
Exact Constructive and Computable
Dimensions∗

Ludwig Staiger†

Martin-Luther-Universität Halle-Wittenberg
Institut für Informatik

von-Seckendorff-Platz 1, D–06099 Halle (Saale), Germany

Abstract

In this paper we derive several results which generalise the con-
structive dimension of (sets of) infinite strings to the case of exact di-
mension. We start with proving a martingale characterisation of exact
Hausdorff dimension. Then using semi-computable super-martingales
we introduce the notion of exact constructive dimension of (sets of)
infinite strings. This allows us to derive several bounds on the com-
plexity functions of infinite strings, that is, functions assigning to ev-
ery finite prefix its Kolmogorov complexity. In particular, it is shown
that the exact Hausdorff dimension of a set of infinite strings lower
bounds the maximum complexity function of strings in this set. Fur-
thermore, we show a result bounding the exact Hausdorff dimension
of a set of strings having a certain computable complexity function
as upper bound.

Obviously, the Hausdorff dimension of a set of strings alone with-
out any computability constraints cannot yield upper bounds on the
complexity of strings in the set. If we require, however, the set of
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strings to be Σ2-definable several results upper bounding the com-
plexity by the exact Hausdorff dimension hold true. First we prove
that for a Σ2-definable set with computable dimension function one
can construct a computable – not only semi-computable – martingale
succeeding on this set. Then, using this result, a tight upper bound
on the prefix complexity function for all strings in the set is obtained.
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The paper addresses a problem from Algorithmic Information Theory.
In his papers [Lut00, Lut03b] Lutz came up with an effectivisation of Haus-
dorff dimension, called constructive dimension. Constructive dimension
characterises the algorithmic complexity of (sets of) infinite strings as real
numbers. It turned out to be equivalent to asymptotic Kolmogorov com-
plexity (cf. [Sta05]) and is related to the concept of partial randomness
of infinite strings [Tad02, CST06]. However, the results of Reimann and
Stephan [RS06] show, unlike the case of random infinite strings, different
notions of Kolmogorov complexity (cf. [DH10, Usp92, US96]) yield differ-
ent notions of partial randomness.

To distinguish these types of partial randomness requires a refinement
of the complexity scale of (sets of) infinite strings. The present paper
shows that an effectivisation of Hausdorff’s original concept of dimension
[Hau18], referred to as exact Hausdorff dimension in [MGW87, GMW88,
MM09], is possible and leads, similarly to the case of “usual” dimensions
(cf. [Rya84, Rya86, Sta93, Sta98, Lut00, Lut03b]), to close connections be-
tween exact Hausdorff dimension and exact constructive dimension. In
contrast to the “usual” constructive or Hausdorff dimension an exact di-
mension of a string or a set of strings is a real function, referred to as di-
mension function [Fal90, Section 2.5] or gauge function [GMW88]. This
makes it more difficult to specify uniquely ‘the’ exact Hausdorff dimen-
sion of set of strings.

After introducing some notation and some necessary concepts related
to Kolmogorov complexity we proceed in Section 1.3 with Hausdorff’s
original approach [Hau18] and give a definition of what is an exact Haus-
dorff dimension of a set of infinite words. The subsequent Section 1.4
presents a brief account on some known results relating “classical” Haus-
dorff dimension and (asymptotic) Kolmogorov complexity.

Then the subsequent part consisting of four sections generalises the
“classical” results mentioned in Section 1.4 to the case of exact Hausdorff
dimension and Kolmogorov complexity functions. First, in Section 2 we
deal with the martingale characterisation of exact Hausdorff dimension.
The following section defines the exact constructive dimension and de-
rives a lower complexity bound by the principle “large sets contain com-
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plex elements”, and in Section 4 we use a dilution principle to construct
sets of infinite strings having a prescribed computable dimension function.

Upper complexity bounds for Σ2-definable sets of infinite strings are
the subject of Section 5. It should be mentioned here that, as already
proved in [Sta98] these bounds cannot be extended to the class of Π2-
definable sets.

Finally, in Section 6, we apply our results to the family of functions of
the logarithmic scale, which was also considered by Hausdorff [Hau18].
This family on the one hand refines the “usual” scale of asymptotic dimen-
sion and is, on the other hand, – in contrast to the general case – linearly
ordered.

Some of the results are contained in the conference papers [Sta11] and
[Sta12]

1 Notation and Preliminaries

1.1 Notation

In this section we introduce the notation used throughout the paper. By
N = {0, 1, 2, . . .} we denote the set of natural numbers and by Q the set
of rational numbers, R are the real numbers and R+ the non-negative real
numbers.

Let X be an alphabet of cardinality |X| = r ≥ 2. By X∗ we denote
the set of finite words on X, including the empty word e, and Xω is the set
of infinite strings (ω-words) over X. Subsets of X∗ will be referred to as
languages and subsets of Xω as ω-languages1.

For w ∈ X∗ and η ∈ X∗ ∪ Xω let w · η be their concatenation. This
concatenation product extends in an obvious way to subsets W ⊆ X∗ and
B ⊆ X∗ ∪ Xω.

We denote by |w| the length of the word w ∈ X∗ and pref(B) is the
set of all finite prefixes of strings in B ⊆ X∗ ∪ Xω. We shall abbreviate

1In the recent monograph [DH10] ω-words are referrred to as sets and ω-languages as
classes. In this paper we reserve the term “set” to the original meaning as introduced by
Georg Cantor.
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w ∈ pref(η) (η ∈ X∗ ∪ Xω) by w v η, and η � n is the n-length prefix
of η provided |η| ≥ n. A language W ⊆ X∗ is referred to as prefix-free
if w, v ∈ W and w v v imply w = v. If W ⊆ X∗ then MinvW := {w :
w ∈ W ∧ ∀v(v ∈ W → v 6@ w)} is the (prefix-free) set of minimal w.r.t. v
elements of W.

It is sometimes convenient to regard Xω as a topological space (Cantor
space). Here open sets in Xω are those of the form W · Xω with W ⊆ X∗.
Closed are sets F ⊆ Xω which satsify the condition F = {ξ : pref(ξ) ⊆
pref(F)}. In this space the following compactness theorem (or König’s
lemma) holds.

Compactness Theorem. If F ⊆ Xω is closed and F ⊆ W · Xω for some
W ⊆ X∗ then there is a finite subset W ′ ⊆W such that F ⊆W ′ · Xω.

For a computable domainD, such as N, Q or X∗, we refer to a function
f : D → R as left computable (or approximable from below) provided the set
{(d, q) : d ∈ D ∧ q ∈ Q ∧ q < f (d)} is computably enumerable. Accord-
ingly, a function f : D → R is called right computable (or approximable from
above) if the set {(d, q) : d ∈ D ∧ q ∈ Q ∧ q > f (d)} is computably enu-
merable, and f is computable if f is right and left computable. Accordingly,
a real number α ∈ R is left computable, right computable or computable
provided the constant function cα(t) = α is left computable, right com-
putable or computable, respectively.

If we refer to a function f : D → Q as computable we usually mean
that it maps the domain D to the domain Q, that is, it returns the exact
value f (d) ∈ Q.

1.2 Semi-measures and Kolmogorov complexity

In this part we introduce those variants of Kolmogorov complexity which
we will consider in the subsequent parts. The first two of them can be
related to left computable semi-measures on X∗ For the third one—mono-
tone complexity—we use the relation based approach (see [USS90, US96]).
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1.2.1 Prefix complexity

A function ν : X∗ → R+ is referred to as a (discrete) semi-measure provided
∑w∈X∗ ν(w) < ∞. It is well-known ([LV93, Cal02, DH10]) that there is
a universal left discrete computable semi-measure m : X∗ → R+ such
that for every left computable discrete semi-measure ν there is a constant
cν > 0 such that m(w) ≥ cν · ν(w) for all w ∈ X∗.

Fix a universal left computable semi-measure m : X∗ → R+ with
m(w) ≤ 1 for all w ∈ X∗. Then H(w) := dlog|X| ν(w)e is the prefix com-
plexity of the word w ∈ X∗.

1.2.2 a priori complexity

A continuous (or cylindrical) semi-measure on X∗ is a function µ : X∗ → R+

which satisfies µ(e) ≤ 1 and µ(w) ≥ ∑x∈X µ(wx), for w ∈ X∗. If there is
no danger of confusion, in the sequel we will refer to continuous (semi)-
measures simply as (semi)-measures.

If µ(w) = ∑x∈X µ(wx) the function µ is called a measure. A continuous
semi-measure µ has the following property.

Proposition 1 If C ⊆ w · X∗ is prefix-free then µ(w) ≥ ∑v∈C µ(v).

In [ZL70] the existence of a universal left-computable semi-measure M
is proved: There is a left-computable semi-measure M which satisfies

∃cm > 0 ∀w ∈ X∗ : µ(w) ≤ cm ·M(w), (1)

for all left-computable semi-measures m.
The a priori complexity of a word w ∈ X∗ is defined as

KA(w) := d− log|X|M(w)e . (2)

The properties of the semi-measure M imply KA(w) ≤ KA(w · v) and
∑v∈C |X|−KA(v) ≤ M(e) when C ⊆ X∗ is prefix-free.

A simple computable continuous measure is µ=(w) := |X|−|w|. Since
M is universal, we have M(w) ≥ c · |X|−|w| for every w ∈ X∗. Thus
KA(w) ≤ |w|+ c′.
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1.2.3 Monotone complexity

In this section we introduce the monotone complexity along the lines of
[USS90, US96]. To this end let E ⊆ X∗ × X∗ be a description mode (a
computably enumerable set) which satisfies the condition.

(π, w), (π′, v) ∈ E ∧ π v π′ → w v v ∨ v v w (3)

Then KE(w) := inf{|π| : ∃u(w v u ∧ (π, u) ∈ E)} is the monotone com-
plexity of the word w w.r.t. E. In [USS90, § 3.2] it is shown that there
is a description mode E universal among all description modes, that is,
KE(w) ≤ KE (w) + cE for all w ∈ X∗ and some constant not depending on
w. In the sequel we use the term Km for KE . Since E= := {(w, w) : w ∈ X∗}
is a description mode satisfying Eq. (3) we have Km(w) ≤ |w|+ O(1).

Finally we mention some relations between the complexities H, KA
and Km (see [DH10, US96]).

KA(w) ≤ Km(w) + O(1) , Km(w) ≤ H(w) + O(1) (4)

|K1(w)− K2(w)| ≤ O(log |w|) for Ki ∈ {H, KA, Km} (5)

It should be mentioned that the inequalities in Eq. (4) cannot be reversed,
that is, the differences |Km(w) − KA(w)| and |H(w) − Km(w)| are un-
bounded.

What concerns transformations with (partially defined) computable
mappings we have the following.

Proposition 2 Let ϕ : X∗ → X∗ be a prefix-monotone partial computable
function and let K ∈ {H, KA, Km}. Then there is a constant cϕ such that
K(ϕ(w)) ≤ K(w) + cϕ for all w ∈ X∗.

In the case of prefix complexity H we can drop the requirement that ϕ be
prefix-monotone.

Proof. In the case of H define a discrete semi-measure ν(w) := m(ϕ(w)).
Then ν is left-computable and the assertion follows from ν(w) ≤ cϕ ·m(w).

For Km define Eϕ := {(π′, ϕ(w)) : ∃π(π v π′ ∧ (π, w) ∈ E)}. Then
Eϕ is computably enumerable and satisfies Eq. (3).
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Since E is a universal description mode satisfying Eq. (3), we have
KEϕ(ϕ(w)) ≤ KE (w) + cϕ.

The proof for KA is more complicated and can be found in [LV93, Sec-
tion 4.2.2] or in a more detailed form in [Sta16]. o

1.2.4 Complexity of infinite words

A simple and natural way to extend the complexity of finite words to infi-
nite ones is to consider, for ξ ∈ Xω, the Kolmogorov complexity function for
infinite words K(ξ � n) where K is a complexity of finite words as mentioned
in the preceding part.

In connection with constructive dimension (see e.g. [Lut03b, DH10])
the following variant of asymptotic complexity plays a major rôle.

κ(ξ) := lim infn→∞
K(ξ � n)

n (6)

In view of Eq. (5) it is apparent that the actual variant of complexity is not
essential here (see also [CH94]).

1.3 Gauge functions and Hausdorff’s original approach

A function h : (0, ∞) → (0, ∞) is referred to as a gauge function (or dimen-
sion function [Fal90] ) provided h is right continuous and non-decreasing.2

If not stated otherwise, we will assume that limt→0 h(t) = 0.
The h-dimensional outer measure of F on the space Xω is given by

Hh(F) := lim
n→∞

inf
{

∑
v∈V

h(r−|v|) : V ⊆ X∗∧ F ⊆ V ·Xω ∧min
v∈V
|v| ≥ n

}
. (7)

If limt→0 h(t) > 0 thenHh(F) < ∞ if and only if F is finite.
For α ∈ R+ the α-dimensional Hausdorff measureHα is defined by the

gauge functions hα(t) = tα, α ∈ [0, 1], that is,Hα = Hhα .
In this case the (also referred to as “classical” in [DH10, Chapter 13.1])

Hausdorff dimension of a set F ⊆ Xω is defined as the change-over point
in the plot of Fig. 1.

2In fact, since we are only interested in the values h(r−n), n ∈ N, the requirement of
right continuity is just to conform with the usual meaning (cf. [GMW88, Rog98]).
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Figure 1: Plot ofHα(F) as a function of α

dimH F := sup{α : α = 0∨Hα(F) = ∞} = inf{α : ∧Hα(F) = 0} . (8)

The following properties of gauge functions h and the related measure
Hh are proved in the standard way (see e.g. [Edg08, Fal90] or [Rog98,
Theorem 40]).

Property 1 Let h, h′ be gauge functions.

1. If c · h(r−n) ≤ h′(r−n) for some c > 0, then c · Hh(F) ≤ Hh′(F).

2. If lim
n→∞

h(r−n)
h′(r−n)

= 0 thenHh′(F) < ∞ impliesHh(F) = 0, andHh(F) > 0

impliesHh′(F) = ∞.

Here the first property implies a certain equivalence of gauge functions.
In fact, if c · h ≤ h′ and c · h′ ≤ h in the sense of Property 1.1 then for all
F ⊆ Xω the measuresHh(F) andHh′(F) are both zero, finite or infinite.

As we see from Eq. (7) for our purposes the behaviour of gauge func-
tions is of interest only for large values of n, that is, in a small vicinity of 0.
Moreover, in many cases we are not interested in the exact value ofHh(F)
when 0 < Hh(F) < ∞. Thus we can often make use of scaling a gauge
function and altering it in a range (ε, ∞) apart from 0.

In the same way the second property gives a partial pre-order of gauge
functions (see [Rog98, Chapter 2, § 4]). By analogy to the change-over-
point α0 = dimH F forHα(F) this partial pre-order yields a suitable notion
of Hausdorff dimension in the range of arbitrary gauge functions.
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Definition 1 We refer to a gauge function h as an exact Hausdorff dimension
function for F ⊆ Xω provided

Hh′(F) =

 ∞ , if lim
n→∞

h(r−n)
h′(r−n)

= 0 , and

0 , if lim
n→∞

h′(r−n)
h(r−n)

= 0 .

Hausdorff [Hau18] called a function h dimension of F provided 0 < Hh(F) <
∞. This case is covered by our definition and Property 1.

Partitioning the gauge (or dimension) functions into those for which
Hh(F) is finite and those for which Hh(F) is infinite gives a more precise
indication to the ‘dimension’ of F than just the number α = dimH F from
above.

As in [Rog98, Chapter 2, §4] Definition 1 leads to a partial ordering of
gauge functions

h ≺ h′ ⇐⇒ lim
n→∞

h′(r−n)

h(r−n)
= 0

by saying that h corresponds to a smaller dimension than h′3. This partial
ordering is not as simple as the one of the classical Hausdorff dimension
in Eq. (8), and it seems to be much more difficult to find the exact bor-
derline, if it exists, between gauge functions with Hh(F) = 0 and such
with Hh(F) = ∞. In fact, Eggleston [Egg50, Egg51] (see also [Rog98, The-
orem 42]) proved that there are sets F which have functions h, h̄ both sat-
isfying Definition 1 such that lim supn→∞

h(r−n)
h̄(r−n)

= lim supn→∞
h̄(r−n)
h(r−n)

= ∞.
This, in particular, implies that one cannot always compare two sets E, F ⊆
Xω and say that one or the other of the two must be the smaller from the
point of Hausdorff dimension due to the lack of total ordering among the
gauge functions.

One easily observes that h1(t) := t yields Hh1(F) ≤ 1, thus Hh(F) =

0 for all h with h1 ≺ h. Therefore, we can always assume that a gauge
function satisfies h(t) ≥ t, t ∈ (0, 1).

3Observe that h′ ≤ h implies h � h′.
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1.4 Kolmogorov complexity and Hausdorff dimension

In this part we briefly recall known results relating classical Hausdorff
dimension and (asymptotic) Kolmogorov complexity. Then in the subse-
quent sections we generalise them to the case of exact Hausdorff dimen-
sion and Kolmogorov complexity functions. For a more detailed account
on previous results see the above mentioned books [LV93, Cal02, DH10]
or the survey [Sta07].

1.4.1 Martingales and Hausdorff dimension

Closely related to the invention of constructive dimension is the notion
of martingale. Martingales had already been used successfully to char-
acterise randomness and in conjunction with order functions the order of
randomness [Sch71]. A similar approach was pursued when Lutz [Lut03a,
Lut03b] constructivised Hausdorff dimension using what he called s-(super-
)gales a combination of (super-)martingales and exponential order func-
tions (see [Ter04, Section 4.2]). We follow Schnorrs approach, because it
seems that the combination of (super-)martingales with order functions is
more flexible at least in two respects: on the one hand, as in the investiga-
tion of Hausdorff dimension, it allows for the use of order functions other
than exponential ones, and on the other hand, as the proof of Theorem 11
in [Sta98] shows, computable martingales may achieve non-computable
(exponential) order functions, something which is not possible for s-gales,
as computable s-gales exist only for computable reals s ∈ R.

A super-martingale is a function V : X∗ → R+ which satisfies V(e) ≤ 1
and the super-martingale inequality

r · V(w) ≥ ∑x∈X V(wx) for all w ∈ X∗ . (9)

If Eq. (9) is satisfied with equality V is called a martingale. Closely related
with (super-)martingales are continuous (or cylindrical) (semi-)measures
µ : X∗ → [0, 1] where µ(e) ≤ 1 and µ(w) ≥ ∑x∈X µ(wx) for all w ∈ X∗.

Indeed, if V is a super-martingale then µ defined by the key equation

µ(w) := r−|w| · V(w) (10)
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is a continuous semi-measure, and vice versa. Moreover, from Proposi-
tion 1 we obtain

r−|w| · V(w) ≥∑v∈C r−|v| · V(v) (11)

if C ⊆ w · X∗ is prefix-free.
Let

Sc,h[V ] :=
{

ξ : ξ ∈ Xω ∧ lim sup
n→∞

V(ξ � n)
rn · h(r−n)

≥ c
}

, (12)

for a super-martingale V : X∗ → [0, ∞), a gauge function h and a threshold
c ∈ (0, ∞]. The following relations for gauge functions h, h′ and thresholds
c, c′ are obvious.

Lemma 1 If c ≥ c′ then Sc,h[V ] ⊆ Sc′,h[V ], and if h ≺ h′ then Sc,h[V ] ⊆
Sc,h′ [V ].

In particular, S∞,h[V ] is the set of all ω-words on which the super-martingale
V is successful w.r.t. the order function f (n) = rn · h(r−n) in the sense of
Schnorr [Sch71]. S∞,h[V ] is also referred to as the success set of the super-
martingale V w.r.t. the order function f (n) = rn · h(r−n).

Schnorr [Sch71] required an order function f : N → N to be non-
decreasing, unbounded and computable. For our purposes it is more con-
venient to consider f : N → R+ only as a real-valued non-decreasing
function. Nevertheless, this does not guarantee that f (n) = rn · h(r−n)

is always an order function whenever h is a gauge function and h(0) = 0.
The following gives a sufficient condition. We call a function h : R+ → R+

upwardly convex if (t1 − t0) · h(t′) ≥ h(t0) + (t′ − t0) · (h(t1) − h(t0)) for
0 ≤ t0 < t′ < t1.

Lemma 2 If a gauge function h : [0, 1]→ R+ is upwardly convex then f (n) :=
rn · h(r−n) is an order function.

Proof. It suffices to show that h(t)/t is non-increasing.
If h is upwardly convex then (t1− t0) · h(t′) ≥ h(t0)+ (t′− t0) · (h(t1)−

h(t0)) when 0 ≤ t0 < t′ < t1 ≤ 1. Thus t1 = t and t0 = 0 imply t · h(t′) ≥
t′ · h(t) + (1− t′) · h(0) ≥ t′ · h(t). o

The converse of Lemma 2 is not true.
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Example 1 Set
h(t) :=


√

t if 0 ≤ t ≤ 1/4
1/2 if 1/4 ≤ t ≤ 1/2, and
t otherwise .

Then
h(t)/t :=


1/
√

t if 0 ≤ t ≤ 1/4
1/2t if 1/4 ≤ t ≤ 1/2, and
1 otherwise .

Thus h(t)/t is non-increasing but 3
4 · h(1/2) = 3

8 < h(1/4)+ 1
4 · (h(1)−

h(1/4)) = 5
8 . o

Lutz [Lut03a, Lut03b] coined the term s-(super-)gale for the combination
d(w) := V(w)/(r|w| · r−s|w|) of a (super-)martingale V with the gauge func-
tion h(t) = ts or, alternatively with the order function f (n) = r(1−s)·n.
He then proved the following relation between success sets and classical
Hausdorff dimension.

Theorem 1 ([Lut03a]) Let F ⊆ Xω. Then
dimH F < α → ∃V(F ⊆ S∞,tα [V ]) → dimH F ≤ α .

1.4.2 Constructive dimension and asymptotic Kolmogorov complexity

In [Lut03b] Lutz invented constructive dimension by restricting to suc-
cess sets of left-computable super-martingales. In this case the condition
∃V(F ⊆ S∞,tα [V ]) turns out to be simpler because the results of Levin
[ZL70] and Schnorr [Sch71] show that there is an optimal left-computable
super-martingale U , that is, every other left-computable super-martingale
V satisfies V(w) ≤ cV · U (w) for all w ∈ X∗ and some constant cV > 0 not
depending on w.

Thus we may define the constructive dimension of F ⊆ Xω as inf{α :
F ⊆ S∞,tα [U ]}. Using our key equation (10) and the definitions of κ and
KA in Eqs. (6) and (2), respectively, we obtain immediately the coincidence
of constructive dimension and asymptotic Kolmogorov complexity (see
[May02, Theorem 1] and for a more detailed discussion [Sta05]).

Corollary 1 Let F ⊆ Xω. Then
sup{κ(ξ) : ξ ∈ F} = inf

{
α : F ⊆ S∞,α[U ]

}
.
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In [Rya84, Rya86] Ryabko proved results which related Hausdorff dimen-
sion to asymptotic Kolmogorov complexity.

Theorem 2 ([Rya84]) Let F ⊆ Xω. Then
dimH{ξ : ξ ∈ Xω ∧ κ(ξ) < α} = α .

The proof of the inequality ≤ is based on the principle “large sets contain
complex elements” (cf. also Theorem 6 below).

Lemma 3 ([Rya86]) dimH F ≤ sup{κ(ξ) : ξ ∈ F}

The other direction is constructive: for rational α′ < α, ω-languages E ⊂
{ξ : κ(ξ) < α} having dimension dimH E ≥ α′ are constructed (cf. Theo-
rem 10 below).

Ryabko’s results, however, give no bounds on the actual Kolmogorov
complexity functions K(ξ � n) when ξ ∈ F and dimH F = α. Those results
were derived in [Mie08, Sta93, CHS11] or for the the particular case of ω-
languages definable by finite automata in [Sta93, Sta08].

1.4.3 Bounds for Σ2-definable ω-languages

The lower bound given in Lemma 3 might be quite loose depending on
the structure of the ω-language F. In [Sta98] it was shown that this bound
is also an upper bound for Σ2-definable ω-languages. Here, as usual, we
refer to an ω-language F ⊆ Xω as Σ2-definable provided there is a com-
putable relation R ⊆ X∗ ×N such that F = {ξ : ∃i∀n

(
(ξ � n, i) ∈ R

)
}.

Lemma 4 ([Sta98]) If F ⊆ Xω is Σ2-definable then dimH F = sup{κ(ξ) : ξ ∈
F}.

Moreover, the proof of Theorem 11 of [Sta98] shows the following.

Theorem 3 If F ⊆ Xω is Σ2-definable and α ≥ dimH F is a right-computable
real then there is a computable martingale V such that for all ξ ∈ F there is a
constant cξ > 0 such that V(ξ � n) ≥i.o. cξ · r(1−α)·n.

So far the reviewed results concern “classical” Hausdorff dimension. The
subsequent sections are devoted to generalisations of these results to the
case of exact Hausdorff dimension and gauge functions.
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2 Exact Hausdorff dimension and martingales

In this section we show the generalisation of Lutz’s theorem (Theorem 1)
for arbitrary gauge functions. In view of Property 1 we split the assertion
into two parts.

Lemma 5 Let F ⊆ Xω and h, h′ be gauge functions such that h ≺ h′ and
Hh(F) < ∞. Then F ⊆ S∞,h′ [V ] for some martingale V .

Proof. First we follow the lines of the proof of Theorem 13.2.3 in
[DH10] and show the assertion for Hh(F) = 0. Thus there are prefix-free
subsets Ui ⊆ X∗ such that F ⊆ ⋂i∈N Ui · Xω and ∑u∈Ui

h(r−|u|) ≤ 2−i.

Define Vi(w) :=

{
r|w| ·∑wu∈Ui

h(r−|wu|), if w ∈ pref(Ui) \Ui , and
sup{r|v| · h(r−|v|) : v v w ∧ v ∈ Ui}, otherwise4.

In order to prove that Vi is a martingale we consider three cases:

w ∈ pref(Ui) \Ui : Since then Ui ∩ w · X∗ = ⋃
x∈X Ui ∩ wx · X∗, we have

Vi(w) = r|w| ·∑wu∈Ui
h(r−|wu|) = r−1 ·∑x∈X r|wx|∑wxu∈Ui

h(r−|wxu|) =

r−1 ·∑x∈X Vi(wx).

w ∈ Ui · X∗ : Let w ∈ v · X∗ where v ∈ Ui. Then Vi(w) = Vi(wx) = r|v| ·
h(r−|v|) whence Vi(w) = r−1 ·∑x∈X Vi(wx).

w /∈ pref(Ui) ∪Ui · X∗ : Here Vi(w) = Vi(wx) = 0.

Now, set V(w) := ∑i∈N Vi(w).
Then, for ξ ∈ ⋂i∈N Ui · Xω there are ni ∈ N such that ξ � ni ∈ Ui and

we obtain V(ξ � ni)
rni ·h′(r−ni )

≥ Vi(ξ � ni)
rni ·h′(r−ni )

= h(r−ni )
h′(r−ni )

which tends to infinity as i tends
to infinity.

Now let Hh(F) < ∞. Then h ≺
√

h · h′ ≺ h′. Thus H
√

h·h′(F) = 0 and
we can apply the first part of the proof to the functions

√
h · h′ and h′. o

The next lemma is in some sense a converse to Lemma 5.

Lemma 6 Let h be a gauge function, c ∈ (0, ∞] and V be a super-martingale.
ThenHh(Sc,h[V ]) ≤ V(e)c .

4This yields Vi(w) = 0 for w /∈ pref(Ui) ∪Ui · X∗.
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Proof. It suffices to prove the assertion for c < ∞.

Define Vk := {w : w ∈ X∗ ∧ |w| ≥ k ∧ V(w)

r|w|·h(r−|w|) ≥ c − 2−k} and set

Uk := MinvVk. Then Sc,h[V ] ⊆
⋂

k∈N Uk · Xω.

Now ∑
w∈Uk

h(r−|w|) ≤ ∑
w∈Uk

h(r−|w|) · V(w)

r|w|·h(r−|w|) ·
1

c−2−k

= 1
c−2−k · ∑

w∈Uk

V(w)

r|w|
≤ V(e)

c−2−k (cf. Eq. (11)).

ThusHh(
⋂

k∈N Uk · Xω) ≤ V(e)c . o

Lemmata 5 and 6 yield the following martingale characterisation of exact
Hausdorff dimension functions.

Theorem 4 Let F ⊆ Xω. Then a gauge function h is an exact Hausdorff dimen-
sion function for F if and only if

1. for all gauge functions h′ with h ≺ h′ there is a super-martingale V such
that F ⊆ S∞,h′ [V ], and

2. for all gauge functions h′′ with h′′ ≺ h and all super-martingales V it holds
F 6⊆ S∞,h′′ [V ].

Proof. Assume h to be exact for F and h ≺ h′. Then h ≺
√

h · h′ ≺
h′. Thus H

√
h·h′(F) = 0 and applying Lemma 5 to

√
h · h′ and h′ yields a

super-martingale V such that F ⊆ S∞,h′ [V ].
If h′′ ≺ h then Hh′′(F) = ∞ and according to Lemma 6 F 6⊆ S∞,h′′ [V ]

for all super-martingales V .

Conversely, let Conditions 1 and 2 be satisfied. Let h ≺ h′, and let
V be a super-martingale such that F ⊆ S∞,h′ [V ]. Now Lemma 6 shows
Hh′(F) ≤ Hh′(S∞,h′ [V ]) = 0.

Finally, suppose h′′ ≺ h and Hh′′(F) < ∞. Then H
√

h·h′′(F) = 0
and Lemma 5 shows that there is a super-martingale V such that F ⊆
S∞,
√

h·h′′ [V ]. This contradicts Condition 2. o

Lemmata 5 and 6 also show that we can likewise formulate Theorem 4 for
martingales instead of super-martingales.
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3 Constructive dimension: the exact case

Constructive dimension is a variant of dimension defined analogously
to Theorem 4 using only left computable super-martingales. As men-
tioned above, in this case we can simplify our considerations using an op-
timal left-computable super-martingale. For definiteness we use U (w) :=
r|w| ·M(w) where M is the universal left-computable semi-measure from
Section 1.2.2. Thus we may define

Definition 2 Let F ⊆ Xω. We refer to h : R → R as an exact constructive
dimension function for F provided F ⊆ S∞,h′ [U ] for all h′, h ≺ h′, and F 6⊆
S∞,h′′ [U ] for all h′′, h′′ ≺ h.

The next theorem follows immediately from the identity U (w) = r|w| ·
M(w) and the inequality M(w) ≥ M(w · v).

Theorem 5 The function hξ defined by hξ(r−n) := M(ξ � n) is an exact con-
structive dimension function for the set {ξ}.

In view of Eq. (2) also h′ξ(r
−n) := r−KA(ξ � n) is an exact constructive di-

mension function for the set {ξ}. In contrast to the asymptotic case, how-
ever, this does not hold for other complexities, like the monotone com-
plexity Km, prefix complexity H or plain complexity. For the latter two
this is made apparent by considering computable ω-words or Martin-Löf
random ω-words. Corollary 4.5.2 of [DH10] shows that also Km and KA
differ more than by a constant for certain ω-words.

Next we are going to show that the principle “large sets contain com-
plex elements” holds also for exact Hausdorff dimension. We obtain the
following bound from [Mie08].

Theorem 6 Let F ⊆ Xω, h be a gauge function andHh(F) > 0.
Then for every c > 0 with Hh(F) > c ·M(e) there is a ξ ∈ F such that

KA(ξ � n) ≥ae − logr h(r−n) + logr c.

For the sake of completeness we give a short proof. To this end we intro-
duce the δ-limit Wδ := {ξ : ξ ∈ Xω ∧ |pref(ξ) ∩W| = ∞} of a language
W ⊆ X∗.
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Proof. It is readily seen that the set of infinite words not fulfilling the
asserted inequality is the δ-limit of Wc = {w : KA(w) ≤ − logr h(r−|w|) +
logr c}.

Let Vm = Minv(Wc ∩ Xm · X∗). Then Vm is prefix-free and Wδ
c ⊆ Vm ·

Xω for all m ∈N. Consequently,Hh(Wδ
c ) ≤ ∑v∈Vm h(r−|v|) and in view of

Eq. (1) we have ∑v∈Vm h(r−|v|) ≤ c ·∑v∈Vm r−KA(v) ≤ c ·∑v∈Vm M(v) ≤ c ·
M(e). Now the inequality Hh(F) > Hh(Wδ

c ) shows the assertion F 6⊆ Wδ
c .
o

This lower bound on the maximum complexity of an infinite string in
F yields a set-theoretic lower bound on the success sets Sc,h[U ] of U .

Theorem 7 Let c ∈ R and let h be a gauge function. Then there is a c′ > 0 such
that

{ξ : ∃∞n(KA(ξ � n) ≤ − logr h(r−n) + c)} ⊆ Sc′,h[U ].

Proof. If ξ has infinitely many prefixes such that KA(ξ � n) ≤ − logr h(r−n)+

c then M(ξ � n) ≥ r−KA(ξ � n) ≥ h(r−n) · r−c. Since U (w) = r|w| ·M(w), we
obtain lim supn→∞

U (ξ � n)
rn·h(r−n)

= lim supn→∞
M(ξ � n)
h(r−n)

≥ r−c. o

Corollary 2 Let h, h′ be gauge functions such that h ≺ h′ and c ∈ R. Then

1. {ξ : KA(ξ � n) ≤io logr h(r−n) + c} ⊆ S∞,h′ [U ], and

2. Hh′({ξ : KA(ξ � n) ≤io − logr h(r−n) + c}
)
= 0.

4 Complexity and dilution

In this section we are going to show that, analogously to Ryabko’s proof
for the “usual” dimension, the bound given in Corollary 2 is tight for a
large class of (computable) gauge functions. To this end we prove that
certain sets of infinite strings diluted according to a gauge function h have
positive Hausdorff measureHh.
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4.1 A generalised dilution principle

We show that for a large family of gauge functions, a set of finite pos-
itive measures can be constructed. Our construction is a generalisation
of Hausdorff’s 1918 construction. Instead of his method of cutting out
middle thirds in the unit interval we use the idea of dilution functions
as presented in [Sta08]. In fact dilution appears much earlier (see e.g.
[Dal74, Sta93, Lut03b, Rei04])

We consider prefix-monotone mappings, that is, mappings ϕ : X∗ → X∗

satisfying ϕ(w) v ϕ(v) whenever w v v. We call a function g : N → N

a modulus function for ϕ provided |ϕ(w)| = g(|w|) for all w ∈ X∗. This,
in particular, implies that |ϕ(w)| = |ϕ(v)| for |w| = |v| whenever ϕ has a
modulus function.

Every prefix-monotone mapping ϕ : X∗ → X∗ defines as a limit a
partial mapping ϕ :⊆ Xω → Xω in the following way: pref(ϕ(ξ)) =

pref(ϕ(pref(ξ))) whenever ϕ(pref(ξ)) is an infinite set, and ϕ(ξ) is un-
defined when ϕ(pref(ξ)) is finite.

If, for some strictly increasing function g : N → N, the mapping ϕ

satisfies the conditions |ϕ(w)| = g(|w|) and for every v ∈ pref(ϕ(X∗))
there are wv ∈ X∗ and xv ∈ X such that

ϕ(wv) @ v v ϕ(wv · xv) ∧ ∀y
(
y ∈ X ∧ y 6= xv → v 6v ϕ(wv · y)

)
(13)

then we call ϕ a dilution function with modulus g. If ϕ is a dilution function
then ϕ is a one-to-one mapping.

For the image ϕ(Xω) we obtain the following bounds on its Hausdorff
measure (cf. the mapping theorem [Rog98, Theorem 29]).

Theorem 8 Let g : N→N be a strictly increasing function, ϕ a corresponding
dilution function and h : (0, ∞)→ (0, ∞) be a gauge function. Then

1. Hh(ϕ(Xω)) ≤ lim inf
n→∞

h(r−g(n))
r−n

2. If c · r−n ≤ae h(r−g(n)) then c ≤ Hh(ϕ(Xω)).

Proof. The first assertion follows from ϕ(Xω) ⊆ ⋃|w|=n ϕ(w) · Xω and
|ϕ(w)| = g(|w|).
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The second assertion is obvious for Hh(ϕ(Xω)) = ∞. Let the measure
Hh(ϕ(Xω)) be finite, ε > 0, and V ·Xω ⊇ ϕ(Xω) such that ∑v∈V h(r−|v|) ≤
Hh(ϕ(Xω)) + ε. Without loss of generality we may assume that V ⊆ X∗ is
prefix-free. Then, since ϕ is a dilution function, for every v ∈ V there is at
most one wv · xv such that v v ϕ(wv · xv).

Now, the set WV := {wv · xv : ∃v(v ∈ V ∧ ϕ(wv) @ v v ϕ(wv · xv))}
(see Eq. (13)) is prefix-free, and it holds WV · Xω ⊇ Xω. Thus WV is finite
and ∑w∈WV

r−|w| = 1.
Assume now min{|v| : v ∈ V} large enough such that c · r−|v| ≤

h(r−g(|v|)) for all v ∈ V.
Then ∑v∈V h(r−|v|) ≥ ∑wx∈WV

h(r−|ϕ(wx)|) = ∑wx∈WV
h(r−g(|wx|))

≥ ∑wx∈WV
c · r−|wx| = c .

As ε > 0 is arbitrary, the assertion follows. o

Corollary 3 If c · r−n ≤ae h(r−g(n)) ≤ c′ · r−n then c ≤ Hh(ϕ(Xω)) ≤ c′.

In connection with Theorem 8 and Corollary 3 it is of interest which gauge
functions allow for a construction of a set of positive finite measure via
dilution. Hausdorff’s cutting out was demonstrated for upwardly convex
gauge functions. We consider the slightly more general case of functions
fulfilling the following (cf. also Lemma 2).

Lemma 7 Let h : [0, 1] → R+ be a gauge function h with limt→∞ h(t) = 0. If
h(t)/t is non-increasing on (0, ε), ε ≤ 1, then there is an n0 ∈ N such that for
all n ≥ n0 there is an m ∈N satisfying

r−n < h(r−m) ≤ r−n+1 . (14)

In particular, Eq. (14) implies that the gauge function h does not tend faster
to 0 than the identity function id : R→ R.

Proof. We prove the assertion by induction on m.
Since limt→∞ h(t) = 0, we may choose n0, m0 such that r−(n0+1) <

h(r−m0) ≤ r−n0 . Now assume r−(n+1) < h(r−m) ≤ r−n for n ≥ n0, m ≥ m0.
Then r−(n+2) < h(r−m)

r ≤ r−(n+1). Since h(t)
t is non-increasing, we

have rm · h(r−m) ≤ r(m+1) · h(r−(m+1)), that is, h(r−m)
r ≤ h(r−(m+1)) ≤
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h(r−m). Consequently, r−(n+2) < h(r−(m+1)) ≤ h(r−m) ≤ r−n, and we
have r−(n+2) < h(r−(m+1)) ≤ r−(n+1) or r−(n+1) < h(r−(m+1)) ≤ r−n. o

Remark 1 Using the scaling factor c = rn0 , that is, considering c · h instead
of h and taking h′(t) = min{c · h(t), r} one can always assume that n0 = 0
and h′(1) > 1. Defining then g(n) := max{m : m ∈ N ∧ r−n < h(r−m)}
we obtain via Property 1 and Corollary 3 that for every gauge function h
fulfilling Eq. (14) there is a subset Fh = ϕ(Xω) of Xω having finite and
positiveHh-measure.

As in Lemma 2 the condition of Lemma 7 is not necessary. We provide an
example.

Example 2 Set h(r−n) :=

{
r−n/2 if n is even, and
r−(n+3)/2 + r−n if n is odd.

and extend h to a continuous non-decreasing function. Then h(r−2n) =

r−n, h(r−(2n+1)) = r−(n+2) + r−(2n+1) and, consequently, r−n ≥ h(r−2n) >

r−(n+1) ≥ h(r−(2n+1)) > r−(n+2), if n ≥ 1.

On the other hand, h(r−2n)
r−2n = rn > h(r−(2n+1))

r−(2n+1) = r(n−1) + 1.

4.2 Computable gauge functions

The aim of this section is to show that the modulus function g and thus
the dilution function ϕ can be chosen computable if the gauge function h
fulfilling Eq. (14) is computable.

Lemma 8 Let h : Q → R be a computable gauge function satisfying the con-
ditions 1 < h(1) < r and for every n ∈ N there is an m ∈ N such that
r−n < h(r−m) ≤ r−n+1. Then there is a computable strictly increasing function
g : N→N such that r−n < h(r−g(n)) < r−n+2.

Proof. We define g inductively. To this end we compute for every
n ≥ 1 a closed interval In such that h(r−g(n)) ∈ In ⊂ (r−(n−1), min In−1)

We start with g(0) := 0 and I−1 = [r, r + 1] and estimate I0 as an suffi-
ciently small approximating interval of h(r−g(0)) > 1 satisfying I0 ⊆ (1, r).
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Assume now that for n the value g(n) and the interval In satisfying
h(r−g(n)) ∈ In ⊂ (r−n, min In−1) are computed.

We search for an m and an approximating interval I(m), h(r−m) ∈
I(m), such that I(m) ⊂ (r−n−1, min In). Since lim inf

m→∞
h(r−m) = 0 and

∃m(r−n−1 < h(r−m) ≤ r−n) and r−n < min In this search will eventually
be successful. Define g(n + 1) as the first such m found by our procedure
and set In+1 := I(m).

Finally, the monotonicity of h implies g(n + 1) > g(n). o

With Corollary 3 we obtain the following.

Corollary 4 Under the hypotheses of Lemma 8 there is a computable dilution
function ϕ : X∗ → X∗ such that r−2 ≤ Hh(ϕ(Xω)) ≤ 1.

4.3 Complexity of diluted infinite strings

In the final part of this section we show that, for a large class of com-
putable gauge functions, sets like {ξ : KA(ξ � n) ≤io − logr h(r−n) + c}
(see Corollary 2) have the function h as an exact dimension function, that
is, a converse to Corollary 2.2.

We use the following estimate on the monotone complexity of a diluted
string analogous to Theorem 3.1 of [Sta08].

Theorem 9 Let ϕ : X∗ → X∗ be a one-to-one prefix-monotone comptable func-
tion satisfying Eq (13) with strictly increasing modulus function g. Then∣∣Km

(
ϕ(ξ)[0..g(n)]

)
−Km

(
ξ � n

)∣∣ ≤ O(1) for all ξ ∈ Xω .

Proof. The function ϕ has a prefix monotone computable partial in-
verse. Then the proof follows from Proposition 2. o

This auxiliary result yields that certain sets of non-complex strings have
non-null h-dimensional Hausdorff measure.

Theorem 10 If h : Q → R is a computable gauge function satisfying Eq. (14)
then there is a c ∈N such that

Hh({ζ : Km(ζ � n) ≤ae − logr h(r−n) + c}) > 0.
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Proof. From the gauge function h we construct a computable dilu-
tion function ϕ with modulus function g such that r−(l+k) < h(r−g(l)) <

r−(l+k−2) for a suitable constant k (cf. Lemma 8 and Remark 1). Then,
according to Corollary 4,Hh(ϕ(Xω)) > 0.

Using Theorem 9 we obtain Km
(

ϕ(ξ) � g(l)
)
≤ Km

(
ξ � l

)
+ c1 ≤ l + c2

for suitable constants c1, c2 ∈ N. Let n ∈ N satisfy g(l) < n ≤ g(n + 1).
Then Km

(
ϕ(ξ) � n

)
≤ Km

(
ϕ(ξ) � g(l + 1)

)
≤ l + 1 + c2.

Now from l + k − 1 < − logr h(r−g(l)) ≤ − logr h(r−n) we obtain the
assertion Km

(
ϕ(ξ) � n

)
≤ − logr h(r−n)− k + c2 + 2. o

Now Corollary 2.2 and Theorem 6 prove the following analogue to Ryabko’s
[Rya84] result.

Lemma 9 If h : Q → R is a computable gauge function satisfying Eq. (14)
then there is a c ∈N such that h is an exact Hausdorff dimension for the sets {ξ :
KA(ξ � n) ≤io − logr h(r−n)+ c} and {ζ : Km(ζ � `) ≤ae − logr h(r−`)+ c}.

Despite the fact that there are ω-words on which KA and Km differ by
more that an additive constant Lemma 9 seems to indicate that the set of
those ω-words is not too big even in the sense of exact Hausdorff dimen-
sion.

5 Exact dimensions for Σ2-definable ω-languages

In this section we generalise the results of Section 1.4.3 to the case of exact
dimension. The proofs follow closely the line of the corresponding proofs
in [Sta98]. It is remarkable that the upper complexity bound holds for
prefix complexity.

5.1 Constructive Dimension

We start with an auxiliary lemma characterising subsets F ⊆ Xω having
null measure via the δ-limit of languages Vδ.
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Lemma 10 ([Rei04]) Let F ⊆ Xω and h be a gauge function. Then Hh(F) = 0
if and only if there is a language V ⊆ X∗ such that F ⊆ Vδ and ∑v∈V h(r−|v|) <
∞.

The following theorem gives a constructive version of Lemma 10.

Theorem 11 If F ⊆ Xω is a Σ2-definable ω-language and h, h(1) ≤ 1, is a right
computable gauge function such that Hh(F) = 0 then there are a computable
non-decreasing function h̄ : {r−i : i ∈ N} → Q and a computable language
V ⊆ X∗ satisfying

1. h̄(r−n) ≥ h(r−n) for all n ∈N,

2. F ⊆ Vδ and ∑v∈V h̄(r−|v|) < ∞.

Proof. Let hn : {r−` : ` ∈ N} → Q , n ∈ N, be computable approxi-
mations of h such that hn(t) ≥ hn+1(t) ≥ h(t) and limn→∞ hn(t) = h(t) for
t ∈ {r−` : ` ∈ N}. The functions hn are assumed to be non-decreasing on
the set {r−` : ` ∈N}. As h(t) ≥ t we have also h(r−n) ≥ r−n.

Furthermore, let (Uj)j∈N be an effective enumeration of all finite prefix
codes over X such that sup{|v| : v ∈ Uj} ≤ sup{|v| : v ∈ Uj+1}, and let
F ∈ Σ2, as described in Section 1 of [Sta98] F be given by F =

⋃
k∈N Xω \

Lk · Xω where MF := {(w, k) : w ∈ Lk} is a computable set and the family
of languages (Lk)k∈N satisfies Lk :=

⋂k
i=0 Li · X∗.

Define the predicate

test(k, j, n) :⇔
((

Uj ∪ (Lk ∩ Xn)
)
· Xω = Xω ∧ ∑

v∈Uj

hn(r−|v|) < r−k
)

.

Observe that test(k, j, n) is computable and if test(k, j, n) is true then the
conditions F ⊆ Uj · Xω and ∀v(v ∈ Uj → k < |v|) are satisfied.

The first condition follows from Lk · Xω ∩ F = ∅ and the second one
from hn(r−|v|) > r−2|v|.
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Now the following algorithm, when given MF, computes a finite pre-
fix code Ck and a value mk satisfying the conditions F ⊆ Ck · Xω and
∑v∈Ck

hmk(r
−|v|) < r−k:

Algorithm Ck

0 input k
1 n = 0
2 repeat j = −1
3 repeat j = j + 1
4 until test(k, j, n) ∨

(
sup{|v| : v ∈ Uj} > n

)
5 n = n + 1
6 until test(k, j, n)
7 output Ck := Uj, mk := n

By construction we have k < |v| ≤ mk for v ∈ Ck.

Informally, for every n ≥ 0 our algorithm successively searches for a Uj

satisfying the condition test(k, j, n), more precisely, it searches until such
a Uj is found or else all Uj having sup{|v| : v ∈ Uj} ≤ n fail to satisfy
test(k, j, n).

In the latter case the value of n is increased ( thus allowing for a larger
maximum codeword length, a larger complementary ω-language (Lk ∩
Xn) · Xω and a closer approximation hn+1 of the gauge function h ) and
the search starts anew. Consequently, the algorithm terminates if and only
if there is a finite prefix code U such that ∑v∈U hn(r−|v|) < r−k and U ·
Xω ∪ (Lk ∩ Xn) · Xω = Xω for some n ∈N.

First we show that our algorithm always terminates. Observe that for
every ε > 0 there is a W ⊆ X∗ such that F ⊆ W · Xω and ∑w∈W h(r−|w|) <
ε
2 .

Since Xω \ Lk · Xω is a closed subset of F, for ε ≤ r−k we find a finite
subset W ′ ⊆W such that Xω \ Lk ·Xω ⊆W ′ ·Xω. Then ∑w∈W h(r−|w|) < ε

2
implies that ∑w∈W ′ hn(r−|w|) < ε for n ≥ nε,k , say.

Consequently, there is a finite prefix code Uj ⊆W ′ satisfying (Uj ∪ Lk) ·
Xω = Xω and thus (Uj ∪ (Lk ∩ Xn)) · Xω = Xω for n ≥ n′j,k. This shows
that the predicate test(k, j, n) is satisfied whenever n ≥ max{nr−k,k, n′j,k}.



Exact constructive and computable dimensions 27

Now we define V :=
⋃

i∈N Ci and show that V meets the requirements
of the theorem. We have w ∈ V if and only if ∃i(i < |w| ∧ w ∈ Ci).
This predicate is computable, since i < |w| bounds the quantifier ∃i from
above. Thus the language V is computable.

Next we show that F ⊆ Vδ. If ξ ∈ F there is an iξ such that ξ ∈
Xω \ Li ·Xω for all i ≥ iξ . Hence, for every i ≥ iξ the ω-word ξ has a prefix
wi ∈ Ci. As it was observed above, |wi| > i. Consequently, ξ has infinitely
many prefixes in V =

⋃
i∈N Ci.

Finally, in order to define the function h̄ we let `i := max{mk : k < i}.
Clearly, the value `i can be computed from i. Define h̄(r−i) := h`i(r

−i).
Then hmk(t) ≥ h(t) implies h̄(r−i) ≥ h(r−i) and `i ≤ `i+1 shows that
h̄(r−i) ≥ h̄(r−(i+1)).

It remains to show that ∑v∈V h̄(r−|v|) < ∞. Taking into account that
k < |v| ≤ mk, for v ∈ Ck, we have h̄(r−|v|) = h`|v|(r

−|v|) ≤ hmk(r
−|v|) for

v ∈ Ck and thus

∑v∈V h̄(r−|v|) ≤ ∑k∈N ∑v∈Ck
hmk(r

−|v|)

≤ ∑k∈N r−k < ∞ . o

Interpolating the computable function h̄ we obtain the following con-
sequence.

Corollary 5 If F ⊆ Xω is a Σ2-definable ω-language and h is a right computable
gauge function such that Hh(F) = 0 then there is a computable non-decreasing
function h̄ : Q→ Q satisfyingHh̄(F) = 0 and h̄(t) ≥ h(t) for t ∈ Q∩ (0, 1).

This result corresponds in some sense to a result by Besicovitch [Rog98,
Theorem 41] which states that for every E ⊆ Xω with Hh(E) = 0 there is
a h′′ such thatHh′′(E) = 0 and lim infn→∞

h(r−n)
h′′(r−n)

= 0.
Our Theorem 11 yields the required upper bound for the prefix com-

plexity H, and hence also of the monotone and a priori complexities Km
and KA, respectively, of an ω-word in F.

If V ⊆ X∗ is computably enumerable and h̄ : {r−n > n ∈ N} → R is a
left computable function such that ∑v∈V h̄(r−|v|) < ∞ then

ν(w) :=

{
h̄(r−|w|), if w ∈ V , and
0, otherwise

(15)
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defines a left computable discrete semi-measure. Thus Theorem 11 implies
the following upper bound on the complexity functions of ω-words.

Lemma 11 If F ⊆ Xω is a Σ2-definable ω-language and h is a right computable
gauge function such thatHh(F) = 0 then

H(ξ � n) ≤i.o. −logrh(r−n) + O(1) for all ξ ∈ F.

Proof. We use the computable subset V ⊆ X∗ and the computable
function h̄ defined in the proof of Theorem 11 and define the discrete semi-
measure ν via Eq. (15). Then ν(w) ≤ c ·m(w), for all w ∈ X∗ and, conse-
quently H(w) ≤ −logr h̄(r−|w|) ≤ −logrh(r−|w|), for w ∈ V. The assertion
follows from F ⊆ Vδ. o

Finally, Lemma 11 and Corollary 2 prove the following.

Theorem 12 If F ⊆ Xω is a union of Σ2-definable sets and h is a right com-
putable gauge function such that Hh(F) = 0 then F ⊆ S∞,h′ [U ] for every gauge
function h′ such that limt→0

h′(t)
h(t) = 0.

5.2 Computable Dimension

Computable dimension is based on computable super-martingales as con-
structive dimension was based on left computable super-martingales. In
contrast to the latter, for the former there is no universal computable super-
martingale (cf. [DH10, Sch71]). Thus we define analogously to Theorem 4

Definition 3 We refer to a gauge function h as an exact computable dimen-
sion function for F ⊆ Xω provided

1. for all gauge functions h′ with lim
n→∞

h′(r−n)
h(r−n)

= 0 there is a computable

super-martingale V such that F ⊆ S∞,h′ [V ], and

2. for all gauge functions h′′ with lim
n→∞

h(r−n)
h′′(r−n)

= 0 and all computable

super-martingales V it holds F 6⊆ S∞,h′′ [V ].

As for the constructive case the second item is fulfilled providedHh(F) >
0. For Item 1 we prove that for computable gauge functions h and Σ0

2-
definable sets F ⊆ Xω withHh(F) = 0 there is a computable martingale V
such that F ⊆ ⋃c>0 Sc,h[V ].
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In order to achieve our goal we introduce families of covering codes as
in [Sta98]. For a prefix code C ⊆ X∗ we define its minimal complementary
code as

Ĉ := (X ∪ pref(C) · X) \ pref(C) .

If C = ∅ we have Ĉ = X, and if C 6= ∅ the set Ĉ consists of all words
w · x 6∈ pref(C) where w ∈ pref(C) and x ∈ X. It is readily seen that C∪ Ĉ
is a maximal prefix code, C∩ Ĉ = ∅, and pref(C∪ Ĉ) = {e}∪pref(C)∪ Ĉ.

We call C := (Cw)w∈X∗ a family of covering codes provided each Cw is
a finite prefix code. Since then the set Cw ∪ Ĉw is a finite maximal prefix
code, every word u ∈ X∗ has a uniquely specified C-factorisation u =

u1 · · · un · u′ where ui+1 ∈ Cu1···ui ∪ Ĉu1···ui for i = 0, . . . , n− 1 (u1 · · · ui = e,
if i = 0) and u′ ∈ pref(Cu1···un ∪ Ĉu1···un). Analogously, every ξ ∈ Xω has a
uniquely specified C-factorisation ξ = u1 · · · ui · · · where ui+1 ∈ Cu1···ui ∪
Ĉu1···ui for i = 1, . . . .

In what follows we use martingales derived from prefix codes in the
following manner.

Lemma 12 Let h : R → R a gauge function and ∅ 6= C ⊆ X∗ be a prefix code
satisfying ∑v∈C h(r−|v|) < ∞. Then there is a martingale V (h)C : X∗ → [0, ∞)

such that

V (h)C (w) =


r|w| · h(r(−|w|)

∑v∈C h(r(−|v|) + ∑u∈Ĉ r−|u|
, for w ∈ C , and

1

∑v∈C h(r(−|v|) + ∑u∈Ĉ r−|u|
, for w ∈ Ĉ .

(16)

Proof. Set Γ := ∑v∈C h(r−|v|) + ∑u∈Ĉ r−|u|, and define for u ∈ pref(C∪
Ĉ) and w ∈ C ∪ Ĉ , v ∈ X∗

V (h)C (u) :=
r|u|

Γ
·
(

∑
u·w∈C

h(r−|u·w|) + ∑
u·w∈Ĉ

r−|u·w|
)

V (h)C (w · v) := V (h)C (w) .

Then V (h)C fulfils Eq. (16). We still have to show the property V (h)C (u) =
1
r ∑x∈X V

(h)
C (ux). This identity is obvious if u ∈ (C ∪ Ĉ) · X∗.
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Now, let u /∈ (C ∪ Ĉ) · X∗, that is, u ∈ pref(C ∪ Ĉ) \ (C ∪ Ĉ). Then

∑
x∈X

V (h)C (ux)
r

= ∑
x∈X

r|ux|

r · Γ ·
(

∑
uxw∈C

h(r−|uxw|) + ∑
uxw∈Ĉ

r−|uxw|
)

=
r|u|

Γ
· ∑

x∈X

(
∑

uxw∈C
h(r−|uxw|) + ∑

uxw∈Ĉ

r−|uxw|
)

,

because for u ∈ pref(C ∪ Ĉ) \ (C ∪ Ĉ) the set {w : w ∈ C ∪ Ĉ ∧ u v w}
partitions into the sets {w : w ∈ C ∪ Ĉ ∧ ux v w} (x ∈ X), and the
required equation follows. o

Remark 2 If C is a finite prefix code and h : Q → Q is computable then
V (h)C is a computable martingale.

For a gauge function h : R→ R let hw(t) := h(r−|w|·t)
h(r−|w|)

and let C := (Cw)w∈X∗

be a family of covering codes.
Using the martingales V (hw)

Cw
we define a new martingale VC as follows:

For u ∈ X∗ consider the C-factorisation u1 · · · un · u′, and put

V (h)C (u) :=

(
n−1

∏
i=0
V (hu1···ui )

Cu1···ui
(ui+1)

)
· V (hu1···un )

Cu1···un
(u′) ,

that is, V (h)C is in some sense the concatenation of the martingales V (hw)
Cw

.

Observe that V (h)C is computable if only h : R → R is a computable func-
tion, the codes Cw are finite and the function which assigns to every w the
corresponding code Cw is computable.

We have the following.

Lemma 13 Let h : N → Q be a gauge function and let C = (Cw)w∈X∗ be a

family of covering codes such that ∑v∈Cw
h(r−|wv|)
h(r−|v|)

≤ r−|w| for all w ∈ X∗.
If the ω-word ξ ∈ Xω has a C-factorisation ξ = u1 · · · ui · · · such that for

some nξ ∈ N and all i ≥ nξ the factors ui+1 belong to Cu1···ui . Then there is a
constant cξ > 0 not depending on i for which

VC(u1 · · · ui) ≥ cξ · r|u1···ui| · h(r−|u1···ui|) .
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Proof. Since Ĉw is a code, we have ∑v∈Ĉw
r−|v| ≤ 1, and from the

assumption and the definition of the function hw we obtain
∑v∈Cw hw(r−|v|) + ∑v∈Ĉw

r−|v| ≤ r−|w| + 1 .

Now |uj| ≥ 1 implies |u1 · · · ui| ≥ i, and the above Eq. (16) yields for
w = u1 · · · ui

V (hw)
Cu1···ui

(ui+1) ≥


1

r−i + 1
=

ri

1 + ri , if i ≤ nξ , and

r|ui+1| · hw(r−|ui+1|)

r−i + 1
, if i > nξ .

(17)

Put

cξ :=
∞

∏
i=0

ri

1 + ri ·
nξ

∏
i=0

r|ui+1| · hw(r−|ui+1|) = r|u1···unξ
| · h(r−|u1···unξ

|
) ·

∞

∏
i=0

ri

1 + ri .

Clearly, cξ > 0, and using Eq. (17) by induction on i the assertion is easily
verified. o

Now we derive the announced result.

Theorem 13 For every Σ2-definable ω-language F ⊆ Xω and every right-computable
gauge function h : Q → R such that Hh(F) = 0 there is a computable martin-
gale V such that F ⊆ ⋃c>0 Sc,h[V ].

Proof. In view of Corollary 5 it suffices to prove the theorem for com-
putable functions h : Q→ R.

We use computable approximations hn : Q→ Q of h such that hn(t) ≤
hn+1(t) and hn(t) ≤ h(t) ≤ (1 + r−n) · hn(t) for t ∈ (0, 1) ∩Q.

By virtue of Lemma 13 it suffices to construct a computable family of
covering codes C = (Cw)w∈X∗ such that the function which assigns to ev-
ery w the corresponding finite prefix code Cw is computable.

To this end we modify the predicate test introduced in the proof of
Theorem 11 as follows:

test′(w, j, n) :⇔
(

n ≥ |w| ∧
(
w ·Uj ∪ (L|w| ∩ X|w|+n)

)
· Xω ⊇ w · Xω

∧ ∑
v∈Uj

(1 + r−n) · hn(r−|wv|)

hn(r−|w|)
< r−|w|

)
.
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In the same way we modify the algorithm presented there.

Algorithm Cw

0 input w
1 n = 0
2 repeat j = −1
3 repeat j = j + 1
4 until test′(w, j, n) ∨

(
sup{|v| : v ∈ Uj} > n

)
5 n = n + 1
6 until test′(w, j, n)
7 output Cw := Uj

Similar to the proof of Theorem 11 this algorithm computes a prefix

code Cw with ∑v∈Cw
h(r−|wv|)
h(r−|w|)

< r−|w| and w · Cw · Xω ⊇ w · Xω \ L|w| · Xω.
Next we show that under the hypotheses of the theorem the algorithm

always terminates. We have Hh(F ∩ w · Xω) = 0 for all w ∈ X∗. Thus
for w ∈ X∗ and every ε > 0 there is a prefix-free language W ⊆ X∗ such

that F ∩ w · Xω ⊆ W · Xω and ∑v∈W h(r−|v|) < r−|w| · h0(r−|w|)
1+r . As in the

proof of Theorem 11, in view of F ⊇ Xω \ L|w| · Xω, there is a finite subset
W ′ ⊆ W ∩ w · X∗ such that w · Xω \ L|w| · Xω ⊆ W ′ · Xω. Consequently, if
w ·Uj ·Xω ⊇W ′ ·Xω and n is large enough the condition test′(w, j, n) will
be satisfied.

It remains to show that every ξ ∈ F has a C-factorisation ξ = u1 · · · ui · · ·
such that almost all factors ui+1 belong to the corresponding codes Cu1···ui .

Let ξ ∈ F. Then there is a k ∈N such that ξ ∈ Xω \ Li · Xω for all i ≥ k.
Consequently, w ∈ pref(ξ) implies w /∈ Lk = Lk · X∗, and according to
the definition of C there is a u ∈ Cw such that w · u ∈ pref(ξ) whenever
|w| ≥ k. o

6 Functions of the logarithmic scale

As we have seen in Section 1.3 the set of gauge functions is not ordered
which makes it difficult to assign a Hausdorff dimension to that set. On the
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other hand, the scale of the “classical” Hausdorff dimension is sometimes
to coarse to distinguish sets.

In this part we consider a generalisation of the “usual” dimension which
is finer than the “classical” Hausdorff dimension but is linearly ordered.

To this end we use the family of functions of the logarithmic scale. This
family is, similarly to the family hα(t) = tα, also linearly ordered and, thus,
allows for more specific versions of Corollary 2.2 and Theorem 6.

A function of the form where the first non-zero exponent satisfies pi >

0
h(p0,...,pk)

(t) = tp0 ·∏k
i=1
( 1

logi
r

1
t

)pi (18)

is referred to as a function of the logarithmic scale (see [Hau18]). Here we
have the convention that logi

r
1
t = max{logr . . . logr︸ ︷︷ ︸

i times

1
t , 1}, that is, logi

r
1
t =

logr . . . logr︸ ︷︷ ︸
i times

1
t if t is sufficiently small.

One observes that the lexicographic order on the tuples (p0, . . . , pk)

yields an order of the functions h(p0,...,pk)
in the sense that (p0, . . . , pk) >lex

(q0, . . . , qk) if and only if h(q0,...,qk)
(t) ≺ h(p0,...,pk)

(t).
This gives rise to a generalisation of the “usual” Hausdorff dimension

as follows.

dim(k)
H F := sup{(p0, . . . , pk) : Hh(p0,...,pk)(F) = ∞}

= inf{(p0, . . . , pk) : Hh(p0,...,pk)(F) = 0}
(19)

When taking supremum or infimum we admit also values −∞ and ∞
for the last parameter pk although we did not define the corresponding
functions of the logarithmic scale. E.g. dim(1)

H F = (0, ∞) means that
Hh(0,γ)(F) = ∞ butHh(α,−γ)(F) = 0 for all γ ∈ (0, ∞) and all α > 0.

The following theorems generalise Theorem 2 of the set of strings hav-
ing asymptotic Kolmogorov complexity κ(ξ) ≤ p0.

Let h(p0,...,pk)
be a function of the logarithmic scale. We define its first

logarithmic truncation as βh(t) := − logr h(p0,...,pk−1)
. Observe that βh(r−n) =

p0 · n+∑k−1
i=1 pi · logi

r n and− logr h(p0,...,pk)
(r−n) = βh(r−n)+ pk · logk

r n, for
sufficiently large n ∈N.

Then from Corollary 2.2 we obtain the following result.
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Theorem 14 ([Mie10]) Let k > 0, (p0, . . . , pk) be a (k+ 1)-tuple and h(p0,...,pk)

be a function of the logarithmic scale. Then
dim(k)

H

{
ξ : ξ ∈ Xω ∧ lim infn→∞

KA(ξ � n)−βh(2−n)

logk
r n

< pk

}
≤ (p0, . . . , pk) .

Proof. From lim infn→∞
KA(ξ � n)−βh(2−n)

logk
r n

< pk follows KA(ξ � n) ≤

βh(2−n) + p′k · logk
r n + O(1) for some p′k < pk. Thus h(p0,...,p′k)

≺ h(p0,...,pk)

and the assertion follows from Corollary 2.2. o

Using Theorem 6 we obtain a partial converse to Theorem 14 slightly re-
fining Satz 4.11 of [Mie10].

Theorem 15 Let k > 0, (p0, . . . , pk) be a (k + 1)-tuple where p0 > 0 and
p0, . . . , pk−1 are computable numbers. Then for the function h(p0,...,pk)

it holds

dim(k)
H

{
ξ : ξ ∈ Xω ∧ lim sup

n→∞

KA(ξ � n)− βh(2−n)

logk
r n

≤ pk

}
= (p0, . . . , pk) .

Proof. Let p′k < pk be a computable number. Then h(p0,...,p′k)
is a com-

putable gauge function, h(p0,...,p′k)
≺ h(p0,...,pk)

and Hh({ξ : KA(ξ � n) ≤
− logr h(r−n) + ch}) > 0 for h = h(p0,...,p′k)

and some constant ch. Moreover

the relation KA(ξ � n) ≤ − logr h(r−n)+ ch implies lim sup
n→∞

KA(ξ � n)−βh(2−n)

logk
r n

≤
pk.

Thus dim(k)
H

{
ξ : ξ ∈ Xω ∧ lim sup

n→∞

KA(ξ � n)−βh(2−n)

logk
r n

≤ pk

}
≥ (p0, . . . , p′k).

As p′k can be made arbitrarily close to pk the assertion follows. o

It would be desirable to prove Theorem 6 for arbitrary gauge functions
or Theorem 15 for arbitrary (k + 1)-tuples. One obstacle is that, in contrast
to the case of real number dimension where the computable numbers are
dense in the reals, already the computable pairs (p0, p1) are not dense in
the above mentioned lexicographical order of pairs. This can be verified
by the following fact.

Remark 3 Let p0 ∈ (0, 1). If r−p0·n ≤ h(r−n) ≤ n · r−p0·n for a computable
function h : Q→ R and sufficiently large n ∈N. Then p0 is a computable
real. Thus, if p0 is not a computable number, the interval between h(p0,0)

and h(p0,1) does not contain a computable gauge function.
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