plays in the context of
property testing, we initiate a systematic study of k-monotone functions, in the property testing
model. In this model, the goal is to distinguish functions that are k-monotone (or are close to
being k-monotone) from functions that are far from being k-monotone.

Our results include the following:
1. We demonstrate a separation between testing k-monotonicity and testing monotonicity, on

the hypercube domain {0, 1}d, for k ≥ 3;
2. We demonstrate a separation between testing and learning on {0, 1}d, for k = ω(log d):

testing k-monotonicity can be performed with 2O(
√

d·log d·log 1/ε) queries, while learning
k-monotone functions requires 2Ω(k·

√
d·1/ε) queries (Blais et al. (RANDOM 2015)).

3. We present a tolerant test for functions f : [n]d → {0, 1} with complexity independent of n,
which makes progress on a problem left open by Berman et al. (STOC 2014).

Our techniques exploit the testing-by-learning paradigm, use novel applications of Fourier
analysis on the grid [n]d, and draw connections to distribution testing techniques.
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1 Introduction
A function f : D → {0, 1}, defined over a finite domain D equipped with a partial order, is said
to be k-monotone, for some integer k ≥ 0, if there does not exist x1 � x2 � . . . � xk+1 in D such
that f(x1) = 1 and f(xi) 6= f(xi+1) for all i ∈ [k]. Note that 1-monotone functions are the classical
monotone functions, satisfying f(x1) ≤ f(x2), whenever x1 � x2.

Monotone functions have been well-studied on multiple fronts in computational complexity
due to their natural structure. They have been celebrated for decades in the property testing
literature [GGL+00, DGL+99, FLN+02, BCGM12, CS13b, CS13a, CS14], where we have recently
witnessed ultimate results [KMS15, CDST15, BB16], in the circuit complexity literature, where we
now have strong lower bounds [RW92, Raz85], and in computational learning, where we now have
learning algorithms in numerous learning models [BT96, Ang87, KV94, Ser04, OS07, OW09].

The generalized notion of k-monotonicity has also been studied in the context of circuit lower
bounds for more than 50 years. In particular, Markov [Mar57] showed that any k-monotone function
(even with multiple outputs) can be computed using circuits containing only log k negation gates.
The presence of negation gates appears to be a challenge in proving circuit lower bounds: “the effect
of such gates on circuit size remains to a large extent a mystery” [Juk12]. The recent results of
Blais et al. [BCO+15] on circuit lower bounds have prompted renewed interest in understanding
k-monotone functions from multiple angles, including cryptography, circuit complexity, learning
theory, and Fourier analysis ([Ros15, GMOR15, GK15, LZ16]).

Motivated by the exponential lower bounds on PAC learning k-monotone functions due to [BCO+15],
we initiate the study of k-monotonicity in the closely related Property Testing model. In this model,
given query access to a function, one must decide if the function is k-monotone, or is far from being
k-monotone, by querying the input only in a small number of places.

1.1 Our results

We focus on testing k-monotonicity of Boolean functions defined over the d-dimensional hypegrid
[n]d, and the hypercube {0, 1}d. We begin our presentation with the results for the hypercube, in
order to build intuition into the difficulty of the problem, while comparing our results with the
current literature on testing monotonicity. Our stronger results concern the hypegrid [n]d.

1.1.1 Testing k-monotonicity on the hypercube {0, 1}d

In light of the recent results of [KMS15] that provide a O(
√
d)-query tester for monotonicity, we first

show that testing k-monotonicity is strictly harder than testing monotonicity on {0, 1}d, for k ≥ 3.

Theorem 1.1. For any constant k ≥ 1, any one-sided non-adaptive tester for k-monotonicity of
functions f : {0, 1}d → {0, 1} must make Ω

(
dk/4

)
queries.

Both Theorem 1.1 and its proof generalize the Ω(d1/2) lower bound for testing monotonicity,
due to Fischer et al. [FLN+02].

On the upper bounds side, while the monotonicity testing problem is providing numerous poten-
tial techniques for approaching this new problem [GGL+00, DGL+99, CS13a, BCGM12, CST14,
KMS15], most common techniques appear to resist generalizations to k-monotonicity. However, our
upper bounds demonstrate a separation between testing and PAC learning k-monotonicity, for large
enough values of k = ω(log d).
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Theorem 1.2. There exists a one-sided non-adaptive tester for k-monotonicity of functions
f : {0, 1}d → {0, 1} with query complexity q(d, ε, k) = 2O(

√
d·log d·log 1

ε ).

Indeed, in the related PAC learning model, [BCO+15] shows that learning k-monotone functions
on the hypercube requires 2Ω(k·

√
d·1/ε) many queries.

We further observe that the recent non-adaptive and adaptive 2-sided lower bounds of [CDST15,
BB16], imply the same bounds for k-monotonicity, using black box reductions. We summarize the
state of the art for testing k-monotonicity on the hypercube in Table 1.

upper bound 1.s.-n.a. lower bound 2.s.-n.a. lower bound 2.s.-a. lower bound
k = 1 O

(√
d
)
[KMS15] Ω

(
d1/2

)
[FLN+02] Ω

(
d1/2−o(1)

)
[CDST15] Ω̃

(
d1/4

)
[BB16]

k ≥ 2 dO(k
√
d) [BCO+15],

dO(
√
d) Thm 1.2

Ω
(
dk/4

)
Thm 1.1,

(k = O(1))
Ω
(
d1/2−o(1)

)
Cor 3.7 Ω̃

(
d1/4

)
Cor 3.7

Table 1: Testing k-monotonicity of a function f : {0, 1}d → {0, 1}

1.1.2 Testing k-monotonicity on the hypergrid [n]d

The remainder of the paper focuses on functions defined over the d-dimensional hypergrid domain
[n]d, where we denote by (i1, i2, . . . , in) � (j1, j2, . . . , jn) the partial order in which i1 ≤ j1, i2 ≤
j2, . . . , in ≤ jn. Testing monotonicity has received a lot of attention over the d-dimensional hypergrids
[GGL+00, EKK+00, Fis04, BRW05, AC06, HK08, BBM12, CS13b, CS13a, CS14, BRY14], where
the problem is well-understood, and we refer the reader to Table 4 in the appendix for a detailed
review on the state of the art in the area. We summarize our results on testing k-monotonicity over
[n]d in Table 2.

General k k = 2 k = 1 (monotonicity)
d = 1 Θ

(
k
ε

)
1.s.-n.a., Õ

(
1
ε7

)
2.s.-n.a. O

(
1
ε

)
1.s.-n.a. Θ

(
1
ε

)
1.s.-n.a.

d = 2 Õ
(
k2

ε3

)
2.s.-n.a. (from below) Θ

(
1
ε

)
2.s.-a. Θ

(
1
ε log 1

ε

)
1.s.-n.a., Θ

(
1
ε

)
1.s.-a.

d ≥ 3 Õ

(
1
ε2

(
5kd
ε

)d)
2.s.-n.a., Õ

(
1
ε2

(
10d
ε

)d)
2.s.-n.a.

O
(
d
ε log d

ε

)
1.s.-n.a.

2Õ(k
√
d/ε2) 2.s.-n.a. 2Õ(

√
d/ε2) 2.s.-n.a.

Table 2: Summary of our results: testing k-monotonicity of a function f : [n]d → {0, 1} (first two
columns). The last column contains known bounds on monotonicity testing (see Appendix A) and
is provided for comparison.

Testing k-monotonicity on the line and the 2-dimensional grid We begin with a study
of function f : [n] → {0, 1}. As before, note that 1-sided tests should always accept k-monotone
functions, and so, they must accept unless they discover a violation to k-monotonicity in the form
of a sequence x1 � x2 � . . . � xk+1 in [n]d, such that f(x1) = 1 and f(xi) 6= f(xi+1). Therefore,
lower bounds for 1-sided k-monotonicity testing must grow at least linearly with k. We show that
this is indeed the case for both adaptive and non-adaptive tests, and more over, we give a tight
non-adaptive algorithm. Consequently, our results demonstrate that adaptivity does not help in
testing k-monotonicity with one-sided error on the line domain.
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Theorem 1.3. Any one-sided (possibly adaptive) tester for k-monotonicity of functions f : [n]→
{0, 1} must have query complexity Ω

(
k
ε

)
.

The upper bound generalizes the O(1/ε) tester for monotonicity on the line.

Theorem 1.4. There exists a one-sided non-adaptive tester for k-monotonicity of functions f : [n]→
{0, 1} with query complexity q(n, ε, k) = O

(
k
ε

)
.

Testing with 2-sided error, however, does not require a dependence on k. In fact the problem
has been well-studied in the machine learning literature in the context of testing/learning “union of
intervals” [KR00, BBBY12], and in testing geometric properties, in the context of testing surface
area [KNOW14, Nee14],1 resulting in an O(1/ε7/2)-query algorithm. Namely, the starting point
of [BBBY12] (later improved by [KNOW14]) is a “Buffon Needle’s”-type argument, where the
crucial quantity to analyze is the noise sensitivity of the function that is the probability that a
randomly chosen pair of nearby points cross a “boundary” – i.e., have different values. (Moreover,
the algorithm of [BBBY12] works in the active testing setting: it only requires a weaker access
model that the standard query model.)

We provide an alternate proof of a poly(1/ε) bound (albeit with a worse exponent) that reveals
a surprising connection with distribution testing, namely with the problem of estimating the support
size of a distribution.

Theorem 1.5. There exists a two-sided non-adaptive tester for k-monotonicity of functions f : [n]→
{0, 1} with query complexity q(n, ε, k) = Õ

(
1/ε7), independent of k.

An immediate implication of Theorem 1.5 is that one can test even n1−α-monotonicity of
f : [n]→ {0, 1}, for every α > 0, with a constant number of queries. Hence, there is a separation
between 1-sided and 2-sided testing, for k = ω(1).

Turning to the 2-dimensional grid, we show that 2-monotone functions can be tested with the
minimum number of queries one could hope for:

Theorem 1.6. There exists a two-sided adaptive tester for 2-monotonicity of functions f : [n]2 →
{0, 1} with query complexity q(n, ε) = O

(
1
ε

)
.

We also discuss possible generalizations of Theorem 1.6 to general k or d section, Section 5.2.

Testing k-monotonicity on [n]d, tolerant testing, and distance approximation Moving
to the general grid domain [n]d, we show that k-monotonicity is testable with poly(1/ε, k) queries
in constant-dimension grids.

Theorem 1.7. There exists a non-adaptive tester for k-monotonicity of functions f : [n]d → {0, 1}
with query complexity q(n, d, ε, k) = min(Õ

(
1
ε2

(
5kd
ε

)d)
, 2Õ(k

√
d/ε2)).

In fact, we obtain more general testing algorithms than in Theorem 1.7, namely our results hold
for tolerant testers.

The notion of tolerant testing was first introduced in [PRR06] to account for the possibility of
noisy data. In this notion, a test should accept inputs that are ε1-close to the property, and reject

1We thank Eric Blais for mentioning the connection, and pointing us to these works
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inputs that are ε2-far from the property, where ε1 and ε2 are given parameters. Tolerant testing
is intimately connected to the notion of distance approximation: given tolerant testers for every
(ε1, ε2), there exists an algorithm that estimates the distance to the property within any (additive)
ε, while incurring only a Õ

(
log 1

ε

)
factor blow up in the number of queries. Furthermore, [PRR06]

shows that both tolerant testing and distance approximation are no harder than agnostic learning.
We prove the following general result.

Theorem 1.8. There exist
• a non-adaptive (fully) tolerant tester for k-monotonicity of functions f : [n]d → {0, 1} with
query complexity q(n, d, ε1, ε2, k) = Õ

(
1

(ε2−ε1)2

(
5kd
ε2−ε1

)d)
;

• a non-adaptive tolerant tester for k-monotonicity of functions f : [n]d → {0, 1} with query
complexity q(n, d, ε1, ε2, k) = 2Õ(k

√
d/(ε2−3ε1)2), under the restriction that ε2 > 3ε1.

To the best of our knowledge, the only previous results for tolerant testing for monotonicity
on [n]d are due to Fattal and Ron [FR10]. They give both additive and multiplicative distance
approximations algorithms, and obtain O(d)-multiplicative and ε-additive approximations with
query complexity poly(1

ε ). While very efficient, there results only give fully tolerant testers for
dimensions d = 1 and d = 2. Our results generalize the work of [FR10] showing existence of tolerant
testers for k-monotonicity (and hence for monotonicity) for any dimension d ≥ 1, and any k ≥ 1,
but paying the price in the query complexity.

As a consequence to Theorem 1.8, we make progress on an open problem of Berman et al. [BRY14],
as explained next.

Testing k-monotonicity under Lp distance The property of being a monotone Boolean func-
tion has a natural extension to real-valued functions. Indeed, a real-valued function defined over a
finite domain D is monotone if f(x) ≤ f(y) whenever x � y. For real-valued functions the more
natural notion of distance is Lp distance, rather than Hamming distance. The study of monotonicity
has been extended to real-valued functions in a recent work by Berman et al. [BRY14]. They give
tolerant testers for grids of dimension d = 1 and d = 2, and leave open the problem of extending the
results to general d, as asked explicitly at the recent Sublinear Algorithms Workshop 2016 [Sub16].

We make progress towards solving this open problem, by combining our Theorem 1.8 with a
reduction from Lp testing to Hamming testing from [BRY14].

Theorem 1.9. There exists a non-adaptive tolerant L1-tester for monotonicity of functions
f : [n]d → {0, 1} with query complexity

• Õ
(

1
(ε2−ε1)2

(
5d

ε2−ε1

)d)
, for any 0 ≤ ε1 < ε2 ≤ 1;

• 2Õ(
√
d/(ε2−3ε1)2), for any 0 ≤ 3ε1 < ε2 ≤ 1.

1.2 Proofs overview and technical contribution

Structural properties and the separation between testing and learning on {0, 1}d. We
first observe that basic structural properties, such as extendability (i.e. the feature that a function
that is monotone on a sub-poset of [n]d can be extended into a monotone function on the entire poset
domain), and properties of the violation graph (i.e., the graph whose edges encode the violations
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to monotonicity), extend easily to k-monotonicity (see Appendix B). These properties help us
to argue the separation between testing and learning (Theorem 1.2). However, unlike the case of
monotonicity testing, these properties do not seem to be enough for showing upper bounds that
grow polynomially in d.

Grid coarsening and testing by implicit/explicit learning. One pervading technique, which
underlies all the hypergrid upper bounds in this work, is that of gridding: i.e., partitioning the
domain into “blocks” whose size no longer depends on the main parameter of the problem, n.
This technique generalizes the approach of [FR10] who performed a similar gridding for dimension
d = 2. By simulating query access to the “coarsened” version of the unknown function (with
regard to these blocks), we are able to leverage methods such as testing-by-learning (either fully or
partially learning the function), or reduce our testing problem to a (related) question on these nicer
“coarsenings.” (The main challenge here lies in providing efficient and consistent oracle access to the
said coarsenings.)

At a high-level, the key aspect of k-monotonicity which makes this general approach possible is
reminiscent of the concept of heredity in property testing. Specifically, we rely upon the fact that
“gridding preserves k-monotonicity:” if f is k-monotone, then so will be its coarsening g – but now g
is much simpler to handle. This allows us to trade the domain [n]d for what is effectively [m]d, with
m� n. We point out that this differs from the usual paradigm of dimension reduction: indeed, the
latter would reduce the study of a property of functions on [n]d to that of functions on [n]d′ for
d′ � d (usually even d′ = 1) by projecting f on a lower-dimensional domain. In contrast, we do not
take the dimension down, but instead reduce the size of the alphabet. Moreover, it is worth noting
that this gridding technique is also orthogonal to that of range reduction, as used e.g. in [DGL+99].
Indeed, the latter is a reduction of the range of the function from [R] to {0, 1}, while gridding is
only concerned about the domain size.

Estimating the support of distributions. Our proof of the poly(1/ε) upper bound for testing
k-monotonicity on the line (Theorem 1.5) rests upon an unexpected connection to distribution
testing, namely to the question of support size estimation of a probability distribution. In more
detail, we describe how to reduce k-monotonicity testing to the support size estimation problem
in (a slight modification of) the Dual access model introduced by Canonne and Rubinfeld [CR14],
where the tester is granted samples from an unknown distribution as well as query access to its
probability mass function.

For our reduction to go through, we first describe how any function f : [n]→ {0, 1} determines
a probability distribution Df (on [n]), whose effective support size is directly related to the k-
monotonicity of f . We then show how to implement dual access to this Df from queries to f : in
order to avoid any dependence on k and n in this step, we resort both to the gridding approach
outlined above (allowing us to remove n from the picture) and to a careful argument to “cap”
the values of Df returned by our simulated oracle. Indeed, obtaining the exact value of Df (x)
for arbitrary x may require Ω(k) queries to f , which we cannot afford; instead, we argue that
only returning Df (x) whenever this value is “small enough” is sufficient. Finally, we show that
implementing this “capped” dual access oracle is possible with no dependence on k whatsoever, and
we can now invoke the support size estimation algorithm of [CR14] to conclude.
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Fourier analysis on the hypergrid. We give an algorithm for fully tolerantly testing k-
monotonicity whose query complexity in exponential in d. We also describe an alternate tester (with
a slightly worse tolerance guarantee) whose query complexity is instead exponential in Õ(k

√
d) for

constant distance parameters. As mentioned above, we use our gridding approach combined with
tools from learning theory. Specifically, we employ an agnostic learning algorithm of [KKMS08]
using polynomial regression. Our coarsening methods allow us to treat the domain as if it were [m]d
for some m that is independent of n. To prove that this agnostic learning algorithm will succeed,
we turn to Fourier analysis over [m]d. We extend the bound on average sensitivity of k-monotone
functions over the Boolean hypercube from [BCO+15] to the hypergrid, and we show that this result
implies that the Fourier coefficients are concentrated on “simple” functions.

1.3 Discussion and open problems

This is the first work to study k-monotonicity, a natural and well-motivated generalization of
monotonicity. Hence this work opens up many intriguing questions in the area of property testing,
with potential applications to learning theory, circuit complexity and cryptography.
As previously mentioned, the main open problem prompted by our work is the following:

Can k-monotonicity on the hypercube {0, 1}d be tested with poly(dk) queries?

A natural 1-sided tester for k-monotonicity is a chain tester: it queries points along a random
chain, and rejects only if it finds a violation to k-monotonicity, in the form of a sequence x1 �
x2 � . . . � xk+1 in {0, 1}d, such that f(x1) = 1 and f(xi) 6= f(xi+1). In particular, the testers
in [GGL+00, CS13a, CST14, KMS15] all directly imply a chain tester. We conjecture that there
exists a chain tester for k-monotonicity that succeeds with probability d−O(k).

Another important open question concerns the hypergrid domain, and in particular it pushes for
a significant strengthening of Theorem 1.7 and Theorem 1.9:

Can k-monotonicity on the hypergrid [n]d be (tolerantly) tested with 2ok(
√
d) queries?

Answering this question would imply further progress on the L1-testing question for monotonicity,
left open in [BRY14, Sub16].

There also remains the question of establishing two-sided lower bounds that would go beyond
those of monotonicity. Specifically:

Is there an dΩ(k)-query two-sided lower bound for k-monotonicity on the hypercube
{0, 1}d?

In this work we also show surprising connections to distribution testing (e.g. in the proof
of Theorem 1.5), and to testing union of intervals and testing surface area (as discussed in Section 4.2).
An intriguing direction is to generalize this connection to union of intervals and surface area in
higher dimensions, to leverage or gain insight on k-monotonicity on the d-dimensional hypergrid.

Finally, while we only stated here a few directions, we emphasize that every question that is
relevant to monotonicity is also relevant and interesting in the case of k-monotonicity.
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1.4 Related work

As mentioned, k-monotonicity has deep connections with the notion of negation complexity of
functions, which is the minimum number of negation gates needed in a circuit to compute a given
function. The power of negation gates is intriguing and far from being understood in the context of
circuit lower bounds. Quoting from Jukna’s book [Juk12], the main difficulty in proving nontrivial
lower bounds on the size of circuits using AND, OR, and NOT is the presence of NOT gates: we
already know how to prove even exponential lower bounds for monotone functions if no NOT gates
are allowed. The effect of such gates on circuit size remains to a large extent a mystery.

This gap has motivated the study of circuits with few negations. Two notable works successfully
extend lower bounds in the monotone setting to negation-limited setting: in [AM05], Amano and
Maruoka show superpolynomial circuit lower bounds for (1/6) log logn negations using the Clique
function; and recently the breakthrough work of Rossman [Ros15] establishes circuit lower bounds
for NC1 with roughly 1

2 logn negations by drawing upon his lower bound for monotone NC1.
The divide between the understanding of monotone and non-monotone computation exists in

general: while we usually have a fairly good understanding of the monotone case, many things get
murky or fail to hold even when a single negation gate is allowed. In order to get a better grasp on
negation-limited circuits, a body of recent work has been considering this model in various contexts:
Blais et al. [BCO+15] study negation-limited circuits from a computational learning viewpoint,
Guo et al. [GMOR15] study the possibility of implementing cryptographic primitives using few
negations, and Lin and Zhang [LZ16] are interested in verifying whether some classic Boolean
function conjectures hold for the subset of functions computed by negation-limited circuits.

Many of these results implicitly or explicitly rely on a simple but powerful tool: the decomposition
of negation-limited circuits into a composition of some “nice” function with monotone components.
Doing so enables one to apply results on separate monotone components, and finally to carefully
combine the outcomes (e.g., [GK15]). Though these techniques can yield results for as many as
O(logn) negations, they also leave open surprisingly basic questions:
• [BCO+15] Can we have an efficient weak learning algorithm for functions computed by circuits
with a single negation?
• [GMOR15] Can we obtain pseudorandom generators when allowing only a single negation?
In contexts where the circuit size is not the quantity of interest, the equivalent notion of

2-monotone functions is more natural than that of circuits allowing only one negation. Albeit
seemingly simple, even the class of 2-monotone functions remains largely a mystery: as exemplified
above, many basic yet non-trivial questions, ranging from the structure of their Fourier spectrum to
their expressive power of k-monotone functions, remain open.

1.5 Organization of the paper

After recalling some notations and definitions in Section 2, we consider the case of the Boolean
hypercube in Section 3, where we establish lower bounds on testing k-monotonicity of functions
f : {0, 1}d → {0, 1} for both one- and two-sided algorithms, and provide an algorithm which “beats”
the testing-by-learning approach, showing that testing is provably easier than learning.

Next, we establish our results for functions on the line in Section 4, starting with the lower
and upper bounds for one-sided testers before turning in Section 4.2 to the two-sided upper bound
of Theorem 1.3. We then describe in Section 5 our results for functions on the grid [n]2, focusing on
the case k = 2; and discussing possible extensions in Section 5.2.
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Section 6 contains our general algorithms for k-monotonicity on the hypergrid [n]d, for arbitrary
k and d. We prove Theorem 1.8 in two parts. We establishing its first item (general tolerant
testing algorithm with exponential dependence in d) in Section 6.1 (Proposition 6.2). The second
item (with query complexity exponential in k

√
d) is proven in Section 6.2, where we analyze the

Fourier-based tolerant tester of Proposition 6.11. We then apply these results to the question of
tolerant L1-testing of monotonicity in Section 7, after describing a reduction between monotonicity
of functions [n]d → [0, 1] and of [n]d+1 → {0, 1}.

Except maybe Section 7 which depends on Section 6, all sections are independent and self-
contained, and the reader may choose to read them in any order.

2 Preliminaries
We denote by log the binary logarithm, and use Õ(·) to hide polylogarithmic factors in the argument
(so that Õ(f) = O(f logc f) for some c ≥ 0).

Given two functions f, g : X → Y on a finite domain X , we write dist(f, g) for the (normalized)
Hamming distance between them, i.e.

dist(f, g) = 1
|X |

∑
x∈X

1{f(x)6=g(x)} = Pr
x∼X

[ f(x) 6= g(x) ]

where x ∼ X refers to x being drawn from the uniform distribution on X . A property of functions
from X to Y is a subset P ⊆ XY of these functions; we define the distance of a function f to P as
the minimum distance of f to any g ∈ P:

dist(f,P) = inf
g∈P

dist(f, g) .

For some of our applications, we will also use another notion of distance specific to real-valued
functions, the L1 distance (as introduced in the context of property testing in [BRY14]). For
f, g : X → [0, 1], we write

L1(f, g) = 1
|X |

∑
x∈X
|f(x)− g(x)| = Ex∼X [|f(x)− g(x)|] ∈ [0, 1]

and extend the definition to L1(f,P), for P ⊆ X [0,1], as before.

Property testing. We recall the standard definition of testing algorithms, as well as some
terminology:

Definition 2.1. Let P be a property of functions from X to Y . A q-query testing algorithm for P
is a randomized algorithm T which takes as input ε ∈ (0, 1] as well as query access to a function
f : X → Y . After making at most q(ε) queries to the function, T either outputs ACCEPT or REJECT,
such that the following holds:
• if f ∈ P, then T outputs ACCEPT with probability at least 2/3; (Completeness)
• if dist(f,P) ≥ ε, then T outputs REJECT with probability at least 2/3; (Soundness)

10



where the probability is taken over the algorithm’s randomness. If the algorithm only errs in the
second case but accepts any function f ∈ P with probability 1, it is said to be a one-sided tester;
otherwise, it is said to be two-sided. Moreover, if the queries made to the function can only depend
on the internal randomness of the algorithm, but not on the values obtained during previous queries,
it is said to be non-adaptive; otherwise, it is adaptive.

Additionally, we will also be interested in tolerant testers – roughly, algorithms robust to a
relaxation of the first item above:

Definition 2.2. Let P, X , and Y be as above. A q-query tolerant testing algorithm for P is a
randomized algorithm T which takes as input 0 ≤ ε1 < ε2 ≤ 1, as well as query access to a function
f : X → Y . After making at most q(ε1, ε2) calls to the oracle, T outputs either ACCEPT or REJECT,
such that the following holds:
• if dist(f,P) ≤ ε1, then T outputs ACCEPT with probability at least 2/3; (Completeness)
• if dist(f,P) ≥ ε2, then T outputs REJECT with probability at least 2/3; (Soundness)

where the probability is taken over the algorithm’s randomness. The notions of one-sidedness and
adaptivity of Definition 2.1 extend to tolerant testing algorithms as well.

Note that as stated, in both cases the algorithm “knows” X ,Y, and P; so that the query
complexity q can be parameterized by these quantities. More specifically, when considering X = [n]d
and the property P of k-monotonicity, we will allow q to depend on n, d, and k. Finally, we shall
sometimes require a probability of success 1− δ instead of the (arbitrary) constant 2/3; by standard
techniques, this can be obtained at the cost of a multiplicative O(log(1/δ)) in the query complexity.

PAC and agnostic learning [Val84] A learning algorithm A for a concept class C of functions
f : X → Y (under the uniform distribution) is given parameters ε, δ > 0 and sample access to some
target function f ∈ C via labeled samples 〈x, f(x)〉, where x is drawn uniformly at random from X .
The algorithm should output a hypothesis h : X → Y such that dist(h, f) ≤ ε with probability at
least 1− δ. The algorithm is efficient if it runs in time poly(n, 1/ε, 1/δ). If A must output h ∈ C
we say it is a proper learning algorithm, otherwise, we say it is an improper learning one.

Moreover, if A still succeeds when f does not actually belong to C, we say it is an agnostic learning
algorithm. Specifically, the hypothesis function h that it outputs must satisfy dist(f, g) ≤ optf + ε
with probability at least 1− δ, where optf = ming∈C dist(f, g).

3 On the Boolean hypercube
In this section, we focus on k-monotonicity of Boolean functions over the hypercube {0, 1}d. We
begin in Section 3.1 with a tester with query complexity 2Õ(

√
d), establishing a strict separation

between learning and testing. Section 3.2 is then dedicated to our lower bounds on k-monotonicity
testing.

3.1 Upper bound: beating the learning approach

In this section, we prove the following theorem:2

2We note that this result is only interesting in the regime k ≤
√
d: indeed, for k = Ω

(√
d log 1

ε

)
every function is

ε-close to k-monotone.
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Theorem 1.2. There exists a one-sided non-adaptive tester for k-monotonicity of functions
f : {0, 1}d → {0, 1} with query complexity q(d, ε, k) = 2O(

√
d·log d·log 1

ε ).

Before we present the tester we will need some useful ideas that we collect in the subsection
below.

3.1.1 Rank-labeled cube

Given a Boolean function f : {0, 1}d → {0, 1}, and a point x in the Boolean cube, we define rankf (x)
as the maximum number of flips on any upward path from 0d to x. Now suppose f is ε-far from
being k-monotone. We define the rank-labeled cube with respect to f to be Rf : {0, 1}d → N where
Rf (x) = rankf (x). Let

S>k
def=
{
x ∈ {0, 1}d : rankf (x) ≥ k + 1

}
denote the set of all points in the Hamming cube which have rank strictly greater than k. Now,
modify Rf to obtain Rrep

f where

Rrep
f (x) =

{
k if x ∈ S>k
rankf (x) otherwise.

We call Rrep
f the repaired rank-labeling of f . Now, for a given function f with rank labeling Rf and

a modified labeling Rrep
f , we prove the following lemma which we later use to get the tester.

Lemma 3.1. For any f : {0, 1}d → {0, 1} there exists a k-monotone function f ′ : {0, 1}d → {0, 1}
such that Rrep

f = Rf ′.

Proof of Lemma 3.1. We begin by producing a partial function which we later extend. Let us define

fpartial(x) =
{
f(x) if x 6∈ S>k
∗ if x ∈ S>k

To begin with, let us note that Rrep
f (x) = rankfpartial(x) for every x 6∈ S>k. Now, we show that it

is possible to extend fpartial over the entire cube and obtain a function f ′ which is k-monotone and
which satisfies Rrep

f (x) = rankf ′(x) for every x ∈ {0, 1}d. To this end, let us begin by considering
the k-monotonicity violation graph, Gf defined in Appendix B. Note that the set S>k is a vertex
cover for Gf . Thus, Gf \ S>k has no violated edges.

Note that f restricted to this subset is precisely fpartial. By the extendability lemma, Lemma B.7,
we know there exists an extension f ′ of fpartial to the entire cube which is k-monotone. Now,
take any d-length Hamming path p = p1 ≺ p2 ≺ . . . ≺ pd from 0d to 1d. Consider f values along
this path and let i be the smallest index such that pi ∈ S>k. Observe that rankf ′(pj) ≤ k for
pj ≺ pi. Also, note that rankf ′(pi) = k since f ′ is k-monotone. Further, this also implies that
rankf ′(pj) = rankf ′(pi) = k for pj � pi. Thus, it follows that Rrep

f is indeed the rank labeling of f ′
which is k-monotone.
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3.1.2 The tester

In this subsection, we will present the tester for k-monotonicity and prove Theorem 1.2. Let us
begin by recalling the following fact.

Fact 3.2. There exists an absolute constant C > 0 such that the number of points of {0, 1}d that do
not have integer weights in the middle levels [d2 −

√
d log C

ε ,
d
2 +
√
d log C

ε ] is at most ε2d−1.

Suppose k is odd.3 In this case, given a function f ε-far from k-monotonicity we can assume
without loss of generality that f and equals 0 on points with Hamming weight < d

2 −
√
d log C

ε , and
equals 1 on points with Hamming weight > d

2 +
√
d log C

ε . The resulting function is still ε2 -far from
being k-monotone.

Proof of Theorem 1.2. The previous section proves that upon fixing the rank labeling we get a
k-monotone function. f being ε/2-far from k-monotone, it immediately follows that the number
of points affected in rank fixing procedure, |S>k| ≥ ε2d−1. This discussion motivates the following
tester.
(1) Sample O(1/ε) random points from the middle levels
(2) For each of the queries in the first step, query all points with Hamming weight in the middle

levels which fall in the subcube below each such random point. We call each of these O(1/ε)
collections of queries a superquery .

Now, we can make the following claim.

Claim 3.3. Consider the function f and let S>k(f) def= { x : rankf (x) ≥ k + 1 }. Let x ∈ S>k(f).
Then, a superquery at x reveals the violation for f .

Proof of Claim 3.3. The superquery induced by x checks all points on the chains that go through
x. Since, x is a point with large rank, we know that one of these chains will reveal a violation to
k-monotonicity for f .

We note that any point x ∈ S>k(f) reveals violation to k-monotonicity in f . Now, we just need to
bound the number of points queried in a superquery. Note that since it only involves 2

√
d log C

ε

levels of the cube, the number of points queried is no more than dO(
√
d log 1

ε
). Since the size of S>k(f)

is at least Ω(ε2d), we hit the set with constant probability in O(1/ε) queries. Thus, the number
of queries made by the tester is no more than O(d

O(
√

d log 1
ε )

ε ) = dO(
√
d log 1

ε
). We emphasize that the

number of queries made by this tester has no dependence on k.

3.2 Lower bounds

We now turn to lower bounds for testing k-monotonicity of Boolean functions over the hypercube
{0, 1}d. In Section 3.2.1, we show that for constant k any one-sided non-adaptive tester for k-
monotonicity requires Ω(dk/4) queries , generalizing the Ω

(√
d
)
lower bound for monotonicity due to

Fischer et al. [FLN+02]. This bound suggests the problem become strictly harder when k increases:
3The case k even is similar. In this case, one may assume that f evaluates to 0 on points with hamming weight

everywhere outside the middle levels.
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specifically, for k > 2 testing k-monotonicity requires ω(
√
d) queries, while an O(

√
d) one-sided

non-adaptive upper bound holds for monotonicity testing [KMS15].
We then describe in Section 3.2.2 a general reduction from monotonicity testing to k-monotonicity

testing, for arbitrary constant k. This blackbox reduction allows us to carry any lower bound
(possibly 2-sided or adaptive) for monotonicity testing to k-monotonicity. In particular, combining
it with the recent lower bounds [CDST15, BB16] for 2-sided monotonicity testing, we obtain an
Ω(d1/2−o(1)) lower bound for non-adaptive k-monotonicity testers, and an Ω

(
d1/4

)
lower bound for

adaptive ones.

3.2.1 One-sided lower bounds

Theorem 1.1. For any constant k ≥ 1, any one-sided non-adaptive tester for k-monotonicity of
functions f : {0, 1}d → {0, 1} must make Ω

(
dk/4

)
queries.

Consider the family of functions {fS : S ⊆ [d] of size k} where fS is a truncated anti-parity over
k input coordinates indexed by S, namely,

fS =
{
⊕i∈Sxi if ||x| − d/2| ≤

√
d,

0 otherwise.

Theorem 1.1 immediately follows from the two claims below. In particular, for constant k, by
Claim 3.4, q needs to be Ω

(
dk/4

)
to reject every fS with Ω(1) probability, and by Claim 3.5, fS is

Ω(1)-far from any k-monotone function.

Claim 3.4. For any non-adaptive q-query algorithm A, there exists fS where |S| = k such that A
reveals a violation on fS with probability at most q2(2√d

k

)
/
(d
k

)
.

Claim 3.5. For k ≤ 2
√
d and S ⊆ [d] of size k, fS is Ω(2−k)-far from any k-monotone functions.

Proof of Claim 3.4. Let Q be an arbitrary set of q queries. Without loss of generality, we assume ev-
ery query z in Q has Hamming weight |z| ∈ [d2−

√
d, d2 +

√
d]. We define Qx,z = { y ∈ Q : x � y � z }

and Rej(Q) = { fS : Q contains a violation for fS }. Note that Rej(Q) =
⋃

(x,z) : x�z∈Q Rej(Qx,z).
Hence we can bound the size of Rej(Q) by

|Rej(Q)| ≤
∑

(x,z)∈Q2 : x�z
|Rej(Qx,z)| . (1)

Fix any x � z ∈ Q. Because any violation for fS in Qx,z contains at least two points x′ and z′ such
that x � x′ � z′ � z, and x′S = 0k and z′S = 1k which implies xS = 0k and zS = 1k. Note that x
and z differ in at most 2

√
d coordinates so that there are at most

(2√d
k

)
different S on which xS is

0k and zS is 1k. Therefore we can bound the size of Rej(Qx,z) by

|Rej(Qx,z)| ≤
(

2
√
d

k

)
. (2)

Combining (1) and (2) , |Rej(Q)| ≤ q2(2√d
k

)
. It follows that for any non-adaptive algorithms making

at most q queries,∑
S⊆[d]:|S|=k

Pr[A reveals a violation for fS ] ≤ E[|Rej(Q)|] ≤ q2
(

2
√
d

k

)
.
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Hence there exists fS such that Pr[A reveals a violation for fS ] ≤ q2 (2
√

d
k )

(d
k)

.

Proof of Claim 3.5. Let f ′S be the closest k-monotone function to fS . Let Z denote the set {z ∈
{0, 1}d−k : d/2−

√
d ≤ |z| ≤ d/2 +

√
d− k}. For any assignment z ∈ Z on coordinates indexed by

[d]−S, fS(·, z) is not k-monotone but f ′S(·, z) is k-monotone so that fS(·, z) differ from f ′S(·, z) on at
least 1 point. Thus fS and f ′S differ on at least |Z| points. For any k ≤ 2

√
d, [d−k2 −

√
d− k, d−k2 +√

d− k] is contained in [d/2−
√
d, d/2 +

√
d− k] and |Z| = Ω(2d−k). We conclude fS is Ω(2−k)-far

from f ′S .

3.2.2 Two-sided lower bounds

The following theorem gives a construction that enables us to convert monotone functions into
k-monotone functions, and functions that are far from monotone into functions that are far from
k-monotone.

Theorem 3.6. There exists an efficiently computable function h : {0, 1}d/2 → {0, 1} such that for
any g : {0, 1}d/2 → {0, 1}, then g||h : {0, 1}d → {0, 1} is a Boolean function (defined below) satisfying
the following.
• if g is monotone, then g||h is a k-monotone function;
• if g is ε-far from monotone, then g||h is Ω(ε/k)-far from being a k-monotone function;

where (g||h)(x, y) def= g(x)⊕ h(y) for any x, y ∈ {0, 1}d/2.

The above theorem reduces test monotonicity to testing k-monotonicity (for arbitrary constant
k) with the same number of queries to the input function. This theorem allows us to carry any
lower bound on monotonicity testing to k-monotonicity, while preserving the characteristics (two-
sidedness, adaptivity) of the original lower bound. In particular, combining it with the recent recent
of [CDST15, BB16], we obtain the following corollary.

Corollary 3.7. For any c > 0 and k ≥ 1, there exists ε = ε(k, c) > 0 such that any 2-sided
non-adaptive algorithm for testing whether f is k-monotone or ε-far from it requires Ω(d1/2−c)
queries. Any 2-sided adaptive algorithm requires Ω̃

(
d1/4

)
queries.

To prove Theorem 3.6, we prove following three claims. Claim 3.8 and Claim 3.9 show that
the existence of a (k − 1)-monotone function h for which one can find a big enough set of vertex
disjoint paths in the hypercube whose labelling under h satisfies some specific condition will
imply Theorem 3.6. Finally in Claim 3.10, we establish the existence of such h, and Theorem 3.6
follows.

Claim 3.8. Let h : {0, 1}d → {0, 1} be a (k − 1)-monotone function. Then for any monotone
g : {0, 1}d → {0, 1}, f = g||h is a k-monotone function.

Claim 3.9. Suppose there exists a h : {0, 1}d → {0, 1} such that the following holds. There exists
at least M paths of length k − 1 such that (i) all paths are vertex disjoint and (ii) for every path
y1 � · · · � yk, h(y1) = 0 and h(yi) 6= h(yi+1) for 1 ≤ i ≤ k − 1. Then, for any g : {0, 1}d → {0, 1}
which is ε-far from being a monotone function, the function f = g||h is Ω(M2d · ε)-far from being a
k-monotone function.
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Claim 3.10. For any constant k, there exists an efficient computable h : {0, 1}d → {0, 1} such that
h is a (k − 1)-monotone function and h contains at least (1−od(1))2d

k paths of length k − 1 such that
all paths are vertex disjoint and for every path y1 � · · · � yk, h(y1) = 0 and h(yi) 6= h(yi+1) for
1 ≤ i ≤ k − 1.

Proof of Claim 3.8. Suppose f = g||h is not k-monotone, then there exist (x1, y1), . . . , (xk+1, yk+1)
such that (x1, y1) � · · · � (xk+1, yk+1), f(x1, y1) = 1 and f(xi, yi) 6= f(xi+1, yi+1) for any 1 ≤ i ≤ k.
Because g is monotone, either g is constant on x1, . . . , xk+1, or there exists an index 1 < j ≤ k + 1
such that g(xi) = 0 for i < j and g(xi) = 1 for i ≥ j. For the first case, h(yi) = f(xi, yi) for any i
and h alters exactly k times on points y1 � · · · � yk+1. For the second case, h(y1) = f(x1, y1) = 1,
and h alters exactly k − 1 times on y1 � · · · � yj−1 � yj+1 � · · · � yk+1. Both cases contradict h
being (k − 1)-monotone.

Proof of Claim 3.9. Let Mh be the maximal set of paths of length k such that all paths are vertex
disjoint and for every path y1 � · · · � yk, h(y1) = 0 and h(yi) 6= h(yi+1) for 1 ≤ i ≤ k − 1. Let
Mg be the maximal set of pairs such that all pairs are vertex disjoint and every pair x1 � x2 is a
violation for g, i.e., g(x1) = 1 and g(x2) = 0. For each path (y1 � · · · � yk) ∈ Mh and any pair
(x1 � x2) ∈Mg, it is easy to see following path is a violation for f ||g being k-monotone :

(x1, y1), . . . , (x1, yk), (x2, yk).

Let f ′ be the closest k-monotone function to f . For each violating path, f and f ′ differ on at least 1
point. Because bothMh andMg are vertex disjoint, violating paths constructed by taking every path
in Mh and every pair in Mg are vertex disjoint. Thus f and f ′ differ on at least |Mh| × |Mg| points
and f is (|Mh| · |Mg| /22d)-far from f ′. It is known ([GGL+00]) that for any g : {0, 1}d → {0, 1}
which is ε-far from monotone, |Mg| ≥ 2d−1ε. The desired conclusion follows.

Proof of Claim 3.10. Let B1, B2, . . . , Bk be consecutive blocks each consisting of consecutive layers
of the hypercube such that for each i ∈ [k],

(1− k√
d

)2d

k
≤ |Bi| ≤ (1 + k√

d
)2d

k
.

Because k is a constant and every layer contains at most 2d/
√
d points, we can always greedily find

B1, . . . , Bk one by one. Let h be a function such that h has constant value (i+ 1 mod 2) on block
Bi for 1 ≤ i ≤ k. It is easy to see that h is (k − 1)-monotone. Next we prove for any 1 ≤ j ≤ k,
B1, . . . , Bj contain at least (1−od(1))2d

k vertex disjoint paths of length j − 1 such the ith point on
every path is in Bi. Claim 3.10 follows from the case j = k.

For j = 1, the statement holds by taking all points in B1. For j > 1, assume that B1, . . . , Bj−1

contain a set Pj−1 of such (1−od(1))2d

k vertex disjoint paths of length j − 2. Let M be the maximal
matching between Bj−1 and Bj and let Pj be the set of paths of length j−1 constructed in following
way: for each path in Pj−1 with an endpoint yj−1, if there exists yj such that (yj−1, yj) ∈M , we
add the path appended with yj into Pj . Because no points in Bj will be added into two different
paths in Pj and Pj−1 are vertex disjoint, paths in Pj are vertex disjoint.

Now we show |M | = min(|Bj−1| , |Bj |) which implies |Pj | ≥ (1−od(1))2d

k . Suppose |Bj−1| ≤ |Bj |
(the argument is analogous in the other case). For any subset S of Bj−1, let fS be the indicator
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function of the upper closure of S denoted as N(S). It is not hard to check that fS is monotone
and thus Pr[fS(x) = 1|x ∈ Bj ] ≥ Pr[fS(x) = 1|x ∈ Bj−1]. It follows

|N(S) ∩Bj | = |Bj |Pr[fS(x) = 1|x ∈ Bj ] ≥ |Bj−1|Pr[fS(x) = 1|x ∈ Bj−1] ≥ |S| .

By Hall’s theorem, |M | = |Bj−1|. By similar argument, we can show |M | = |Bj | when |Bj−1| > |Bj |.
Thus |M | = min(|Bj−1| , |Bj |).

4 On the line
In this section we prove our results on testing k-monotonicity on the line, that is of functions
f : [n]→ {0, 1}. We start with Theorem 1.4, which establishes that this can be done non-adaptively
with one-sided error, with only O(k/ε) queries; we then turn to Theorem 1.3, which shows that this is
the best one can hope for if insisting on one-sidedness. The last result of this section is Theorem 1.5,
where we show that – perhaps unexpectedly – two-sided algorithms, even non-adaptive, can break
this barrier and test k-mononicity with no dependence on k.

4.1 Upper and lower bounds for one-sided testers

We first prove the upper bound, restated below:

Theorem 1.4. There exists a one-sided non-adaptive tester for k-monotonicity of functions f : [n]→
{0, 1} with query complexity q(n, ε, k) = O

(
k
ε

)
.

Proof. We assume that εn
50k is an integer,4 and partition the domain into K def= 50k

ε intervals of size
εn
50k , the consecutive “blocks” B1, . . . , BK . We then define g : [n]→ {0, 1, ∗} as the function constant
on each block Bi = {bi, . . . , bi+1 − 1}, such that
• If f(bi) = f(bi+1 − 1), then g(j) = f(bi) for all j ∈ Bi;
• otherwise, g(j) = ∗ for all j ∈ Bi.

We say that a block Bi such that g|Bi = ∗ is a changepoint block for g. Clearly, given query access to
f one can obtain the value of g on any point j ∈ [n] with only two queries to f . Moreover, defining
g̃ : [n]→ {0, 1} to be the function obtained from g by replacing ∗ by 0, we observe the following:
• If f is k-monotone, then (i) so is g̃, and (ii) f and g̃ differ in at most k blocks (namely the
changepoint blocks of g), so that dist(f, g) ≤ k · 1

K = ε
50 ;

• If f is ε-far from k-monotone, then either (i) g̃ is not k-monotone, or (ii) dist(f, g̃) > ε.
We start by learning g (and thus g̃) exactly, using 2K = O(k/ε) non-adaptive queries. Setting

m
def= C k

ε , we also sample m′ ∼ Poisson(m) points5 j1, . . . , jm′ independently and uniformly from
[n], where C > 0 is a constant to be determined in the course of the analysis, and query the value
of f (and g) on all of them. Then, we reject if either (i) g̃ is not k-monotone; or (ii) there exist at
least k + 1 distinct blocks which contain a sample sj such that g̃(sj) 6= f(sj).

4If not, we consider instead ε′
def= 50k

n

⌊
εn
50k

⌋
> ε − 50k

n
> ε

2 if ε > 100k
n

; while if ε ≤ 100k
n

we query the entire
function, for a total of n = O

(
k
ε

)
queries.

5The fact that we sample Poisson(m) instead ofm is for ease of the analysis; note that due to the tight concentration
of Poisson random variables, with probability 1− o(1) we will have m′ ≤ 2m. If this does not happen, the tester can
output ACCEPT, incurring only a small additional error probability (and not affecting the one-sidedness).
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By definition, this tester is non-adaptive; and it is not difficult to see it accepts any k-monotone
function with probability 1, since in that case f and g (and a fortiori g̃) differ in at most k blocks:
indeed, these blocks can only be changepoint blocks for g, i.e. blocks where f changes value.

It remains to argue soundness: we will show that if f is ε-far from k-monotone, the tester will
reject with probability at least 2/3. By the first check made, (i), we can assume in the following
that g̃ is k-monotone – as otherwise f is rejected with probability 1 – and we need to show that
(ii) will reject with probability at least 2/3. For each block Bi (where i ∈ [K]), let pi ∈ [0, 1

K ] be
defined as the (normalized) number of points in Bi on which f and g̃ differ (we henceforth refer to
such a point as a giveaway point):

pi
def= 1

n

∑
j∈Bi

1{f(j)6=g̃(j)}.

Since f is ε-far from the k-monotone function g̃, we have
∑K
i=1 pi ≥ ε. Now, letting Zi be the

indicator of the event that among the m′ samples, at least one is giveaway point from Bi, and
Z =

∑K
i=1 Zi, we can write Zi = 1{Yi 6=0}, where the (Yi)i∈[K] are independent Poisson random

variables with Yi ∼ Poisson(mpi). The expected number of blocks in which a giveaway point is
sampled is then

EZ =
K∑
i=1

EZi =
K∑
i=1

Pr[Yi 6= 0 ] =
K∑
i=1

(1− e−mpi)

Since for every i ∈ [K] it holds that e−mpi ≤ 1 − m
2 pi (the inequality holding since 0 ≤ mpi ≤ 1,

which is verified for m ≤ K), we get

EZ =
K∑
i=1

EZi ≥
K∑
i=1

m

2 pi ≥
mε

2 ≥
C

2 k.

Moreover, by a Chernoff bound, we get that

Pr
[
Z <

C

4 k
]
≤ e−

Ck
16 ≤ e−

C
16

which is less that 1/4 for C ≥ 23. Setting C def= 30 satisfies both conditions that m ≤ K and C ≥ 23,
and results in a one-sided non-adaptive tester which rejects functions far from k-monotone with
probability at least 1− 1

4 + o(1) ≥ 2
3 .

Turning to the lower bounds against one-sided testers, we show the following:

Theorem 1.3. Any one-sided (possibly adaptive) tester for k-monotonicity of functions f : [n]→
{0, 1} must have query complexity Ω

(
k
ε

)
.

Proof. Since a lower bound of Ω
(

1
ε

)
straightforwardly holds, we can restrict ourselves to k ≥ 8,

and ε < 1
12 ; moreover, we assume without loss of generality that εn

k is an integer, and partition the
domain into K def= k

ε intervals of size εn
k , the consecutive “blocks” B1, . . . , BK . For v ∈ {0, 1}K/2, we

define gv : [n]→ {0, 1} as the function which has constant value vi on block B2i−1 and has constant
value 1 on the remaining blocks.
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Consider the distribution over {gv}v where each coordinate of v is independently set to 0 with
probability p def= 6ε, and 1 otherwise. We next show that gv is at least ε-far from any k-monotone
function with very high probability over the choice of v. By a Chernoff bound, with probability at
least 1− e−pK/16 = 1− e−3k/8, gv has at least pK/4 = 3k/2 blocks that are 0 blocks. Conditioned
on this, it is easy to see that gv is ε-far from k-monotone: indeed, to make it k-monotone one has to
flip its value on at least k blocks, and each block contains an ε/k fraction of the domain.

Fix any deterministic adaptive algorithm with query complexity q ≤ k/(24ε) queries, and denote
by x1, . . . , xq the sequence of queries made (when given query access to some function gv). Note
that x1 is fixed by the algorithm and that for 1 < i ≤ q, xi is uniquely determined by previous
answers f(x1), . . . , f(xi−1). We can sample the distribution {gv}v and answer queries from the
given algorithm in the following “lazy way”: first, by marking every even blocks with value 1 and
initializing a list of queried odd blocks with their values. When a new query x comes, if x was
previously queried or belongs to an even block, we return the corresponding stored value. Otherwise,
we sample the value, which is 0 with probability 6ε and 1 otherwise, for the odd block which x
belongs to; and mark this block as queried.

Let y1, . . . , yr be the following subsequence of x1, . . . , xq: yi is the ith query made into an odd
block which is not queried in y1, . . . , yi−1. Clearly r ≤ q and y1, . . . , yr reveals a violation if and
only if number of 0’s in corresponding answers is at least k/2 + 1. Note, for arbitrary a ∈ {0, 1}r,

Pr[ f(y1) = a1, . . . , f(yr) = ar ] = Pr[ f(y1) = a1 ] ·
r∏
i=2

Pr[ f(yi) = ai | f(y1) = a1, . . . , f(yi−1) = ai−1 ] .

yi is determined by f(y1) = a1, . . . , f(yi−1) = ai−1 and by our way of sampling f(yi), we know
that for every i it holds that Pr[ f(yi) = ai | f(y1) = a1, . . . , f(yi−1) = ai−1 ] = 6ε if ai = 0 and
Pr[ f(yi) = ai | f(y1) = a1, . . . , f(yi−1) = ai−1 ] = 1− 6ε if ai = 1. Thus.

Pr[ f(y1) = a1, . . . , f(yr) = ar ] = (1− 6ε)|a|(6ε)r−|a|. (3)

Let Yi be the indicator that f(yi) = 0. We get that, writing F (i,N, p) for the cumulative distribution
function of a Binomial with parameters N and p,

Pr
[

r∑
i=1

Yi ≥
k

2 + 1
]
≤

∑
a∈{0,1}r : |ā|≥k/2

(1− 6ε)|a|(6ε)r−|a|

=
r−k/2∑
`=0

(
r

`

)
(1− 6ε)`(6ε)r−` = F

(
r − k

2 , r, 1− 6ε
)

= F (r(1− x), r, 1− 6ε) (x def= k
2r ∈ (12ε, 1))

≤ e−rD(1−x||1−6ε) (Relative entropy Chernoff bound6)

where D(p || q) def= p ln p
q + (1 − p) ln 1−p

1−q , and we used the fact that k
2 + 1 ≤ r ≤ k

24ε . Rewriting
slightly the right-hand-side, we obtain

Pr
[

r∑
i=1

Yi ≥
k

2 + 1
]
≤ e−

k
2 Φ(x)

6Recall that the relative entropy version of the Chernoff bound states that F (m,N, p) ≤ e−mD( m
N
||p) as long as

0 ≤ m
N
≤ p.
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for Φ(x) def= 1
x

(
(1− x) ln 1−x

1−6ε + x ln x
6ε

)
. It is not hard to see that Φ is increasing on [6ε, 1), and

since x ≥ 12ε the right-hand-side is at most e−
k
2 Φ(12ε). It then suffices to observe that, for ε ≤ 1

12 ,
it holds that Φ(12ε) ≥ Φ(0) = ln 2− 1

2 >
1
8 to conclude that

Pr
[

r∑
i=1

Yi ≥
k

2 + 1
]
≤ e−

k
16

and therefore obtain

Pr[ f(y1), . . . , f(yr) contains at least (k/2 + 1) zeros ] ≤ e−
k
16 .

Combining the two, this shows that the probability that y1, . . . , yr does not reveal a violation for
gv while gv is ε-far from k-monotone is at least 1− e−k/16 − e−3k/8 > 1/3 (since k ≥ 8). By Yao’s
principle, for any (possibly randomized) non-adaptive algorithm A making at most k/(24ε) there
exists a fixed v such that gv is ε-far from k-monotone yet A rejects gv with probability less than
2/3. The desired conclusion follows.

4.2 Upper bound for two-sided testers: proof of Theorem 1.5

In this section, we prove the two-sided non-adaptive upper bound of Theorem 1.5, restated below:

Theorem 1.5. There exists a two-sided non-adaptive tester for k-monotonicity of functions f : [n]→
{0, 1} with query complexity q(n, ε, k) = Õ

(
1/ε7), independent of k.

In what follows, we assume that k > 20/ε, as otherwise we can use for instance the O(k/ε)-query
(non-adaptive, one-sided) tester of Theorem 1.4 to obtain an O

(
1/ε2) query complexity.

4.2.1 Testing k-monotonicity over [Ck]

We begin by giving a poly(C/ε)-query tester for k-monotonicity over the domain [Ck]. The tester
proceeds by reducing to support size estimation and using (a slight variant of) an algorithm of
Canonne and Rubinfeld [CR14]. Let f : [Ck] → {0, 1}, and suppose f is s-monotone but not
(s−1)-monotone. Then there is a unique partition of [Ck] into s+ 1 disjoint intervals I1, I2, . . . , Is+1
such that f is constant on each interval; note that this constant value alternates in consecutive
intervals. We define a distribution Df over [s+ 1] such that Df (i) = |Ii| /(Ck).

The algorithm of [CR14] uses “dual access” to D; an oracle that provides a random sample from
D, and an oracle that given an element of D, returns the probability mass assigned to this element
by D.

Theorem 4.1 ([CR14, Theorem 14 (rephrased)]). In the access model described above, there exists
an algorithm that, on input a threshold n ∈ N∗ and a parameter ε > 0, and given access to a
distribution D (over an arbitrary set) satisfying

min
x∈supp(D)

D(x) ≥ 1
n

estimates the support size |supp(D)| up to an additive εn, with query complexity O
(

1
ε2

)
.
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We only have access to Df through query access to f . One difficulty is that, to access Df (i),
we need to determine where Ii lies in f . For example, finding Df (k/2) requires finding Ik/2, which
might require a large number of queries to f .

We circumvent this by noting that the algorithm does not require knowing the “label” of any
element in the support of the distribution. The only access required is being able to randomly
sample elements according to Df , and evaluate the probability mass on the sampled points.

Lemma 4.2 (Sampling from Df ). Let i ∈ [n] be chosen uniformly at random, and let j be such
that i ∈ Ij. Then, the distribution of j is exactly Df .

Lemma 4.3 (Evaluating Df (j)). Suppose Ij = {a, a + 1, . . . , b}. Given i such that i ∈ Ij, we
can find Ij by querying f(i + 1) = f(i + 2) = · · · = f(b) and f(b + 1) 6= f(b), as well as
f(i−1) = f(i−2) = . . . = f(a) and f(a−1) 6= f(a). The number of queries to f is b−a+3 = |Ij |+3.

If we straightforwardly use these approaches to emulate the required oracles to estimate the
support size of Df , the number of queries is potentially very large. If we attempt to query Df (j)
where |Ij | = Ω(k), we will need Ω(k) queries to f . It will be enough for us to “cap” the size of the
interval.

Lemma 4.4 (Evaluating Df (j) with a cap). Given i such that i ∈ Ij, we will query f on every
point in [i − 20C/ε, i + 20C/ε]. If |Ij | ≤ 20C/ε, then Ij will be determined by these queries. If
these queries do not determine Ij, we know |Ij | > 20C/ε. Beyond querying i, this requires 40C/ε
(nonadaptive) queries.

Claim 4.5. If f is ε-far from k-monotone, then it is not (1 + ε
4)k-monotone, and in particular

|supp(Df )| > (1 + ε
4)k + 1.

Proof. The last part of the statement is immediate from the first, so it suffices to prove the first
implication. We show the contrapositive: assuming f is (1 + ε

4)k-monotone, we will “fix” it into
a k-monotone function by changing at most εn points. In what follows, we assume εk

4 ≥ 1, as
otherwise the statement is trivial (any function that is ε-far from k-monotone is a fortiori not
k-monotone).

Let as before `∗ be the minimum integer ` for which f is `-monotone: we can assume k < `∗ ≤
(1 + ε

4)k (as if `∗ ≤ k we are done.) Consider as above the maximal consecutive monochromatic
intervals I1, . . . , I`∗ , and let i be the index of the shortest one. In particular, it must be the case
that |Ii| ≤ n

`∗+1 . Flipping the value of f on Ii therefore has “cost” at most n
`∗+1 , and the resulting

function f ′ is now exactly (`∗− 2)-monotone if 1 < i < `∗, and (`∗− 1)-monotone if i ∈ {1, `∗}. This
means in particular that repeating the above ε

4k times is enough to obtain a k-monotone function,
and the total cost is upperbounded by

εk/4∑
j=0

n

`∗ + 1− 2j ≤
εk/4∑
j=0

n

k + 1− 2j =
k+1∑

j=k(1− ε
2 )+1

n

j
≤ n

ε
2k + 1

(1− ε
4)k + 1 ≤ n

3ε
4 k

(1− ε
4)k

where for the last inequality (for the numerator) we used that 1 ≤ εk
4 . But this last RHS is

upperbounded by εn (as 3
4x ≤ x(1− 1

4x) for x ∈ [0, 1]), showing that Therefore, f was ε-close to
k-monotone to begin with, which is a contradiction.

Claim 4.6. To ε-test k-monotonicity of f : [n]→ {0, 1}, it suffices to estimate |Df | to within εk
10 .
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Proof. If f is ε-far from k-monotone, then |Df | > (1 + ε
4)k = k + ε

4k, and if f is k-monotone, then
|Df | ≤ k + 1. The fact that k > 20/ε then allows us to conclude.

Claim 4.7. There exists a two-sided non-adaptive tester for k-monotonicity of functions f : [Ck]→
{0, 1} with query complexity O

(
C3

ε3

)
.

Proof. We use the algorithm of [CR14] for estimating support size.
Inspecting their algorithm, we see that our cap of 20C/ε for interval length (and therefore

20/(εk) for maximum probability reported) might result in further error of the estimate. The
algorithm interacts with the unknown function by estimating the expected value of 1/Df (j) over
random choices of j with respect to Df . Our cap can only decrease this expectation by at most
(εk)/20. Indeed, the algorithm works by estimating the quantity Ex∼Df

[ 1
Df (x)1{Df (x)>τ}], for some

suitable parameter τ > 0. By capping the value of 1/Df (x) to 20/(εk), we can therefore only
decrease the estimate, and by at most 20/(εk) ·Df ({ x : Df (x) > (εk)/20 }) ≤ 20/(εk).

The condition for their algorithm to estimate support size to within ±εm is that all elements in
the support have a probability mass of at least 1/m. Since each nonempty interval has length at
least 1, we have minj Df (j) ≥ (1/Ck). In order for their algorithm to report an estimate within
±εk/20 of support size, we set ε′ = (ε/20C) in their algorithm.

The total error in support size is at most εk/20 + εk/20 = εk/10. By Claim 4.6, this suffices to
test ε-test k-monotonicity of f .

Using the algorithm of [CR14], we need O(1/ε′2) = O
(
(C/ε)2) queries to Df . For every query

to Df , we need to make O(C/ε) queries to f , so the overall query complexity is O
(
C3/ε3).

4.2.2 Reducing [n]→ {0, 1} to [Ck]→ {0, 1}.

Now we show how to reduce ε-testing k-monotonicity of f : [n]→ {0, 1} to ε′-testing k-monotonicity
of a function g : [Ck]→ {0, 1} for C = poly(1/ε) and ε′ = poly(ε), resulting in a poly(1/ε)-query
algorithm for ε-testing k-monotonicity.

The first step is (as before) to divide [n] in blocks (disjoint intervals) of size εn
4k if ε > 8k

n (again
assuming without loss of generality that εn

4k is an integer), and blocks of size 1 otherwise (in which
case n ≤ 8k

ε and we can directly apply the result of Claim 4.7, with C = n/k ≤ 8/ε). Let m = 4k/ε
be the number of resulting blocks, and define fm : [n] → {0, 1} as the m-block-coarsening of f :
namely, for any j ∈ Bi, we set

fm(j) = argmaxb∈{0,1} Pr
k∈Bi

[fm(k) = b] (majority vote)

Ordering the blocks B1, B2, . . . , Bm, we also define g : [m]→ {0, 1} such that g(i) = mina∈Bi fm(a).

Lemma 4.8. Suppose f is k-monotone. Then f has at most k non-constant blocks, and fm is
k-monotone.

Proof. The function f only changes values k times; for a block to be non-constant, the block must
contain a pair of points with a value change.

We call a block variable if the minority points comprise at least an ε/100-fraction of the block;
formally, B is variable if minb∈{0,1} Prj∈B[f(j) = b] ≥ ε/100.

Lemma 4.9. Suppose f has s variable blocks. Then dist(f, fm) ≤ s/m+ ε/100.
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Proof. We will estimate the error of fm in computing f on variable blocks and non-variable blocks
separately. Each non-variable block B can contribute error on at most ε |B| /100 points. Each
variable block B can contribute error on at most |B| = n/m points. The total number of errors is
at most εn/100 + s(n/m) = n(ε/100 + s/m), yielding the upper bound on dist(f, fm).

Lemma 4.10. Suppose f is promised to be either (i) k-monotone or (ii) such that fm has more
than 5

4k variable blocks. Then we can determine which with O
(

1
ε2 log 1

ε

)
queries, and probability

9/10.
Proof. We first note that given any fixed block B, it is easy to detect whether it is variable (with
probability of failure at most δ) by making O

(
1
ε log 1

δ

)
uniformly distributed queries in B. Doing so,

a variable block will be labelled as such with probability at least 1− δ, while a constant block will
never be marked as variable. (If a block is neither constant nor variable, then any answer will do.)

Letting s denote the number of variable blocks, we then want to non-adaptively distinguish
between s ≥ 5

4k = 5ε
16m and s ≤ k = ε

4m (since if f were k-monotone, then fm had at most k variable
blocks). Doing so with probability at least 19/20 can be done by checking only q = O

(
1
ε

)
blocks

chosen uniformly at random: by the above, setting δ = 1
20q all of the q checks will also yield the

correct answer with probability no less than 9/10, so by a union bound we will distinguish (i) and
(ii) with probability at least 9/10. We conclude by observing that all O

(
q · 1

ε log 1
q

)
= O

(
1
ε2 log 1

ε

)
queries are indeed non-adaptive.

Claim 4.11. There exists a two-sided non-adaptive tester for k-monotonicity of functions f : [n]→
{0, 1} with query complexity Õ

(
1
ε7

)
.

Proof. We use the estimation/test from the previous lemma as the first part of our tester. Assuming
f passes, we can assume that fm has less than 5

4k variable blocks. By Lemma 4.9, dist(f, fm) ≤
5k
4 /m+ ε

100 = 5ε
32 + ε

100 ≤
ε
3 . This part takes O

(
1
ε2 log 1

ε

)
queries.

Now, we apply the tester of Claim 4.7 (with probability of success amplified to 9/10 by standard
arguments) to (ε/6)-test k-monotonicity of g : [m]→ {0, 1}, where g(i) is the constant value of fm
on Bi, and m = (4k)/ε. Let q be the query complexity of the tester, and set δ = 1/(10q); to query
g(i), we randomly query f on O

(
1
ε log 1

δ

)
points in Bi and take the majority vote. With probability

at least 1− δ, we get the correct value of g(i), and by a union bound all q simulated queries have
the correct value with probability at least 9/10.

Therefore, to get a single query to g, we use O((log q)/ε) queries. In the context of our previous
section, we have C = 4/ε, so q = O(C3/ε3) = O

(
1/ε6) and the overall query complexity of this part

is O((q log q)/ε) = O
(

1
ε7 log 1

ε

)
. This dominates the query complexity of the other part of the tester,

from Lemma 4.10, which is O
(

1
ε2 log 1

ε

)
. By a union bound over the part from Lemma 4.10, the

simulation of g, and the call to the tester of Claim 4.7, the algorithm is correct with probability at
least 1− 3/10 > 2/3.

5 On the grid
We now turn to the grid, and consider k-monotonicity of functions defined on [n]2. More specifically,
in this section we prove Theorem 1.6, giving an adaptive tester for 2-mononicity with optimal query
complexity, before discussing in Section 5.2 possible extensions of these ideas.
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5.1 The case k = 2
Theorem 1.6. There exists a two-sided adaptive tester for 2-monotonicity of functions f : [n]2 →
{0, 1} with query complexity q(n, ε) = O

(
1
ε

)
.

Proof. At a high-level, the algorithm relies on two key components: the first is the observation that
testing 2-monotonicity of f : [n]2 → {0, 1} under some suitable additional assumption on f reduces
to (tolerant) testing monotonicity of two one-dimensional functions (but with larger range), under
the L1 norm. The second is that, given access to an arbitrary f , one can efficiently provide query
access to some function g which satisifies this additional assumption, and such that g will also be
close to f whenever f is truly 2-monotone.

Combining the two then enables one to test this function g for 2-monotonicity, and then check
whether it is also the case that f and g are sufficiently close. The first step, by the above, can be
done efficiently by simulationg query access to g, which in turn allows to (with some additional
tricks) simulate access to the corresponding one-dimensional functions: and invoke on these two
functions the L1-tester of [BRY14]. (The main challenges there lies in performing this two-level
simulation while keeping the number of queries to f low enough; which we achieve by carefully
amortizing the queries made overall.)

Details. We hereafter assume without loss of generality that f is identically 0 on the bottom
and top rows, that is f(1, j) = f(n, j) = 0 for all j ∈ [n]. (Indeed, we can ensure this is the case
by adding two extra columns, extending the domain of f to [n+ 2]× [n]: note that if f remains
2-monotone if it was already, and can only decrease its distance to 2-monotonicity by O(1/n)).7 For
the sake of the proof, we will require the notion of 2-column-wise-monotonicity, defined below:

Definition 5.1. A function f : [n]2 → {0, 1} is said to be 2-column-wise-monotone if, for every
j ∈ [n], its restriction fj : [n]× {j} → {0, 1} is 2-monotone. Given such a function f , we define the
two sequences (∂̄fj)j∈[n] and (

¯
∂fj)j∈[n] as the sequence of “changepoints” in the columns. More

formally, we define

¯
∂fj = min { i ∈ [n] : f(i, j) 6= f(1, j) } − 1, ∂̄fj = max { i ∈ [n] : f(i, j) 6= f(n, j) }+ 1

for every j such that f |[n]×{j} is not constant; and ¯
∂fj = ∂̄fj = 1 otherwise. Note that we have

¯
∂fj ≤ ∂̄fj for every column j ∈ [n].

As it turns out, testing 2-monotonicity of functions guaranteed to be 2-column-wise-monotone
reduces to testing monotonicity of these two specific subsequences:

Lemma 5.2. Let f : [n]2 → {0, 1} be 2-column-wise-monotone. If f is 2-monotone, then both
sequences (

¯
∂fj)j∈[n] and (∂̄fj)j∈[n] are non-increasing. Moreover, if f is ε-far from 2-monotone,

then at least one of the two sequences is ε
2 -far from non-increasing (in Hamming distance).

It is possible to refine the above statement to obtain, in the second case, a more precise
characterization in terms of the L1 distance of these two sequences to monotonicity. For conciseness,
in the rest of this section we denote byM(d)

k the class of k-monotone functions on [n]d, and will
omit the subscript when k = 1 (i.e., for monotone functions: M(d) =M(d)

1 ).
7This will be used in the proof of Lemma 5.2 and Lemma 5.3.
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Lemma 5.3. Let f : [n]2 → {0, 1} be 2-column-wise-monotone. If f is ε-far from 2-monotone then
at least one of the two sequences is ε

2 -far from non-increasing (in L1 distance). More precisely:

dist
(
f,M(2)

2

)
≤ L1(∂̄f,M(1)) + L1(

¯
∂f,M(1)) (4)

We defer the proof of these two lemmata to Appendix C, and turn to the proof of Theorem 1.6.
We first describe a non-optimal tester making O(1/ε2) queries; before explaining how to modify it
in order to amortize the number of queries, to yield the desired O(1/ε) query complexity.

Suppose we are given query access to an arbitrary function f : [n]2 → {0, 1}. For simplicity, as
before we assume without loss of generality that εn

16 is an integer, and partition each column into
K

def= 16
ε intervals of size εn

16 , that is partition the domain [n]× [n] into a grid [16
ε ]× [n] (each column

being divided in K blocks B1, . . . , BK of size εn
16 ). This uniquely defines a function g : [n]2 → {0, 1, ∗}:

for any point x = (i, j) ∈ [n]2, we let ` ∈ [K] be the index such that i ∈ B` = {b`, . . . , b`+1 − 1},
and set:
• g(x) = f(i, b`)), if f(i, b`) = f(i, b`+1 − 1);
• g(x) = ∗, if f(i, b`) 6= f(i, b`+1 − 1);

so that g is constant on any “block” B` × {i}. Note that we can provide query access to g, at the
price of an overhead of 2 queries (to f) per query (to g).

However, this g may not itself be 2-column-wise-monotone; for this reason, we will instead work
with a “fixed” version of g which will by construction be 2-column-wise-monotone. In more detail,
we define g̃ to be the 2-column-wise-monotone function obtained by the following process.
• First, we (arbitrarily) set the values ∗ to 0, so that g becomes a function g : [n]2 → {0, 1}.
• Define g̃ by its restriction on each column: letting (∂̄gj)j∈[n] and (

¯
∂gj)j∈[n] be as defined

in Definition 5.1 (observing that the quantities are well and uniquely defined even if g is not
2-column-wise-monotone), set

g̃(i, j) =


g(1, j) if i ≤

¯
∂gj

1− g(1, j) if
¯
∂gj < i < ∂̄gj

g(n, j) if i ≥ ∂̄gj

From this construction, it is clear that g̃ is 2-column-wise-monotone, and entirely and determin-
istically determined by g (and therefore by f); moreover we have g̃ = g whenever g is itself
2-column-wise-monotone. Furthermore, any query to g̃ can straightforwardly be answered by making
at most queries O(1/ε) to g, and hence to f .
• If f is 2-monotone, then g is ε

8 -close to f and so is g̃; moreover, g̃ is 2-monotone as well.
Therefore dist(f, g̃) ≤ ε

8 and dist
(
g̃,M(2)

2

)
= 0.

• If f is ε-far from 2-monotone, then g̃ is either (i) ε
4 -far from f or (ii) 3ε

4 -far from 2-monotone,
since if neither hold then by the triangle inequality f is ε-close to 2-monotone.

The tester (first take). The algorithm now proceeds as follows:
1. simulate query access to g̃ (defined as above) to detect if dist

(
g̃,M(2)

2

)
≥ ε using Eq.(4), with

probability of failure 1
6 . More precisely, test monotonicity in L1 distance of both

¯
∂g̃ and ∂̄g̃

with parameter ε
64 , using the (non-adaptive) algorithm of [BRY14]; and reject if any of these

two tests rejects.
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• If dist
(
g̃,M(2)

2

)
= 0, then

L1(∂̄f,M(1)) = L1(
¯
∂f,M(1)) = 0

by Lemma 5.2, and both tests will accept.
• If dist

(
g̃,M(2)

2

)
> 3ε

4 , then

max(L1(∂̄f,M(1)), L1(
¯
∂f,M(1))) > 3ε

8

and at least one of the two tests rejects.
2. simulate query access to g̃ to test whether dist(f, g̃) ≤ ε

8 vs. dist(f, g̃) > ε
4 , with probability

of failure 1
6 ;

3. return ACCEPT if both of the two tests above passed, REJECT otherwise.
By a union bound, the tester is then correct with probability at least 2

3 ; its query complexity is

2t ·O
(1
ε

)
+
(
t′ ·O

(1
ε

)
+O

(1
ε

))
where t and t′ are respectively the cost of simulating query access to ∂̄g,

¯
∂g, and to g̃; as the first step,

testing in L1 for for functions defined on the line [n], has query complexity O(1/ε) from [BRY14].
Taking t = t′ = O(1/ε) as discussed above then results in a query complexity of O

(
1/ε2).

However, as mentioned previously this is not optimal: as we shall see, we can modify this to
obtain instead an O(1/ε) query complexity. In order to “amortize” the overall query complexity, we
define the following process that specifies a 2-column-wise-monotone function g̊:

Initialization. Let j1, . . . , j1/ε+1 ∈ [n] be the indices defined by j` = (`− 1) · εn+ 1 for ` ∈ [1/ε],
and j1/ε+1 = n.

• Obtain all the values of g on the j1-st column [n]× {j1}, at a cost of O(1/ε) queries to
f , to find ∂̄g̊j1 ,¯

∂g̊j1 . Define g̊ on this column accordingly.
• Assuming g̊ has been defined on the j`-th column, define it on the j`+1-th column: starting
at the “vertical” positions of the two changepoints ∂̄g̊j` ,¯

∂g̊j` of the previous column,
start querying “downwards” the values of g on the j`+1-th column until candidates values
for ∂̄g̊j`+1 , ∂̄g̊j`+1 consistent with g are found or the bottom of the column is reached (in
which case the corresponding changepoint ∂̄g̊j`+1 or

¯
∂g̊`+1 is set to 1). After this, define

g̊ on the j`+1-th column to be consistent with these (at most) two changepoints.

Note that the queries made in this step are adaptive, and the (partial) function g̊ obtained at
the end coincides with g̃ if f (and therefore g̃) is indeed 2-monotone. This is because in this case,
by Lemma 5.2 the sequences (∂̄g̃j)j , (¯

∂g̃j)j will be non-decreasing, and therefore the process
outlined above will result in ∂̄g̃j` = ∂̄g̊j` and

¯
∂g̃j` =

¯
∂g̊j` for all 1 ≤ ` ≤ 1/ε+ 1. Moreover, it

is not difficult to see that the total number of queries made to f in this initialization step will
be O(1/ε): this is because of the fact that we only search for the current changepoint ∂̄g̊j`
(resp.

¯
∂g̊j`) starting at the position of the previous one ∂̄g̊j`−1 (resp.

¯
∂g̊j`−1), going downwards

only. Since to obtain a changepoint we only query the positions of g (and therefore f) at block
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endpoints, there are in total at most 1/ε positions to query where starting at one and then
only going “down.” Thus, the number of queries made for each column j` can be written as
O(1) +m`, where

∑1/ε+1
`=1 m` ≤ K = O(1/ε).

Query time. When querying the value of g̊ on a point (i, j), first let ` be the index such that
j` ≤ j < j`+1. Then define ∂̄g̊j (resp. ¯

∂g̊j) by querying the value of g on the j-th column for
all at most 1/ε (block) indices between ∂̄g̊j` and ∂̄g̊j`+1 (resp.

¯
∂g̊j` and

¯
∂g̊j`+1) to find the

corresponding candidate changepoints:

¯
∂g̊j = min

{
¯
∂g̊j`+1 ≤ i ≤ ¯

∂g̊j` : g(i, j) 6= g(1, j)
}
− 1,

∂̄g̊j = max
{
∂̄g̊j`+1 ≤ i ≤ ∂̄g̊j` : g(i, j) 6= g(n, j)

}
+ 1

Again, note that after each query the (partial) function g̊ obtained so far will coincide with g̃ if f
(and therefore g̃) is indeed 2-monotone; and g̊ is uniquely determined by f (and in particular does
not depend on the actual queries made nor on their order). Finally, the function g̊ thus defined will
always by construction be 2-column-wise-monotone.

The tester previously described can then be slightly modified to simulate access to g̊ instead
of g̃: by the above discussion, for the completeness case we will have the same guarantees as then
g̊ = g̃, while the soundness case stays unchanged:
• If f is 2-monotone, then g̊ = g̃ is ε

8 -close to f ; so dist(f, g̊) ≤ ε
8 and dist

(̊
g,M(2)

2

)
≤ ε

8 .
• If f is ε-far from 2-monotone, then g̊ is either (i) ε

4 -far from f or (ii) 3ε
4 -far from 2-monotone.

Thus, the analysis of correctness of the tester carries through with this modification; it only remains
to bound the query complexity. We will show that the expected number of queries made is O(1/ε);
a bound on the worst-case query complexity will then follow from standard arguments,8 at the price
of a constant factor in the O(·).

To give this bound on the expected number of queries, we first observe that the algorithm
from [BRY14] we rely on in the first stage of the tester is non-adaptive, and moreover all the queries
it makes are uniformly distributed (as it works by a reduction, invoking the non-adaptive, one-sided,
sample-based monotonicity tester for functions [n]→ {0, 1}). Similarly, all the queries made in the
second stage are uniformly distributed as well.

Therefore, the expected number of queries a` made to columns with indices j` ≤ j < j`+1 is the
same for each ` ∈ [1/ε+ 1], namely

a` = q

1/ε = O(1).

where q = O
(

1
ε

)
is the total number of queries made to g̊ (and/or to ∂̄g̊,

¯
∂g̊) during the second

phase of “Query time.” Now, letting m` =
¯
∂g̊j` − ¯

∂g̊j`+1 and m′` = ∂̄g̊j` − ∂̄g̊j`+1 , we have that the
total expected cost of simulating these queries (in terms of queries to f) is upperbounded by

1
ε∑
`=1

a` ·
(
O(1) +m` +m′`

)
= O

(1
ε

)
+O(1) ·

1
ε∑
`=1

m` +O(1) ·
1
ε∑
`=1

m′` = O

(1
ε

)
.

8Namely, stopping the algorithm and outputting REJECT if the number of queries made exceeds C
ε

for some
absolute constant C > 0, found by applying Markov’s inequality.
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Since the total number of queries made to f is the sum of the number of queries made to partly build
g̊ during the “Initialization phase” (which is O(1/ε) by the foregoing discussion), the number of
queries made to simulate access to g̊ or ∂̄g̊,

¯
∂g̊ during the “Query time” (which was just shown to be

O(1/ε) in expectation), and the number of queries directly made to f when testing the distance of f
to g̊ (which is also O(1/ε)), the expected total number of queries is indeed O(1/ε), as claimed.

5.2 Possible extensions

We now discuss two possible extensions of the techniques underlying Theorem 1.6, namely to
(i) k-monotonicity testing of functions over [n]2, for general k; and (ii) 2-monotonicity testing of
functions over [n]d, for general d. (Note that we do provide a different tester for general k and d in
the next section, Section 6).

Extending to general k (for d = 2). A natural direction would be to first to generalize Defini-
tion 5.1 to k-column-wise monotone functions f , defining the k sequences (

¯
∂f

(1)
j )j∈[n], . . . , (¯

∂f
(k)
j )j∈[n]

of column changepoints with
¯
∂f

(1)
j ≤ · · · ≤

¯
∂f

(k)
j for all j ∈ [n]. The next step would then be to

obtain an analogue of the key lemma of the previous section, Lemma 5.3 to this setting. An issue
is that it appears necessary to consider now the L1 distance to (k − 1)-monotonicity of these k
sequences, instead of monotonicity as before. Thus, taking this route requires to generalize the defi-
nition of k-monotonicity to real-valued functions, but also to develop L1-testers for k-monotonicity
over the line.

The testing algorithm now follows the same outline as in the previous section, with the same
“amortizing” idea when invoking this newly obtained L1-tester for k-monotonicity in parallel on the
k subsequences, each with probability of failure δ = 1/(10k) (for a union bound) and approximation
parameter ε′ = ε/(10k). (Note that some more optimizations may then help further reduce the
query complexity, by “sharing” the same set of queries between the k instances of the L1-testing
algorithm.)

Extending to general d (for k = 2). At a very high-level, the tester of Section 5.1 works by
reducing 2-monotonicity testing of f : [n]2 → {0, 1} to monotonicity L1-testing of

¯
∂f, ∂̄f : [n]→ [0, 1].

More generally, one can hope to extend this approach to higher dimensions, reducing 2-monotonicity
testing of f : [n]d → {0, 1} to monotonicity L1-testing of

¯
∂f, ∂̄f : [n]d−1 → [0, 1]: that is, testing

monotonicity (in L1) of the two (d− 1)-dimensional “surfaces” of changepoints. This in turn could
be done invoking the L1 non-adaptive tester of [BRY14] for monotonicity over [n]d, which has query
complexity Õ(d/ε): which may lead to a total query complexity of poly(d, 1/ε), that is polynomial
in the dimension. We leave this possible extension as an interesting direction for future work.

6 On the high-dimensional grid
In this section, we give two algorithms for tolerant testing, that is testing whether a function
f : [n]d → {0, 1} is ε1-close to k-monotone vs. ε2-far from k-monotone, establishing Theorem 1.8.
The first has query complexity exponential in the dimension d and is fully tolerant, that is works
for any setting of 0 ≤ ε1 < ε2 ≤ 1. The second applies whenever ε2 > 3ε1, and has (incomparable)
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query complexity exponential in Õ(k
√
d/(ε2 − 3ε1)2). Both of these algorithms can be used for

non-tolerant (“regular”) testing by setting ε1 = 0 and ε2 = ε, which implies Theorem 1.7.

Theorem 1.8. There exist
• a non-adaptive (fully) tolerant tester for k-monotonicity of functions f : [n]d → {0, 1} with
query complexity q(n, d, ε1, ε2, k) = Õ

(
1

(ε2−ε1)2

(
5kd
ε2−ε1

)d)
;

• a non-adaptive tolerant tester for k-monotonicity of functions f : [n]d → {0, 1} with query
complexity q(n, d, ε1, ε2, k) = 2Õ(k

√
d/(ε2−3ε1)2), under the restriction that ε2 > 3ε1.

As a corollary, this implies Theorem 1.7, restated below:

Theorem 1.7. There exists a non-adaptive tester for k-monotonicity of functions f : [n]d → {0, 1}
with query complexity q(n, d, ε, k) = min(Õ

(
1
ε2

(
5kd
ε

)d)
, 2Õ(k

√
d/ε2)).

For convenience, we will view in this part of the paper the set [n] as [n] = {0, 1, . . . , n − 1}.
Assuming thatm divides n, we let Bm,n : [n]d → [m]d be the mapping such that Bm,n(y)i = byi/mc for
1 ≤ i ≤ m. For x ∈ [m]d, we define the set B−1

m,n(x) to be the inverse image of x. Specifically, B−1
m,n(x)

is the set of points of the form m · x+ [n/m]d, with standard definitions for scalar multiplication
and coordinate-wise addition. That is, B−1

m,n(x) is a “coset” of [n/m]d points in [n]d. To keep on
with the notations of the other sections, we will call these cosets blocks, and will say a function
h : [n]d → {0, 1} is an m-block function if it is constant on each block. Moreover, for clarity of
presentation, we will omit the subscripts on B and B−1 whenever they are not necessary.

We first establish a lemma that will be useful for the proofs of correctness of both algorithms.

Lemma 6.1. Suppose f : [n]d → {0, 1} is k-monotone. Then there is an m-block function h : [n]d →
{0, 1} such that dist(f, h) < kd/m.

Proof. Fix any k-monotone function f : [n]d → {0, 1}. We partition [m]d into chains of the form

Cx =
{
x+ ` · 1d : ` ∈ N, x ∈ [m]d and xi = 0 for some i

}
.

There are md − (m− 1)d ≤ dmd−1 of these chains: we will show that f can only be nonconstant on
at most k blocks of each chain.

By contradiction, suppose there exists x ∈ [m]d such that f is nonconstant on k + 1 different
blocks B−1(z(i)), where z(1) ≺ z(2) ≺ . . . ≺ z(k) ≺ z(k+1), and each z(i) ∈ Cx. By construction, we
have B−1(z(i)) ≺ B−1(z(j)) for i < j. For each 1 ≤ i ≤ k+ 1, there are two points v(i)

∗ , v
(i)
∗∗ ∈ B−1(zi)

such that v(i)
∗ ≺ v(i)

∗∗ and f(v(i)
∗ ) 6= f(v(i)

∗∗ ). By construction v(1)
∗ ≺ v(1)

∗∗ ≺ v(2)
∗ ≺ v(2)

∗∗ ≺ v(3)
∗ ≺ v(3)

∗∗ ≺
. . . ≺ v

(k+1)
∗ ≺ v

(k+1)
∗∗ , and there must be at least k + 1 pairs of consecutive points with differing

function values. Out of these 2k+ 2 many points, there is a chain of points v̄(1) ≺ v̄(2) ≺ . . . ≺ v̄(k+1)

where f(v̄(i)) 6= f(v̄(i+1)) for 1 ≤ i ≤ k, which is a violation of the k-monotonicity of f .
Thus, in each of the dmd−1 many chains of blocks, there can only be k nonconstant blocks. It

follows that there are at most kdmd−1 nonconstant blocks in total. We now define h(y) to be equal
to f(y) if f is constant on B(y), and arbitrarily set h(y) = 0 otherwise. Each set B−1(y) contains
(n/m)d = nd ·m−d many points, and f is not constant on at most kdmd−1 of these. It follows that
dist(f, h) ≤ kdmd−1 ·m−d = kd/m.
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6.1 Fully tolerant testing with O(kd/(ε2 − ε1)))d queries

Our first algorithm (Algorithm 1) then proceeds by essentially brute-force learning an m-block
function close to the unknown function, and establishes the first item of Theorem 1.8.

Algorithm 1 Fully tolerant testing with O(kd/(ε2 − ε1)))d queries.
Require: Query access to f : [n]d → {0, 1}, ε2 > ε1 ≥ 0, a positive integer k
1: α← (ε2 − ε1),m← d5kd/αe, t← d25 ln(6md)/(2α2)e
2: . Define a distribution D over [m]d × {0, 1}.
3: for x ∈ [m]d do
4: Query f on t random points Tx ⊆ B−1(x).
5: D(x, 0)← Pry∈Tx [ f(y) = 0 ] /md

6: D(x, 1)← Pry∈Tx [ f(y) = 1 ] /md

7: end for
8: . Define a distribution D′ over [n]d × {0, 1} such that D′(y, b) = D(B(y), b) ·md/nd.
9: if there exists a k-monotone m-block function h such that Pr(y,b)∼D′ [h(y) 6= b ] ≤ ε1 + α

2 then
return ACCEPT

10: end if
11: return REJECT

Proposition 6.2. Algorithm 1 accepts all functions ε1-close to k-monotone functions, and re-
jects all functions ε2-far from k-monotone (with probability at least 2/3). Its query complexity is
O

(
d

(ε2−ε1)2

(
5kd
ε2−ε1

+ 1
)d

log kd
ε2−ε1

)
.

Proof. The algorithm first estimates Pry∈B−1(x) [ f(y) = b ] for every x ∈ [m]d and b ∈ {0, 1} to
within ±α

5 . We use t = 25 ln(6md)/2α2 points in each block to ensure (by an additive Chernoff
bound) that each estimate is correct except with probability at most m−d/3. By a union bound,
the probability that all estimates are correct is at least 2/3, and we hereafter condition on this.
By construction, E(x,b)∼D[Pry∈B−1(x) [ f(y) 6= b ]] = Pr(y,b)∼D′ [ f(y) 6= b ] ≤ α

5 . In this probability
experiment, the marginal distribution of D′ on y is uniform over [n]d.

Let f∗ : [n]d → {0, 1} be a k-monotone function minimizing Pr[ f(y) 6= f∗(y) ]. Lemma 6.1 ensures
that there is a k-monotone m-block function h : [n]d → {0, 1} such that dist(f∗, h) < kd/m ≤ α/5.
Let h∗ : [n]d → {0, 1} be a k-monotone m-block function minimizing dist(f∗, h∗).

Completeness. Suppose dist(f, f∗) ≤ ε1. Then by the triangle inequality,

Pr
(y,b)∼D′

[h∗(y) 6= b ] ≤ Pr
(y,b)∼D′

[h∗(y) 6= f∗(y) ]+ Pr
(y,b)∼D′

[ f∗(y) 6= f(y) ]+ Pr
(y,b)∼D′

[ f(y) 6= b ] ≤ ε1+2α
5 .

where to bound the first term Pr(y,b)∼D′ [h∗(y) 6= f∗(y) ] by dist(f∗, h∗) ≤ α/5 we used the fact
that the marginal distribution of y is uniform when (y, b) ∼ D′. Thus, the algorithm will find a
k-monotone m-block function close to D (without using any queries to f) and accept.
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Soundness. Suppose dist(f, f∗) ≥ ε2. Then by the triangle inequality

Pr
(y,b)∼D′

[h(y) 6= b] ≥ Pr
(y,b)∼D′

[h(y) 6= f(y)]− Pr
(y,b)∼D′

[f(y) 6= b]

≥ Pr
(y,b)∼D′

[f∗(y) 6= f(y)]− Pr
(y,b)∼D′

[f(y) 6= b]

≥ ε2 −
α

5

for every k-monotone m-block function h. Since ε2 − 2α/5 ≥ ε1 + 3α/5, the algorithm never find a
k-monotone m-block function h with low error with respect to D, and the algorithm will reject.

Query complexity. The algorithm only makes queries in constructing D; the number of queries
required is md · t = O

(
d
α2

(
5kd
α + 1

)d
log kd

α

)
.

6.2 Tolerant testing via agnostic learning

We now present our second algorithm, Algorithm 2, proving the second item of Theorem 1.8. At its
core is the use of an agnostic learning algorithm for k-monotone functions, which we first describe.9

Proposition 6.3. There exists an agnostic learning algorithm for k-monotone functions over
[r]d → {0, 1} with excess error τ with sample complexity exp(Õ(k

√
d/τ2).

Algorithm 2 Multiplicative approximation with exp(Õ(k
√
d/((ε2 − 3ε1)2)) queries

Require: Query access to f : [n]d → {0, 1}, ε2 > 3ε1 ≥ 0, a positive integer k
1: α← (ε2 − 3ε1), m← d6kd/εe , t← d3d(k + 1)/ε lnm+ ln 100e
2: Define D to be the distribution over [m]d × {0, 1} such that D(x, b) = Pry∈B−1(x) [ f(y) = b ].
3: . AD(τ, f) denotes the output of an agnostic learner of k-monotone functions with respect to D,

with excess error τ and probability of failure 1/10
4: h : [m]d → R← AD(α/12, f).
5: Estimate Pr(x,b)∼D [h(x) 6= b ] to within ±α/7 with probability of failure 1/10, using O(1/α2)

queries.
6: if the estimate is more than ε1 + 5α

12 then return REJECT
7: end if
8: if dist(h, `) = Prx∈[m]d [h(x) 6= `(x) ] ≤ 2ε1 + 5α

12 for some k-monotone m-block function ` then
return ACCEPT

9: else return REJECT
10: end if

We will rely on tools from Fourier analysis to prove Proposition 6.3. For this reason, it will be
convenient in this section to view the range as {−1, 1} instead of {0, 1}.

9Recall that an agnostic learner with excess error τ for some class of functions C is an algorithm that, given an
unknown distribution D, an unknown arbitrary function f , and access to random labelled samples 〈x, f(x)〉 where
x ∼ D, satisfies the following. It outputs a hypothesis function ĥ such that Prx∼D

[
f(x) 6= ĥ(x)

]
≤ optD + τ with

probability at least 2/3, where optD = minh∈C Prx∼D [ f(x) 6= h(x) ] (i.e., it performs “almost as well as the best
function in C”).
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Definition 6.4. For a Boolean function f : [r]d → {−1, 1}, we define

Inf i[f ] = 2 Pr
[

[f(x) 6= f(x(i))
]

where x = (x1, x2, . . . , xd) is a uniformly random string over [r]d, and x(i) = (x1, x2, . . . , xi−1, x
′
i, xi+1, . . . , xd)

for x′ drawn independently and uniformly from [r]. We also define Inf [f ] =
∑d
i=1 Inf i[f ].

We first generalize the following result, due to Blais et al., for more general domains:

Proposition 6.5 ([BCO+15]). Let f : {0, 1}d → {−1, 1} be a k-monotone function. Then Inf [f ] ≤
k
√
d.

Lemma 6.6 (Generalization). Let f : [r]d → {−1, 1} be a k-monotone function. Then Inf [f ] ≤ k
√
d.

Proof. For any two strings y0, y1 ∈ [r]d, let fy0,y1 : {0, 1}d → {−1, 1} be the function obtained by
setting fy0,y1(x) = f(yx), where yx ∈ [r]d is defined as

yxi =
{

min{y0
i , y

1
i } if xi = 0

max{y0
i , y

1
i } if xi = 1

Since f was a k-monotone function, so is fy0,y1 . Thus Inf [fy0,y1 ] ≤ k
√
d for every choice of y0

and y1. It is not hard to see that for any fixed i ∈ [d] the following two processes yield the same
distribution over [r]d × [r]d:

• Draw z ∈ [r]d, z′i ∈ [r] independently and uniformly at random, set z′ def= (z1, . . . , zi−1, z
′
i, zi+1, . . . , zd),

and output (z, z′);
• Draw y0, y1 ∈ [r]d, x ∈ {0, 1}d independently and uniformly at random, and output (yx, yx(i)).

This implies that

Inf [f ] =
d∑
i=1

Inf i[f ] =
d∑
i=1

2 Pr
z∈[r]d

[f(z) 6= f(z(i))] =
d∑
i=1

2Ey0,y1∈[r]d

[
Pr

x∈{0,1}d

[
f(yx) 6= f(yx(i))

]]

= Ey0,y1∈[r]d

[
d∑
i=1

2 Pr
x∈{0,1}d

[
f(yx) 6= f(yx(i))

]]
= Ey0,y1∈[r]d

[
d∑
i=1

2 Pr
x∈{0,1}d

[
fy0,y1(x) 6= fy0,y1(x(i))

]]
= Ey0,y1 [Inf [fy0,y1 ]] ≤ Ey0,y1 [k

√
d] = k

√
d.

For two functions f, g : [r]d → R, we define the inner product 〈f, g〉 = Ex[f(x)g(x)], where
the expectation is taken with respect to the uniform distribution. It is known that for functions
f : [r]d → R, there is a “Fourier basis” of orthonormal functions f . To construct such a basis, we can
take any orthonormal basis {φ0 ≡ 1, φ1, . . . , φ|r|−1} for functions f : [r] → R. Given such a basis,
a Fourier basis is the collection of functions φα, where α ∈ [r]d, and φα(x) =

∏d
i=1 φαi(xi). Then

every f : [r]d → R has a unique representation f =
∑
α∈[r]d f̂(α)φα, where f̂(α) = 〈f, φα〉 ∈ R.

Many Fourier formulæ hold in arbitrary Fourier bases, an important example being Parseval’s
Identity:

∑
α∈[r]d f̂(α)2 = 1. We will use the following property:
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Lemma 6.7 ([O’D14, Proposition 8.23]). For α ∈ [r]d, let |α| denote the number of nonzero
coordinates in α. Then we have

Inf [f ] =
∑
α∈[r]d

|α| f̂(α)2.

Lemma 6.8. If Inf [f ] ≤ k, then
∑

α:|α|>k/ε
f̂(α)2 ≤ ε.

Proof. If not, then Inf [f ] =
∑
α |α| f̂(α)2 ≥

∑
α:|α|>k/ε |α| f̂(α)2 ≥ k

ε

∑
α:|α|>k/ε f̂(α)2 > k

ε · ε = k, a
contradiction.

Lemma 6.9. Let p be the function
∑
α:|α|≤t f̂(α)φα. Then

(i) ‖p− f‖22 = Ex∈[r]d [(p(x)− f(x))2] =
∑
α:|α|>t f̂(α)2;

(ii) p is expressible as a linear combination of real-valued functions over [r]d, each of which only
depends on at most t coordinates;

(iii) p is expressible as a degree-t polynomial over the rd indicator functions 1{xi=j} for 1 ≤ i ≤ d
and j ∈ [r].

Theorem 6.10 ([KKMS08, Theorem 5]). Let C be a class of Boolean functions over X and S a
collection of real-valued functions over X such that for every f : X → {−1, 1} in C, there exists
a function p : X → R such that p is expressible as a linear combination of functions from S and
‖p− f‖22 ≤ τ2. Then there is an agnostic learning algorithm for C achieving excess error τ which
has sample complexity poly(|S| , 1/τ).

Importantly, this algorithm is still successful with inconsistent labelled samples (examples), as
long as they come from a distribution on X × {−1, 1}, where the marginal distribution on X is
uniform.

Now we put all the pieces together. To agnostically learn a k-monotone function, we simply
perform the agnostic learning algorithm of [KKMS08] on the distribution D over [m]d × {−1, 1}
defined by

D(x, b) = Pr
y∈B−1(x)

[ f(y) = b ] .

To generate a sample (x, b) from D, we draw a uniformly random string in x ∈ [m]d, and b is
the result of a query for the value of f(y) for a uniformly random y ∈ B−1(x). From Lemma 6.9,
we can take S to be the set of (k

√
d/τ2)-way products of rd indicator functions. It follows that

|S| =
( rd
k
√
d/τ2

)
= exp(Õ(k

√
d/τ2)).

Proposition 6.11. Algorithm 2 accepts all functions ε1-close to k-monotone functions, and rejects
all functions ε2-far from k-monotone, when ε2 > 3ε1 (with probability at least 2/3). Its query
complexity is exp(Õ(k

√
d/(ε2 − 3ε1)2)).

Proof. By a union bound, we have that with probability at least 8/10 both Step 5 and Step 4
succeed. We hereafter condition on this.
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Completeness. Suppose f is ε1-close to k-monotone. Lemma 6.1 and the triangle inequality
imply that there is a k-monotone m-block function g∗ such that dist(f, g∗) ≤ ε1 + α/6. The
agnostic learning algorithm thus returns a hypothesis h such that dist(f, h) ≤ ε1 + α/4. The
algorithm estimates this closeness to within α/7, so the estimate obtained in Step 5 is at most
ε1 +ε/4+ε/7 < ε1 +5α/12 and the algorithm does not reject in this step. By the triangle inequality,
h is (2ε1 + 5α/12)-close to k-monotone, and the algorithm will accept. There is no estimation error
here, since no queries to f are required.

Soundness. Now suppose f is ε2-far from k-monotone, where ε2 = 3ε1 + α for some α > 0.
Suppose the algorithm does not reject when estimating dist(f, h), where h is the hypothesis returned
by the agnostic learning algorithm. Then dist(f, h) ≤ ε1 +5α/12+α/7 < ε1 +7α/12. By the triangle
inequality, if t is a k-monotone function, dist(h, t) ≥ dist(f, t) − dist(f, h) > ε2 − (ε1 + 7α/12) =
2ε1 + 5α/12. The algorithm will thus reject in the final step.

Query complexity. The query complexity of the algorithm is dominated by the query complexity
of the agnostic learning algorithm, which is exp(Õ(k

√
d/α2)) = exp(Õ

(
k
√
d/(ε2 − 3ε1)2

)
).

7 Tolerant testing and applications to L1-testing
We now show how our techniques can be applied to solve an open problem on L1 tolerant testing of
monotonicity, asked at the Sublinear Algorithms Workshop 2016 [Sub16].

We start by describing a reduction lemma from L1 distance to monotonicity of functions in
[0, 1]X to Hamming distance to monotonicity of functions in {0, 1}X×[0,1] (that is, “trading the range
for a dimension”). We note that this idea appears in Berman et al.[BRY14, Lemmata 2.1 and 2.3],
although formulated in a slightly different way. For convenience and completeness, we state and
prove here the version we shall use.

In what follows, we let X be a discrete partially ordered domain equipped with a measure µ,10

that is a tuple (X ,�, µ); and for a set Y ⊆ R we denote byM(X→Y) ⊆ YX the set of monotone
functions from X to Y.

Definition 7.1 (Analogue of [BRY14, Definition 2.1]). For a function f : X → [0, 1], the threshold
function T ◦ f : X × [0, 1]→ {0, 1} is defined by

T ◦ f(x, t) = 1{f(x)≥1−t} =
{

1 if f(x) ≥ 1− t
0 otherwise.

The next fact is immediate from this definition:

Fact 7.2. For any f : X → [0, 1], it is the case that for every x ∈ X

f(x) =
∫ 1

0
T ◦ f(x, t)dt.

Moreover, f ∈M(X→[0,1]) if, and only if, T ◦ f ∈M(X×[0,1]→{0,1}).
10We will only require that (X , µ) be a measurable space with finite measure, that is µ(X ) < ∞, and shall only

hereafter concern ourselves with measurable functions.
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We begin by the following characterization, which is immediately obtained from a corresponding
theorem of Berman et al.; before stating a slightly modified version that we shall rely upon. For
completeness, the proof of the former can be found in Appendix C.

Proposition 7.3 (Analogue of [BRY14, Lemma 2.1]). For any f : X → [0, 1],

L1
(
f,M(X→[0,1])

)
= L1

(
T ◦ f,M(X×[0,1]→{0,1})

)
= dist

(
T ◦ f,M(X×[0,1]→{0,1})

)
Proposition 7.4 (Rounding and Range-Dimension Tradeoff). For any f : X → [0, 1] and parameter
m ≥ 1, let Rm

def= { 1
m ,

2
m , . . . , 1}. We define the m-rounding of f as Φm ◦ f : X → Rm by

Φm ◦ f(x) = dmf(x)e
m

, x ∈ X .

Then we have
(i)

∣∣∣L1
(
f,M(X→[0,1])

)
− L1

(
Φm ◦ f,M(X→Rm)

)∣∣∣ ≤ 1
m ;

(ii) L1
(
Φm ◦ f,M(X→Rm)

)
= dist

(
T ◦ Φm ◦ f,M(X×Rm→{0,1})

)
.

Proof of Proposition 7.4. Fix any m ≥ 1. We start the proof of item (i) by the simple observa-
tion that if f ∈ M(X→[0,1]), then Φm ◦ f ∈ M(X→Rm) ⊆ M(X→[0,1]), that is rounding preserves
monotonicity; and that Φm ◦ g = g for all g : X → Rm. This, along with the fact that for all
f : X → [0, 1]

L1(f,Φm ◦ f) = 1
µ(X )

∫
X
µ(dx) |Φm ◦ f(x)− f(x)|︸ ︷︷ ︸

≤1/m

≤ 1
m

implies by the triangle inequality, for any g ∈M(X→Rm) ⊆M(X→[0,1]), that

L1
(
f,M(X→[0,1])

)
≤ L1(f, g) ≤ 1

m
+L1(g,Φm ◦ g) +L1(Φm ◦ f,Φm ◦ g) = 1

m
+ 0 +L1(Φm ◦ f, g) .

Taking g ∈M(X→Rm) that achieves L1(Φm ◦ f, g) = L1
(
Φm ◦ f,M(X→Rm)

)
, we get

L1
(
f,M(X→[0,1])

)
≤ 1
m

+ L1
(
Φm ◦ f,M(X→Rm)

)
.

For the other direction, we first note that for any two functions f, g : X → [0, 1], it is the case
that L1(f, g) ≥ L1(Φm ◦ f,Φm ◦ g)− 1/m (which is immediate from the definition of the rounding
operator), and taking g to be the closest monotone function to f this readily yields

L1
(
f,M(X→[0,1])

)
≥ L1(Φm ◦ f,Φm ◦ g)− 1

m
≥ L1

(
Φm ◦ f,M(X→Rm)

)
− 1
m
.

Finally, the proof of the second part, item (i), is identical to that of Proposition 7.3, replacing
the Lebesgue measure on [0, 1] by the counting measure on Rm. (So that integrals over [0, 1] become
sums over Rm, normalized by |Rm| = m.)

Given Proposition 7.4, it is now easy to apply the results of Section 6 to obtain a tolerant L1
tester for monotonicity of functions f : [n]d → [0, 1]. Indeed, given parameters 0 < ε1 < ε2, one can
set the rounding parameter m to d4/(ε2 − ε1)e; and from query access to f : [n]d → [0, 1], simulate
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query access to Φm ◦ f and therefore to g def= T ◦ Φm ◦ f : [n]d ×Rm → {0, 1}. By Proposition 7.4
and our choice of m, in order to distinguish

L1
(
f,M(X→[0,1])

)
≤ ε1 vs. L1

(
f,M(X→[0,1])

)
≥ ε2

it is enough to distinguish

dist
(
g,M(X×Rm→{0,1})

)
≤ ε1 + 1

m
vs. dist

(
g,M(X×Rm→{0,1})

)
≥ ε2 −

1
m
.

By our choice of m, we also have
(
ε2 − 1

m

)
−
(
ε1 + 1

m

)
≥ ε2−ε1

2 .
The last step is to observe that one can view equivalently g as a function g : [n]d × [m]→ {0, 1};

by Proposition 7.4 and our choice of m, so that the algorithms of Theorem 1.7 apply.

Theorem 1.9. There exists a non-adaptive tolerant L1-tester for monotonicity of functions
f : [n]d → {0, 1} with query complexity

• Õ
(

1
(ε2−ε1)2

(
5d

ε2−ε1

)d)
, for any 0 ≤ ε1 < ε2 ≤ 1;

• 2Õ(
√
d/(ε2−3ε1)2), for any 0 ≤ 3ε1 < ε2 ≤ 1.
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[BRW05] Tŭgkan Batu, Ronitt Rubinfeld, and Patrick White. Fast approximate PCPs for
multidimensional bin-packing problems. Inf. Comput., 196(1):42–56, 2005. 1.1.2

[BRY14] Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lp-testing. In STOC,
pages 164–173. ACM, 2014. 1.1.2, 1.1.2, 1.1.2, 1.3, 2, 5.1, 1, 5.1, 5.2, 7, 7.1, 7.3, 7, A, A

[BT96] Nader H. Bshouty and Christino Tamon. On the Fourier spectrum of monotone
functions. J. ACM, 43(4):747–770, 1996. 1

[CDST15] Xi Chen, Anindya De, Rocco A. Servedio, and Li-Yang Tan. Boolean function mono-
tonicity testing requires (almost) n1/2 non-adaptive queries. In STOC, pages 519–528.
ACM, 2015. 1, 1.1.1, 3.2, 3.2.2, A

[CR14] Clément L. Canonne and Ronitt Rubinfeld. Testing probability distributions underlying
aggregated data. In ICALP (1), volume 8572 of Lecture Notes in Computer Science,
pages 283–295. Springer, 2014. 1.2, 4.2.1, 4.1, 4.2.1

[CS13a] Deeparnab Chakrabarty and C. Seshadhri. An o(n) monotonicity tester for boolean
functions over the hypercube. In STOC, pages 411–418. ACM, 2013. Journal version as
[CS16]. 1, 1.1.1, 1.1.2, 1.3, A

[CS13b] Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and
Lipschitz testing over hypercubes and hypergrids. In STOC, pages 419–428, 2013. 1,
1.1.2, A

[CS14] Deeparnab Chakrabarty and C. Seshadhri. An optimal lower bound for monotonicity
testing over hypergrids. Theory of Computing, 10:453–464, 2014. 1, 1.1.2, A

[CS16] Deeparnab Chakrabarty and C. Seshadhri. An o(n) Monotonicity Tester for Boolean
Functions over the Hypercube. SIAM J. Comput., 45(2):461–472, 2016. 7

[CST14] Xi Chen, Rocco A. Servedio, and Li-Yang Tan. New algorithms and lower bounds for
monotonicity testing. In FOCS, pages 286–295. IEEE Computer Society, 2014. 1.1.1,
1.3, A

[DGL+99] Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, and
Alex Samorodnitsky. Improved testing algorithms for monotonicity. In RANDOM-
APPROX, volume 1671 of Lecture Notes in Computer Science, pages 97–108. Springer,
1999. 1, 1.1.1, 1.2

[EKK+00] Funda Ergün, Sampath Kannan, Ravi Kumar, Ronitt Rubinfeld, and Mahesh
Viswanathan. Spot-checkers. J. Comput. Syst. Sci., 60(3):717–751, 2000. 1.1.2, B

37



[Fis04] Eldar Fischer. On the strength of comparisons in property testing. Inf. Comput.,
189(1):107–116, 2004. 1.1.2

[FLN+02] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld, and
Alex Samorodnitsky. Monotonicity testing over general poset domains. In Proceedings
on 34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal,
Québec, Canada, pages 474–483, 2002. 1, 1.1.1, 1.1.1, 3.2, A, A, B, B

[FR10] Shahar Fattal and Dana Ron. Approximating the distance to monotonicity in high
dimensions. ACM Trans. Algorithms, 6(3), 2010. 1.1.2, 1.2, A

[GGL+00] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorodnitsky.
Testing monotonicity. Combinatorica, 20(3):301–337, 2000. 1, 1.1.1, 1.1.2, 1.3, 3.2.2, A

[GK15] Siyao Guo and Ilan Komargodski. Negation-limited formulas. In APPROX-RANDOM,
volume 40 of LIPIcs, pages 850–866. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2015. 1, 1.4

[GMOR15] Siyao Guo, Tal Malkin, Igor Carboni Oliveira, and Alon Rosen. The power of negations
in cryptography. In TCC (1), volume 9014 of Lecture Notes in Computer Science, pages
36–65. Springer, 2015. 1, 1.4

[HK08] Shirley Halevy and Eyal Kushilevitz. Testing monotonicity over graph products. Random
Struct. Algorithms, 33(1):44–67, 2008. 1.1.2, B

[Juk12] Stasys Jukna. Boolean Function Complexity. Springer, 2012. 1, 1.4

[KKMS08] Adam Tauman Kalai, Adam R. Klivans, Yishay Mansour, and Rocco A. Servedio.
Agnostically learning halfspaces. SIAM J. Comput., 37(6):1777–1805, 2008. 1.2, 6.10,
6.2

[KMS15] Subhash Khot, Dor Minzer, and Muli Safra. On monotonicity testing and Boolean
isoperimetric type theorems. In FOCS, pages 52–58. IEEE Computer Society, 2015. 1,
1.1.1, 1.1.1, 1.1.1, 1.3, 3.2, A

[KNOW14] Pravesh Kothari, Amir Nayyeri, Ryan O’Donnell, and Chenggang Wu. Testing surface
area. In SODA, pages 1204–1214. SIAM, 2014. 1.1.2

[KR00] Michael J. Kearns and Dana Ron. Testing problems with sublearning sample complexity.
J. Comput. Syst. Sci., 61(3):428–456, 2000. 1.1.2

[KV94] Michael J. Kearns and Leslie G. Valiant. Cryptographic limitations on learning Boolean
formulae and finite automata. J. ACM, 41(1):67–95, 1994. 1

[LZ16] Chengyu Lin and Shengyu Zhang. Sensitivity conjecture and log-rank conjecture for
functions with small alternating numbers. CoRR, abs/1602.06627, 2016. 1, 1.4

[Mar57] A. A. Markov. On the inversion complexity of systems of functions. Doklady Akademii
Nauk SSSR, 116:917–919, 1957. English translation in [Mar58]. 1

38



[Mar58] A. A. Markov. On the inversion complexity of a system of functions. Journal of the
ACM, 5(4):331–334, October 1958. 7

[Nee14] Joe Neeman. Testing surface area with arbitrary accuracy. In STOC, pages 393–397.
ACM, 2014. 1.1.2

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014. 6.7

[OS07] Ryan O’Donnell and Rocco A. Servedio. Learning monotone decision trees in polynomial
time. SIAM J. Comput., 37(3):827–844, 2007. 1

[OW09] Ryan O’Donnell and Karl Wimmer. KKL, Kruskal–Katona, and monotone nets. In
FOCS, pages 725–734. IEEE Computer Society, 2009. 1

[PRR06] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance
approximation. Journal of Computer and System Sciences, 72(6):1012–1042, 2006. 1.1.2,
B

[Raz85] Alexander A Razborov. Lower bounds on the monotone complexity of some Boolean
functions. In Doklady Akademii Nauk SSSR, volume 281, pages 798–801, 1985. 1

[Ros15] Benjamin Rossman. Correlation bounds against monotone NC1. In Conference on
Computational Complexity (CCC), 2015. 1, 1.4

[RW92] Ran Raz and Avi Wigderson. Monotone circuits for matching require linear depth. J.
ACM, 39(3):736–744, 1992. 1

[Ser04] Rocco A. Servedio. On learning monotone DNF under product distributions. Inf.
Comput., 193(1):57–74, 2004. 1

[Sub16] List of open problems in sublinear algorithms: Problem 70. http://sublinear.info/
70, 2016. Originally posed in [BRY14]. 1.1.2, 1.3, 7

[Val84] Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984. 2

39

http://sublinear.info/70
http://sublinear.info/70


A Previous work on monotonicity testing
In this appendix, we summarize the state-of-the-art on monotonicity testing. We observe that this
question has been considered for functions over various domains (e.g. hypergrids, hypercubes and
general posets) and ranges (notably Boolean range {0, 1} and unbounded range N); as hypergrids
and hypercubes are arguably the domains that have received the most attention in the literature,
we will in this overview restrict ourselves on work on these, and refer readers to [FLN+02, BGJ+09]
for other various posets. We will also focus on the Boolean range {0, 1}, which is most relevant to
our work, and briefly mention the best known results (which are also tight) for unbounded range N.
In the end of this section, we include known results for tolerant monotonicity testing.

Before we go over those results, we recall some notation: namely, testers can make adaptive (a.)
or non-adaptive (n.a.) queries and have 1-sided (1.s.) or 2-sided (2.s.) error. The best one could
hope for would then be to obtain 1-sided non-adaptive upper bound, complemented with 2-sided
adaptive lower bounds. We note all testers included in below except tolerant testers are 1-sided
(almost all of them are non-adaptive) algorithms.

Hypercubes with Boolean Range. The problem of monotonicity testing is introduced by
Goldreich et al. [GGL+00] for functions f : {0, 1}d → {0, 1}. [GGL+00] present a simple “edge
tester” with query complexity O(d/ε). A tester with O(d7/8/ε3/2) queries, the first improvement
in terms of the dependence on d and the first to “break” the linear barrier, was presented by
Chakrabarty and Seshadhri [CS13a], further improved to Õ(d5/6/ε4) by Chen et al. [CST14].
Recently, a Õ(

√
d/ε2) upper bound was established by Khot et al. [KMS15]. All these upper bounds

are obtained for 1-sided, non-adaptive testers.
For 1-sided non-adaptive testers, Fischer et al. [FLN+02] showed an Ω(

√
d) lower bound. For

2-sided non-adaptive testers, Chen et al. [CST14] obtained an Ω̃(d1/5) lower bound, further improved
by Chen et al. [CDST15]) to Ω(d1/2−c) (for any constant c > 0). All these lower bounds applying to
non-adaptive testers, they only imply an Ω(log d) lower bound for adaptive ones. Recently, Belovs
and Blais [BB16] showed an Ω(d1/4) lower bound for 2-sided adaptive testers, i.e. an exponential
improvement over the previous bounds. All mentioned lower bounds hold for constant ε > 0, and
are summarized in Table 3.

Domain Upper bound Lower bound
{0, 1}d O

(√
d
)
1.s.-n.a. [KMS15] Ω

(
d1/2

)
1.s.-n.a. [FLN+02]

Ω
(
d1/2−o(1)

)
2.s.-n.a. [CDST15]

Ω̃
(
d1/4

)
2.s.-a. [BB16]

Table 3: Testing monotonicity of a function f : {0, 1}d → {0, 1}

Hypergrids with Boolean Range. We remark that most known previous upper bounds for
testing monotonicity over hypergrids are for unbounded range, which we will be the focus of the
next section. Instead, we only mention here the case of Boolean range, giving in each setting the
current best known results. For testing monotonicity over the line with Boolean range (i.e. d = 1
case), both a 1-sided non-adaptive O(1/ε) upper bound and a 2-sided adaptive Ω(1/ε) lower bound
are known (both of them being folklore). For d = 2, Berman et al. [BRY14] showed a tight bound
of Θ((log 1/ε)/ε) for 1-sided non-adaptive testers. Interestingly, they also prove that “adaptivity”
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helps in the d = 2 case: that is, they establish a 1-sided tight adaptive O(1/ε) upper bound
which beats Ω(log 1/ε)/ε) lower bound for 1-sided non-adaptive testers. For general d, Berman et
al. [BRY14] give both a 1-sided non-adaptive tester with query complexity O(dε log d

ε ), and a 1-sided
adaptive tester with query complexity O

(
d2d logd−1 1

ε + d2 log d
ε

)
. The best known results can be

found in Table 4.

Domain Upper bound Lower bound
[n] O

(
1
ε

)
1.s.-n.a. Ω

(
1
ε

)
2.s.-a.

[n]2 O
(

1
ε log 1

ε

)
1.s.-n.a. [BRY14] Ω

(
1
ε log 1

ε

)
1.s.-n.a. [BRY14]

O
(

1
ε

)
1.s.-a. [BRY14] Ω

(
1
ε

)
2.s.-a.

[n]d O
(
d
ε log d

ε

)
1.s.-n.a. [BRY14] Ω

(
1
ε log 1

ε

)
1.s.-n.a. [BRY14]

O
(
d2d logd−1 1

ε + d2 log d
ε

)
1.s.-a. [BRY14] Ω

(
1
ε

)
2.s.-a.

Table 4: Testing monotonicity of a function f : [n]d → {0, 1}

Unbounded Range. For unbounded range, tight upper and lower bounds are known for both
hypergrid and hypercube domains. Chakrabarty and Seshadhri [CS14] describe a 1-sided non-
adaptive tester with O(d logn/ε) queries for the hypergrid [n]d. Later, they show that O(d logn/ε)
is essentially optimal even for 2-sided adaptive tester [CS13b]. For the hypercube, [CS14] give a
1-sided non-adaptive tester making O(n/ε) queries, and a matching 2-sided adaptive lower bound
is proved by Joshua Brody (mentioned as private communication in [CS13b]). We refer readers
to [CS14, CS13b] for overviews on previous results for testing monotonicity over the hypercube and
hypergrid with unbounded range. The best known results are summarized in Table 5.

Domain Upper bound Lower bound
{0, 1}d O

(
d
ε

)
1.s.-n.a. [CS14] Ω

(
d
ε

)
2.s.-a. [CS13b]

[n]d O
(
d logn
ε

)
1.s.-n.a. [CS14] Ω

(
d logn
ε − 1

ε log 1
ε

)
2.s.-a. [CS13b]

Table 5: Testing monotonicity of a function f : D → N

Tolerant Testing. To the best of our knowledge, prior to our work tolerant testers for monotonicity
for Boolean functions over the hypergrid were only known for dimension d ∈ {1, 2}. Specifically,
an O( ε2

(ε2−ε1)2 )-query upper bound is known for d = 1, while an Õ( 1
(ε2−ε1)4 )-query one is known for

d = 2 [BRY14, FR10].

Domain Upper bound Lower bound
[n] O( ε2

(ε2−ε1)2 ) [BRY14] 2.s.-a. ?
[n]2 Õ( 1

(ε2−ε1)4 ) [FR10] 2.s.-n.a. ?

Table 6: Tolerant testing monotonicity of a function f : [n]d → {0, 1}
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B Structural results
In this section, we will prove that the distance to k-monotonicity of a Boolean function f can be
expressed in a combinatorial way – which does not require measuring the distance between f and
the closest k-monotone function to f . We will prove this for a general finite poset domain buiding
up on the ideas of [FLN+02]. In the rest of this section, we denote by P = (V,�) an arbitrary poset,
the underlying domain of the function.

Definition B.1. We define the forbidden pattern K10 as the sequence of alternating bits K10 =
(b1, b2, · · · , bk, bk+1) of length (k + 1) , where b1 = 1 and all the bits in the sequence alternate, i.e.,
bi 6= bi+1 ∀i ∈ [k].

A function f : P → {0, 1} is k-monotone only if it avoids K10. That is, for any x1 ≺ x2 ≺ . . . ≺
xk+1 ∈ P we have f(xi) 6= K10(i) for some i ∈ [k + 1].

Using insights from the literature on monotonicity testing, we show that functions far from
k-monotonicity have a large matching of “violated hyperedges” in the “violation hypergraph” which
we define shortly. Let us recall the definition of “violation graph”which has been extremely useful
with monotonicity testing as seen in [EKK+00, PRR06, HK08, ACCL07, FLN+02].

Definition B.2 (Violation graph). Given a function f : P → {0, 1}, the violation graph of f is
defined as Gviol(f) = (P, E(Gviol)) where (x, y) ∈ E(Gviol) if x, y ∈ P form a monotonicity violating
pair in f – that is x � y but f(x) > f(y).

The following theorem about violation graphs has been extremely useful in monotonicity testing
literature.

Theorem B.3. Let f : P → {0, 1} be a function that is ε-far from monotone. Then, there exists a
matching of edges in the violation graph for f of size at least ε |P| /2.

Now let us define a generalization of this concept, the violation hypergraph.

Definition B.4 (Violation hypergraph). Given a function f : P → {0, 1}, the violation hypergraph
of f is Hviol(f) = (P, E(Hviol)) where (x1, x2, · · · , xk) ∈ E(Hviol) if the ordered (k + 1)-tuple
x1 < x2 < . . . < xk+1 (which is a (k + 1)-uniform hyperedge) forms a violation to k-monotonicity in
f .

Now, we state the main theorem that we intend to prove in this section. This theorem offers an
alternate characterization of distance to k-monotonicity that we seek. We recall that a set of edges
forms a matching in a hypergraph if any pair of hyperedges is pairwise disjoint.

Theorem B.5. Let f : P → {0, 1} be function that is ε-far from k-monotone. Then, there exists a
matching of (k + 1)-uniform hyperedges of size at least ε|P|

k+1 in the violation hypergraph.

To prove this theorem we first exploit the key notion of extendability which we define below.
Later we will show that k-monotone functions are extendable.

Definition B.6 (Extendability). A property of Boolean functions is said to be extendable over a
poset domain if the following holds for any set X ⊆ P: given a function f : X → {0, 1} which has
the property (on X), it is possible to define a function g : P → {0, 1} such that g(x) = f(x),∀x ∈ X
and g has the property.
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In other words, a property is extendable if for any subset X ⊆ P , given a function defined over the
set X which respects the property, it is possible to fill in values outside X such that the new function
obtained continues to respect the property. Next, we show that k-monotonicity is an extendable
property:

Lemma B.7. k-monotonicity is an extendable property.

Proof of Lemma B.7. Consider X ⊆ P and some function f : X → {0, 1} which is k-monotone over
X. That is, for any x1 < x2 < . . . < xk+1 ∈ X there exists i ∈ [k + 1] such that f(xi) 6= K10[i].
Take a minimal point v ∈ P \X. That is, for any other point v′ ∈ P \X either v ≤ v′ or v and v′
are not comparable. We will use the following result:

Claim B.8. There exists a function g : X ∪ {v} → {0, 1} such that g(x) = f(x) for all x ∈ X, and
g respects k-monotonicity over its domain.

Before proving this claim, we show how it implies Lemma B.7. Namely, starting with any
function f : X → {0, 1} which is k-monotone on its domain X, we just keep applying the Claim B.8
inductively until we get a function defined over the entire poset which respects k-monotonicity.

Proof of Claim B.8. We will show this by contradiction. Suppose there is no good assignment
available for g(v), that is that both the choices g(v) = 0 and g(v) = 1 lead to a violation to k-
monotonicity in g. Consider the choice g(v) = 0. Since this results in a violation to k-monotonicity,
we know that there is a path P0 = (x1 ≺ x2 ≺ . . . ≺ xk+1) which is a violation to k-monotonicity. It
is clear that v ∈ P0; let i be such that xi = v. Similarly, there is path P1 = (y1 ≺ y2 ≺ . . . ≺ yk+1)
corresponding to g(v) = 1 which also contains the forbidden pattern, and some j such that yj = v.
And thus, g(xt) = g(yt), for all t ∈ [k+ 1] (as both of the paths indexed by x and y form a violation
to k-monotonicity).
By the above discussion 2 paths, P0 and P1, meet at v. We will see that one of the two paths

P ′0 = (x1 ≺ x2 ≺ . . . < xi−1 ≺ yi ≺ yi+1 ≺ . . . ≺ yk+1)

or
P ′1 = (y1 ≺ y2 ≺ . . . < yj−1 ≺ xj ≺ xj+1 ≺ . . . ≺ xk+1)

is already a violation to k-monotonicity in f . To see this, let us begin by recalling that we let v be
the ith vertex on P0 and the jth vertex on P1. Now it is clear that i 6= j. Without loss of generality,
suppose i < j. In this case, the evaluations of f along path P ′1 form the forbidden pattern. This is
because the function values alternate along the segment (y1 ≺ y2 ≺ . . . ≺ yj−1). Also, the function
values alternate along the segment (xi ≺ xi+1 ≺ xi+2 ≺ . . . ≺ xk+1). And finally note that since
f(yj−1) 6= f(yj) and f(yj) = f(xj) we get that f(yj−1) 6= f(xj) as well. So, the path P ′1 indeed
contains a violation to k-monotonicity as claimed. The other case, i > j, is analogous. Hence the
claim follows.

In the next lemma, we show that there is a nice characterization of distance to k-monotonicity
in terms of the size of the minimum vertex cover of the violation hypergraph.11

11Recall that a vertex cover in a hypergraph is just a set of vertices such that every hyperedge contains at least one
of the vertices from this set.
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Lemma B.9. LetMk denote the set of k-monotone functions over the poset P, and f : P → {0, 1}.
Then dist(f,Mk) = εf if, and only if, the size of the minimum vertex cover in Hviol(f) is εf |P|.

Proof of Lemma B.9. We establish separately the two inequalities.

Claim B.10. dist(f,Mk) ≥ |V Cmin(Hviol)|

Proof. Suppose the distance to k-monotonicity is εf , and let g be a k-monotone achieving it, so
that dist(f, g) = εf . Define X = { x ∈ P : f(x) 6= g(x) } (thus, |X| = εf |P|). Let us consider the
violation hypergraph for f given as Hviol(f) = (P, E(Hviol)). Now, delete vertices in X and the
hyperedges containing any vertex v ∈ X from this hypergraph. Because X is the smallest set of
vertices changing values at which gives a k-monotone function, it follows that every hyperedge in
E(Hviol) must contain a vertex in X. Thus, X indeed forms a vertex cover in Hviol(f).

Claim B.11. dist(f,Mk) ≤ |V Cmin(Hviol)|

Proof. Suppose the minimum vertex cover in the violation hypergraph has size εf |P|. We will show
that the distance of the function to k-monotonicity is εf . To see this, let C ⊆ P be the smallest
vertex cover of the violation hypergraph of the said size. Observe that deleting C from Hviol(f)
removes all the hyperedges, and therefore that the function f restricted to X = P \C is k-monotone.
And by the extendability of k-monotone functions established in Lemma B.7, it follows that the
function can be extended to the rest of the domain (by providing values in the cover C) such that it
keeps respecting k-monotonicity. Thus, the distance to k-monotonicity is at most |C| / |P|.

Having characterized distance to k-monotonicity as the size of the smallest vertex cover in the
violation graph, we are ready to establish Theorem B.5. To do so, we will require the following
standard fact:

Fact B.12. Let G = (V,E) be a t-uniform hypergraph. Let M be the maximum matching in G.
Then, |M | ≤ V Cmin(G) ≤ t |M |

Proof of Theorem B.5. By Lemma B.9, we know that the violation hypergraph, Hviol(f) has a
minimum vertex cover of size at least εf |P|. And by Fact B.12, it is seen that it contains a matching
of t-uniform hyperedges of size at least εf

t |P|.

C Omitted proofs
Proof of Lemma 5.2. The first part of the theorem is straightforward (by contrapositive, if at least
one of the two sequences is not non-increasing then we can find a violation of 2-monotonicity). We
thus turn to the second part, and show the contrapositive; for this purpose, we require the following
result:

Claim C.1. If f : [n]2 → {0, 1} is a 2-column-wise monotone function such that (i) f(1, j) =
f(n, j) = 0 for all j ∈ [n] and (ii) both (

¯
∂fj)j∈[n], (¯

∂hj)j∈[n] ⊆ [n] are non-increasing, then f is
2-monotone.
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Proof. By contradiction, suppose there exists a 2-column-wise monotone function f satisfying (i)
and (ii), which is not 2-monotone. This last point implies there exists a triple of comparable elements
x = (ix, jx) ≺ y = (iy, jy) ≺ z = (iz, jz) constituting a violation, i.e. such that (f(x), f(y), f(z)) =
(1, 0, 1). Moreover, since (i) holds we must have 1 < ix ≤ iy ≤ iz < n; more precisely, 1 ≤

¯
∂fjx <

ix ≤ iy ≤ iz < ∂̄fjz ≤ n. As x ≺ y ≺ z, we have jx ≤ jy ≤ jz, which by the non-increasing
assumption (ii) implies that

¯
∂fjx ≥ ¯

∂fjy and ∂̄fjy ≥ ∂̄fjz . But this is not possible, as altogether
this leads to

¯
∂fjy < iy < ∂̄fjy , i.e. f(y) = 1.

Assume both sequences (
¯
∂fj)j∈[n], (¯

∂hj)j∈[n] ⊆ [n] are ε
2 -close to non-increasing, and let L,H ⊂

[n] (respectively) be the set of indices where the two sequences need to be changed in order to
become non-increasing. By assumption, |L| , |H| ≤ εn

2 , so |L ∪H| ≤ εn. But to “fix” a value of
(
¯
∂fj)j∈[n] or (∂̄fj)j∈[n] requires to change the values of the function f inside a single column – and
this can be done preserving its 2-column-wise-monotonicity, so that changing the value of f on
at most n points is enough. It follows that making both (

¯
∂fj)j∈[n] and (∂̄fj)j∈[n] non-increasing

requires to change f on at most εn2 points, and with Claim C.1 this results in a function which is
2-monotone. Thus, f is ε-close to 2-monotone.

Proof of Lemma 5.3. Recall that we aim at establishing the following:

dist
(
f,M(2)

2

)
≤ L1(∂̄f,M(1)) + L1(

¯
∂f,M(1)) (5)

For notational convenience, we will view in this proof the sequences (
¯
∂f)j , (∂̄f)j) as functions

¯
∂f, ∂̄f : [n] → [n]. Let `, h : [n] → [n] (for “low” and ”high,” respectively) be monotone functions
achieving L1(

¯
∂f,M(1)) and L1(∂̄f,M(1)), respectively.

• As
¯
∂f(j) ≤ ∂̄f(j) for all j ∈ [n], we will assume `(j) ≤ h(j) for all j. Otherwise, one can

consider instead the functions `′ = min(`, h) and h′ = max(`, h): both will still be monotone
(non-increasing), and by construction∣∣`′(j)−

¯
∂f(j)

∣∣+ ∣∣∣h′(j)− ∂̄f(j)
∣∣∣ ≤ |`(j)−

¯
∂f(j)|+

∣∣∣h(j)− ∂̄f(j)
∣∣∣

for all j ∈ [n], so that L1(∂̄f, `′) + L1(
¯
∂f, h′) ≤ L1(∂̄f, `) + L1(

¯
∂f, h).

• From ` and h, we can define a 2-column-wise monotone function g : [n]2 → [n] such that

¯
∂g = ` and ∂̄g = h: that is,

g(i, j) =


0 if i ≥ h(j)
1 if `(j) < i < h(j)
0 if i ≤ `(j)

for (i, j) ∈ [n]2.
It is clear that g is 2-column-wise monotone with g(1, j) = g(n, j) = 0 for all j ∈ [n]; since by
construction

¯
∂g, ∂̄g are non-decreasing, we can invoke Claim C.1 to conclude g is 2-monotone. It

remains to bound the distance between f and g: writing ∆j ∈ {0, . . . , n} for the number of points
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on which f and g differ in the j-th column, we have

dist
(
f,M(2)

2

)
≤ dist(f, g) = 1

n2

n∑
j=1

∆j ≤
1
n2

n∑
j=1

(
|`(j)−

¯
∂f(j)|+

∣∣∣h(j)− ∂̄f(j)
∣∣∣)

= 1
n2

n∑
j=1
|`(j)−

¯
∂f(j)|+ 1

n2

n∑
j=1

∣∣∣h(j)− ∂̄f(j)
∣∣∣ = L1(

¯
∂f, `) + L1

(
∂̄f, h

)
≤ L1(

¯
∂f,M(1)) + L1(∂̄f,M(1))

which concludes the proof.

Proof of Proposition 7.3. We write ν def= µ× Leb[0,1] for the product measure on X × [0, 1] induced
by µ and the Lebesgue measure on [0, 1]; so that ν(X × [0, 1]) = µ(X ) · 1 = µ(X ).

For any fixed t ∈ [0, 1], let gt ∈ M(X→{0,1}) be any function achieving L1(T ◦ f(·, t), gt) =
L1
(
T ◦ f(·, t),M(X→{0,1})

)
, and define g ∈ [0, 1]X by g′(x) =

∫ 1
0 dtgt(x) for all x ∈ X : note that g

is then monotone by construction.12 Moreover, choose h ∈M(X×[0,1]→{0,1}) as a function achieving
L1(T ◦ f, h) = L1

(
T ◦ f,M(X×[0,1]→{0,1})

)
. Then we have

L1
(
f,M(X→[0,1])

)
≤ L1

(
f, g′

)
= 1
µ(X )

∫
X
µ(dx)

∣∣∣∣∫ 1

0
dt(T ◦ f(x, t)− gt(x))

∣∣∣∣
≤ 1
µ(X )

∫
X
µ(dx)

∫ 1

0
dt |T ◦ f(x, t)− gt(x)|

=
∫ 1

0
dt

( 1
µ(X )

∫
X
µ(dx) |T ◦ f(x, t)− gt(x)|

)
=
∫ 1

0
dtL1(T ◦ f(·, t), gt)

≤
∫ 1

0
dtL1(T ◦ f(·, t), h(·, t)) =

∫ 1

0
dt

( 1
µ(X )

∫
X
µ(dx) |T ◦ f(x, t)− h(x, t)|

)
= 1
ν(X × [0, 1])

∫
X×[0,1]

ν(dx, dt) |T ◦ f(x, t)− h(x, t)|

= L1(T ◦ f, h) = L1
(
T ◦ f,M(X×[0,1]→{0,1})

)
where we applied Fact 7.2 (and the definition of g′ =

∫ 1
0 gt) for the first equality, and for the third

inequality the fact that h induces (for every fixed t ∈ [0, 1]) a monotone function h(·, t) ∈M(X→{0,1}):
so that L1(T ◦ f(·, t), gt) ≤ L1(T ◦ f(·, t), h(·, t)) for all t.

For the other direction of the inequality, fix any f : X → [0, 1], and let g ∈M(X→[0,1]) be (any)
12Additionally, since we restrict ourselves to finite X , there are only finitely many distinct functions T ◦ f(·, t) (for

t ∈ [0, 1], and therefore only finitely many distinct functions gt.
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function achieving L1(f, g) = L1
(
f,M(X→[0,1])

)
. We can write, unrolling the definitions,

L1
(
f,M(X→[0,1])

)
= 1
µ(X )

∫
X
µ(dx)|f(x)− g(x)|

= 1
µ(X )

∫
X
µ(dx)

∣∣∣∣∫ 1

0
dt(T ◦ f(x, t)− T ◦ g(x, t))

∣∣∣∣
= 1
µ(X )

∫
X
µ(dx)

∣∣∣∣∫ 1

0
dt(T ◦ f(x, t)− T ◦ g(x, t))

∣∣∣∣
= 1
µ(X )

∫
X
µ(dx)

( ∫ 1

0
dt(T ◦ f(x, t)− T ◦ g(x, t))1{f(x)>g(x)}

+ (T ◦ g(x, t)− T ◦ f(x, t))1{g(x)>f(x)}
)

= 1
µ(X )

∫
X

∫ 1

0
dtµ(dx)

(
(T ◦ f(x, t)− T ◦ g(x, t))1{f(x)>g(x)}

+ (T ◦ g(x, t)− T ◦ f(x, t))1{g(x)>f(x)}
)

= 1
ν(X × [0, 1])

∫
X×[0,1]

ν(dx, dt) |T ◦ f(x, t)− T ◦ g(x, t)| = L1(T ◦ f, T ◦ g)

≥ L1
(
T ◦ f,M(X×[0,1]→{0,1})

)
where we applied Fact 7.2 for the second equality, the definition of L1 distance for the second-to-last;
and to handle the absolute values we used the fact that |a− b| = (a− b)1{a>b}+ (b−a)1{a>b}, along
with the observation that T ◦ f(x, t) > T ◦ g(x, t) can only hold if f(x) > g(x). Finally, we have
L1(T ◦ f, T ◦ g) ≥ L1

(
T ◦ f,M(X×[0,1]→{0,1})

)
since T ◦ g ∈ M(X×[0,1]→{0,1}), yielding the desired

claim.
Finally, the fact that L1

(
T ◦ f,M(X×[0,1]→{0,1})

)
= dist

(
T ◦ f,M(X×[0,1]→{0,1})

)
is immediate

from the Boolean range, as |a− b| = 1{a6=b} for any a.b ∈ {0, 1}.
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