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Abstract. The communication complexity of F with unbounded error is
the limit of the ✏-error randomized complexity of F as ✏ ! 1/2. Commu-
nication complexity with weakly bounded error is defined similarly but with
an additive penalty term that depends on 1/2 � ✏. Explicit functions are
known whose two-party communication complexity with unbounded error is
exponentially smaller than with weakly bounded error. Chattopadhyay and
Mande (ECCC Report TR16-095) recently generalize this exponential separa-
tion to the number-on-the-forehead multiparty model, using a rather technical
proof from first principles.

We show how to derive such an exponential separation from known two-
party work, achieving stronger parameters along the way. We present several
proofs for this result, some as short as half a page. Our strongest separation is
a k-party communication problem F : ({0, 1}n)k ! {0, 1} that has complexity
O(logn) with unbounded error and ⌦(n/4k) with weakly bounded error.
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1. Introduction

The number-on-the-forehead model, due to Chandra et al. [11], is the most pow-
erful model of multiparty communication. The model features k communicating
players and a Boolean function F : X

1

⇥X
2

⇥ · · · ⇥Xk ! {�1,+1} with k argu-
ments. An input (x

1

, x
2

, . . . , xk) is distributed among the k players by giving the
ith player the arguments x

1

, . . . , xi�1

, xi+1

, . . . , xk but not xi. This arrangement
can be visualized as having the k players seated in a circle with xi written on the
ith player’s forehead, whence the name of the model. Number-on-the-forehead is
the canonical model in the area because any other way of assigning arguments to
the players results in a less powerful model—provided of course that one does not
assign all the arguments to some player, in which case there is never a need to
communicate.

The players communicate according to a protocol agreed upon in advance. The
communication occurs in the form of broadcasts, with a message sent by any given
player instantly reaching everyone else. The players’ objective is to compute F on
any given input with minimal communication. To this end, each player privately
holds an unbounded supply of uniformly random bits which he can use in deciding
what message to send at any given point in the protocol. The cost of a protocol
is the total bit length of all the messages broadcast in the worst-case execution.
The ✏-error randomized communication complexity R✏(F ) of a given function F
is the least cost of a protocol that computes F with probability of error at most
✏ on every input. Number-on-the-forehead communication complexity is a natural
subject of study in its own right, in addition to its applications to circuit complexity,
pseudorandomness, and proof complexity [2, 37, 19, 26, 6].

Our interest in this paper is in communication protocols that compute a given
function F with error probability close to that of random guessing, 1/2. There are
two ways to define the complexity of F in this setting, both inspired by probabilistic
polynomial time for Turing machines:

UPP(F ) = min

0<✏<1/2
R✏(F )

and

PP(F ) = min

0<✏<1/2

⇢
R✏(F ) + log

2

✓
1

1

2

� ✏

◆�
.

The former quantity, introduced by Paturi and Simon [24], is called the unbounded-

error communication complexity of F , in reference to the fact that the error prob-
ability can be arbitrarily close to 1/2. The latter quantity, proposed by Babai et
al. [1], includes an additional penalty term that depends on the error probability.
For lack of a better word, we refer to PP(F ) as the large-error communication
complexity of F. Both of these complexity measures give rise to complexity classes
in communication complexity theory [1]. Formally, UPPk is the class of families
{Fn,k}1n=1

of k-party communication problems Fn,k : ({0, 1}n)k ! {�1,+1} whose
unbounded-error communication complexity is at most polylogarithmic in n. Its
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counterpart PPk is defined analogously for the complexity measure PP. The au-
thors of [24] and [1] focused on two-party communication (k = 2). In the general-
ization just described, k = k(n) can be an arbitrary constant or a growing function
of n.

1.1. Previous work. Large-error communication is by definition no more pow-
erful than unbounded-error communication, and for twenty years it was unknown
whether this containment is proper. Buhrman et al. [9] and the author [29] answered
this question for two-party communication, independently and with unrelated tech-
niques. These papers exhibited functions F : {0, 1}n ⇥ {0, 1}n ! {�1,+1} with
an exponential gap between large- versus unbounded-error communication com-
plexity: UPP(F ) = O(log n) in both works, versus PP(F ) = ⌦(n1/3

) in [9] and
PP(F ) = ⌦(

p
n) in [29]. In complexity-theoretic notation, these results show that

PP
2

( UPP
2

.
The analyses by Buhrman et al. [9] and the author [29] were quite specialized.

The former was based on a subtle lemma from Razborov’s quantum lower bound [25]
for set disjointness, whereas the latter was built around an earlier result of Gold-
mann et al. [18] on the discrepancy of a low-degree polynomial threshold function.
In subsequent work, the author developed a general technique called the pattern ma-

trix method [30, 31], which makes it possible to obtain communication lower bounds
from simpler, approximation-theoretic complexity measures of Boolean functions.
We used the pattern matrix method in [31] to give a simple alternate proof of
the separation due to Buhrman et al. [9]. Following up, Thaler [36] and Bun and
Thaler [10] used the pattern matrix-based approach to obtain quantitatively im-
proved results. The strongest known separation [10] features, for any constant
� > 0, a function F : {0, 1}n ⇥ {0, 1}n ! {�1,+1} with UPP(F ) = O(log n) and
PP(F ) = ⌦(n

2
3��

).
The surveyed work on large- versus unbounded-error communication complexity

focused on the two-party model. Recent years saw a resurgence of interest in mul-

tiparty communication complexity classes, with numerous separations established
over the past decade [3, 21, 13, 16, 4, 17]. In a new contribution to this line of work,
Chattopadhyay and Mande [14] revisit the large- versus unbounded-error question
in the multiparty setting. They generalize the original two-party separation [29]
to k > 3 parties, exhibiting a k-party communication problem F : ({0, 1}n)k !
{�1,+1} with UPP(F ) = O(log n) and PP(F ) = ⌦(

p
n/4k � log n � k). Thus,

the proper containment PPk ( UPPk continues to hold for up to k ⇡ 0.25 log
2

n
players.

1.2. Our results. Chattopadhyay and Mande’s analysis is a rather technical and
lengthy generalization of the two-party argument, although it is admittedly self-
contained. The purpose of our manuscript is to show how to derive the proper con-
tainment PPk ( UPPk from two-party work in an almost trivial manner, achieving
stronger parameters along the way. The key is to use the pattern matrix-based ap-
proach to the problem [31, 36, 10], as opposed to the earlier two-party work [18, 29]
which forms the basis for Chattopadhyay and Mande’s result.

In more detail, we present three short proofs separating large- and unbounded-
error multiparty communication complexity, all of which work by applying the
pattern matrix method to a result from polynomial approximation. To start with,
we give a half-a-page proof that PPk ( UPPk for up to k ⇡ 0.5 log

2

n players,
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constructing an explicit function with an exponential gap between large- versus
unbounded-error complexity. The proof of this qualitative result is presented in
Section 3.1 and is virtually identical to the previous analyses in the two-party
setting [31, 36, 10]. By applying the pattern matrix method to more recent work
in approximation theory, we are able to give quantitatively improved separations.
Our strongest result is the following nonconstructive theorem.

Theorem 1.1 (Nonconstructive separation). There exists a k-party communication

problem H : ({0, 1}n)k ! {�1,+1} with

UPP(H) = O(log n),

PP(H) = ⌦

⇣ n

4

k

⌘
.

Moreover,

H(x) = sgn

 
1

2

+

nX

i=1

wix1,ix2,i · · ·xk,i

!
(1.1)

for some fixed w
1

, w
2

, . . . , wn 2 {0,±1,±2, . . . ,±(2

n � 1)}.

Recall that no nontrivial lower bounds are currently known for multiparty com-
munication with k > log

2

n players. Therefore, Theorem 1.1 with its linear lower
bound for up to k ⇡ 0.5 log

2

n represents the state of the art in the area. By using
additional input bits, it is straightforward to obtain an explicit function that con-
tains every function of the form (1.1) as a subfunction. Specifically, Theorem 1.1
implies the following constructive separation with quadratically weaker parameters.

Corollary 1.2. Let F : {0, 1}n+
p
n ⇥ ({0, 1}

p
n
)

k�1 ! {�1,+1} be the k-party
communication problem given by

F (x) = sgn

0

@1

2

+

p
nX

i=1

0

@
(�1)

x1,i,
p

n

p
n�1X

j=0

2

jx
1,i,j

1

Ax
2,ix3,i . . . xk,i

1

A .

Then

UPP(F ) = O(log n),

PP(F ) = ⌦

✓p
n

4

k

◆
.

The function in this corollary has a pleasing closed form. Coincidentally, it is almost
the same as Chattopadhyay and Mande’s function [14], in which the individual
bits xi,j have domain ±1 rather than 0, 1. The communication lower bound in
Corollary 1.2 is already an improvement on [14] and is tight for any fixed k. We are
able to obtain a stronger constructive separation, as follows.
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Theorem 1.3 (Constructive separation). For any constant � > 0, there is an

(explicitly given) k-party communication problem F : ({0, 1}n)k ! {�1,+1} such

that

UPP(F ) = O(log

3 n),

PP(F ) = ⌦

⇣ n

4

kk2

⌘ 2
3��

.

The proof of this theorem is as short as our qualitative separation but uses Bun and
Thaler’s recent result [10] on polynomial approximation. The separation in Theo-
rem 1.3 is polynomially stronger than Chattopadhyay and Mande’s and continues
to hold for larger k.

In summary, this paper reflects the author’s view that a proof should be as
modular and general as possible. It was this aesthetic that motivated the pattern
matrix method in the first place and here allowed us to obtain stronger results
with shorter proofs. On the other hand, Chattopadhyay and Mande’s treatment is
preferable if a first-principles proof is desired.

1.3. Paper organization. The remainder of this paper is organized as follows.
Section 2 gives a leisurely overview of the technical preliminaries, which the ex-
pert reader may wish to skim or skip altogether. We then prove our qualitative,
constructive, and nonconstructive results in Sections 3.1–3.3.

2. Preliminaries

There are two common arithmetic encodings for the Boolean values: the tradi-
tional encoding false $ 0, true $ 1, and the more recent Fourier-inspired encoding
false $ 1, true $ �1. Throughout this manuscript, we use the former encoding
for the domain of a Boolean function and the latter for the range. In particular,
Boolean functions for us are mappings {0, 1}n ! {�1,+1} for some n. For Boolean
functions f : {0, 1}n ! {�1,+1} and g : {0, 1}m ! {�1,+1}, we let f � g denote
the coordinatewise composition of f with g. Formally, f �g : ({0, 1}m)

n ! {�1,+1}
is given by

(f � g)(x
1

, x
2

, . . . , xn) = f

✓
1� g(x

1

)

2

,
1� g(x

2

)

2

, . . . ,
1� g(xn)

2

◆
, (2.1)

where the linear map on the right-hand side serves the purpose of switching between
the distinct arithmetizations for the domain versus range. A partial function f on a
set X is a function whose domain of definition, denoted dom f, is a nonempty proper
subset of X. We generalize coordinatewise composition f � g to partial Boolean
functions f and g in the natural way. Specifically, f � g is the Boolean function
given by (2.1), with domain the set of all inputs (. . . , xi, . . . ) 2 (dom g)n for which
(. . . , (1� g(xi))/2, . . . ) 2 dom f.

The analytic notation that we use is entirely standard. For a function f : X ! R
on an arbitrary finite set X, we let kfk1 = maxx2X |f(x)| denote the infinity norm
of f. Euler’s number is denoted e = 2.7182 . . . . The sign function is given as usual
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by

sgnx =

8
><

>:

�1, x < 0,

0, x = 0,

1, x > 0.

For a subset X ✓ R, we let sgn |X denote the restriction of the sign function to X.
In other words, sgn |X : X ! {�1, 0,+1} is the mapping that sends x 7! sgnx. We
let log x stand for the logarithm of x to base 2.

2.1. Approximation by polynomials. Recall that the total degree of a mul-
tivariate real polynomial p : Rn ! R, denoted deg p, is the largest degree of any
monomial of p. We use the terms “degree” and “total degree” interchangeably in
this paper. Let f : X ! R be a given function, for a finite subset X ⇢ Rn. For any
d > 0, define

E(f, d) = min

p
kf � pk1,

where the minimum is over real polynomials p of degree at most d. In words, E(f, d)
is the minimum error in a pointwise approximation of f by a polynomial of degree
no greater than d. The ✏-approximate degree of f, denoted deg✏(f), is the least
degree of a real polynomial p such that kf � pk1 6 ✏. Any polynomial p with this
property is said to be a uniform approximant, or pointwise approximant, to f with
error ✏. Observe that

deg✏(f) = min{d : E(f, d) 6 ✏}.

The study of approximate degree as a complexity measure was initiated by Nisan
and Szegedy [22]. It has since found a variety of applications in theoretical com-
puter science, including circuit complexity, quantum query complexity, communi-
cation complexity, and computational learning theory; see [28, 33, 36, 10] and the
references therein. Applications motivate the study of ✏-approximate degree for
the full range of ✏, including low-error approximation ✏ = o(1), large-error approx-
imation ✏ = 1 � o(1), and constant-error approximation (✏ bounded away from 0

and 1). The standard choice of error parameter in constant-error approximation
is ✏ = 1/3, an aesthetically motivated constant that is replaceable by any other in
(0, 1) without changing the theory in any significant way. Specifically, the follow-
ing result of Buhrman et al. [8, p. 384] gives an efficient way to reduce the error
in a pointwise approximation of a Boolean function at the expense of a modest
multiplicative increase in the degree of the approximant.

Fact 2.1 (Buhrman et al.). For all functions f : X ! {�1,+1} on a finite subset

X ⇢ Rn,

deg�(f) 6 O

✓
1

(1� ✏)2
log

2

�

◆
· deg✏(f), 0 < � < ✏ < 1.
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While Fact 2.1 is sufficient for our purposes, we note that it is not optimal. For
example, one can improve the dependence on ✏ quadratically, from 1/(1 � ✏)2 to
1/(1 � ✏), by appealing to Jackson’s theorem [27, Theorem 1.4]. An advantage of
Fact 2.1 is its short and elegant proof, which we include for the reader’s convenience.

Proof (adapted from Buhrman et al.) Consider the degree-d univariate polynomial

Bd(t) = 2

�d
dX

i=dd/2e

✓
d

i

◆
ti(1� t)d�i.

In words, Bd(t) is the probability of observing more heads than tails in a sequence of
d independent coin flips, each coming up heads with probability t. By the Chernoff
bound for sufficiently large

d = O

✓
1

(1� ✏)2
log

2

�

◆
,

Bd sends [0, ✏
1+✏ ] ! [0, �

2

] and similarly [1� ✏
1+✏ , 1] ! [1� �

2

, 1]. In particular, if a
given Boolean function f(x) is approximated pointwise within ✏ by a polynomial
p(x), then f(x) is approximated pointwise within � by 2Bd(

1

2+2✏p(x) +
1

2

)� 1.

2.2. Approximation of specific functions. Among the first findings in this line
of work was Paturi’s tight lower bound [23] for the constant-error approximation of
the sign function. Specifically, Paturi showed that approximating the sign function
on {±1,±2,±3, . . . ,±n} pointwise to within 1/3 requires a polynomial of linear
degree.

Theorem 2.2 (Paturi).

deg

1/3(sgn |{±1,±2,±3,...,±n}) = ⌦(n).

Paturi in fact proved the stronger result that the majority function on n bits has
1/3-approximate degree ⌦(n), but Theorem 2.2 will suffice for our purposes. On the
large-error side, Beigel [7] constructed the following function in his seminal work on
perceptrons. Its remarkable feature is that low-degree polynomials can represent it
in sign but cannot approximate it uniformly except with error exponentially close
to 1.

Theorem 2.3 (Beigel). Let fn : {0, 1}n ! {�1,+1} be given by

fn(x) = sgn

 
1 +

nX

i=1

(�2)

ixi

!
.

Then for all 1 6 d 6 p
n,

E(fn, d) > 1� exp

⇣
�⌦

⇣ n

d2

⌘⌘
.
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To be precise, Beigel phrased his proof in terms of a related approximation-theoretic
quantity known as threshold weight. A proof of Theorem 2.3 as it is stated here is
available, e.g., in Thaler [36, Section 1.2.2]. Thaler in fact obtained a far-reaching
generalization of Beigel’s result, with the following consequence of interest for our
purposes [36, Sections 4.1.3, 4.2.3].

Theorem 2.4 (Thaler). There exists an (explicitly given) function fn : {0, 1}n !
{�1,+1} such that

E

 
fn,

✓
n

log n

◆
2/5
!

> 1� exp

 
�⌦

✓
n

log n

◆
2/5
!

and fn(x) = sgn p(x) for a real polynomial p of degree O(log n).

Bun and Thaler [10, Theorem 2 and Remark 3] recently obtained a stronger yet
result, as follows.

Theorem 2.5 (Bun and Thaler). Let � > 0 be an arbitrary constant. Then for

each n > 2, there exists an (explicitly given) function fn : {0, 1}n ! {�1,+1} such

that

E
⇣
fn, n

2
3��
⌘
> 1� 2

�n

and fn(x) = sgn p(x) for a real polynomial p of degree O(log

2 n).

To our knowledge, Theorem 2.5 is the strongest known construction of a func-
tion that is easy to sign-represent but hard to approximate pointwise. Any future
improvements on Bun and Thaler’s theorem will automatically translate in corre-
sponding improvements on Theorem 1.3 in this paper.

2.3. Multiparty communication. An excellent reference on communication com-
plexity is the monograph by Kushilevitz and Nisan [20]. In this overview, we will
limit ourselves to key definitions and notation. We adopt the randomized number-

on-the-forehead model, due to Chandra et al. [11]. The model features k communi-
cating players, tasked with computing a (possibly partial) Boolean function F on
the Cartesian product X

1

⇥X
2

⇥· · ·⇥Xk of some finite sets X
1

, X
2

, . . . , Xk. A given
input (x

1

, x
2

, . . . , xk) 2 X
1

⇥X
2

⇥· · ·⇥Xk is distributed among the players by plac-
ing xi, figuratively speaking, on the forehead of the ith player (for i = 1, 2, . . . , k).
In other words, the ith player knows the arguments x

1

, . . . , xi�1

, xi+1

, . . . , xk but
not xi. The players communicate by sending broadcast messages, taking turns ac-
cording to a protocol agreed upon in advance. Each of them privately holds an
unlimited supply of uniformly random bits, which he can use along with his avail-
able arguments when deciding what message to send at any given point in the
protocol. The protocol’s purpose is to allow accurate computation of F every-
where on the domain of F. An ✏-error protocol for F is one which, on every input
(x

1

, x
2

, . . . , xk) 2 domF, produces the correct answer F (x
1

, x
2

, . . . , xk) with prob-
ability at least 1� ✏. The cost of a protocol is the total bit length of the messages
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broadcast by all the players in the worst case.1 The ✏-error randomized communi-

cation complexity of F, denoted R✏(F ), is the least cost of an ✏-error randomized
protocol for F .

2.4. Communication with unbounded error. We focus on randomized proto-
cols with probability of error close to that of random guessing, 1/2. There are two
natural ways to define the communication complexity of a multiparty problem F
in this setting. The unbounded-error communication complexity of F , introduced
by Paturi and Simon [24], is the quantity

UPP(F ) = min

0<✏<1/2
R✏(F ).

The error probability in this formalism is “unbounded” in the sense that it can
be arbitrarily close to 1/2. Babai et al. [1] proposed an alternate quantity, which
includes an additive penalty term that depends on the error probability:

PP(F ) = min

0<✏<1/2

⇢
R✏(F ) + log

1

1

2

� ✏

�
.

We refer to PP(F ) as the large-error communication complexity of F. These two
complexity measures naturally give rise to corresponding classes UPPk and PPk

in multiparty communication complexity [1], inspired both by the Turing machine
class PP. Formally, let {Fn,k}1n=1

be a family of k-party communication problems
Fn,k : ({0, 1}n)k ! {�1,+1}, where k = k(n) is either a constant or a growing
function. Then {Fn,k}1n=1

2 UPPk if and only if UPP(Fn,k) 6 log

c
(n+ k) for some

constant c and all n > c. Analogously, {Fn,k}1n=1

2 PPk if and only if PP(Fn,k) 6
log

c
(n+ k) for some constant c and all n > c. By definition,

PPk ✓ UPPk.

The following well-known result, cf. [24], gives a large class of communication prob-
lems that are efficiently computable with unbounded error.

Fact 2.6 (cf. Paturi and Simon). Let F : ({0, 1}n)k ! {�1,+1} be a k-party com-

munication problem such that F (x) = sgn p(x) for some polynomial p with ` mono-

mials. Then

UPP(F ) 6 dlog `e+ 2.

For the reader’s convenience, we include a folklore proof of this result.

Proof. For a subset S, let xS denote the product of the variables indexed by S. By
hypothesis,

F (x) = sgn

 
X̀

i=1

aSixSi

!

1 The contribution of a b-bit broadcast to the protocol cost is b rather than k · b.
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for some subsets S
1

, S
2

, . . . , S` and some reals aS1 , aS2 , . . . , aS` . Consider the fol-
lowing communication protocol, which involves only two of the k players. The
first player chooses a random index i according to the probability distribution
|aSi |/(|aS1 | + |aS2 | + · · · + |aS` |), and broadcasts i. He then collaborates with the
second player to compute the corresponding monomial xSi on the input in question.
Finally, they output a random element of {�1,+1} with expected value sgn(aSixSi).

It is straightforward to verify that this protocol can be implemented using at
most dlog `e + 2 bits of communication. For correctness, the output on a given
input x has expected value

1

|aS1 |+ |aS2 |+ · · ·+ |aS` |
X̀

i=1

aSixSi ,

which agrees in sign with F (x). Therefore, the protocol computes F (x) correctly
with probability greater than 1/2.

2.5. Discrepancy. Our main result involves proving, for communication problems
F of interest, an upper bound on UPP(F ) and a lower bound on PP(F ). The former
requires direct construction; the latter relies on technical machinery which we now
review. A k-dimensional cylinder intersection is a function � : X

1

⇥X
2

⇥· · ·⇥Xk !
{0, 1} of the form

�(x
1

, x
2

, . . . , xk) =

kY

i=1

�i(x1

, . . . , xi�1

, xi+1

, . . . , xk),

where �i : X1

⇥· · ·⇥Xi�1

⇥Xi+1

⇥· · ·⇥Xk ! {0, 1}. In other words, a k-dimensional
cylinder intersection is the product of k functions with range {0, 1}, where the ith
function does not depend on the ith coordinate but may depend arbitrarily on the
other k � 1 coordinates. Introduced by Babai et al. [2], cylinder intersections are
the fundamental building blocks of communication protocols and for that reason
play a central role in the theory. For a (possibly partial) Boolean function F on
X

1

⇥X
2

⇥ · · · ⇥Xk and a probability distribution P on X
1

⇥X
2

⇥ · · · ⇥Xk, the
discrepancy of F with respect to P is given by

discP (F ) =

X

x/2domF

P (x) + max

�

�����
X

x2domF

F (x)P (x)�(x)

����� ,

where the maximum is over cylinder intersections �. The minimum discrepancy
over all distributions is denoted

disc(F ) = min

P
discP (F ).

Upper bounds on the discrepancy give lower bounds on randomized communication
complexity, a classic technique known as the discrepancy method [15, 2, 20].
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Theorem 2.7 (Discrepancy method). Let F be a (possibly partial) Boolean function

on X
1

⇥X
2

⇥ · · ·⇥Xk. Then

2

R✏(F ) > 1� 2✏

disc(F )

.

A proof of Theorem 2.7 in the stated generality is available in [32, Theorem 2.9].
Combining this theorem with the definition of PP(F ) gives the following corollary.

Corollary 2.8. Let F be a (possibly partial) Boolean function on X
1

⇥X
2

⇥ · · ·⇥
Xk. Then

PP(F ) > log

2

disc(F )

.

2.6. Pattern matrix method. Theorem 2.7 and Corollary 2.8 highlight the role
of discrepancy in proving lower bounds on randomized communication complexity.
Apart from a few canonical examples [20], discrepancy is a challenging quantity to
analyze. The pattern matrix method is a technique that gives tight bounds on the
discrepancy and communication complexity for a class of communication problems.
The technique was developed in [30, 31] in the context of two-party communication
complexity and has since been generalized by several authors to the multiparty
setting [21, 13, 16, 5, 12, 32, 35]. We now review the strongest form [32, 35] of the
pattern matrix method, focusing our discussion on discrepancy bounds.

Set disjointness is the k-party communication problem of determining whether
k given subsets of the universe {1, 2, . . . , n} have empty intersection, where as usual
the ith party knows all the sets except for the ith. Identifying the sets with
their characteristic vectors, set disjointness corresponds to the Boolean function
DISJn,k : ({0, 1}n)k ! {�1,+1} given by

DISJn,k(x1

, x
2

, . . . , xk) = ¬
n_

i=1

x
1,i ^ x

2,i ^ · · · ^ xk,i. (2.2)

The partial function UDISJn,k on ({0, 1}n)k, called unique set disjointness, is de-
fined as the restriction of DISJn,k to inputs x 2 ({0, 1}n)k such that x

1,i ^ x
2,i ^

· · · ^ xk,i = 1 for at most one coordinate i. In set-theoretic terms, this restriction
corresponds to requiring that the k sets either have empty intersection or intersect
in a unique element.

The pattern matrix method pertains to the communication complexity of com-

posed communication problems. Specifically, let G be a (possibly partial) Boolean
function on X

1

⇥X
2

⇥· · ·⇥Xk, representing a k-party communication problem, and
let f : {0, 1}n ! {�1,+1} be given. The coordinatewise composition f �G is then
a k-party communication problem on Xn

1

⇥Xn
2

⇥ · · ·⇥Xn
k . We are now in a position

to state the pattern matrix method for discrepancy bounds. The two theorems that
follow were proved in [32, Theorem 5.7] and [35, Theorem 5.7], respectively.
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Theorem 2.9 (Sherstov). For every Boolean function f : {0, 1}n ! {�1,+1}, all

positive integers m and k, and all reals 0 < � < 1,

disc(f � UDISJm,k) 6
✓

e2

kn

deg

1��(f)
p
m

◆
deg1��(f)

+ �.

Theorem 2.10 (Sherstov). For every Boolean function f : {0, 1}n ! {�1,+1}, all

positive integers m and k, and all reals 0 < � < 1,

disc(f � UDISJm,k) 6
✓
c2kkp
m

◆
deg1��(f)/2

+ �,

where c > 1 is an absolute constant.

The same bounds clearly apply to the discrepancy of f � DISJm,k, an extension
of f � UDISJm,k. In typical usage, Theorem 2.10 is significantly stronger than
Theorem 2.9 unless the approximate degree deg

1��(f) is large, e.g., linear in the
number of variables n. On the other hand, Theorem 2.9 is significantly easier to
prove. Both theorems reduce the discrepancy analysis to the study of simpler,
approximation-theoretic properties of Boolean functions. This makes it possible to
prove communication lower bounds by leveraging the existing literature on polyno-
mial approximation, such as Theorems 2.2–2.5.

3. Main results

We are now in a position to establish the proper containment PPk ( UPPk for
up to k ⇡ 0.5 log n players. We present three distinct proofs for this separation.
All of them apply the pattern matrix method to a relevant result on polynomial
approximation, in a manner closely analogous to the two-party work [31, 36, 10].
The key new element is the observation that the unique set disjointness function
has an exact representation on its domain as a polynomial with a small number of
monomials. Specifically, define UDISJ⇤m,k : ({0, 1}m)

k ! R by

UDISJ⇤m,k(x) = �1 + 2

mX

i=1

x
1,ix2,i · · ·xk,i.

Then

UDISJm,k(x) = UDISJ⇤m,k(x), x 2 domUDISJm,k. (3.1)

Section 3.1 presents our simplest and shortest proof of PPk ( UPPk. We follow
up in Sections 3.2 and 3.3 with quantitatively stronger separations, settling the
main constructive and nonconstructive results of this paper. Sections 3.1–3.3 are
independent and can be read in any order.
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3.1. A qualitative separation. Of the two variants of the multiparty pattern
matrix method (Theorems 2.9 and 2.10), the latter is more technically demand-
ing than the former. Similarly, the literature on the polynomial approximation of
Boolean functions spans a broad spectrum of technical sophistication. Here, we
combine the simplest variant of the pattern matrix method with the simplest theo-
rem on polynomial approximation. Our proof is virtually identical to the previous
proofs in the two-party setting, e.g., [31, Section 10] and [36, Section 4.2.3]. The
only point of departure, (3.1), is to check that the inner gadget remains a sparse
polynomial as the number of parties grows.

Theorem 3.1. For all n and k, there is an (explicitly given) k-party communication

problem Fn,k : ({0, 1}n)k ! {�1,+1} such that

UPP(Fn,k) = O(log n), (3.2)

PP(Fn,k) = ⌦

⇣ n

4

k

⌘
1/7

. (3.3)

Moreover,

Fn,k(x) = sgn

 
w

0

+

nX

i=1

wix1,ix2,i · · ·xk,i

!
(3.4)

for fixed reals w
0

, w
1

, . . . , wn.

Proof. Let fn : {0, 1}n ! {�1,+1} be the function defined in Theorem 2.3. Then
fn(x) = sgn p(x) for a linear polynomial p : {0, 1}n ! R, and

deg

1�exp(�cn1/3
)

(fn) > n1/3 (3.5)

for some constant c > 0. Abbreviate m = d2k+1

en2/3e2 and consider the k-party
communication problem F 0

n,k : ({0, 1}nm)

k ! {�1,+1} given by

F 0
n,k = sgn p

✓
1� UDISJ⇤m,k

2

,
1� UDISJ⇤m,k

2

, . . . ,
1� UDISJ⇤m,k

2

◆
,

where the right-hand side features the coordinatewise composition of p with n
independent copies of UDISJ⇤m,k. The identity (3.1) implies that F 0

n,k coincides
with fn � UDISJm,k on the domain of the latter. Therefore,

PP(F 0
n,k) > PP(fn � UDISJm,k)

> log

2

disc(fn � UDISJm,k)

> log

2

2

�n1/3
+ exp(�cn1/3

)

= ⌦(n1/3
),
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where the second step uses Corollary 2.8 and the third step follows from (3.5) by
the pattern matrix method (Theorem 2.9). Now (3.3) and (3.4) are immediate by
letting Fn,k = F 0

b(n/4k+4
)

3/7c,k, whereas (3.2) follows from (3.4) by Fact 2.6.

Theorem 3.1 is not as strong as our main results, to be established shortly. It is
nevertheless of qualitative interest because of its corollary:

Corollary. Let ✏ > 0 be an arbitrary constant. Then for k 6 (0.5� ✏) log n,

PPk ( UPPk.

3.2. The constructive separation. We now prove our main constructive sepa-
ration of PPk and UPPk, stated as Theorem 1.3 in the Introduction. The proof is
as short as that of the qualitative separation in Section 3.1. This time, however,
we must appeal to the stronger version of the pattern matrix method as well as to
Bun and Thaler’s recent result on polynomial approximation.

Theorem (restatement of Theorem 1.3). Let � > 0 be an arbitrary constant.

Then for all n and k, there is an (explicitly given) k-party communication prob-

lem Fn,k : ({0, 1}n)k ! {�1,+1} such that

UPP(Fn,k) = O(log

3 n),

PP(Fn,k) = ⌦

⇣ n

4

kk2

⌘ 2
3��

.

Proof. Abbreviate m = d4c2kke2, where c > 1 is the constant from Theorem 2.10.
Let fn : {0, 1}n ! {�1,+1} be the function defined in Theorem 2.5, so that

deg

1�2

�n(fn) > n
2
3�� (3.6)

and fn(x) = sgn p(x) for a polynomial p : {0, 1}n ! R of degree O(log

2 n). Consider
the k-party communication problem F 0

n,k : ({0, 1}nm)

k ! {�1,+1} given by

F 0
n,k = sgn p

✓
1� UDISJ⇤m,k

2

,
1� UDISJ⇤m,k

2

, . . . ,
1� UDISJ⇤m,k

2

◆
,

where the right-hand side features the coordinatewise composition of p with n
independent copies of UDISJ⇤m,k. It is clear that the resulting composed polynomial
features at most (n+ 1)

deg p · (m+ 1)

deg p
= 2

O(log

3 nm) monomials, whence

UPP(F 0
n,k) = O(log

3 nm) (3.7)
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by Fact 2.6. On the other hand, (3.1) implies that F 0
n,k coincides with fn�UDISJm,k

on the domain of the latter. Therefore,

PP(F 0
n,k) > PP(fn � UDISJm,k)

> log

2

disc(fn � UDISJm,k)

> log

2

2

� deg1�2�n (fn)
+ 2

�n

= ⌦(n
2
3��

), (3.8)

where the second step uses Corollary 2.8, the third step follows by the pattern
matrix method (Theorem 2.10), and the final step uses (3.6). Letting Fn,k =

F 0
bn/mc,k, the proof is complete in view of (3.7) and (3.8).

3.3. The nonconstructive separation. We close with a nonconstructive sepa-
ration of PPk and UPPk, which quantitatively is our strongest. The main new ingre-
dient here is an approximation-theoretic result [34, Theorem 5.1] on random half-
spaces. Informally, it states that approximating a random halfspace in n Boolean
variables is at least as hard as approximating the sign function on an exponentially
larger domain, {±1,±2,±3, . . . ,± exp(⌦(n))}.

Theorem 3.2 (Sherstov). Let 0 < ↵ < 1 be a sufficiently small absolute constant.

Then there exist reals w
1

, w
2

, . . . , wn 2 {0, 1, 2, . . . , 2n � 1} such that the function

fn : {0, 1}n ⇥ {0, 1, 2, . . . , n} ! {�1,+1} given by

fn(x, t) = sgn

 
1

2

+

nX

i=1

wixi � 2

b↵nc+1t

!
(3.9)

obeys

E(fn, d) > E(sgn |{±1,±2,±3,...,±2

b↵nc}, d), d = 0, 1, . . . , b↵nc.

This result was proved in [34] in the greater generality of approximation by rational
functions. The special case of polynomial approximation, stated above, corresponds
to fixing q = 1 in the proof of [34, Theorem 5.1].

Corollary 3.3. There exist reals w
1

, w
2

, . . . , wn+1

2 {0, 1, 2, . . . , 2n�1} such that

the function hn : {0, 1}2n ! {�1,+1} given by

hn(x) = sgn

 
1

2

+

nX

i=1

wixi � wn+1

2nX

i=n+1

xi

!
(3.10)

obeys

E(hn, cn) > 1� exp(�cn),

where c > 0 is an absolute constant.
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Proof. Let 0 < ↵ < 1 be the absolute constant from Theorem 3.2, and abbreviate
S = sgn |{±1,±2,±3,...,±2

b↵nc}. Theorem 2.2 and Fact 2.1 imply that

⌦(2

b↵nc
) 6 deg

1/3(S) 6 O

✓
1

(1� E(S, b↵nc))2

◆
· b↵nc,

whence

E(S, b↵nc) > 1� ⌦

✓
b↵nc
2

b↵nc

◆
1/2

. (3.11)

Now fix w
1

, w
2

, . . . , wn whose existence is guaranteed by Theorem 3.2, and set
wn+1

= 2

b↵nc+1. Let fn and hn be given by (3.9) and (3.10). Then

E(hn, b↵nc) = E(fn, b↵nc)
> E(S, b↵nc).

where the first step holds by a standard symmerization argument (see, e.g., [34,
Proposition 2.6]) and the second step is immediate from Theorem 3.2. This com-
pletes the proof in view of (3.11).

We are now in a position to prove our nonconstructive separation, stated as
Theorem 1.1 in the Introduction.

Theorem (restatement of Theorem 1.1). There exists a k-party communication

problem Hn,k : ({0, 1}n)k ! {�1,+1} with

UPP(Hn,k) = O(log n), (3.12)

PP(Hn,k) = ⌦

⇣ n

4

k

⌘
. (3.13)

Moreover,

Hn,k(x) = sgn

 
1

2

+

nX

i=1

wix1,ix2,i · · ·xk,i

!
(3.14)

for some fixed w
1

, w
2

, . . . , wn 2 {0,±1,±2, . . . ,±(2

n � 1)}.

Proof. Let hn : {0, 1}2n ! {�1,+1} be the function whose existence is assured by
Corollary 3.3. Then

deg

1�exp(�cn)(hn) > cn (3.15)

for some constant c > 0, and moreover hn(x) = sgn p(x) for a linear polynomial
p : {0, 1}2n ! R with constant term 1/2 and all other coefficients integers bounded
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in absolute value by 2

n � 1. Abbreviate m = d2k+2

e/ce2 and consider the k-party
communication problem H 0

n,k : ({0, 1}2nm)

k ! {�1,+1} given by

H 0
n,k = sgn p

✓
1� UDISJ⇤m,k

2

,
1� UDISJ⇤m,k

2

, . . . ,
1� UDISJ⇤m,k

2

◆
,

where the right-hand side features the coordinatewise composition of p with 2n
independent copies of UDISJ⇤m,k. The identity (3.1) implies that H 0

n,k coincides
with hn � UDISJm,k on the domain of the latter. Therefore,

PP(H 0
n,k) > PP(hn � UDISJm,k)

> log

2

disc(hn � UDISJm,k)

> log

2

2

�cn
+ exp(�cn)

= ⌦(n),

where the second step uses Corollary 2.8 and the third step follows from (3.15)
by the pattern matrix method (Theorem 2.9). A moment’s thought shows that
H 0

bn/(4m)c,k is a subfunction of some Hn,k in the theorem statement, whence (3.13)
and (3.14). The remaining property (3.12) follows from (3.14) by Fact 2.6.

It is noteworthy that the previous theorem, despite being nonconstructive, im-
plies the following constructive result with quadratically weaker parameters.

Corollary (restatement of Corollary 1.2). Let Fn,k : {0, 1}n+
p
n⇥({0, 1}

p
n
)

k�1 !
{�1,+1} be the k-party communication problem given by

Fn,k(x) = sgn

0

@1

2

+

p
nX

i=1

0

@
(�1)

x1,i,
p

n

p
n�1X

j=0

2

jx
1,i,j

1

Ax
2,ix3,i . . . xk,i

1

A .

Then

UPP(Fn,k) = O(log n), (3.16)

PP(Fn,k) = ⌦

✓p
n

4

k

◆
. (3.17)

Proof. In the notation of the previous theorem, every Hp
n,k is a subfunction of Fn,k.

Therefore, (3.17) follows from (3.13), whereas (3.16) is immediate by Fact 2.6.
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