
Finer separations between shallow arithmetic circuits

Mrinal Kumar∗
Rutgers University

mrinal.kumar@rutgers.edu

Ramprasad Saptharishi†
Tel Aviv University

ramprasad@cmi.ac.in

September 3, 2016

Abstract

In this paper, we show that there is a family of polynomials {Pn}, where Pn is a polynomial
in n variables of degree at most d = O(log2 n), such that

• Pn can be computed by linear sized homogeneous depth-5 circuits.

• Pn can be computed by poly(n) sized non-homogeneous depth-3 circuits.

• Any homogeneous depth-4 circuit computing Pn must have size at least nΩ(
√

d).

This shows that the parameters for the depth reduction results of [AV08, Koi12, Tav15] are
tight for extremely restricted classes of arithmetic circuits, for instance homogeneous depth-5
circuits and non-homogeneous depth-3 circuits, and over an appropriate range of parameters,
qualitatively improve a result of Kumar and Saraf [KS14b], which showed that the parameters
of depth reductions are optimal for algebraic branching programs.

1 Introduction

An arithmetic circuit over a field F and variables x = {x1, x2, . . . , xn} is a directed acyclic graph
with nodes labelled by + and × operations over F and leaves (nodes of in-degree 0) labelled by
elements of F and x. The circuit computes an n variate polynomial in F[x] in the natural way.
Arithmetic circuits are natural and intuitive models of computation in the algebraic setting as
they allow us to represent multivariate polynomials succinctly. For an introduction to the area of
arithmetic circuit complexity, we refer the interested reader to the excellent survey of Shpilka and
Yehudayoff [SY10].

Bounded depth arithmetic circuits Most of the recent research in the area of arithmetic cir-
cuit complexity is centered around the question of proving strong lower bounds for structured
bounded depth arithmetic circuits, in particular homogeneous depth-4 arithmetic circuits [GKKS14,
KLSS14, KS14b]. The focus on such circuits is due to a result of Agrawal and Vinay [AV08] and
subsequent strengthening by Koiran [Koi12] and Tavenas [Tav15], which show that strong enough
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lower bounds for such structured bounded depth circuits suffice for general arithmetic circuit
lower bounds. For an outline of most of the recent results related to lower bounds for homoge-
neous depth-4 arithmetic circuits, we refer the reader to a survey of Saptharishi [Sap15].

These set of structural results, collectively referred to as depth reductions, show that any homo-
geneous polynomial in n variables of degree d = poly(n) which can be computed by an arithmetic
circuit of size poly(n) can also be computed by a homogeneous depth-4 arithmetic circuit of size
nO(
√

d). A natural question here is to try and understand if the parameters in the above result are
asymptotically tight. This direction has previously been explored, and Kumar and Saraf [KS14b]
showed a lower bound of nΩ(

√
d) for a polynomial that has a poly(n)-sized arithmetic circuit. This

implies that, in general, the size bound of nO(
√

d) can not be improved to no(
√

d) for poly(n)-sized
arithmetic circuits. However, as far as we know, it was not known if such improved depth reduc-
tions are conceivable for slightly restricted classes of arithmetic circuits, for instance, arithmetic
formulas or constant depth arithmetic circuits. In this paper, we study this problem and show that
at least for the case when d = O(log2 n), one cannot hope to prove such improved depth reduction
results, for even extremely restricted classes of arithmetic circuits such as linear size homogeneous
depth-5 arithmetic circuits, or polynomial sized non-homogeneous depth-3 arithmetic circuits.

We now state our results, and elaborate on how they compare to the known results.

1.1 Our results

We prove the following theorems.

Theorem 1.1. Let F be any field. There is a family of polynomials {Pn} over F, where Pn is of degree
d = O(log2 n) on n variables such that Pn can be computed by a homogeneous depth-5 circuit of size n
whereas any homogeneous depth-4 circuit computing Pn requires size nΩ(

√
d).

Theorem 1.2. Let F be any field of characteristic zero. There is a family of polynomials {Pn} over F, where
Pn is of degree d = O(log2 n) on n variables such that Pn can be computed by a (non-homogeneous) depth-3
circuit of size poly(n) whereas any homogeneous depth-4 circuit computing Pn requires size nΩ(

√
d).

1.2 Comparison to earlier results

An nΩ(
√

d) lower bound for homogeneous depth-4 circuits was proved for an explicit polynomial
of degree d in n variables in VNP by Kayal, Limaye, Saha and Srinivasan [KLSS14] and for the
iterated matrix product (IMM) by Kumar and Saraf [KS14b]. Improvements on this can happen
on three fronts – (1) by improving the bound from nΩ(

√
d) to nω(

√
d), or (2) by making the lower

bound work for a class more general than homogeneous depth-4 circuits, or (3) by proving the
lower bound for a polynomial “simpler” than IMM. This work is of the last category where the
polynomial is computed by linear sized homogeneous depth-5 circuits or polynomial sized depth-
3 circuits.

We elaborate more on this now.

Depth reduction to depth-4 as a springboard for stronger lower bounds Let C be a class of
arithmetic circuits. If we had a depth reduction result that showed that all homogeneous polyno-
mials of degree d in n variables that can be computed by an arithmetic circuit C ∈ C of size s(n) can
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also be computed by a homogeneous depth-4 arithmetic circuit of size so(
√

d), then it follows from
the results in [KLSS14, KS14b] that there is an explicit polynomial in VP (or VNP) that cannot be
computed by polynomial size arithmetic circuits in C. In this sense, the efficient reductions to ho-
mogeneous depth-4 circuits is a springboard to prove lower bounds for many potentially stronger
classes of circuits.

The lower bound for IMM in [KS14b] rules out this strategy when C is the class of algebraic
branching programs, since it shows polynomial families (namely IMM) that have linear size ABPs
but require homogeneous depth-4 circuits of size nΩ(

√
d). However the strategy could still, in prin-

ciple, work for other interesting classes of arithmetic circuits such as arithmetic formulas, constant
depth arithmetic circuits or, possibly the simplest of them all, the class of homogeneous depth-5
arithmetic circuits. Another simple class of circuits for which this strategy could be tried is the
class of non-homogeneous depth-3 circuits, where superpolynomial lower bounds are not known
when the size of the underlying field is large. Theorem 1.1 and Theorem 1.2 show that the above
mentioned classes of arithmetic circuits cannot be reduced to homogeneous depth-4 arithmetic
circuits of size no(

√
d), albeit for an appropriate range of parameters. So, even though quantita-

tively we do not prove improved lower bounds, qualitatively, we show near optimal separations
between complexity classes which are much closer to each other that was earlier known. Unfor-
tunately, we are only able to show such separations when the degree d = O(log2 n).

Non-homogeneous depth-3 circuits Theorem 1.2 shows a separation between non-homogeneous
depth-3 circuits and homogeneous depth-4 circuits, in a low degree regime. Intuitively, to prove
such a separation, we need a candidate family of hard polynomials which have polynomial sized
non-homogeneous depth-3 circuits and are believed to require homogeneous depth-4 circuits of
size nΩ(

√
d). At first glance, it seems unclear what this polynomial should be. The elementary

symmetric polynomial of degree d is not a good candidate as it can indeed be computed by a
homogeneous depth four circuit of size 2O(

√
d) [HY11]. However, a generic affine projection of the

elementary symmetric polynomial, as studied by Shpilka [Shp02], is a natural candidate and is
almost complete for this model.

In this paper, however, we do not directly work with this polynomial but it can be easily
inferred that the lower bound applies to a generic affine projection of the elementary symmetric
polynomial as well.

Depth hierarchy theorems for arithmetic circuits Depth hierarchy theorems, which show an ex-
ponential, (and near optimal) separation between depth h and depth h + 1 circuits [Hås86, RST15]
constitute some of the most celebrated results in the theory of lower bounds for bounded depth
boolean circuits. It is natural to ask if such separations can be shown for arithmetic circuits. Un-
fortunately, superpolynomial lower bounds are not known in general when the depth of the arith-
metic circuits is more than four 1. So, at this point, we can only hope to show such separations
between homogeneous depth-5 and homogeneous depth-4 arithmetic circuits. Due to the depth
reduction results, the best such separation one can hope to prove for an n variate degree d poly-
nomial would be nΩ(

√
d). We prove a matching lower bound, as long as the degree d is at most

O(log2 n). In the arithmetic circuit literature, the question of depth hierarchy theorems has previ-
ously been studied by Raz and Yehudayoff [RY09], where they show superpolynomial separation

1For homogeneous depth-5 circuits, such lower bounds are known only over small finite fields.
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separation between multilinear circuits of product depth d and product depth d + 1, for d = O(1).
In the non-multilinear world, to the best of our knowledge this is the first such attempt. Even in
the context of constant depth multilinear circuits, the separation in [RY09] is between depth-4 and
depth-6 circuits, and not between depth-4 and depth-5 circuits.

The complexity measure The proof of Kayal et al. [KLSS14] and Kumar and Saraf [KS14b] rely
on the notion of projected shifted partials of a polynomial as a measure of its complexity. This
measure can be thought of as a variant of shifted partials which tries to take advantage of the
fact that the hard polynomial is multilinear. The measure in this paper takes advantage of set-
multilinearity instead of just multilinearity, and such a variant was essentially used in an earlier
version of [KLSS14], where they showed an nO(log n) lower bound for iterated matrix multiplication
and the determinant. Our proofs rely on a slightly different interpretation of the measure, which
makes the proofs much more transparent. Intuitively, this measure tries to take advantage of
the fact that the hard polynomial (Nisan-Wigderson design polynomials or the IMM) is not just
multilinear, but in fact set-multilinear. In the regime where d � n, set multilinearity is a much
more rigid restriction on a polynomial when compared to multilinearity, and in some sense our
gain comes from this observation. Our hard polynomial for Theorem 1.1 is also a simple generic
balanced depth-5 circuit.

One might wonder if the results in this paper could have been shown by using the dimension
of the projected shifted partial derivatives as the complexity measure. In particular, can we show
that the projected shifted partials complexity of a generic depth-5 circuit is sufficiently close to
the largest possible value? This would suffice for Theorem 1.1. Although we do not have enough
evidence to conjecture one way or the other, intuitively this problem seems tricky since so far the
known analyses of the projected shifted partials of a polynomial seems to rely on pairwise dis-
tance between the monomials of the hard polynomial, either in the worst case (Nisan-Wigderson
polynomial [KLSS14, KS14b]), or in the average case (IMM [KS14b]). Clearly, the monomials in a
generic depth-5 circuit do not have good distance in the worst case, and to the best of our under-
standing, the guarantees about distance in the average case seem a bit weaker than what would
suffice to simulate the proof in [KS14b] for a generic depth-5 circuit. However, this problem of
proving lower bounds on the dimension of projected shifted partials of homogeneous depth-5 cir-
cuits is of independent interest, since even if the answer is negative and homogeneous depth-5
circuits do not have large enough projected shifted partials complexity, then we could use this as a
measure to prove lower bounds for such circuits. So far, such lower bounds are only known over
small finite fields [KS15].

2 Preliminaries

2.1 Notations

• Throughout the paper, we use bold-face letters such as x to denote a sets of variables. Most of
the times, the size of this set would be clear from context. We use xe to refer to the monomial
xe1

1 · · · x
en
n .

• We use the short-hand ∂xe(P) to denote

∂e1

∂xe1
1

(
∂e2

∂xe2
2
(· · · (P) · · ·)

)
.
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• For a set of polynomials P use ∂=kP to denote the set of all k-th order partial derivatives of
polynomials in P , and ∂≤kP similarly.

Also, x=`P refer to the set of polynomials of the form xe · P where Deg(xe) = ` and P ∈ P .
Similarly x≤`P .

• For an integer m > 0, we use [m] to denote the set {1, . . . , m}.
• For a set of vectors (or polynomials) V, their span over F will be denoted by Span(V) and

their dimension by Dim(V).

• For a subset y of variables and a polynomial P ∈ F[x, y], by Multy[P], we denote the polyno-
mial P′ ∈ F[x, y] which is obtained by projecting P only to its monomials which are multi-
linear in y.

Similarly, for a set S of polynomials, Multy[S] denotes the set of polynomials obtained by
projecting every polynomial in S to the monomials which are multilinear in y.

2.2 The hard polynomial

The hard function for the lower bounds will be a generic balanced ΠΣΠΣ circuit with appropriate
parameters. We define the polynomial Pm,d as

Pm,d =

√
d

∏
i=1

m

∑
j=1

√
d

∏
i′=1

m

∑
j′=1

xiji′ j′ .

The polynomial Pm,d depends on m2d variables. It would be useful to have Liji′ = ∑j′ xiji′ j′ so that
Pm,d = ∏i ∑j ∏i′ Liji′ .

Observe that the polynomial Pm,d is a set multilinear polynomial for the partition of variables
into {xi∗i′∗ : i, i′ ∈ [

√
d]}, where xi∗i′∗ =

{
xiji′ j′ : j, j′ ∈ [m]

}
. There are d such sets and each is of

size m2.
The range of parameters we will be working with in this paper when d = δ log2 n for a small

enough constant δ. For such small d, it follows from observations in [GKKS13] that the polynomial
Pm,d is computable by a polynomial sized non-homogeneous depth-3 circuit. More formally, the
proof relies on the following lemma which is implicit in [GKKS13].

Lemma 2.1 ([GKKS13]). Let C be a homogeneous ΣΠ[a]ΣΠ[b]Σ circuit of size s over C, the field of
complex numbers, which computes an n-variate polynomial P. Then there is an equivalent ΣΠΣ circuit C′

of size s′ = poly(2a, 2b, n, s) which computes P.

Using this observation, we have the following lemma which shows that there is a small depth-3
circuit for Pm,d.

Lemma 2.2. Let P be an n variate polynomial of degree d = O(log2 n) which is computed by a homoge-
neous ΣΠ[

√
d]ΣΠ[

√
d]Σ circuit C of size s. Then, P is computable by a ΣΠΣ circuit of size poly(n).

Thus, to prove Theorem 1.1 and Theorem 1.2, it suffices to show an nΩ(
√

d) lower bound on the
size of homogeneous ΣΠΣΠ arithmetic circuits computing Pm,d.
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2.3 Some useful approximations

Lemma 2.3 ([GKKS14]). Let n, a, b satisfy a + b = o(n). Then,

(n + a)!
(n− b)!

= na+b · exp(O((a + b)2/n)).

In particular, if a + b = o(
√

n), then the right hand side is (1 + o(1)) · na+b.

Lemma 2.4. For all x, y > 0,
exy ≥ (1 + x)y ≥ e

xy
x+1 .

3 Proof of Theorem 1.1

The first step in previous lower bounds for homogeneous depth-4 circuits is using a random re-
striction to set each variable independently to zero with a certain probability. We shall first analyze
the random restriction process on a homogeneous depth-4 circuit and also on the polynomial Pm,d.

3.1 The effect of a random restriction

Our restrictions Rp will be defined by setting every variable to zero with a probability 1− p and
keeping it alive with a probability p.

Lemma 3.1. Let ε > 0 be any fixed constant and let p = 1
nε . Let C be a ΣΠΣΠ circuit of size n

ε2
2

√
d.

Then with a probability at least 1− o(1) over π ← Rp, every product gate at the lowest level of C (closest
to the leaves) that depends on more than ε

√
d distinct variables is set to zero in π(C).

Proof. Consider any product gate of support at least ε
√

d present at the bottom level of C. The
probability that this gate is not set to zero in π(C) is at most 1

nε2√d
. So, by a union bound over all

the product gates in C, the probability that some gate of support at least ε
√

d survives in π(C) is

at most n
ε2
2

√
d · 1

nε2√d
which is o(1).

We now analyse the effect of random restrictions on our candidate hard function.

Lemma 3.2. Let ε be a fixed constant and let p = 1
nε , and let Pm,d be the polynomial as defined in

Section 2.2. Then, with probability at least 1− o(1) over π ← Rp, the polynomial π(Pm,d) is of the form

π(Pm,d) =

√
d

∏
i=1

m

∑
j=1

√
d

∏
i′=1

L′iji′

where each L′iji′ is a non-zero linear form.

Proof. From our choice of parameters, observe that n = m2d, and since d = O(log2 n), m > n1/4.
Now, for any fixed linear form Liji′ , the probability that π(Liji′) equals zero is equal to (1− p)m =

(1− 1/nε)m which is less than (1− 1/nε)n2ε
= 1

ω(n) . Therefore, the probability that there exists a
linear form Liji′ such that π(Liji′) ≡ 0 is o(1), and the lemma follows.
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At this point, we will deterministically set all but one alive variable in each L′iji′ in the above
lemma to zero, and obtain the following corollary upto a relabelling of variables.

Corollary 3.3. Let ε be a fixed constant and p = 1
nε , and let Pm,d be the polynomial as defined in Sec-

tion 2.2. Then, with probability at least 1− o(1) over π ← Rp, there is a 0, 1 projection of π(Pm,d) which
is of the form

P′m,d =

√
d

∏
i=1

m

∑
j=1

√
d

∏
i′=1

xiji′ ,

where each xiji′ is a distinct variable.

Observe that Lemma 3.1 continues to hold under this additional deterministic restriction, as
the bottom support of a depth-4 circuit does not increase under 0, 1 projections. Clearly P′m,d is
computable by a homogeneous depth-4 circuit of bottom fan-in

√
d.

In order to complete the proof, it suffices to show that any homogeneous depth-4 circuit of
bottom support bounded by

√
d/10 that computes P′m,d must have size nΩ(

√
d). In fact, Kumar and

Saraf [KS14a] have shown that any homogeneous depth-4 circuit of bottom fan-in at most
√

d/10
computing P′m,d must require size nΩ(

√
d) using the measure of dimension of shifted partial deriva-

tives. Thus we need to find a way to lift this lower bound to the class of homogeneous depth-4
circuit of bottom support bounded by

√
d/10. To do this, we modify the measure of dimension of

shifted partials in order to address small bottom support instead of small bottom fan-in.

3.2 The complexity measure

The measure is again the dimension of an appropriate linear space of polynomials.
Definition 3.4 (The complexity measure). Let x = x1 t · · · t xd be a partition of the variables into
d sets. For any polynomial P ∈ F[x], define P′ ∈ F[x1, x2, . . . , xd, y1, y2, . . . , yd] be the the polynomial
derived from P by replacing every occurence of the variable xij ∈ xi by yi · xij. Then, the complexity measure

Γk,`(P) := DimF

{(
x=` ·Multy[∂

=k(P′)]
)}

. ♦

We remark that all the derivatives and shifts in the definition of Γk,` are taken with respect to
the variables in x. However, the multilinearization is done with respect to the y variables. As
mentioned earlier, this measure was used in a previous version of [KLSS14] where it was called
dimension of shifted projected partial derivatives.

Throughout this paper, we will be using very simple connections between the measure Γk,`
and the well known notion of shifted partial derivatives of polynomials, defined as
Definition 3.5 (Shifted partial derivatives). Define P ∈ F[x1, x2, . . . , xd] be a polynomial. Then, the
dimension of shifted partial derivatives is defined as

DimF

{(
x=` · ∂=k(P′)

)}
. ♦

Observe that if a polynomial P is set-multilinear with respect to the partition of the variables
in x into x1, x2, . . . , xd, then multilinearization with respect to the y variables does not kill any of
the monomials in the partial derivatives. In particular, for a set multilinear polynomial P, and
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for every choice of k, `, the quantitity Γk,`(P) is exactly equal to the dimension of shifted partial
derivatives of the polynomial P where we take derivatives of order k and shifts are of degree `.
This observation will be useful for us in the proof and is summarised below.

Observation 3.6. Let P be a set multilinear polynomial of degree d. Then for every choice of parameters k
and `,

Γk,`(P) = Dim
(

x=` · ∂=k(P)
)

.

Since Pm,d is set multilinear with respect to the partition

x =
⊔

i,i′≤
√

d

xi∗i′∗

we use this partition for in the definition of Γk,`. To complete the proof, we use this measure
to show that P′m,d cannot be computed by small homogeneous depth-4 circuit of bottom support
bounded by

√
d/10.

3.3 Upper bound for a small bottom-support depth-4 circuit

Lemma 3.7. Let C be a homogeneous ΣΠΣΠ circuit with bottom support at most s which computes a
degree d polynomial in F[x1, x2, . . . , xd]. Then, for every k and `,

Γk,`(C) ≤ Size(C) · 22d ·
(

d
k

)
·
(

n + `+ ks
n

)
.

Proof. Since the measure Γk,` is subadditive, we will prove an upper bound on Γk,` for one product
term in C. So, let T = Q1 · Q2 · · ·Qt, where each Qi has support at most s. Without loss of
generality, we can assume that t ≤ d since the circuit C is homogeneous to start with.

Recall that in the first step, we replace every variable xij by yi · xij. This transforms T =
Q1 · · ·Qt into T = Q′1 · Q′2 · · ·Q′t. Every monomial xα in the x variables will be transformed to
a monomial yα′ · xα by this transformation. The key points are that yα′ is only over d variables, and
if xα is non-multilinear then so is yα′ .

Let us now consider the derivative of T with respect to a monomial xα of order k.

∂xα(T′) ∈ Span
{

∂xα(Q′A) ·Q′A : A ⊆ [t], |A| ≤ k
}

,

where Q′A is a shorthand for ∏i∈A Q′i.

Multy
[
∂xα(T′)

]
∈ Span

{
Multy

[
∂xα(Q′A) ·Q′A

]
: A ⊆ [t], |A| ≤ k

}
.

Since we are interested in the multilinear component, it suffices to only focus on multilinear (in
y) monomials in both ∂xα(Q′A) and Q′

A
. Since Q′A is a product of at most k polynomials, each of

support-size bounded by s, the only monomials xβ that can contribute a non-multilinear y-part
can have degree at most ks. Therefore,

Multy
[
∂xα(Q′A)

]
∈ Span

{
yβ · xγ : Deg(xγ) ≤ ks , yβ multilinear

}
MultyQ′A = ∑

β′
yβ′ ·Q′A,β′

=⇒ Multy
[
∂xα(Q′A) ·Q′A

]
∈ Span

{
yβyβ′ · xγ ·Q′A,β′ : Deg(xγ) ≤ ks , yβyβ′ multilinear

}
.
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Taking the union over all shifts and all derivatives, we get

x=` ·Multy[∂
=k(T′)] ⊆ Span

{
yβyβ′ · xγ ·Q′A,β′ : A ⊆ [t] , |A| ≤ k ,

degree (xγ) ≤ `+ ks , yβyβ′ is multilinear
}

.

For any k, `, it follows that

Γk,`(T′) ≤ 22d ·
(

d
k

)
·
(

n + `+ ks
n

)
.

Using subadditivity, we obtain the lemma.

3.4 Lower bound for the measure on P′m,d

The final technical ingredient of our proof will be a lower bound on the dimension of shifted par-
tials of the polynomial P′m,d. The bound follows from the calculations in [KS14a], but we provide
the calculation here for completeness.

Lemma 3.8. Recall the polynomial

P′m,d =

√
d

∏
i=1

m

∑
j=1

√
d

∏
i′=1

xiji′

where each xiji′ is a distinct variable. For k =
√

d and any `, we have

Dim
(

x=` · ∂=k(P)
)
≥ 1

4
·
(

n + `

`

) 1
2 ·(d−

√
d)

·
(

n + `− 1
n

)
.

Proof. To show that the shifted partials complexity of P is large, we will follow the outline in [KS14a].
We consider the following subset S of monomials of degree equal to k =

√
d:

S = {x1a11 · x2a21 · · · xkak1 : a1, a2, . . . , ak ∈ [m]}.

Firstly, note that for any monomial xα = x1a11 · · · xkak1 ∈ S , the derivative ∂xα(P) is just the mono-
mial

(x1a12 · · · x1a1k) · · ·
(
x1ak2 · · · x1akk

)
.

Thus, it suffices to get a lower bound of distinct monomials obtained as shifts of such derivatives.
To assist this calculation, we pick a subset S ′ of the set S such that the distance between any
two monomials in S ′ is ‘large’, and the size of S ′ is also ‘large’. This can be done by picking the
monomials which correspond to a good code of length k over the alphabet Σ = {1, 2, . . . , m}. To
this end, we pick a Reed-Somolon code of relative distance 1/2 and rate 1/2. This can be done
as long as m is a prime power and

√
d ≤ m. Let S ′ be a such set of size mk/2 where any pair of

monomials in S ′ differ on at least
√

d/2 locations.
When we take derivatives of P with respect to monomials in the set S ′, two monomials ob-

tained from distinct elements of S ′ have distance at least ∆ =
√

d(
√

d− 1)/2 = (d−
√

d)/2. So,
each of the shifted partial derivatives obtained by shifting the derivatives of P by monomials of
degree ` is just a monomial, and a lower bound on the number of distinct monomials obtained in
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this way gives us a lower bound on Dim
(
x=` · ∂=k(P)

)
. In fact, we shall choose an even smaller

set S ′′ to ensure the following bounds work out.
By the inclusion-exclusion approach of Chillara and Mukhopadhyay [CM14], for any set S ′′ ⊂

S ′ we get the following:

Dim
(

x=` · ∂=k(P)
)
≥
∣∣S ′′∣∣ ·(n + `− 1

n

)
− |S

′′|2

2
·
(

n + `− ∆− 1
n

)
.

If we pick our parameters, such that the first term above is at least twice the second term, then we
would be done. For this, we need ∣∣S ′′∣∣ ≤ (n+`−1

n )

(n+`−∆−1
n )

.

For our choice of parameters, `, n � d2, the ratio (n+`−1
n )

(n+`−∆−1
n )

can be approximated by
(

n+`
`

)∆
within

a factor 1± o(1) by Lemma 2.3. So, it suffices if our choice of parameters satisfies (omitting floors)

|S ′′| = 1
2
·
(

n + `

`

)∆

.

Plugging in ∆ and the size of S ′′ in the inclusion-exclusion bound, we get

Dim
(

x=` · ∂=k(P)
)
≥ 1

4
·
(

n + `

`

)(d−
√

d)/2

·
(

n + `− 1
n

)
.

3.5 Putting it together

Theorem 3.9 (Theorem 1.1 restated). Let C be a homogeneous depth-4 arithmetic circuit which computes
the polynomial Pm,d for d = 0.0001 log2 n. Then, the size of C is at least exp(Ω(

√
d log n)).

Proof. Assume on the contrary that the polynomial Pm,d can be computed by C, a homogeneous
depth-4 circuit of size at most exp(0.001

√
d log n). If we apply a random restriction that sets every

variable to zero independently with probability 1/n0.1, by Lemma 3.1 (with ε = 0.1), the circuit
reduces to C′, a homogeneous depth-4 circuit with bottom support bounded by

√
d/10 with prob-

ability 1− o(1).
On the other hand by Corollary 3.3, the polynomial Pm,d under such a random restriction still

retains P′m,d as a projection with high probability. Fix a restriction that satisfies both these proper-
ties and we now have a homogeneous depth-4 circuit C′′ with bottom support bounded by

√
d/10

and size at most exp(0.001
√

d log n) that computes P′m,d.

Let k =
√

d and ` = n
√

d
log n . By Lemma 3.7, we have

Γk,`(C′′) ≤ Size(C′′) · 22d ·
(

n + `+ (0.1)d
n

)
.

On the other hand, by Lemma 3.8 and Observation 3.6,

Γk,`(P′m,d) ≥ 1
4
·
(

n + `

`

)(d−
√

d)/2

.
(

n + `− 1
n

)
.
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Together, this implies that

Size(C′′) ≥ 1
4
·
(n+`−1

n ) ·
(

n+`
`

)(d−√d)/2

22d · (n+`+(0.1)d
n )

.

For our regime of parameters,
√

d = 0.01 log n and hence 22d = n0.02
√

d = exp(0.02
√

d log n).
Simplifying the ratio of binomial coefficients using (Lemma 2.3), and using d−

√
d

2 > d
3 , we get

Size(C′′) ≥ 1

exp(0.02
√

d log n)
·
(

1 +
n
`

)d/3

≥ 1

exp(0.02
√

d log n)
· exp

(
(nd/3`)
(n/`) + 1

)
(By Lemma 2.4)

> exp
(

0.1
√

d log n
)

,

which contradicts the assumption on the size of C. Hence Size(C) ≥ exp(0.001
√

d log n).

4 Open questions

We end with some open questions.

• One question of great interest to us would be to show the lower bounds in this paper
when the degree is larger. The other proofs of lower bounds for homogeneous depth-4 cir-
cuits [KLSS14, KS14b] tolerate degrees as high as n1/2. We conjecture that the results in
this paper are true even when the degree d and the number of variables n are polynomially
related.

• Is the dimension of projected shifted partials of a generic homogeneous depth-5 circuit close
to the largest possible value? This could offer one approach to resolving the first open prob-
lem.

• If the answer to the second problem above is negative, then we might be able to use pro-
jected shifted partials as a complexity measure to prove new lower bounds for homogeneous
depth-5 arithmetic circuits. Hence, even proving non-trivial upper bounds on the projected
shifted partials complexity of homogeneous depth-5 circuits would be very interesting.
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