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Abstract

In both query and communication complexity, we give separations between the class NISZK, con-
taining those problems with non-interactive statistical zero knowledge proof systems, and the class UPP,
containing those problems with randomized algorithms with unbounded error. These results significantly
improve on earlier query separations of Vereschagin [Ver95] and Aaronson [Aar12] and earlier commu-
nication complexity separations of Klauck [Kla11] and Razborov and Sherstov [RS10]. In addition, our
results imply an oracle relative to which the class NISZK 6⊆ PP. Equivalently, postselected quantum com-
puters cannot break SZK or NISZK in a black-box manner. This answers an open question of Watrous
from 2002 [Aar].

The technical core of our result is a stronger hardness amplification theorem for approximate degree,
which roughly says that composing the gapped-majority function with any function of high approximate
degree yields a function with high threshold degree. Using our techniques, we additionally prove an
oracle separation between perfect zero knowledge (PZK) and its complement (coPZK). Therefore, in
contrast with the case of SZK [SV03], one cannot show that perfect zero knowledge proof systems are
closed under complement in a black-box manner. We also show an oracle relative to which NISZK (or
SZK) is not contained in PZK – so even non-interactive statistical-zero-knowledge proofs may be more
powerful than interactive perfect zero knowledge proofs.

We prove a number of implications of these results, which may be of independent interest outside of
structural complexity. Specifically, our oracle separation implies that certain parameters of the Polariza-
tion Lemma of Sahai and Vadhan [SV03] cannot be much improved in a black-box manner. Additionally,
it implies new lower bounds for property testing algorithms with error probability arbitrarily close to 1/2.
Finally, our results have implications for delegating computation; they imply that two-message protocols
in the streaming interactive proofs model of Cormode et al. [CTY11] are surprisingly powerful in the
sense that, with just logarithmic cost, they can compute functions outside of UPPcc.

1 Introduction

Statistical Zero Knowledge proof systems, first introduced by Goldwasser, Micali and Rackoff [GMR89],
have proven central to the study of cryptography. Abstractly, a statistical zero knowledge proof is a form
of interactive proof in which the verifier can efficiently simulate the honest prover on “yes” instances. Here
“efficiently simulate” means the verifier can sample from a distribution which is statistically close to the
distribution of the transcript of its interaction with the honest prover. Therefore, the verifier in a statistical
sense learns nothing about the prover’s input other than if it is a “yes” or “no” instance. The resulting
class of decision problems solvable with statistical zero knowledge proofs is denoted SZK. One can similarly
define variants of this class, such as non-interactive statistical zero knowledge (where the proof system is non-
interactive, denoted NISZK), or perfect zero knowledge (where the verifier can exactly simulate the honest
prover, denoted PZK). Many problems, some of which are not necessarily in NP, have been shown to admit
SZK protocols; for example Graph Non-isomorphism, quadratic residuosity (which is reducible to discrete
logarithm), and the Approximate Shortest Vector problem all lie in SZK [GMW91, GMR89, GG98, PV08].
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As a result, if one could solve SZK-hard problems efficiently, it would break a number of cryptosystems, such
as lattice-based cryptosystems as well as those based on the hardness of quadratic residuosity.

Given the importance of SZK to cryptography, a natural task is to show lower bounds demonstrating that
problems in SZK cannot be solved easily. For example, one might want to show that quantum computers or
other, more powerful models of computation cannot solve SZK-hard problems efficiently. This would provide
evidence for the belief that problems in SZK are computationally hard. Of course proving such results
unconditionally is very difficult, because SZK contains P and is contained in AM∩ coAM [For87, AH91b], so
proving a lower bound against any SZK proof system would require separating P from PSPACE. Therefore,
a more reasonable goal has been to create oracles relative to which SZK is not contained in other complexity
classes; one can then unconditionally prove that “black-box” algorithms from other complexity classes cannot
break SZK. Much progress has been made in this area. For example, Aiello and H̊astad showed that PZK
(and also SZK) is not contained in BPP relative to some oracle [AH91a]. Agrawal et al. later used similar
techniques to show that SZK is not contained in the class SRE (which can be viewed as a natural generalisation
of BPP) relative to some oracle [AIKP15]. Aaronson [Aar02] gave an oracle relative to which SZK is not
contained in BQP - and therefore quantum computers cannot break SZK-hard cryptosystems in a black-box
manner. Building on that work, Aaronson [Aar12] later gave oracle separations against the class QMA (a
quantum analogue of NP) and the class A0PP (a class intermediate between QMA and PP). Therefore even
quantum proofs cannot certify SZK in a black-box manner.

In this work, we examine the relationship between SZK and PP. PP is the set of decision problems
decidable in polynomial time by randomized algorithms with unbounded error. In other words, PP algorithms
accept elements in the language with probability > 1/2, and accept elements outside the language with
probability ≤ 1/2. Since a PP algorithm can flip polynomially many coins in its decision process, this
means the gap between the acceptance probabilities of yes and no instances can be exponentially small.
We additionally consider a generalization of this model, denoted UPP, in which the number of coin flips is
unbounded so the gap can be arbitrarily small. PP is a very powerful complexity class - it contains NP and
coNP (since it is trivially closed under complement) as well as BPPpath. Furthermore, by Toda’s theorem

[Tod91] PPP contains the entire polynomial hierarchy. Additionally Aaronson showed PP = PostBQP, the set
of problems decidable by quantum algorithms equipped with postselection (the ability to discard all runs of
an experiment which do not achieve an exponentially unlikely outcome). As a result, it is difficult to prove
lower bounds against PP. Indeed, the problem of giving an oracle separation between SZK and PP has been
open since it was posed by Watrous in 2002 [Aar] and additionally mentioned as an open problem in [Aar12].

An additional motivation for studying the relationship between SZK and PP to understand the rela-
tive power of alternation (as captured by the polynomial-hierarchy PH), and counting (as captured by the
complexity class #P and its decisional variant PP). Both PH and PP generalize NP in natural ways. As
mentioned above, Toda famously showed that their power is related, by establishing that PH is no more
powerful than PPP. However, many authors have been interested in how much of PH is contained in PP
itself (e.g., [Bei94, Tha14, BVdW07, Fu92]). SZK is a class that resides very low in the polynomial hierarchy
(below even AM∩ coAM). Yet, as we explain in detail in the next section, our main results imply that there
are oracles relative to which SZK is not contained in PP.

2 Our Results and Techniques

2.1 Query and Communication Separations of NISZK and UPP

2.1.1 Query Separation: Statement and Context

We begin by giving a function f : {0, 1}n → {0, 1} that is solvable by a NISZK query algorithm of polyloga-
rithmic cost, yet any UPP query algorithm for f must make Ω̃(n1/4) queries. Here, a UPP query algorithm
for f is an algorithm deciding f with probability strictly greater than 1/2. An easy consequence of this
result is the existence of an oracle relative to which the Turing Machine class NISZK is not contained in PP.
Equivalently, postselected quantum computers cannot break NISZK in a black-box manner [Aar05b]. This
answers an open question of Watrous from 2002 [Aar].

Until recently, the closest related lower bound was Vereschagin’s result from 1995, which gave an oracle
relative to which AM∩ coAM is not contained in PP [Ver95]. Our result is an improvement on Vereschagin’s
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because the inclusions NISZK ⊆ SZK ⊆ AM ∩ coAM can be proved in a relativizing manner (cf. Figure 1).
It also generalizes Aaronson’s oracle separation between SZK and A0PP [Aar12].

Vereschagin [Ver95] also reports that Beigel claimed a simple proof of the existence of a function f that is
in the query complexity class AMdt,1 but is not in the query complexity class UPPdt. Our result improves on
Beigel’s in two regards. First, since NISZKdt ⊆ AMdt, separating NISZKdt from UPPdt is more difficult than
separating AMdt from UPPdt. Second, Beigel only claimed a superlogarithmic lower bound on the UPPdt

query complexity of f , while we give a polynomial lower bound.
Our lower bound also improves on very recent work of Chen [Che16a, Che16b], which gave a query

separation between the classes PSZK and PP.

2.1.2 Communication Complexity Separation: Statement and Context

Unbounded Error Communication Complexity. Paturi and Simon [PS86] introduced the model of
unbounded error communication complexity, captured by the communication complexity class UPPcc. In this
model, two parties with inputs (x, y) execute a randomized communication protocol, and are only required
to output f(x, y) with probability strictly better than random guessing. Unbounded error communication
protocols are extremely powerful, owing to this weak success criterion. In fact, UPPcc represents the frontier
of our understanding of communication complexity: it is the most powerful communication model against
which we know how to prove lower bounds. We direct the interested reader to [GPW15a] for a thorough
overview of communication complexity classes and their known relationships.

Because it is so powerful, progress on proving lower bounds against UPPcc has been slow. Relevant results
in this direction can be summarized as follows. Paturi and Simon showed that the UPPcc complexity of f is
characterized by a natural matrix-analytic notion called sign-rank : UPPcc(f) ≈ log(sign-rank([f(x, y)]x,y)),
where [f(x, y)]x,y is referred to as the communication matrix of f . Alon et al. [AFR85] proved lower bounds
on the UPPcc complexity of random functions. The first nontrivial lower bounds for explicit functions was
obtained in a breakthrough work of Forster [For02], who proved a linear lower bounds for the inner-product-
mod-2 function (and more generally of any Boolean function whose communication matrix has small spectral
norm). Several subsequent works improved and generalized Forster’s method [FKL+01, FS02, LMSS07,
AMY14]. Nearly tight estimates of UPPcc(f) were obtained by Sherstov in [She11b] for all symmetric

predicates f , i.e., functions of the form f(x, y) =
∑
i

D(xi ∨ yi) where D : {0, 1, . . . , n} → {0, 1}. Razborov

and Sherstov [RS10] answered an old question of Babai, Frankl, and Simon [BFS86] by giving the first
polynomial lower bounds on the UPPcc complexity of a function in the communication analogue of the
polynomial hierarchy (their function is in the second level Σcc

2 of the polynomial hierarchy). Recent work of
Bun and Thaler [BT16] generalized and quantitatively strengthened Razborov and Sherstov’s lower bounds
for Σcc

2 .

What Lies Beyond the Frontier? In an Arthur-Merlin game, a computationally-unbounded prover
(Merlin) attempts to convince a computationally-bounded verifier (Arthur) of the value of a given Boolean
function on a given input. The communication analogue of Arthur-Merlin games is captured by the commu-
nication complexity class AMcc.

Many works have pointed to AMcc as one of the simplest communication models against which we do
not know how to prove superlogarithmic lower bounds. Works attempting to address this goal include
[GPW15b, GPW15a, CCM+15, Lok01, LS09, PSS14, EFHK14, KP14a, Kla11]. In fact, there are even
simpler communication models against which we do not know how to prove lower bounds: it is known that
NISZKcc ⊆ SZKcc ⊆ AMcc ⊆ Σcc

2 , and we currently cannot prove lower bounds even against NISZKcc.
Despite our inability to prove lower bounds against these classes, prior to our work it was possible that

AMcc is actually contained in UPPcc (which, as described above, is a class against which we can prove lower
bounds). The prior works that had come closest to ruling this out were as follows.

• AMcc∩ coAMcc 6⊆ PPcc. This was established by Klauck [Kla11], who proved it by combining Verescha-
gin’s analogous query complexity separation with Sherstov’s pattern matrix method [She11a].

1As is standard, given a query model Cdt (or a communication model Ccc), we define a corresponding complexity class, also
denoted Cdt (or Ccc), consisting of all problems that have polylogarithmic cost protocols in the model.

3



• Σcc
2 6⊆ UPPcc. As mentioned above, this result was proved by Razborov and Sherstov [RS10].

In this work, we do even better than showing that AMcc 6⊆ UPPcc; we show that NISZKcc 6⊆ UPPcc. Hence,
if UPPcc is taken to represent the frontier of our understanding of communication complexity, our result is
the first to imply that NISZKcc (and hence AMcc) is truly beyond the frontier. Our result also answers a
question of Göös et al. [GPW15a], who posed the problem of showing that AMcc ∩ coAMcc 6⊆ UPPcc.

2.1.3 Techniques and Informal Theorem Statements

Query Complexity Techniques. To describe our methods, it is helpful to introduce the notions of
approximate degree and threshold degree, both of which are measures of Boolean function complexity that
capture the difficulty of point-wise approximation by low-degree polynomials. The ε-approximate degree

of a function f : {0, 1}n → {0, 1}, denoted d̃egε(f), is the least degree of a real polynomial that point-
wise approximates f to error ε. The threshold degree of f , denoted deg±(f), is the least degree of a real
polynomial that agrees in sign with f at all points. It is easy to see that threshold degree is equivalent to
approximate degree as the error parameter ε approaches 1/2 from below.

A recent and growing line of work has addressed a variety of open problems in complexity theory by
establishing various forms of hardness amplification for approximate degree. Roughly speaking, these results
show how to take a function f which is hard to approximate by degree d polynomials to error ε = 1/3, and
turn f into a related function F that is hard to approximate by degree d polynomials even when ε is very
close to 1/2. In most of these works, F is obtained from f by block-composing f with a “hardness-amplifying
function” g. We denote such a block-composition by g(f).

The technical core of our result lies in establishing a new form of hardness amplification for approximate
degree. Specifically, let g be the partial function GapMajn : {0, 1}n → {0, 1} (throughout this introduction,
whenever necessary, we use subscripts after function names to clarify the number of variables on which the
function is defined). Here GapMaj is the gapped majority function, defined, for some 1 ≥ δ > 0.5, to be 1 if
≥ δ fraction of its inputs are 1, to be 0 if ≥ δ fraction of its inputs are 0, and to be undefined otherwise (in
this introduction, we will ignore the precise choice of δ that we use in our formal results).2

Theorem 2.1. (Informal) Let f : {0, 1}M → {0, 1}. Suppose that d̃eg1/3(f) ≥ d. Define F : {0, 1}n·M →
{0, 1} via F = GapMajn(f). Then deg±(F ) = Ω(min(d, n)).

In our main application of Theorem 2.1, we apply the theorem to a well-known (partial) function f = ColM
called the Collision problem. This function is known to have approximate degree Ω̃(M1/3), so Theorem 2.1
implies that F := GapMajM1/3(ColM ) has threshold degree Ω̃(M1/3). Standard results then imply that the
UPP query complexity of F is Ω̃(M1/3) as well. That is, F 6∈ UPPdt.

Corollary 2.2 (Informal). Let m = M4/3, and define F : {0, 1}m → {0, 1} via F := GapMajM1/3(ColM ).
Then UPPdt(F ) = Ω̃(m1/4).

Moreover, as we show later, GapMajM1/3(ColM ) is in NISZKdt. Hence, we obtain our desired separation
between NISZKdt and UPPdt.

Comparison of Theorem 2.1 to Prior Work. The hardness amplification result from prior work that
is most closely related to Theorem 2.1 is due to Sherstov [She14]. Sherstov’s result makes use of a notion
known as (positive) one-sided approximate degree [She14, BT15b]. Positive one-sided approximate degree
is a measure that is intermediate between approximate degree and threshold degree – the positive one-sided
approximate degree of f , denoted deg+

ε (f), is always at most as large as the approximate degree of f but
can be much smaller, and it is always at least as large as the threshold degree of f but can be much larger
(see Section 3.2 for a formal definition of positive one-sided approximate degree).3

2We clarify that if f is a partial function then GapMajn(f) is technically not a composition of functions, since for some
inputs x = (x1, . . . , xn) on which GapMajn(f) is defined, there may be values of i for which xi outside of the domain of f . See
Section 3.4 for further discussion of this point.

3The notion of positive one-sided approximate degree treats inputs in f−1(1) and f−1(0) asymmetrically. There is an
analogous notion called negative one-sided approximate degree that reverses the roles of f−1(1) and f−1(0) [Tha14, KT14].
Our use of the positive vs. negative terminology follows prior work [Tha14, KT14] – other prior works [She14, BT15b] only used
negative one-sided approximate degree, and referred to this complexity measure without qualification as one-sided approximate
degree. In this paper, we exclusively use the notion of positive one-sided approximate degree; this choice is made to streamline
our proof of an oracle separation between PZK and coPZK (see Appendix A for details).
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Theorem 2.3 (Sherstov). Let f : {0, 1}M → {0, 1}. Suppose that deg+
1/3(f) ≥ d. Define F : {0, 1}n·M →

{0, 1} via F = ANDn(f). Then deg±(F ) = Ω(min(d, n)).4

There are two differences between Theorems 2.1 and 2.3. The first is that the hardness-amplifier in
Theorem 2.1 is GapMaj, while in Theorem 2.3 it is OR. GapMaj is a “simpler” function than OR in the
following sense: block-composing f with GapMaj preserves membership in complexity classes such as NISZKdt

and SZKdt; this is not the case for OR, as OR itself is not in SZKdt. This property is essential for us to obtain
threshold degree lower bounds even for functions that are in NISZKdt.

Another sense in which GapMaj is simpler than OR is that the former has constant randomized query
complexity, while the latter has polynomial (even quantum) query complexity. However, we will not exploit
this property in our applications.

The second difference is that Theorem 2.1 holds under the assumption that d̃eg1/3(f) ≥ d, while Theorem

2.3 makes the stronger assumption that deg+
ε (f) ≥ d. While we do not exploit this second difference in our

applications, ours is the first form of hardness amplification that works for approximate degree rather than
one-sided approximate degree.

Proof Sketch for Theorem 2.1. A dual polynomial is a dual solution to an appropriate linear program
capturing the threshold degree of any function. Specifically, for a (partial) function f defined on a subset of

{0, 1}n, a dual polynomial witnessing the fact that d̃egε(f) ≥ d is a function ψ : {0, 1}n → R that satisfies
the following three properties.

(a) ψ is uncorrelated with all polynomials p of total degree at most d. That is, for any p : {0, 1}n → R
such that deg(p) ≤ d, it holds that

∑
x∈{0,1}n

ψ(x) · p(x) = 0. We refer to this property by saying that ψ

has pure high degree d.

(b) ψ has `1 norm equal to 1, i.e.,
∑

x∈{0,1}n
|ψ(x)| = 1.

(c) ψ has correlation at least ε with f . That is, if D denotes the domain on which f is defined, then∑
x∈D

ψ(x) · f(x)−
∑

x∈{0,1}n\D

|ψ(x)| > ε.

It is not hard to see that a dual witness for the fact that deg±(f) ≥ d is a function ψ satisfying Properties
(a) and (b) above, that additionally is perfectly correlated with f . That is, ψ additionally satisfies∑

x∈D
ψ(x) · f(x)−

∑
x∈{0,1}n\D

|ψ(x)| = 1. (1)

In this case, ψ · f is non-negative, and is referred to as an orthogonalizing distribution for f .
We prove Theorem 2.1 by constructing an explicit orthogonalizing distribution for GapMajn(f). Specif-

ically, we show how to take a dual polynomial witnessing the fact that d̃eg1/3(f) ≥ d, and turn it into an
orthogonalizing distribution witnessing the fact that deg±(F ) = Ω(min(d, n)).

Our construction of an orthogonalizing distribution for GapMajn(f) is inspired by and reminiscent of
Sherstov’s construction of an orthogonalizing distribution for ORn(f) [She14], which in turn builds on a dual
polynomial for ORn(f) constructed by Bun and Thaler [BT15b]. In more detail, Bun and Thaler constructed
a dual polynomial ψBT of pure high degree d that had correlation 1 − 2−n with ORn(f). Sherstov’s dual
witness was defined as ψBT + ψcorr, where ψcorr is an error-correction term that also has pure high degree
Ω(d). The purpose of ψcorr is to “zero-out” ψBT at all points where ψBT differs in sign from f , without
affecting the sign of ψBT on any other inputs.

Naively, one might hope that ψBT + ψcorr is also a dual witness to the fact that deg±(GapMajn(f)) is
large. Unfortunately, this is not the case, as it does not satisfy Equation (1) with respect to GapMajn(f). It
is helpful to think of this failure as stemming from two issues. First, ψBT + ψcorr places non-zero weight on

4Sherstov stated his result for ORn(f) under the assumption that f has large negative one-sided approximate degree. Our
statement of Theorem 2.3 is the equivalent result under the assumption that f has large positive one-sided approximate degree.
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many inputs on which GapMajn(f) is undefined (i.e., on inputs for which fewer than δn copies of f evalauate
to 1 and fewer than δn copies of f evaluate to 0). Second, there are inputs on which GapMajn(f) is defined,
yet ORd(f) does not agree with GapMajn(f).

To address both of these issues, we add a different error-correction term ψ′corr of pure high degree
Ω̃(min(n, d)) to ψBT . Our correction term does not just zero out the value of ψBT on inputs on which it
disagrees in sign with ORn(f), but also zeros it out on inputs for which GapMajn(f) is undefined, and on
inputs on which ORn(f) does not agree with GapMajn(f).

Moreover, we show that adding ψ′corr does not affect the sign of ψBT on other inputs – achieving this
requires some new ideas in both the definition ψ′corr and its analysis. Putting everything together, we obtain
a dual witness ψBT + ψ′corr showing that deg±(GapMajn(f)) = Ω(min(n, d)).

A Hardness-Amplification Result for One-Sided Approximate Degree. Theorem 2.1 showed if f
has high approximate degree, then block-composing f with the gapped majority function yields a function
with high threshold degree. We additionally prove a closely related result in which the hardness-amplifier
function is GapAND instead of GapMaj, and f is assumed to have high positive one-sided approximate degree
instead of high approximate degree. Here, GapAND is partial function that outputs 1 if all inputs are 1,
outputs 0 if at least a δ fraction of inputs are 0, and is undefined otherwise.

Theorem 2.4. (Informal) Let f : {0, 1}M → {0, 1}. Suppose that deg+
1/3(f) ≥ d. Then deg±(GapANDn(f)) =

Ω(min(d, n)).

As explained in Section 2.2 below, we use Theorem 2.4 to give an oracle separating PZK from coPZK.

Communication Complexity Techniques. To extend our separation between NISZK and UPP to the
world of communication complexity, we build on recently developed methods of Bun and Thaler [BT16], who
themselves used and generalized the breakthrough work of Razborov and Sherstov [RS10]. Razborov and
Sherstov showed that if F has high threshold degree and this is witnessed by an orthogonalizing distribution
that satisfies an additional smoothness condition, then F can be transformed into a related function F ′ that
has high UPPcc complexity (specifically, F ′ is obtained from F via the pattern matrix method introduced in
[She11a]). So in order to turn GapMaj(Col) into a function with high UPPcc complexity, it is enough to give
a smooth orthogonalizing distribution for F .

Bun and Thaler [BT16] showed how to take the dual witness Sherstov constructed for OR(f) in the
proof of Theorem 2.3 and smooth it out, assuming the inner function f satisfies some modest additional
conditions. Fortunately, a variant of Col called the Permutation Testing Problem (PTP for short) satisfies
these additional conditions, and since our construction of an orthogonalizing distribution for GapMaj(PTP) is
reminiscent of Sherstov’s orthogonalizing distribution for OR(f), we are able to modify the methods of Bun
and Thaler to smooth out our dual witness for GapMaj(PTP). Although there are many technical details to
work through, adopting the methodology of Bun and Thaler to our setting does not require substantially
new ideas, and we do not consider it to be a major technical contribution of this work. Nonetheless, it does
require the careful management of various subtleties arising from our use of promise problems as opposed to
total Boolean functions, and our final communication lower bound inherits many of the advantages of our
Theorem 2.1 relative to prior work (such as applying to functions with high approximate degree rather than
high one-sided approximate degree).

2.2 Additional Oracle Separations

Our result sheds insight into the class PZK of problems decidable by perfect zero knowledge proof systems.
This is because we show that PZK is contained in PP in a relativizing manner; a proof of this result is
given in Section 6. In particular, this means our oracle separating NISZK from PP also separates NISZK
from PZK. So even non-interactive statistical-zero-knowledge proofs may be more powerful than interactive
perfect zero knowledge proofs. Aiello and H̊astad asked a similar question in 1991 [AH91a]; they created an
oracle relative to which SZK is not contained in BPP and conjectured their oracle might also separate SZK
from PZK (but were unable to prove this fact). Our result provides a different oracle which exhibits this
separation. This additionally answers an open problem of Lovett and Zhang [LZ16], who asked if there is an
oracle separating NISZK from NIPZK; this separation follows as a corollary of our separation between NISZK
and PZK.
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Additionally, we use our techniques to give an oracle separation between perfect zero knowledge and its
complement, i.e., we give an oracle relative to which PZK 6= coPZK. The proof of this result uses Theorem
2.4. So unlike in the case of SZK [SV03], one cannot show PZK is closed under complement in a black-
box manner. This is similar to a recent result of Lovett and Zhang showing an oracle relative to which
NISZK 6= coNISZK [LZ16] (however our result is neither implied by nor implies Lovett and Zhang’s result).
We provide details of these results in Section 6 and Appendix A.

A summary of known relationships between complexity classes in the vicinity of SZK, including the new
results established in this work, is provided in Figure 1.

Our oracle separation between NISZK (or SZK) and PP also answers a number of open questions in
structural complexity; for instance it trivially implies oracle separations between SZK and BPPpath, as well
as separations between CQP & DQP and PP. The latter classes, defined by Aaronson [Aar05a], and Aaronson,
Bouland, Fitzsimons and Lee [ABFL16] are complexity classes capturing the power of quantum computing
with “more powerful” modified versions of quantum mechanics. The authors of [Aar05a, ABFL16] showed
these classes are in EXP and BPP#P, respectively, and ask if one could improve the upper bounds on these
classes to e.g. PP (which is an upper bound on BQP) as an open problem. Since these classes contain SZK,
our result implies that one cannot place their classes in PP using relativizing techniques. This partially
explains the difficulty in substantially improving their upper bounds. Interestingly, this was part of our
original motivation for studying this problem.

2.3 Consequences of Our Results

In addition to the above query and communication separations, we show that our results imply a number of
lower bounds in other areas of theoretical computer science.

2.3.1 Consequences for Polarization

A polarization algorithm is an algorithm that is given black-box sampling access to two distributions, and
outputs two new distributions that are either extremely close in total variation distance (if they were initially
somewhat close) or extremely far in total variation distance (if they were originally somewhat far). In this
section we describe how our oracle separation between SZK and PP implies lower bounds on polarization
algorithms. In particular we show black-box polarization algorithms are limited in how close they can push
the statisical difference to 0 or 1 relative to the number of bits in the output distribution.

The concept of polarization first arose in work of Sahai and Vadhan [SV03]. In their work, Sahai and
Vadhan showed that the statistical difference problem is complete for the class SZK. The statistical distance
problem is formulated as follows: Let Pb(x) be poly-sized classical circuits. Let Db be the distribution on
{0, 1}n induced by inputting a uniformly random input x to Pb(x). The statistical difference problem is,
given circuits P0 and P1, determine if either ||D0 −D1|| ≤ 1/3 or if ||D0 −D1|| ≥ 2/3, promised one is the
case. Here ||D0 −D1|| indicates the total variation distance between the distributions D0 and D1.

In their paper, Sahai and Vadhan also showed a remarkable property of the statistical difference problem
– namely that the constants 1/3 and 2/3 in the Statistical Difference problem can be amplified to be
exponentially close to 0 and 1 [SV03]. This property is not immediately obvious, because it cannot be
obtained by simply repeatedly sampling from D0 and D1. Nevertheless, they showed the following: given
black-box distributions D0 and D1, and a number k expressed in unary, then in polynomial time one can
sample from distributions D′0 and D′1 (using polynomially many samples from D0 and D1) such that, if
||D0 −D1|| ≤ 1/3, then ||D′0 −D′1|| ≤ ε and if ||D0 −D1|| ≥ 2/3, then ||D′0 −D′1|| ≥ 1− ε, where ε = 2−k.
Hence without loss of generality, one can assume that the distributions in the statistical different problem
are exponentially close to 0 or 1; their transformation “polarizes” the distributions to be either very close
or very far from one another. This is known as the Polarization Lemma, and is a key part of the proof that
Statistical Difference is SZK-complete5.

Given this fundamental result, it is natural to ask whether or not one can improve the parameters of
the Polarization Lemma. For instance, Sahai and Vadhan noted in their paper that their algorithm could

5In statistical zero-knowledge proof systems, the verifier must be able to simulate the honest prover to negligibly small
(1/superpoly) total variation distance. The ability to polarize distributions allows the statistical difference problem to have this
property.
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SZK

NISZK

PZK

NIPZK

PP

UPP

coPZK

AM ∩ coAM

AM

PostBQP

PH

Figure 1: C1 → C2 indicates C1 is contained in C2 respect to every oracle, and C1 99K C2 denotes that there
is an oracle O such that CO1 6⊂ CO2 . Red indicates new results. Certain non-inclusions that are depicted are
subsumed by other non-inclusions (e.g., NISZK not in UPP subsumes SZK not in PP). We include redundant
arrows to allow for easier comparison of our results to prior work.
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only polarize distributions under the promise ||D0 −D1|| > α or ||D0 −D1|| < β in the case that α2 > β.
So their algorithm can polarize α = 2/3 and β = 1/3, but not α = 5/9 and β = 4/9. A natural question
is whether or not this limitation could be removed. Holenstein and Renner answered this question in the
negative for certain types of black-box polarization [HR05]. In particular, they showed that any form of
black-box polarization which works by drawing strings b, c ∈ {0, 1}`, and then sets D′0 = Db1 ⊗ ... ⊗ Db`

and D′1 = Dc1 ⊗ ... ⊗ Dc` cannot polarize in the case where α2 < β. As Sahai and Vadhan’s polarization
algorithm took this form, this was strong evidence that this limitation was fundamental. Note, however, that
it remains open to show that polarization cannot occur when α2 < β using arbitrary black-box algorithms.
For instance, one could feed the random outputs of of D0 back into the circuit for D1 in order to help polarize
the distributions. While it is not clear how these sorts of operations could help one polarize, it is difficult to
rule out the possibility that such operations might lead to a stronger polarization algorithm.

In this paper we consider different parameters of the Polarization Lemma - namely how small can the
security parameter ε be relative to the size of the range of the output distributions. For example, if one is
given distributions D0 and D1 over n-bit strings with total variation distance > 2/3 or < 1/3, then can one
create distributions D′0 and D′1 over n′-bit string such that the total variation distance is ≤ ε or ≥ 1 − ε
where ε = 2−n

′
, or 2−n

′2
? At first it might appear the answer to the above question is trivially yes - because

one can simply set k = −n2 (or k = nc for any constant c) and run the Polarization Lemma. However this
does not work because the Polarization Lemma increases the size of the domains of the distributions as it
polarizes; in other words n′ is some polynomial function of n and k. By tweaking the parameters of the
Polarization Lemma slightly [SV03], one can polarize distributions on n bits to distributions on n′ = poly(n)

bits which are polarized to roughly ε ≈ 2−
√
n′ . However, it seems difficult to do better than ε = 2−

√
n′ using

the proof techniques of Sahai and Vadhan [SV03]. This is because their proof alternates between two lemmas,
one which total variation distance towards 1 in the case the distributions are far apart, and another which
pushes the total variation distance towards zero in the case the distributions are close. In order to make the
distributions 2−k-close or 1− 2−k-far, one must apply both lemmas, each of which increases the number of
bits output by the distribution by a factor of k. Hence using Sahai and Vadhan’s Lemma with k = nc, the
best one can achieve are distributions on n′ = n2c+1 bits which are either 2−n

c

-close or (1− 2−n
c

)-far. For

large constant c this gives ε ≈ 2−
√
n′ . It seems difficult to improve their lemma further using the techniques

of their paper.
A natural question is therefore: what is the smallest value of ε that one can achieve relative to the size

of the output distributions n′? In this work, we show that if ε can be made very small relative to n′, then
that would place SZKO ⊆ PPO (and even SZKO ⊆ BPPpath

O) for all oracles O. Therefore, as a corollary
of our main result, ε cannot be made very small by any poly-time black-box polarization algorithm. More
specifically, we achieve a lower bound of ε > 2−n

′/2−1 for any poly-time polarization algorithm:

Theorem 2.5. There does not exist an algorithm running in poly(n) time, which given black box distributions
D0, D1 on strings of length n which obey either ||D0−D1|| < 1/3 or ||D0−D1|| > 2/3, produces two output
distributions D′0 and D′1 on strings of length n′ = poly(n) such that either ||D′0 −D′1|| < ε (in the first case)

or ||D′0 −D′1|| > 1− ε (in the second case) where ε ≤ 2−n
′/2−1.

We provide a proof of this theorem in Section 8. It remains open to close the gap between our lower

bound of ε = 2−n
′/2−1 and the upper bound of ε = 2−n

′1/2+δ
for any δ > 0 given by Sahai and Vadhan

[SV03].
Note that our lower bounds apply to any form of poly-time black box polarization. To our knowledge,

this is the first lower bound against arbitrary polarization algorithms which may take adaptive samples
from the input distributions. This is similar in spirit to the concurrent results Lovett and Zhang [LZ16]
regarding the impossibility of reversing entropy approximation via arbitrary black-box reductions. Prior to
this work, lower bounds were only known against particular forms of polarization such as those considered in
Holenstein and Renner [HR05], where one takes independent samples from the input distribution. Note that
if one wishes to prove our lower bounds for Holenstein-Renner style Polarization only, then there is a more
direct proof of this fact using Fourier analysis. We provide this simplified proof in Appendix B to facilitate
understanding of why this sort of polarization is impossible.
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2.3.2 Consequences for Property Testing

Lower Bounds for Property Testers That Barely Do Better Than Random Guessing. For any
NISZK-hard property testing problem P , our query complexity lower bounds immediately imply that any
property testing algorithm for P that outputs the correct answer with probability strictly greater than 1/2
requires nΩ(1) queries. For concreteness, we highlight the result we obtain for the NISZK-complete problem
of entropy approximation. Specifically, given a distribution D over n elements, a natural problem is to ask
how many samples from D are required to estimate the entropy of D to additive error. In 2011, Valiant and
Valiant [VV11] showed that to achieve any constant additive error less than log 2/2, it is both necessary and
sufficient to take Θ(n/ log n) samples from D. However, their bounds assume that one wishes to estimate
the entropy with high probability, say with probability 1 − o(1/poly(n)). Quantitatively, our UPPdt query
lower bounds imply the following.

Corollary 2.6. Any algorithm which decides if the entropy of D (over domain size n) is ≤ k− 1 or ≥ k+ 1

and succeeds with probability >
1

2
requires Ω(n1/4/ log n) samples from D.

In other words, estimating the entropy of a distribution to additive error 2 requires Ω̃(n1/4) samples ,
even if the algorithm is only required to have an arbitrarily small bias in deciding the answer correctly.

2.3.3 Consequences for Delegating Computation

In the streaming model, one wants to compute a property of a massive input without the resources to store
even a small fraction of the input. Streaming algorithms must therefore process the input in a single pass
using a very limited amount of memory (ideally polylogarithmic in the size of the input). Because the
streaming model is so restrictive, it is typically impossible for streaming algorithms to obtain exactly correct
answers for all but the simplest problems. Given this, the goal becomes to develop small space streaming
algorithms that are guaranteed to return approximately correct answers with high probability. There are
many important problems for which this is possible, such as computing the number of distinct elements,
frequency moments, or frequent items in a data stream. However, there are many other problems that
cannot even be approximated by streaming algorithms.

The model of streaming interactive proofs (SIPs), introduced by Cormode, Thaler, and Yi [CTY11],
captures settings in which a computationally limited client wants to perform some analysis of a massive
input, but cannot do so because it is forced to operate within the restrictive streaming paradigm. The client
therefore accesses a powerful but untrusted service provider (e.g., a commercial cloud computing service)
that can store and process the input. However, the client is unwilling to blindly trust answers returned by
this service. Thus, the service cannot simply supply the desired answer; it must also convince the verifier
of its correctness via a short interaction after the stream has been seen. Several recent works have studied
SIPs and their variants (e.g., [CCM+15, ADRV16, DTV15, KP14b, KP13, GR15, CCGT14]).

Chakrabarti et al. [CCM+15] showed that constant-message SIPs are surprisingly powerful, by giving
2- and 3-message SIPs of polylogarithmic cost for exactly solving a variety of basic streaming problems,
including Nearest Neighbor Search and Median and Selection. They also proved lower bounds on a restricted
class of SIP protocols that nonetheless captured all known methods for designing efficient SIPs. They left
open the question of proving superlogarithmic lower bounds on the cost of arbitrary 2-message SIPs for any
explicit problem.

In this work, we “explain” the failure of prior work to establish lower bounds for general 2-message SIPs.
Specifically, we show that the communication problem we exhibit separating NISZKcc from UPPcc is solvable
by a 2-message SIP of just logarithmic cost. Hence, if UPPcc is taken to represent the frontier of methods
for proving communication lower bounds, then proving explicit superlogarithmic lower bounds on the cost
of two-message SIPs will require breaking through the frontier in communication complexity.
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3 Technical Preliminaries

3.1 Complexity Classes

Notation. In an interactive proof (P, V ) where P is the prover and V is the verifier, we denote by (P, V )(x)
the random variable corresponding to the transcript of the protocol on input x. For distributions D0 and

D1, ||D0 −D1|| denotes the Total Variational Distance between them

(
||D0 −D1|| =

1

2
|D0 −D1|1

)
.

Definition 3.1 (Statistical Zero Knowledge). A language L is in SZK if there exists a tuple of Turing
machines (P, V, S), where the verifier V and simulator S run in probabilistic polynomial time, satisfying the
following:

• (P, V ) is an interactive proof for L with negligible completeness and soundness errors.

• For any x ∈ L of large enough size,

||S(x)− (P, V )(x)|| ≤ negl(|x|)

Definition 3.2 (Non-Interactive SZK). A language L is in NISZK if there exist a tuple of Turing machines
(P, V, S), where the verifier V and simulator S run in probabilistic polynomial time, satisfying the following:

• (P, V ) is an interactive proof for L with negligible completeness and soundness errors, with the following
additional conditions:

1. P and V both have access to a long enough common random string.

2. The interactive proof consists of a single message from P to V .

• For any x ∈ L of large enough size,

||S(x), (P, V )(x)|| ≤ negl(|x|)

The definitions of these classes in the presence of an oracle are the same, except that P , V , and S all
have access to the oracle.

3.2 Approximate Degree, Threshold Degree, and Their Dual Characterizations

We first recall the definitions of approximate degree, positive one-sided approximate degree, and threshold
degree for partial functions.

Definition 3.3. Let D ⊆ {0, 1}M , and let f be a function mapping D to {0, 1}.

• The approximate degree of f with approximation constant 0 ≤ ε < 1/2, denoted d̃egε(f), is the least
degree of a real polynomial p : {0, 1}M → R such that |p(x)−f(x)| ≤ ε when x ∈ D, and |p(x)| ≤ 1 + ε

for all x 6∈ D. We refer to such a p as an approximating polynomial for f . We use d̃eg(f) to denote

d̃eg1/3(f).

• The threshold degree of f , denoted deg±(f), is the least degree of a real polynomial p such that p(x) > 0
when f(x) = 1, and p(x) < 0 when f(x) = 0.

• The postive one-sided approximate degree of f with approximation constant 0 ≤ ε < 1/2, denoted
deg+

ε (f), is the least degree of a real polynomial p such that |p(x) − 1| ≤ ε for all x ∈ f−1(1), and
p(x) ≤ ε when x ∈ f−1(0). We refer to such a p as a positive one-sided approximating polynomial for
f . We use deg+(f) to denote deg+

1/3(f).
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Remark. We highlight the following subtlety in Definition 3.3: an approximating polynomial for a partial
function f is required to be bounded in absolute value even outside of the domain D on which f is defined,
yet this is not required of a one-sided approximating polynomial for f . The reason we choose to require an
approximating polynomial to be bounded outside of D is to ensure that the Col function (defined later in
Section 3.5) has large approximate degree.

There are clean dual characterizations for each of the three quantities defined in Definition 3.3. We state
these characterizations without proof, and direct the interested reader to [She15, She14, BT15a] for details.

For a function ψ : {0, 1}M → R, define the `1 norm of ψ by ‖ψ‖1 =
∑

x∈{0,1}M
|ψ(x)|. If the support of

a function ψ : {0, 1}M → R is (a subset of) a set D ⊆ {0, 1}M , we will write ψ : D → R. For functions

f, ψ : D → R, denote their inner product by 〈f, ψ〉 :=
∑
x∈D

f(x)ψ(x). We say that a function ψ : {0, 1}M → R

has pure high degree d if ψ is uncorrelated with any polynomial p : {0, 1}M → R of total degree at most d,
i.e., if 〈ψ, p〉 = 0.

Theorem 3.4. Let f : D → {0, 1} with D ⊆ {0, 1}M be a partial function and ε be a real number in [0, 1/2).

d̃egε(f) > d if and only if there is a real function ψ : {0, 1}M → R such that:

1. (Pure high degree): ψ has pure high degree of d.

2. (Unit `1-norm): ‖ψ‖1 = 1.

3. (Correlation):
∑
x∈D

ψ(x)f(x)−
∑
x6∈D

|ψ(x)| > ε.

Theorem 3.5. Let f : D → {0, 1} with D ⊆ {0, 1}M be a partial function. deg±(f) > d if and only if there
is a real function ψ : D → R such that:

1. (Pure high degree): ψ has pure high degree of d.

2. (Sign Agreement): ψ(x) ≥ 0 when f(x) = 1, and ψ(x) ≤ 0 when f(x) = 0.

3. (Non-triviality): ‖ψ‖1 > 0.

Theorem 3.6. Let f : D → {0, 1} with D ⊆ {0, 1}M be a partial function and ε be a constant in [0, 1/2).
deg+

ε (f) > d if and only if there is a real function ψ : D → R such that:

1. (Pure high degree): ψ has pure high degree of d.

2. (Unit `1-norm): ‖ψ‖1 = 1.

3. (Correlation): 〈ψ, f〉 > ε.

4. (Negative Sign Agreement): ψ(x) ≤ 0 whenever f(x) = 0.

3.3 PPdt and UPPdt

Now we define the two natural analogues of PP complexity in the query model.

Definition 3.7. Let f : D → {0, 1} with D ⊆ {0, 1}M be a partial function. Let T be a randomized decision
tree which computes f with a probability better than 1/2. Let α be the maximum real number such that

min
x∈D

Pr[T outputs f(x) on input x] ≥ 1

2
+ α.

Then we define the PP query cost of T for f to be PPdt(T ; f) = C(T ; f) + log2(1/α), where C(T ; f)
denotes the maximum number of queries T incurs on an input in the worst case. We define UPPdt(T ; f) =
C(T ; f). Observe that UPPdt(T ; f) is the same as PPdt(T ; f), except that the advantage α of the randomized
decision tree over random guessing is not incorporated into UPPdt(T ; f). We define PPdt(f) (respectively,
UPPdt) as the minimum of PPdt(T ; f) (respectively, UPPdt(T ; f)) over all T that computes f with a proba-
bility better than 1/2.
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PPdt is closely related to approximate degree with error very close to 1/2. We have the following well-
known relationship between them.

Lemma 3.8. Let f : D → {0, 1} with D ⊆ {0, 1}M be a partial function. Suppose d̃eg1/2−2−d(f) > d for

some positive integer d. Then PPdt(f) > d/2.

Meanwhile, UPPdt is exactly characterized by threshold degree.

Lemma 3.9. Let f : D → {0, 1} with D ⊆ {0, 1}M be a partial function. Then UPPdt(f) = deg±(f).

3.4 Gap Majority and Gap AND

In this subsection we introduce a transformation of partial functions which will be used in this paper.

Definition 3.10. Let f : D → {0, 1} with D ⊆ {0, 1}M be a partial function and n be a positive integer,
0.5 < ε ≤ 1 be a real number. We define the gap majority version of f , denoted by GapMajn,ε(f), as follows:

Given an input x = (x1, x2, . . . , xn) ∈ {0, 1}M ·n, we define nYes(x) :=

n∑
i=1

1xi∈D∧f(xi)=1 and

nNo(x) :=

n∑
i=1

1xi∈D∧f(xi)=0. Then

GapMajn,ε(f)(x) =


1 when nYes(x) ≥ ε · n
0 when nNo(x) ≥ ε · n
undefined otherwise

Note that even on inputs x for which GapMajn,ε(f)(x) is defined, there may be some values of i for which
xi is not in D. For brevity, we will occasionally write GapMaj(f) when n and ε are clear from context.

We also define the GapAND function. This is a partial function that agrees with the total function AND
wherever it is defined.

Definition 3.11. Let n be a positive integer, 0 < ε < 1 be a constant. We define the Gapped AND function,
GapANDn,ε : D → {0, 1} with D ⊆ {0, 1}n, as the function that outputs 1 if all inputs are 1; outputs 0 if at
least ε · n inputs are 0; and is undefined otherwise.

For a partial function f : D → {0, 1} with D ⊆ {0, 1}M , we define GapANDn,ε(f) to be a true block-
composition of partial functions, i.e., GapANDn,ε(f)(x1, . . . , xn) = GapANDn,ε(f(x1), . . . , f(xn)) whenever
the right hand side of the equality is defined, and GapANDn,ε(f) is undefined otherwise.

Remark 3.12. Note that GapMajn,ε(f) is not technically a block-composition of partial functions, since
GapMajn,ε(f)(x1, . . . , xn) is defined even on some inputs for which some f(xi) is not defined.

3.5 Problems

We now recall the Collision problem. This problem interprets its input as a function f mapping [n] to [n],
and the goal is to decide whether the input is a permutation or is 2-to-1, promised that one of them is the
case. We need a slightly generalized version, which asks to distinguish between permutations and k-to-1
functions.

Definition 3.13 (Collision problem). Fix an integer k ≥ 2, and assume for simplicity that n is a power of 2.
The partial function Colkn is defined on a subset of {0, 1}n logn. It interprets its input as specifying a function
f : [n] → [n] in the natural way, and evaluates to 1 if f is a permutation, 0 if f is a k-to-1 function, and is
undefined otherwise. When k and n are clear from context, we write Col for brevity.

This problem admits a simple SZK protocol in which the verifier makes only polylog(n) queries to the
input. Specifically, the verifier executes the following sub-protocol polylog(n) times: the verifier chooses a
random i ∈ [n], makes a single query to learn f(i), sends f(i) to the prover, and rejects if the prover fails to
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respond with i. It is easy to see that the sub-protocol has perfect completeness, constant soundness error,
and is perfect zero knowledge. Because the sub-protocol is repeated polylog(n) times, the total soundness
error is negligible.

In 2002, Aaronson [Aar02] proved the first non-constant lower bound for the Col2n problem: namely,
any bounded-error quantum algorithm to solve it needs Ω(n1/5) queries to f . Aaronson and Shi [AS04]
subsequently improved the lower bound to Ω(n1/3), for functions f : [n] → [3n/2]; then Ambainis [Amb05]
and Kutin [Kut05] proved the optimal Ω(n1/3) lower bound for functions f : [n]→ [n].

We need a version of the lower bound that makes explicit the dependence on k and ε.

Theorem 3.14 (Implicit in Kutin [Kut05]). d̃egε(Col
k
n) = Ω( 3

√
(1/2− ε) · n/k) for any 0 < ε < 1/2 and

k|n.

See also [BT15a] for a direct constructive proof (using Theorem 3.4) for the above theorem in the case
that k = 2.

We will also utilize the Permutation Testing Problem, or PTP for short. This problem, which is closely
related to the Collision problem, was defined in [Aar12], which also (implicitly) proved a bound on its one-
sided approximate degree.

Definition 3.15 (PTP). Given a function f : [n]→ [n] (represented as a string in {0, 1}n logn),

1. PTPn(f) = 1 if f is a permutation.

2. PTPn(f) = 0 if f(i) differs from every permutation on at least n/8 values of i.

3. PTPn(f) is undefined otherwise.

Theorem 3.16 (Implicit in [Aar12]). For any 0 < ε < 1/6,

deg+
ε (PTPn) = Ω(n1/3)

The SZK protocol described for Col works unmodified for PTP as well.

4 Hardness Amplification For Approximate Degree

In this section we prove a novel hardness amplification theorem. Specifically, we show that for any function
f with high approximate degree, composing f with GapMaj yields a function with high threshold degree,
and hence the resulting function is hard for any UPP algorithm in the query model. Similarly, we show that
if f has high positive one-sided approximate degree, then composing f with GapAND yields a function with
high threshold degree.

Note that this hardness amplification theorem is tight, in the sense that if f has low approximate degree,
then composing f with GapMaj yields a function that has low UPP query complexity, and the same holds for
composing f with GapAND if f has low positive one-sided approximate degree. See Appendix C for details.

4.1 Notation

For a partial function f , an integer n and a real ε ∈ (1/2, 1], we denote GapMajn,ε(f) by F for convenience,
where n and ε will always be clear in the context. We also use x = (x1, x2, . . . , xn) to denote an input to F ,
where xi represents the input to the ith copy of f .

The following simple lemma establishes some basic properties of dual witnesses exhibiting the fact that

d̃egε(f) > d or deg+
ε (f) > d.

Lemma 4.1. Let f : D → {0, 1} with D ⊆ {0, 1}M be a partial function, ε be a real in [0, 1/2), and d be an

integer such that d̃egε(f) > d.

Let µ : {0, 1}M → R be a dual witness to the fact d̃egε(f) > d as per Theorem 3.4. If f satisfies
the stronger condition that deg+

ε (f) > d, let µ to be a dual witness to the fact that deg+
ε (f) > d as per

Theorem 3.6.
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We further define µ+(x) := max{0, µ(x)} and µ−(x) := −min{0, µ(x)} to be two non-negative real
functions on {0, 1}M , and µi− and µi+ be the restrictions of µ− and µ+ on f−1(i) respectively for i ∈ {0, 1}.
Then the following holds:

• µ+ and µ− have disjoint supports. (2)

• 〈µ+, p〉 = 〈µ−, p〉 for any polynomial p of degree at most d. Hence, ‖µ+‖1 = ‖µ−‖1 =
1

2
. (3)

• ‖µ1
+‖1 > ε and ‖µ0

−‖1 > ε. If deg+
ε (f) > d, then ‖µ1

+‖1 = 1/2. (4)

The lemma follows directly from Theorem 3.4. We provide a proof in Appendix E for completeness.

4.2 Warm Up : A PP Lower Bound

As a warmup, we establish a simpler hardness amplification theorem for PPdt.

Theorem 4.2. Let f : D → {0, 1} with D ⊆ {0, 1}M be a partial function, n, d be two positive integers, and

1/2 < ε < 1 and 0 < ε2 < 1/2 be two constants such that 2ε2 > ε. Suppose d̃egε2(f) > d. Then

PPdt(GapMajn,ε(f)) > Ω
{

min
(
d, (2ε2 − ε)2 · n

)}
.

Proof. For i ∈ {0, 1} let µ+, µ−, µ
i
+, µ

i
− be functions whose existence is guaranteed by Lemma 4.1, combined

with the assumption that d̃egε2(f) > d.

In light of Lemma 3.8, it suffices to show d̃eg1/2−2−T (f) > T , for T = Ω
{

min
(

d̃egε2(f), (2ε2 − ε)2 · n
)}

.

We prove this by constructing a dual witness to this fact, as per Theorem 3.4.
We first define the following two non-negative functions on {0, 1}n·M :

ψ+(x) :=

n∏
i=1

µ+(xi) and ψ−(x) :=

n∏
i=1

µ−(xi).

Our dual witness ψ is simply their linear combination:

ψ := 2n−1 · (ψ+ − ψ−).

We remark that ψ is precisely the function denoted by ψBT alluded to in Section 2.1.3. Now we verify
that ψ is the dual witness we want.

Proving the ψ has unit `1-norm. Since µ+ and µ− have disjoint supports by Condition (2) of Lemma 4.1,
so does ψ+ and ψ−. Therefore ‖ψ‖1 = 2n−1 · (2−n + 2−n) = 1.

Proving the ψ has pure high degree d. Let p : {0, 1}n·M → R be any monomial of degree at most d,

and let pi : {0, 1}M → R be such that p(x1, . . . , xn) =

n∏
i=1

pi(xi). Then it holds that

〈ψ+, p〉 =

n∏
i=1

〈µ+, pi〉 =

n∏
i=1

〈µ−, pi〉 = 〈ψ−, p〉,

where the second equality holds by Condition (3) of Lemma 4.1.
As a polynomial is a sum of monomials, by linearity, it follows that 〈ψ, p〉 = 〈ψ+, p〉 − 〈ψ−, p〉 = 0 for

any polynomial p with degree at most d.

Proving that ψ has high correlation with F . Define D0 := 2 · µ− and D1 := 2 · µ+. Note µ+ and µ−
are non-negative functions with norm 1/2, so D0 and D1 can be thought as distributions on {0, 1}M . We
further define distributions Ui on {0, 1}n·M for i ∈ {0, 1} as Ui := D⊗ni . Observe that U0 = 2n · ψ− and
U1 = 2n · ψ+ as functions.

Then by Condition (4) of Lemma 4.1, we have Pr
x∼D1

[f(x) = 1] = 2 · ‖µ1
+‖1 > 2ε2 > ε, and Pr

x∼D0

[f(x) =

0] = 2 · ‖µ0
−‖1 > 2ε2 > ε.
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Let DF denote the domain of F . By the definition of F = GapMajn,ε(f) and a simple Chernoff bound,
we have

2n ·
∑
x∈DF

ψ+(x) · F (x) = Pr
x∼U1

[F (x) = 1] ≥ 1− 2−c1∆2·n, (5)

where c1 is a universal constant and ∆ := 2ε2 − ε. For brevity, let k denote c1∆2 · n.
Since 2n · ‖ψ+‖1 = 1, inequality (5) further implies that

2n ·
∑
x/∈DF

ψ+(x) ≤ 2−k.

Similarly, we have
Pr
x∼U0

[F (x) = 0] ≥ 1− 2−k,

which implies that

2n ·
∑
x/∈DF

ψ−(x) ≤ 2−k.

Putting everything together, we can calculate the correlation between F and ψ as follows:

∑
x∈DF

F (x)ψ(x)−
∑
x/∈DF

|ψ(x)|

≥2n−1 ·
∑
x∈DF

ψ+(x)F (x)− 2n−1 ·

 ∑
x/∈DF

ψ−(x) +
∑
x/∈DF

ψ+(x)


≥1/2− 2−k−1 − 2−k

>1/2− 2−k+1.

Setting T = min(d, k − 1), then we can see that ψ is a dual witness for d̃eg1−2−T (f) > T . Clearly
T = Ω

{
min

(
d, (2ε2 − ε)2 · n

)}
, which completes the proof.

4.3 The UPP Lower Bound

The dual witness ψ ∼ ψ+ − ψ− constructed in the previous subsection is not a dual witness for the high
threshold degree of F = GapMajn(f) for two reasons: it puts weight on some points outside of the domain
of F , and it does not satisfy the sign-agreement condition of Theorem 3.5.

In order to obtain a valid dual witness for threshold degree, we add two error correction terms ψ+
corr and

ψ−corr to ψ. The purpose of the error correction terms is to zero out the erroneous values, while simultaneously
maintaining the high pure degree property and avoiding changing the sign of ψ on inputs at which it does
not agree in sign with F . We achieve this through an error correction lemma that may be of independent
interest.

Lemma 4.3 (Error Correction Lemma). Let A be a subset of {0, 1}M , and ϕ be a function on {0, 1}M . Let
ϕ◦ and ϕ× be the restrictions of ϕ on A and {0, 1}M \ A respectively. That is, ϕ◦(xi) = ϕ(xi) if xi ∈ A
and ϕ◦(xi) = 0 otherwise, and similarly ϕ×(xi) = ϕ(xi) if xi 6∈ A and ϕ×(xi) = 0 otherwise. Define

ψ : {0, 1}n·M → {0, 1} as ψ(x1, x2, . . . , xn) :=

n∏
i=1

ϕ(xi), and nA(x) :=

n∑
i=1

1xi∈A.

Suppose α = ‖ϕ×‖1/‖ϕ◦‖1 < 1/40, and let 0.5 < ε < 1 be a real number and n be a sufficient large
integer. Then there exists a function ψcorr : {0, 1}n·M → R such that:

• ψcorr(x) = ψ(x), when nA(x) ≤ ε · n. (6)

• |ψcorr(x)| ≤ ψ(x)/2, when nA(x) > ε · n. (7)

• ψcorr has pure high degree of at least (1− (1 + 10α) · ε) · n− 4. (8)
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We defer the proof of Lemma 4.3 to Subsection 4.4. Here, we show that it implies the desired hardness
amplification results.

Theorem 4.4. Let f : D → {0, 1} with D ⊆ {0, 1}M be a partial function, n be a sufficiently large integer,

d be an integer, and 1/2 < ε < 1 and 0.49 < ε2 < 1/2 be two constants. Let a =
2ε2

1− 2ε2
. Then the following

holds.

If d̃egε2(f) > d, then deg±(GapMajn,ε(f)) > min

(
d,

(
1−

(
1 +

10

a

)
· ε
)
· n− 4

)
.

If deg+
ε2(f) > d, then deg±(GapANDn,ε(f)) > min

(
d,

(
1−

(
1 +

10

a

)
· ε
)
· n− 4

)
.

Proof. We prove both claims in the theorem by exhibiting a single dual solution that witnesses both.
As in the proof of Theorem 4.2, for i ∈ {0, 1}, let µ+, µ−, µ

i
+, µ

i
− denote the functions whose existence is

guaranteed by Lemma 4.1, combined with the assumption that either d̃egε(f) > d or deg+
ε (f) > d. Also as

in the proof of Theorem 4.2, define the following two non-negative functions on {0, 1}n·M :

ψ+(x) :=

n∏
i=1

µ+(xi) and ψ−(x) :=

n∏
i=1

µ−(xi).

Given an input x = (x1, x2, . . . , xn), let nYes(x) :=

n∑
i=1

1f(xi)=1 and nNo(x) :=

n∑
i=1

1f(xi)=0 as in Defini-

tion 3.10. Now apply Lemma 4.3 with the following parameters.

• Set A = f−1(1), ϕ = µ+. Then for α as defined in Lemma 4.3, we have α =
‖µ+‖1 − ‖µ1

+‖1
‖µ1

+‖1
≤

1− 2ε2

2ε2
= a−1 by Conditions (3) and (4) of Lemma 4.1. Note that a−1 < 1/40 by the assumption that

0.49 < ε2. Hence, by Lemma 4.3, there exists a function ψ+
corr : {0, 1}n·M → R such that:

• ψ+
corr(x) = ψ+(x), for all x such that nYes(x) ≤ ε · n (9)

• |ψ+
corr(x)| ≤ ψ+(x)/2, for all x such that nYes(x) > ε · n (10)

• ψ+
corr has pure high degree at least

(
1−

(
1 +

10

a

)
· ε
)
· n− 4 (11)

• Similarly, set A = f−1(0), ϕ = µ−. Again by Lemma 4.3, there exists a function ψ−corr : {0, 1}n·M → R
such that:

• ψ−corr(x) = ψ−(x), for all x such that nNo(x) ≤ ε · n (12)

• |ψ−corr(x)| ≤ ψ−(x)/2, for all x such that nNo(x) > ε · n (13)

• ψ−corr has pure high degree of at least

(
1−

(
1 +

10

a

)
· ε
)
· n− 4 (14)

For convenience, let N =

(
1−

(
1 +

10

a

)
· ε
)
· n− 4. We are ready to construct the dual witness ψ that

establishes the claimed threshold degree lower bounds. Define ψ : {0, 1}n·M → R by

ψ := (ψ+ − ψ+
corr)− (ψ− − ψ−corr).

We first establish two properties of ψ.

• When nYes(x) ≥ ε · n, ψ(x) = ψ+(x)− ψ+
corr(x) ≥ ψ+(x)/2 ≥ 0 (15)
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• When nNo(x) ≥ ε · n, ψ(x) = −(ψ−(x)− ψ−corr(x)) ≤ −ψ−(x)/2 ≤ 0 (16)

Verifying Condition (15) and (16). To establish that Condition (15) holds, observe that since nYes(x) ≥

ε·n, and ε > 1/2 by assumption, it follows that nNo(x) ≤ (1−ε)·n ≤ ε·n. This implies that ψ−(x) = ψ−corr(x)
by Condition (12) and |ψ+

corr(x)| ≤ ψ+(x)/2 by Condition (10). Then ψ(x) = ψ+(x)−ψ+
corr(x) ≥ ψ+(x)/2 ≥

0, where the last inequality follows from the fact that ψ+ is non-negative.
Similarly, for Condition (16), as nNo(x) ≥ ε · n, it follows that nYes(x) ≤ (1− ε) · n ≤ ε · n. This implies

that ψ+(x) = ψ+
corr(x) by Condition (9) and |ψ−corr(x)| ≤ ψ−(x)/2 by Condition (13). Note ψ− is also

non-negative. Hence ψ(x) = −(ψ−(x)− ψ−corr(x)) ≤ −(ψ−(x)/2) ≤ 0.

We now verify that ψ is a dual witness for deg±(F ) > min (d,N) (recall that F denotes GapMaj(f)).

Analyzing the pure high degree of ψ. Write ψ := ψ+−ψ−−ψ+
corr +ψ−corr. We already established that

ψ+−ψ− has pure high degree d in the proof of Theorem 4.2, and both ψ+
corr and ψ+

corr have pure high degree
at least N (cf. Conditions (11) and (14)). By linearity, ψ itself has pure high degree at least min (d,N).

Showing that the support of ψ is a subset of the inputs on which F is defined. Let x be an input
outside of the domain of F . Then by the definition of GapMaj, it must be the case that both nYes(x) and
nNo(x) are strictly less than ε ·n. This means that ψ+(x) = ψ+

corr(x) and ψ−(x) = ψ−corr(x) by Conditions (9)
and (12), and hence ψ(x) = 0. Therefore, the support of ψ is a subset of the domain of F .

Showing that ψ agrees in sign with F . When F (x) = 1, by the definition of GapMaj, we have nYes(x) ≥
ε · n. Then ψ(x) ≥ 0 follows directly from Condition (15). Similarly, when F (x) = 0, we have nNo(x) ≥ ε · n
and ψ(x) ≤ 0 by Condition (16). Therefore, ψ agrees in sign with F .

Showing that ψ is non-trivial. Pick an input x0 to f such that µ1
+(x0) > 0, and let x = (x0, x0, . . . , x0).

Then we have f(x0) = 1 and nYes(x) = n ≥ ε · n. Therefore, ψ(x) = ψ+(x) − ψ+
corr(x) ≥ ψ+(x)/2 =

(µ1
+(x0))n/2 > 0 by Condition (15). So ψ is non-trivial.

Putting everything together and invoking Theorem 3.5 proves the first claim of Theorem 4.4.

Showing ψ is also a dual witness for GapANDn,ε(f). Now we show that, when deg+
ε2(f) > d, the same

function ψ is also a dual witness for deg±(GapANDn,ε(f)) > min (d,N).
We already proved that the pure high degree of ψ is as claimed, and that it is non-trivial. So it remains

to verify ψ only puts weight in the domain of GapANDn,ε(f), and that ψ agrees in sign with GapANDn,ε(f).

By Condition (4) of Lemma 4.1, we have |µ1
+| = |µ+| =

1

2
, which means µ+ only puts weight inputs

in f−1(1). So ψ+ only takes non-zero values when nYes(x) = n. Also, note that when nNo(x) ≤ ε · n, we
have ψ−(x) = ψ−corr(x) by Condition (12). Therefore, ψ only puts weight on inputs when nYes(x) = n or
nNo(x) > ε · n. All such inputs are in the domain of GapANDn,ε(f).

Finally, we verify that ψ agrees in sign with GapANDn,ε(f). When GapANDn,ε(f)(x) = 1, we have
nYes(x) = n ≥ ε ·n, hence ψ(x) ≥ 0 by Condition (15). When GapANDn,ε(f)(x) = 0, we have nNo(x) ≥ ε ·n,
so ψ(x) ≤ 0 follows immediately from Condition (16). Applying Theorem 3.5 again, this completes the proof
for the second claim of Theorem 4.4.

4.4 Proof of the Error Correction Lemma

In this subsection we prove Lemma 4.3. We need two lemmas. In the first, we construct a polynomial with
certain properties.

Lemma 4.5. Let a ≥ 40, n be a sufficiently large integer, and ε be a real such that 0.5 < ε < 1. Then there
exists an (explicitly given) univariate polynomial P : R→ R such that:

• P (x) = (−a)x for x ∈ {0, . . . , ε · n}.

• |P (x)| ≤ ax/2 for x ∈ {ε · n+ 1, . . . , n}.

• P has degree of at most

(
1 +

10

a

)
· ε · n+ 3.
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We prove Lemma 4.5 by defining P via interpolation through carefully chosen values – we defer this proof
to Appendix E.

Lemma 4.6. Let x = (x1, . . . , xn) ∈ {0, 1}M ·n, and let nA(x) :=

n∑
i=1

1xi∈A. Let ψ and α be as defined in

the statement of Lemma 4.3. For any univariate polynomial P : R → R of degree at most d, the following
function on {0, 1}n·M has pure high degree n− d− 1:

ψP (x) := αnA(x) · ψ(x) · P (nA(x)).

Before proving Lemma 4.6, we show that it and Lemma 4.5 together imply Lemma 4.3.

Proof of Lemma 4.3. We first deal with the special case that α = 0. In this case, we note ψ(x) > 0 only if
nA(x) = n. So it suffices to let ψcorr be the constant function 0.

From now on, we assume α > 0. Let a = α−1 and N = (1 + 10α) · ε · n+ 3 =

(
1 +

10

a

)
· ε · n+ 3.

Construction of ψcorr. Applying Lemma 4.5, we obtain a polynomial P (x) such that:

• P (x) = (−a)x for x ∈ {0, . . . , ε · n}. (17)

• |P (x)| ≤ ax/2 for x ∈ {ε · n+ 1, . . . , n}. (18)

• P has a degree of at most

(
1 +

10

a

)
· ε · n+ 3 = N . (19)

We define ψcorr := ψP , where ψP is as defined in Lemma 4.6.

Verification that ψcorr satisfies the properties claimed in Lemma 4.3. Given an input x =
(x1, . . . , xn), let m = nA(x) for brevity. We now verify Condition (6), (7) and (8) of Lemma 4.3 in or-
der. When m ≤ ε · n, we have P (m) = (−a)m by Condition (17), hence

ψcorr(x) = (−α)m · (−a)m · ψ(x) = ψ(x),

so Condition (6) holds. When m > ε · n, as |P (m)| ≤ am/2 by Condition (18), we have |ψcorr(x)| ≤
αm · am/2 · ψ(x) = ψ(x)/2, which establishes Condition (7). Finally, since P is of degree at most N as
guaranteed by Condition (19), Lemma 4.6 implies that ψcorr has pure high degree of at least n −N − 1 =(

1−
(

1 +
10

a

)
· ε
)
· n− 4. So Condition (8) is verified, and this completes the proof.

Finally, we prove Lemma 4.6.

Proof of Lemma 4.6. We begin by constructing some useful auxiliary functions.

Definition and analysis of auxiliary functions ψk : {0, 1}n·M → R. Recall the definitions of ϕ◦ and ϕ×
from the statement of Lemma 4.3: ϕ◦(xi) = ϕ(xi) if xi ∈ A and ϕ◦(xi) = 0 otherwise, and ϕ×(xi) = ϕ(xi)
if xi 6∈ A and ϕ×(xi) = 0 otherwise. For each integer k ∈ {0, . . . , n}, we define

ψk(x) :=
∑

S⊆[n],|S|=k

(∏
i∈S

ϕ(xi) ·
∏
i/∈S

(ϕ× − α · ϕ◦)(xi)

)
. (20)

We claim that:
ψk has pure high degree at least n− k − 1. (21)

To establish this, it suffices to show that for every |S| = k, the following function

ψS(x) :=
∏
i∈S

ϕ(xi) ·
∏
i/∈S

(ϕ× − α · ϕ◦)(xi) (22)

has pure high degree at least n− k − 1, as ψk is simply a sum of ψS ’s with |S| = k.
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Let [n] := {1, . . . , n}, p : {0, 1}n·M → R be any monomial of degree at most n−k−1, and let pi : {0, 1}M →

R be such that p(x1, . . . , xn) =

n∏
i=1

pi(xi). Then

n∑
i=1

deg(pi) = deg(p) ≤ n− k − 1, which means there are at

least k+ 1 pi’s which have degree zero, i.e., are constant functions. Since k+ 1 + |[n] \S| = n+ 1 > n, there
must exist an index i? such that pi? is a constant function pi?(x) ≡ c, and i? /∈ S. Now, since ϕ× and ϕ◦ have
disjoint supports and α = ‖ϕ×‖1/‖ϕ◦‖1 by definition, we have 〈ϕ×−α ·ϕ◦, pi?〉 = (‖ϕ×‖1−α ·‖ϕ◦‖1) ·c = 0.
Therefore, by Equation (22),

〈ψS , p〉 = 〈ϕ× − α · ϕ◦, pi?〉 ·
∏
i∈S
〈ϕ, pi〉 ·

∏
i/∈S,i 6=i?

〈ϕ× − α · ϕ◦, pi〉 = 0.

As a polynomial is a sum of monomials, by linearity, we conclude that ψS has pure high degree n− k− 1
for all |S| = k, and so does ψk.

Now, fix an input x = (x1, x2, . . . , xn). Write m = nA(x) (note that m is actually a function of x). We are
going to re-express ψk(x) in a convenient form, as follows. We assume that the first m inputs x1, x2, . . . , xm
satisfy xi ∈ A – this is without loss of generality by symmetry.

Fix a set S ⊆ [n] with |S| = k. We claim that

ψS(x) = (−α)m−|S∩[m]| ·
n∏
i=1

ϕ(xi).

To see this, first consider i ∈ S ∩ [m]. Then there is a factor ϕ(xi) appearing in ψS(x). Now fix an
i ∈ ([m] \ S). Then there is a factor of (ϕ× − α · ϕ◦)(xi) = (−α) · ϕ(xi) appearing in ψS(x). Finally, fix any
i 6∈ [m]. If i ∈ S, then there is a factor ϕ(xi) appearing in ψS(x), and if i 6∈ S, the factor appearing in ψS(x)
is (ϕ×(xi)− α · ϕ◦)(xi) = ϕ×(xi) = ϕ(xi).

Hence, we may write

ψk(x) =
∑

S⊆[n],|S|=k

(−α)|S∩[m]| ·
n∏
i=1

ϕ(xi)

=

n∏
i=1

ϕ(xi) ·

 k∑
j=0

(
m

j

)
·
(
n−m
k − j

)
· (−α)m−j


= (−α)m · ψ(x) ·

 k∑
j=0

(
m

j

)
·
(
n−m
k − j

)
· (−α)−j

 . (23)

Definition and analysis of auxiliary univariate polynomials Pk : R→ R. Let

Pk(m) :=

k∑
i=0

(
m

i

)
·
(
n−m
k − i

)
· (−α)−i.

Then Pk(m) is polynomial in m of degree at most k, and by Equation (23),

ψk(x) = (−α)m · ψ(x) · Pk(m). (24)

Expanding the binomial coefficients, we have

Pk(m) =

k∑
i=0

∏i−1
j=0(m− j)

i!
·
∏k−i−1
j=0 (n−m− j)

(k − i)!
· (−α)−i. (25)

20



Observe that the coefficient of mk in Equation (25) is

k∑
i=0

1

i! · (k − i)!
· (−α)−i · (−1)k−i

=(−1)k · 1

k!
·
k∑
i=0

α−i ·
(
k

i

)
=(−1)k · 1

k!
·
(
1 + α−1

)k 6= 0,

where the second equality follows from the equation (a+ b)k =

k∑
i=0

aibk−i ·
(
k

i

)
, and the last inequality

follows because α ≥ 0 by definition.
So Pk(m) is a polynomial of degree exactly k. Therefore, the set {Pk(m)}dk=0 generates all the polynomials

in m with degree at most d.

Verification that ψP has the pure high degree claimed in Lemma 4.6. Let P : R → R be a
polynomial of degree at most d. By the previous paragraph, we may write P (m) as

P (m) =

d∑
k=0

βk · Pk(m), (26)

for some real numbers β0, . . . , βd.
Then we have

ψP (x) =αm(x) · ψ(x) · P (m(x))

=αm(x) · ψ(x) ·
d∑
k=0

(βk · Pk(m(x)))

=

d∑
k=0

βk · ψk(x).

Here, the first equality holds by definition of ψP , the second by Equation (26), and the third by Equation
(24).

Each ψk appearing in the above sum has pure high degree at least n − d − 1 by Property (21). Hence,
by linearity, ψP has pure high degree of n− d− 1. This completes the proof.

5 NISZKO 6⊂ UPPO

In this section we construct an oracle O such that NISZKO 6⊂ UPPO. We will use the function GColn :=
GapMajn1/4,1− 1

3 logn
(Col3 logn

n3/4 ) to attain the desired oracle separation.

We first show that its complement GColn is easy for NISZK by providing a reduction from it to the
statistical distance from uniform (SDU) problem. SDU is complete for NISZK and so has an NISZK proto-
col [GSV99]. We first introduce the problem SDU.

Definition 5.1 (Statistical Distance from Uniform (SDU) [GSV99]). The promise problem Statistical Distance
from Uniform, denoted SDU = (SDUYES,SDUNO), consisted of

SDUYES = {X : ‖X − U‖ < 1/n}
SDUNO = {X : ‖X − U‖ > 1− 1/n}

where X is a distribution encoded as a circuit outputting n bits, and U is the uniform distribution on n
bits, and ‖X − U‖ denotes the statistical distance between X and U .
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Theorem 5.2. There is a polylog(n)-time NISZK protocol for GColn.

Proof. For simplicity, we assume n is a power of 2. We prove this theorem by showing a reduction from
GColn to an instance of SDU with distributions on log n bits.

Now, let m = n1/4, k = n3/4 and x = (f1, f2, . . . , fm) be an input to GColn, where each fi is interpreted
as a function from [k] → [k]. We construct the distribution D(x) as follows: to generate a sample from
D(x), we pick a pair (i, j) ∈ [m] × [k] at uniformly random, and output the sample (i, fi(j)). Clearly D(x)
is polylog(n)-time preparable.

Now we show this is a valid reduction. Let U be the uniform distribution on [m] × [k] and Uk be the
uniform distribution on [k]. For a function f : [k] → [k], let Df be the distribution obtained by outputting

f(i) for an index i ∼ Uk. Then we can see D(x) =
1

m

m∑
i=1

{i} × Dfi .

When GColn(x) = 1, we have

‖D(x)− U‖ =
1

m

m∑
i=1

‖Uk −Dfi‖ ≤
1

3 log n
<

1

log n
.

Here, the first inequality holds because at least a 1 − 1

3 log n
fraction of fi’s are permutations, which

implies that ‖Uk −Dfi‖ = 0.
When GColn(x) = 0, we have

‖D(x)− U‖ =
1

m

m∑
i=1

‖Uk −Dfi‖ ≥
(

1− 1

3 log n

)
·
(

1− 1

3 log n

)
> 1− 1

log n
.

Here, the first inequality holds because at least a 1− 1

3 log n
fraction of fi’s are 3 log n-to-1, which implies

that ‖Uk −Dfi‖ = 1− 1

3 log n
.

Putting everything together, we have shown D(x) that is a valid reduction to SDU. This completes the
proof.

Then by a straightforward application of Theorem 4.2, we can show GColn is hard for any UPP algorithm.

Theorem 5.3. UPPdt(GColn) = Ω(n1/4/ log n).

Proof. Observe that d̃eg1/2− 1
50 logn

(Col3 logn
n3/4 ) = Ω(n1/4/ log2/3 n) by Theorem 3.14. Applying Theorem 4.4

with a =
1− 2 · 1

50 logn

2 · 1
50 logn

= 25 log n− 1 (recall a =
2ε2

1− 2ε2
in Theorem 4.4), we have that

UPPdt
(
GapMajn1/4,1− 1

3 logn
(Col3 logn

n3/4 )
)

≥deg±

(
GapMajn1/4,1− 1

3 logn
(Col3 logn

n3/4 )
)

(by Lemma 3.9)

≥min

{(
1−

(
1 +

10

a

)
·
(

1− 1

3 log n

))
· n1/4 − 4, d̃eg1/2− 1

50 logn
(Col3 logn

n3/4 )

}
≥Ω(n1/4/ log n).

Now the following corollary follows from standard diagonalization methods and the observation that UPP
is closed under complement.

Corollary 5.4. There exists an oracle O such that NISZKO 6⊂ UPPO.
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6 Additional Oracle Separations

Our proof immediately resolves a number of open oracle separations; for example it shows an oracle relative
to which SZK is not contained in BPPpath, an oracle relative to which CQP (defined in [ABFL16]) is not
contained in PP, and an oracle relative to which DQP (defined in [Aar05a]) is not contained in PP.

Additionally we show several oracle separations involving classes related to SZK by leveraging the tech-
niques used in our main result. Informally, perfect zero knowledge (denoted PZK) are the problems decid-
able by SZK protocls where the verifier can exactly simulate the honest prover. Clearly PZK ⊆ SZK and
NISZK ⊆ SZK as well. The complexity-theoretic properties of these related classes has been extensively
studied [Oka96, GSV99, Fis02, Mal15, LZ16]. For example, it is known that SZK = coSZK [Oka96], and if
NISZK = coNISZK then SZK = NISZK = coNISZK [GSV99]. Additionally Lovett and Zhang recently gave
an oracle separation between NISZK and coNISZK [LZ16] as well as SZK and NISZK. It is unknown whether
or not PZK = coPZK, or if either NISZK ⊆ PZK or vice versa.

To obtain our additional oracle separations, we first show PZK is contained in PP in a relativizing manner.
Therefore our main oracle result (Corollary 5.4) implies that there is an oracle relative to which NISZK is
not contained in PZK as a corollary. Additionally, we leverage the techniques of our paper to prove an
oracle relative to which PZK is not equal to coPZK as well. Whereas Corollary 5.4 was based on hardness
amplification for approximate degree by block-composition with GapMaj (Part 1 of Theorem 4.4), this latter
result uses both our result that PZK is in PP as well as our hardness amplification for positive one-sided
approximate degree by block-composition with GapAND (Part 2 of Theorem 4.4).

6.1 PZK and Friends

Definition 6.1 (Perfect Zero Knowledge). A language L is in PZK if there exist a tuple of Turing machines
(P, V, S), where the verifier V and simulator S run in probabilistic polynomial time, satisfying the following:

• (P, V ) is an interactive proof for L with negligible completeness and soundness errors.

• For any x ∈ L,

‖S(x)− (P, V )(x)‖ = 0

We will need the following lemma in the proof of the theorems that follow.

Lemma 6.2. There is an oracle Turing Machine M2 that is such that when given sample access to two
distributions p and q, M2 uses two samples and,

Pr[Mp,q
2 accepts] =

1

2
+
‖p− q‖22

8

Proof. Mp,q
2 behaves as follows:

1. With probability
1

4
, sample y1, y2 from p.

• If y1 = y2, accept with probability 1.

• Else, accept with probability
1

2
.

2. With probability
1

4
, do the same with samples from q.

3. With probability
1

2
, sample y1 from p and y2 from q.

• If y1 = y2, reject with probability 1.

• Else, accept with probability
1

2
.
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Pr[Mp,q
2 accepts] =

1

4

[
(1− ‖p‖22)

1

2
+ ‖p‖22

]
+

1

4

[
(1− ‖q‖22)

1

2
+ ‖q‖22

]
+

1

2

[
(1− 〈p, q〉)1

2
+ 〈p, q〉 · 0

]
=

1

2
+
‖p− q‖22

8

Lemma 6.3. PZK ⊆ PP. Further, this is true in the presence of any oracle.

Proof. Let L be a language with a PZK proof system (P, V, S). We will show how to decide membership in
L in PP. Fix any input length n, and let the number of messages in the proof system for any input of this
length be m, and the length of each message be ` (these are without loss of generality). Also suppose that
the first message is always sent by the verifier. Let the number of random bits used by V on an input of
length n be v, and the number of random bits used by S be s.

For any x ∈ {0, 1}n, we write the output of the simulator S on input x using randomness r as S(x; r) =
(RV (x; r), T1(x; r), . . . , Tm(x; r)), where RV is the simulated randomness of the verifier, and Ti is the simu-
lated ith message in the protocol. Let Si denote S truncated at Ti. Denote by VS the verifier simulated by
S, and by PS the simulated prover.

Claim 1. An input x is in L if and only if the following three conditions are satisfied:

1. VS on input x behaves like the actual verifier V . This involves the following:

• RV (x) is distributed uniformly at random over {0, 1}v.

• For any transcript (rV , t1, . . . , tm) output by S(x), the verifier’s responses in (t1, . . . , tm) are
consistent with what V would have sent when using rV as randomness.

2. PS on input x is a valid prover.

• This means that the distribution of the prover’s simulated messages (T2i(x)) should depend only
on the messages in the transcript so far (T1(x), . . . , T2i−1(x)), and should be independent of the
verifier’s simulated randomness (RV (x)).

3. S(x) is an accepting transcript with probability at least 3/4.

For any x ∈ L, the transcript of the actual protocol satisfies the above properties, and hence so does the
simulation, since it is perfect.

The other direction follows on noting that if all three conditions are satisfied for some x, then PS is a
prover strategy that convinces the actual verifier V that x ∈ L. By the soundness of the (P, V ) proof system,
this can only happen if x is indeed in L.

So to decide the membership of x in L in PP, it is sufficient to be able to decide each of the above three
properties of S(x) in PP (since PP is closed under conjunction [BRS91]). Of these, property (3) is easily
seen to be decidable in BPP, and hence in PP.

Lemma 6.2 says, in particular, that testing whether two polynomial-time-samplable distributions p and q
are identical can be done in PP. This enables us to test whether RV (x) is distributed uniformly over {0, 1}v.
The other check required on VS is a coNP statement.

Let M2 be the TM from Lemma 6.2. To check that PS is a valid prover consider the TM – call it MP –
that works as follows on input x:

1. Select i ∈
[
−1,

m

2

]
at random.

2. If i = 0, run M2 on the distributions RV (x) and the uniform distribution over {0, 1}v.

3. If i = −1, check the consistency of transcripts produced by S(x) with the simulated randomness.

• This is done by selecting rS ∈ {0, 1}s, and running S(x; rS) to get (rV , t1, . . . , tm).

• If this transcript is consistent, accept with probability 1/2, else with probability 1.
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4. Else, select at random t1, . . . , t2i ∈ {0, 1}`, r1
V , r

2
V ∈ {0, 1}v, and r1

S , r
2
S ∈ {0, 1}s.

5. If S(x; r1
S) does not have (r1

V , t1, . . . , t2i−1) as a prefix or S(x; r2
S) does not have (r2

V , t1, . . . , t2i−1) as a
prefix, accept with probability 1/2.

6. Let p be the distribution over {0, 1} such that p(1) = Pr[S2i(x) = (r1
V , t1, . . . , t2i)], and q be the same

but with r2
V instead of r1

V .

7. Run M2 on the distributions p and q.

Claim 2. MP (x) accepts with probability at most
1

2
if and only if VS is a valid verifier and PS is a valid

prover on input x.

Suppose VS is a valid verifier and PS is a valid prover on input x. If MP selects i = 0 or i = −1, then it

accepts with probability
1

2
because VS is a valid verifier.

If i /∈ {−1, 0}, and MP picks r1
V , r

2
V , t1, . . . , t2i. If this fails the check in step 5, then MP again accepts

with probability 1/2. If this does not happen and r1
V , r

2
V , t1, . . . , t2i−1 are in the support of S2i−1(x),

Pr[S2i(x) = (r1
V ,t1, . . . , t2i)]

= Pr[S2i−1(x) = (r1
V , t1, . . . , t2i−1)] Pr[T2i(x) = t2i | S2i−1(x) = (r1

V , t1, . . . , t2i−1)]

= Pr[S2i−1(x) = (r1
V , t1, . . . , t2i−1)] Pr[T2i(x) = t2i | S2i−1(x) = (r2

V , t1, . . . , t2i−1)]

where the second equality is because PS is a valid prover, so its responses do not depend on the simulated
randomness of the verifier. We can write the first term in the product above as:

Pr[S2i−1(x) = (r1
V ,t1, . . . , t2i−1)]

= Pr[S2i−2(x) = (r1
V , t1, . . . , t2i−2)] Pr[T2i−1(x) = t2i−1 | S2i−2(x) = (r1

V , t1, . . . , t2i−2)]

= Pr[S2i−2(x) = (r1
V , t1, . . . , t2i−2)]

where the second equality is because VS is a valid verifier and is deterministic once RV is fixed, and step 5
was there precisely to check that this probability is non-zero.

Now starting from the fact that Pr[S0(x) = r1
V ] = Pr[S0(x) = r2

V ], and using the above relationships, we
can inductively prove that Pr[S2i(x) = (r1

V , t1, . . . , t2i)] = Pr[S2i(x) = (r2
V , t1, . . . , t2i)]. This implies that

the call to M2 in step 7 of MP accepts with probability 1/2, as the distributions p and q there are identical.
So in all cases, MP accepts with probability 1/2.

To prove the converse, we start by noting that each branch of MP always accepts with probability 1/2
or more. So even if one of the branches accepts with probability strictly more than 1/2, the acceptance
probability of MP as a whole will be strictly more than 1/2.

Now suppose VS is not a valid verifier. Then MP would accept with probability strictly more than 1/2
because either i = 0 or i = −1 would accept with probability more than 1/2.

The remaining case is where VS is a valid verifier but PS is not a valid prover. This means that at
some point the distribution of PS ’s responses depended on the simulated verifier’s randomness. Specifically,
there must exist an i ∈ [m/2] and r1

V , r
2
V , t1, . . . , t2i such that ({r1

V , r
2
V }, t1, . . . , t2i−1) are in the support of

S2i−1(x) and:

Pr[T2i(x) = t2i | S2i−1(x) = (r1
V , t1, . . . , t2i−1)] 6= Pr[T2i(x) = t2i | S2i−1(x) = (r2

V , t1, . . . , t2i−1)]

For this r1
V and r2

V , let i0 be the least i such that there exist t1, . . . , t2i0 where such an inequality holds. i0
being the smallest such i implies, by the same induction arguments above and the validity of VS as a verifier,
that:

Pr[S2i0−1(x) = (r1
V , t1, . . . , t2i0−1)] = Pr[S2i0−1(x) = (r2

V , t1, . . . , t2i0−1)]

Putting the above two relations together, we get:

Pr[S2i0(x) = (r1
V , t1, . . . , t2i0)] 6= Pr[S2i0(x) = (r2

V , t1, . . . , t2i0)]
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So when MP chooses i = i0 and these values of r1
V , r

2
V and t1, . . . , t2i0 , it will accept with probability strictly

greater than 1/2, and so it will do so overall as well. This proves Claim 2.
Due to the fact that PP is closed under complement and Claim 2, we have now established that the

conditions in Claim 1 can be checked in PP. And so by Claim 1, L can be decided in PP. It is also easy to
see that this proof still works relative to any oracle, as it only makes black-box use of S.

The following theorem follows immediately from Corollary 5.4 and Lemma 6.3.

Theorem 6.4. There is an oracle O such that NISZKO 6⊆ PZKO.

Arguments using an oracle constructed slightly differently give us the following theorem, whose proof
may be found in Appendix A. The proof uses our hardness-amplification theorem for positive one-sided
approximate degree under composition with the GapAND operator (Part 2 of Theorem 4.4).

Theorem 6.5. There is an oracle O such that PZKO 6= coPZKO.

7 Communication Separation Between NISZK and UPP

Based on the framework of Razborov and Sherstov [RS10], and Bun and Thaler [BT16], we are able to
generalize Section 5’s separation between the query complexity classes NISZKdt and UPPdt to communication
complexity. That is, we prove the following theorem (the communication complexity classes NISZKcc and
UPPcc are formally defined in Appendix F).

Theorem 7.1. NISZKcc 6⊂ UPPcc.

In light of Razborov and Sherstov’s framework, proving the above theorem boils down to identifying
some f in NISZKdt such that deg±(GapMaj(f)) is large, and moreover there is a dual witness to this fact that
satisfies an additional smoothness condition. Unfortunately, the dual witness for GapMaj(f) constructed in
Theorem 4.4 is not smooth.

Bun and Thaler described methods for “smoothing out” certain dual witnesses. However, their methods
were specifically described in the context of functions of the form OR(f), while we must consider functions
of the form GapMaj(f). Nonetheless, we are able to apply Bun and Thaler’s methodology to smooth out
the dual witness for GapMaj(f) that we constructed in Theorem 4.4, for a non-trivial class of functions f .
We thereby obtain the claimed separation of Theorem 7.1. While the proof of this result largely follows the
same lines of Bun and Thaler’s, there are many details and a few subtleties to work through. We present
the proof in Appendix F for completeness.

8 Consequences for Polarization

To prove the lower bounds on Polarization given in Theorem 2.5, here we prove two theorems showing that
a stronger version of polarization places SZK in PP relative to all oracles. Therefore, a stronger polarization
algorithm cannot exist as a corollary of our main oracle result.

Theorem 8.1. Suppose that there is an algorithm running in poly(n) time, which given black box distributions
D0, D1 on strings of length n which obey either |D0 −D1| < 1/3 or |D0 −D1| > 2/3, produces two output
distributions D′0 and D′1 on strings of length n′ = poly(n) such that either |D′0 −D′1| < ε (in the first case)

or |D′0 −D′1| > 1− ε (in the second case) where ε ≤ 2−n
′/2−1. Then SZKO ⊆ PPO for all oracles O.

Theorem 8.2. Suppose that there is an algorithm running in poly(n) time, which given black box distributions
D0, D1 on strings of length n which obey either |D0 −D1| < 1/3 or |D0 −D1| > 2/3, produces two output
distributions D′0 and D′1 on strings of length n′ = poly(n) such that either |D′0 −D′1| < ε (in the first case)

or |D′0 −D′1| > 1− ε (in the second case) where ε ≤ 2−2n′/3−1. Then SZKO ⊆ BPPpath
O for all oracles O.
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Therefore as a corollary of our oracle separation, there do not exist poly-time polarization algorithms
achieving ε = 2−n

′/2−1. In fact one could have achieved such a lower bound even if one had merely given an
oracle separation between SZK and BPPpath. It remains open to close the gap between our lower bound of

ε = 2−n
′/2−1 and the upper bound of ε = 2−n

′1/2+δ
for any δ > 0 given by Sahai and Vadhan [SV03].

The proof of Theorem 8.1 is relatively straightforward. Suppose one can polarize to ε′ � 2−n
′/2. Then the

output distributions now have a promise on the `2 distance between the output distributions - in particular
the `2 distance between them is more or less than some (exponentially small) threshold. It is easy to
decide this problem PP - this is because the `2 distance square is a degree-two polynomial in the output

probabilities. To see this, say you’re trying to determine if S =
∑

x∈{0,1}n
(D′0(x) − D′1(x))2 is more or less

than some threshold t, consider the following algorithm: pick at random x, pick a random number 1,2,3 or
4. If the number is 1 (respectively 4) sample two samples from D′0 (respectively D′1) and accept if they both
give output x, otherwise output accept/reject using a 50-50 coin flip. If the number is 2 or 3 sample one
sample from D′0 and D′1 and reject iff they collide, otherwise output a 50-50 coin flip. The probabiltiy this
machine accepts is 1/2 + S/2 - which is more more or less than a known threshold (1 + t)/2. Therefore by
correcting the bias of the machine with an initial coin flip, this is a PP algorithm to decide the problem.
In short, deciding thresholds for the `2 norm is easy for PP because it is a low-degree polynomial, while
deciding thresholds for the `1 norm is hard for PP because the `1 norm is not a low degree polynomial.

On the other hand, the proof of Theorem 8.2 is involved - it works by examining the algorithms of Aaron-
son [Aar05a] and Aaronson, Bouland, Fitzsimons and Lee [ABFL16] showing that certain modified versions
of quantum mechanics can be used to solve SZK-hard problems in polynomial time. These algorithms are
not based on postselection (otherwise they would place SZK ⊆ PostBQP = PP for all oracles, a contradiction
with our main result). However, it turns out that if one has a very strong polarization lemma, then one can
turn them into postselected quantum algorithms (and even postselected classical algorithms) for statistical
difference. Interestingly, this was part of our original motivation for this work. We include this proof in
Appendix D for the interested reader.

9 Consequences for Delegating Computation

In this section, we point out an easy implication of our results: two-message streaming interactive proofs
(SIPs) [CTY11] of logarithmic cost can compute functions outside of UPPcc.

In a SIP, a verifier with limited working memory makes a single streaming pass over an input x, and then
interacts with an untrusted prover, who evaluates a function f of the input, and attempts to convince the
verifier of the value of f(x). The protocol must satisfy standard notions of completeness and soundness. The
cost of the protocol is the size of the verifier’s working memory and the total length of the messages exchanged
between the prover and verifier. We direct the interested reader to [CTY11] for the formal definition.

It follows from our analysis in Appendix F that the (O(n), n, F )-pattern matrix of the function F :=
GapMajn1/4,.499(PTPn3/4) specifies a communication problem that is outside of UPPcc (see Appendix F.1.5
for a definition of pattern matrices). For our purposes, the relevant properties of such pattern matrices
are as follows. In the communication problem F cc(x, y) corresponding to the pattern matrix of a function
F : {0, 1}n → {0, 1}, Alice’s input x and Bob’s input y together specify a vector u(x, y) ∈ {0, 1}n, and
F cc(x, y) is defined to equal F (u(x, y)). Moreover, each coordinate of u(x, y) depends on O(1) entries of x
and y respectively.

Observe that F is computed by a simple two-message interactive proof in which the verifier makes
O(log n) non-adaptive queries to bits of the input x, uses O(log n) bits of working memory, and the total
communication cost is also O(log n): the verifier picks an instance of PTPn3/4 at random, and runs the SZK
protocol for PTP described in Section 3.5 on that instance (we do not need the zero-knowledge property of
the SZK protocol here). Completeness and soundness follow from the definition of GapMaj and completeness
and soundness of the SZK protocol for PTP.

Consider a data stream consisting of Alice and Bob’s inputs to F cc, and a SIP verifier who wishes to
compute F cc(x, y). That is, the first part of the stream specifies x and the second part specifies y. There
is a simple two-message SIP for evaluating F cc(x, y): the SIP verifier simulates the verifier in the above
interactive proof for F (u(x, y)). Since the latter verifier only needs to know O(log n) bits of u(x, y), and
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each bit of u(x, y) depends on O(1) bits of x and y, the SIP verifier can compute the bits of u(x, y) that
are necessary to run the simulation, using just O(log n) bits of memory and a single streaming pass over the
input. We obtain the following theorem.

Theorem 9.1. There is a communication problem F cc(x, y) : {0, 1}n × {0, 1}n → {0, 1} such that F cc is
not in UPPcc, yet given a data stream specifying x followed by y, there is a 2-message SIP of cost O(log n)
computing F cc(x, y).

Theorem 9.1 provides an explanation for why prior work attempting to understand the power of 2-
message SIPs has succeeded only in proving lower bounds on special classes of such protocols [CCM+15].
Indeed, taking UPPcc to represent the limit of our methods for proving lower bounds in communication

complexity, the fact that 2-message SIPs and their analogous two-party communication model (called OIP
[2]
+

in [CCM+15]) can compute functions outside of UPPcc means that proving superlogarithmic lower bounds
for 2-message SIPs will require new lower bound techniques.

10 Open Problems

Our works leaves a number of open related problems. First, we have shown that the function GapMaj(f) is
hard for UPPdt, for any function f of high approximate degree, and that GapAND(f) is hard for UPPdt, for
any function of high positive one-sided approximate degree. Can one extend this work to characterize when
f ◦ g is hard for UPPdt, based on some properties of f and g? We conjecture that the UPPdt complexity of
GapMaj(f) (respectively, GapAND(f)) is characterized by the rational approximate degree of f (respectively,
positive one-sided approximate degree of f). Such a result would complement the characterization of the
threshold degree of AND(f) in terms of positive one-sided rational approximate degree given in [She14].

Additionally, we have shown a lower bound on certain parameters of the polarization lemma. Is there a
polarization algorithm which matches our lower bound?

It would also be interesting to determine whether our lower bounds on property testing algorithms that
output the correct answer with probability strictly greater than 1/2 are quantitatively tight. For example,
is there an algorithm that, given query access to a distribution D (over domain size n) that is promised to
have entropy ≤ k − 1 or ≥ k + 1, decides which is the case with probability greater than 1/2, using Õ(n1/4)
samples from D?

Finally, the main open question highlighted by our work is to break through the UPP frontier in com-
munication complexity. We formalize this question via the following challenge: prove any superlogarithmic
lower bound for an explicit problem in a natural communication model that cannot be efficiently simulated
by UPPcc. Our work shows that any communication model capable of efficiently computing the pattern
matrix of GapMaj(PTP) is a candidate for achieving this goal. Thomas Watson has suggested the following
as perhaps the simplest such candidate: consider the NISZKcc model, but restricted to be one-way, in the
sense that neither Merlin nor Bob can talk to Alice. This model effectively combines the key features of the

NISZKcc and OIP
[2]
+ (cf. [CCM+15]) communication models. There is a logarithmic cost “one-way NISZK”

protocol for the pattern matrix of GapMaj(PTP), so this model cannot be efficiently simulated by UPPcc.
Curiously, despite the ability of this model to compute functions outside of UPPcc, to the best of our knowl-
edge it is possible that even the INDEX function requires polynomial cost in this model. Note that while

Chakrabarti et al. [CCM+15] gave an efficient OIP
[2]
+ communication protocol for INDEX, their protocol is

not zero-knowledge.
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A PZK vs coPZK

In order to prove Theorem 6.5, we first show that PZK is closed under “composition” with GapAND.

Theorem A.1. Let f : D → {0, 1} with D ∈ {0, 1}M be a partial function and n be a positive integer,
1/2 < ε < 1 be a constant. If f has a polylog(M)-time PZK protocol, then GapANDn,ε(f) has a polylog(nM)-
time PZK protocol.

Proof. For convenience, denote GapANDn,ε(f) by g. Given an PZK protocol (P, V, S) for f , we will construct

a PZK protocol (P ′, V ′, S′) for g. Given an input x = (x1, . . . , xn) for g, V ′ selects, say, log2(n) values of
i ∈ [n], and P ′ and V ′ run the interactive protocol (P, V ) on each of the corresponding xi’s independently.
V ′ accepts if and only if (P, V ) accepts on all these xi’s. Completeness and soundness follows easily from
standard arguments and the definition of g.

On a similar input, the simulator S′ simply selects the same number of i’s, and runs S on the corresponding
xi’s. Since in a YES instance all of the xi’s are such that f(xi) = 1, S simulates the transcripts of (P, V ) on
all of these exactly, and hence S′ simulates (P ′, V ′) exactly as well.

We will use the function PTPn (cf. Definition 3.15) to establish our separation. The following are
immediate consequences of Theorems 3.16 and 4.4 and Lemma 3.8.

Corollary A.2. PPdt(GapANDn,7/8(PTPn)) = Ω(n1/3)

Lemma A.3. PTPn has a polylog(n)-time PZK protocol.

Proof. The protocol was described in Section 3.5 – we repeat it here for the reader’s convenience. Given a
function f : [n] → [n] as input, V picks a random x ∈ [n], and sends f(x) to P . P is supposed to return
an x′ such that f(x′) = f(x). V accepts if this is true and x′ = x. Completeness, soundness and perfect
zero-knowledge are all easily argued.

Now we have everything we need to prove Theorem 6.5, which we repeat below.

Theorem A.4. There is an oracle O such that PZKO 6= coPZKO.
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Proof. Suppose PZKO = coPZKO with respect to all oracles O. This implies that any language that is
in polylog(n)-time PZK is also in polylog(n)-time coPZK, and vice versa – if this were not true for some
language, then we would be able to use that language to construct an oracle that separates the two classes
by diagonalization. In particular, this hypothesis and Lemma A.3 imply that PTPn has a polylog(n)-time
PZK protocol. Then, by Theorem A.1, so does GapANDn,7/8(PTPn).

This fact, along with the lower bound in Corollary A.2, can be used to construct an oracle separating
PZK from PP by standard diagonalization. But by Lemma 6.3, such an oracle cannot exist. So there has to
be some oracle separating PZK and coPZK.

B A Weaker Polarization Lower Bound Using Fourier Analysis

Here we show that, if one only cares about black box polarization in the restricted form proposed by
Holenstein and Renner [HR05], then one can prove a lower bound against polarization directly using Fourier
analysis alone. This may help the readers understand what’s going on in the proof. But please note this
result is subsumed by our oracle separation between SZK and PP.

Definition B.1. An (n, `,m)-special polarizer is a pair of joint disributions over pairs of strings, (S0, R0)
and (S1, R1), where S0 and S1 are over {0, 1}n, and R0 and R1 are over {0, 1}`.

For any distributions D0 and D1, we define the polarized distributions D̂0 and D̂1 resulting from this
polarizer as:

D̂b = (DSb1
, . . . , DSbn

, Rb)

The polarizer then provides the following guarantees:

||D0 −D1|| > 2/3 =⇒ ||D̂0 − D̂1|| > 1− 2−m

||D0 −D1|| < 1/3 =⇒ ||D̂0 − D̂1|| < 2−m

An (n, `)-pseudo polarizer is the same, except it doesn’t provide the above guarantees.

It is to be noted that the technique for polarizing distance between distributions from [SV03] is a special
polarizer. Note also that any (n, `,m)-special polarizer is an (n, `)-pseudo polarizer.

Consider distributions over {0, 1}k. If there existed a polynomial-time computable (n, `,m)-special po-
larizer such that nk + ` < 2m, then Theorem 8.1 implies that deciding whether pairs of such distributions
are close or far can be done in PP. If such a polarizer existed for every k, then this would imply that SZK
is contained in PP because of the completeness of the Statistical Distance problem [SV03]. We rule out this
approach of showing such a containment with the following theorem.

Theorem B.2. For any (n, `,m)-special polarizer, n = Ω(m).

Theorem B.2 follows immediately from the following two lemmas. For any α ∈ [0, 1] and bit b, denote
by Dα

b the distribution over {0, 1} that is equal to b with probability (1 + α)/2. It is easy to see that

||Dα
0 −Dα

1 || = α. We denote by (D̂α
0 , D̂

α
1 ) the distributions that result from applying the special polarizer

in the relevant context to (Dα
0 , D

α
1 ) and by (D̃α

0 , D̃
α
1 ) the distributions resulting from the pseudo-polarizer.

Lemma B.3. For any (n, `)-pseudo polarizer and any α, β ∈ (0, 1) such that α > β,

||D̃α
0 − D̃α

1 ||
||D̃β

0 − D̃
β
1 ||
≤ 2(n+`)/2

(
α

β

)n
Proof. Throughout the proof, we use the symbols for distributions interchangeably with the symbols for
vectors representing their mass functions. For each α ∈ (0, 1), we define the following matrix:

Bα =

 1 + α

2

1− α
2

1− α
2

1 + α

2
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Consider any distribution p over {0, 1}. The distribution obtained by selecting a bit b according to p and
then sampling Dα

b is given by Bαp. This can be extended to the case when p is over {0, 1}n – if x is drawn
according to p, the distribution of (Dα

x1
, . . . , Dα

xn) is given by B⊗nα p.

Further, if p0 happens to be the distribution of (S0, R0) from an (n, `,m) special polarizer, then D̃α
0 ,

when the polarizer is applied to (Dα
0 , D

α
1 ), is given by (B⊗nα ⊗ I⊗`)p0, where I is the 2× 2 identity matrix.

Similarly, D̃α
1 would be (B⊗nα ⊗ I⊗`)p1. Let Cα = (B⊗nα ⊗ I⊗`). We then have:

||D̃α
0 − D̃α

1 || =
1

2
‖Cα(p1 − p0)‖1

Both Bα and I have the vectors

(
1
1

)
and

(
1
−1

)
as eigenvectors. The corresponding eigenvalues are

1 and α for Bα, and both 1 for I. This implies that the eigenvectors of B are all possible tensor products of
these eigenvectors, and the eigenvalue of such a resulting vector is simply the products of the eigenvalues of
the vectors that were tensored.

In different terms, the eigenvectors are (χT1
⊗χT2

) for any T1 ⊆ [n] and T2 ⊆ [`], which are the characters
of Fn+`

2 , and the eigenvalue of this vector would be α|T1|. Since these vectors form a basis, we can write

p0 =
∑
T1,T2

p̂0,(T1,T2)(χT1
⊗ χT2

).

Using the standard relationships between L1 and L2 norms, we have the following inequalities for any
α, β ∈ (0, 1) such that α > β:

||D̂α
0 − D̂α

1 ||
||D̂β

0 − D̂
β
1 ||

=
‖Cα(p1 − p0)‖1
‖Cβ(p1 − p0)‖1

≤ 2(n+`)/2 ‖Cα(p1 − p0)‖2
‖Cβ(p1 − p0)‖2

= 2(n+`)/2
‖Cα

∑
T1⊆[n],T2⊆[`](p̂1,(T1,T2) − p̂0,(T1,T2))(χT1

⊗ χT2
)‖2

‖Cβ
∑
T1⊆[n],T2⊆[`](p̂1,(T1,T2) − p̂0,(T1,T2))(χT1

⊗ χT2
)‖2

= 2(n+`)/2
‖
∑
T1⊆[n],T2⊆[`] α

|T1|(p̂1,(T1,T2) − p̂0,(T1,T2))(χT1
⊗ χT2

)‖2
‖
∑
T1⊆[n],T2⊆[`] β

|T1|(p̂1,(T1,T2) − p̂0,(T1,T2))(χT1
⊗ χT2

)‖2

= 2(n+`)/2

(∑
T1⊆[n],T2⊆[`] α

2|T1|(p̂1,(T1,T2) − p̂0,(T1,T2))
2∑

T1⊆[n],T2⊆[`] β
2|T1|(p̂1,(T1,T2) − p̂0,(T1,T2))2

)1/2

≤ 2(n+`)/2

(
α

β

)n
where the last inequality follows from the readily verified fact that for any sequences of positive real numbers

{ai}, {bi}, and {ci},
∑
i ciai∑
i cibi

is at most max
i

ai
bi

.

Lemma B.4. For any (n, `)-pseudo polarizer and any α, β ∈ (0, 1) such that α > β, there is an (n, 1)-pseudo
polarizer such that:

||D̃α
0 − D̃α

1 ||
||D̃β

0 − D̃
β
1 ||
≥ ||D̂

α
0 − D̂α

1 ||
||D̂β

0 − D̂
β
1 ||

Proof. The lemma follows from the following two easily verified facts about Total Variation distance of joint
distributions.

Fact 1. For random variables X, Y and Y ′,

||(X,Y )− (X,Y ′)|| =
∑
x

Pr[X = x]||Y|X=x − Y ′|X=x||
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Fact 2. For random variables X0 and X1 and a uniformly distributed bit B,

||(B,XB)− (B,XB)|| = ||X0 −X1||

For convenience, we write the resulting distributions from a polarizer as D̂α
0 = (Dα

S0 , R0), etc., which is
indeed the structure that these distributions have. From the above two facts, we have the following for a
uniformly distributed bit B:

||D̂α
0 − D̂α

1 ||
||D̂β

0 − D̂
β
1 ||

=
||(Dα

S0 , R0)− (Dα
S1 , R1)||

||(Dβ
S0 , R0)− (Dβ

S1 , R1)||

=
||(B,Dα

SB , R
B)− (B,Dα

SB , R
B)||

||(B,Dβ
SB
, RB)− (B,Dβ

SB
, RB)||

=

∑
r Pr[RB = r]||(B,Dα

SB )|RB=r − (B,Dα
SB )|RB=r||∑

r Pr[RB = r]||(B,Dβ
SB

)|RB=r − (B,Dβ
SB

)|RB=r||

≤ max
r

||(B,Dα
SB )|RB=r − (B,Dα

SB )|RB=r||
||(B,Dβ

SB
)|RB=r − (B,Dβ

SB
)|RB=r||

where the last inequality is from the same argument about sequences of positive numbers as the one at the
end of the proof of Lemma B.3.

This proves what we need, as for any r, ((B,DSB )|RB=r, (B,DSB )|RB=r) is an (n, 1)-pseudo polarizer.

Proof of Theorem B.2. For any (n, `,m)-special polarizer we have the following when α = 2/3 and β = 1/3:

||D̂α
0 − D̂α

1 ||
||D̂β

0 − D̂
β
1 ||
≥ 1− 2−m

2−m
= 2m − 1

Lemmas B.3 and B.4 imply that there is an (n, 1)-pseudo polarizer such that:

||D̂α
0 − D̂α

1 ||
||D̂β

0 − D̂
β
1 ||
≤ ||D̃

α
0 − D̃α

1 ||
||D̃β

0 − D̃
β
1 ||
≤ 2(n+1)/2

(
α

β

)n
= 2(3n+1)/2

The above two inequalities tell us that n = Ω(m).

C Upper Bounds on UPPdt(GapMaj(f)) and UPPdt(GapAND(f))

In Section 4, we proved that if f has a high approximate degree (positive one-sided approximate degree),
then GapMaj(f) (GapAND(f)) is hard for UPP algorithms. In this section we show that condition is also

necessary: when deg+(f) is small, GapAND(f) has a lower UPP query complexity; and when d̃eg(f) is small,
GapMaj(f) has a low UPP query complexity. Formally, we have:

Theorem C.1. For a partial function f with input length n, and a positive integer m.

UPPdt(GapMajm,2/3(f)) = O(d̃eg(f)).

UPPdt(GapANDm,2/3(f)) = O(deg+(f)).

Recall that deg+(f) := deg+
1/3(f), and d̃eg(f) := d̃eg1/3(f).

The choice of the constants 2/3 and 1/3 is only for convenience. We need the following standard fact for
approximate degree and positive one-sided approximate degree, (for example, see [DGJ+10, Claim 4.3] and
[She15, Fact 2.4]).

Claim 3. For any constant 0 < ε < 0.5, and any partial function f , d̃egε(f) = Θ(d̃eg(f)) and deg+
ε (f) =

Θ(deg+(f)).
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Now we prove Theorem C.1.

Proof of Theorem C.1. We first upper bound UPPdt(GapMajm,2/3(f)). By Lemma 3.9, it suffices to upper

bound deg±(GapMajm,2/3(f)). By Claim 3, we have d̃eg1/20(f) = O(d̃eg(f)); let p be the corresponding
approximating polynomial for f . Now, let the input for GapMajm,2/3(f) be x = (x1, x2, . . . , xm), where each

xi is the input to the ith copy of f . Let q be a polynomial on {0, 1}nm defined as q(x) :=
1

m
·
m∑
i=1

p(xi)
2−0.5.

Now, evidently deg(q) = 2 deg(p). From the definition of d̃eg1/20(f), we can see when GapMajm,2/3(f)(x) =
1,

q(x) ≥ 2

3
· 0.952 − 0.5 > 0;

and when GapMaj(f)(x) = 0,

q(x) ≤ 2

3
· 0.052 +

1

3
· 1.052 − 0.5 < 0.

Hence, by the definition of deg± (cf. Definition 3.3), we conclude that deg±(GapMajm,2/3(f)) = O(d̃eg(f)),
and this completes the proof for the first claim.

Similarly, in order to upper bound UPPdt(GapANDm,2/3(f)), it suffices to upper bound deg±(GapANDm,2/3(f)).

By Claim 3, we have deg+
1/20(f) = O(deg+(f)); let p be a corresponding positive one-sided approximating

polynomial for f . Let q be a polynomial on {0, 1}nm defined as q(x) :=
1

m
·
m∑
i=1

p(xi)− 0.5.

Clearly deg(q) = deg(p). From the definition of deg+
1/20(f), we can see when GapANDm,2/3(f)(x) = 1,

q(x) ≥ 0.95− 0.5 > 0;

and when GapANDm,2/3(f)(x) = 0,

q(x) ≤ 2

3
· 0.05 +

1

3
· 1.05− 0.5 < 0.

Therefore, deg±(GapANDm,2/3(f) = O(deg+(f)), and this completes the whole proof.

D Improved Polarization Places SZK in BPPpath

Here we show that if the Polarization Lemma of Sahai and Vadhan were strengthened in a black box manner,
it would imply SZK ⊆ BPPpath. This immediately gives that the Polarization Lemma cannot be strenghtened
in this manner.

D.1 Proof of Theorem 8.2

To prove the theorem, suppose that the statistical difference problem is SZK-hard for distributions on N
bits which are either ε-close or (1− ε)-far, where ε = o(2−2N/3). We will give a BPPpath algorithm to solve
this problem, using the characterization that BPPpath = postBPP. The algorithm is inspired by Aaronson,
Bouland, Fitzsimon, and Lee’s proof that SZK ⊆ naCQP given in [ABFL16]. We thank Tomoyuki Morimae
and Harumichi Nishimura for helpful discussions on this topic.

The algorithm is as follows: flip three coins b1, b2, b3, and draw independent samples y1, y2, y3 from the
distributions Db1 , Db2 , Db3 , respectively. Postselect on the condition that y1 = y2 = y3. Output that the
distributions are far apart if b1 = b2 = b3, and otherwise output that the distributions are close.

If ε = 0, then clearly this algorithm is correct. In the case the distributions are far apart, they have disjoint
support, which implies the values bi must be identical, so in this case the algorithm has zero probability of
error. In the case the distributions are close, they are identical, so the string b1b2b3 is uniformly random after
postselection, so the algorithm errs with probability 1/4. Note that the correctness of this algorithm in the
case ε = 0 doesn’t tell us anything new in structural complexity, because in the ε = 0 case, the problem is in
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NP (as a witness to the fact the distributions are identical, simply provide x0, x1 such that P0(x0) = P1(x1)),
and hence is obviously in BPPpath and in PP as well.

We now claim that if ε = o(2−2N/3), then this algorithm still works. Note that our choice of ε is
asymptotically tight for our algorithm; if ε = Ω(2−2N/3), then there is a simple counterexample which foils
the algorithm 6. To show that the algorithm works, we’ll show two things. First, if the distributions are
ε-close for this small ε, then we’ll show that as n → ∞, then b̂’s value approaches the uniform distribution
over all 8 possible output strings. Therefore for sufficiently large n, the algorithm is correct. On the other
hand, if the distributions are 1− ε-far, we’ll show the algorithm is correct with high probability.

Let’s first handle the case in which the distributions are ε-close. Let b̂ ∈ {0, 1}n be the random variable
corresponding to the output of b1b2b3. Let Db(y) denote the probability that distribution Db outputs y. Let
S be the event that y1 = y2 = y3, and let S(y) be the event that y1 = y2 = y3 = y. By Bayes’ rule, we have
that

Pr[b̂ = b1b2b3|S] =
Pr[S|b̂ = b1b2b3] Pr[b̂ = b1b2b3]

Pr[S]

=

∑
y∈{0,1}n Pr[S(y)|b̂ = b1b2b3] 1

8∑
y∈{0,1}n Pr[S(y)]

=

∑
y∈{0,1}n D1(y)w(b̂)D0(y)3−w(b̂) 1

8∑
y∈{0,1}n Pr[S(y)]

where w(b̂) is the Hamming weight of b̂.
Hence we have that

Pr[b̂ = b1b2b3|S]

Pr[b̂′ = b′1b
′
2b
′
3|S]

=

∑
y∈{0,1}n D1(y)w(b̂)D0(y)3−w(b̂)∑
y∈{0,1}n D1(y)w(b̂′)D0(y)3−w(b̂′)

We’ll now show that as n→∞, the ratio of the probabilities between each string tends to 1. Therefore
for sufficiently large n, the strings b̂ can be make arbitrarily close to equiprobable, so the algorithm works.
We’ll break into three cases, showing that the strings b̂ = 111 and 000, 100, and 110 become equiprobable
as n → ∞. Since the probability of obtaining a string b̂ is only a function of its hamming weight, this will
imply all eight possible outcomes for b̂ become equiprobable for large n, and hence the error probabilty of
the algorithm approaches 1/4 as n→∞.

Case 1: 111 and 000
Let’s consider the extremal case, where b̂ = 111 or b̂ = 000. Let δy = |D1(y)−D0(y)|, so

∑
y

δy ≤ ε, and

6Let D0 be a uniform distribution, and let D1 be the distribution which places an ε amount of weight on a single item x,
while the remaining weight is spread uniformly on the remaining elements. These distributions are ε-close in total variation
distance, but one can easily show that this algorithm will yield the string b̂ = 111 with high probability, and hence the algorithm
will incorrectly identify them as being far apart. The reason this counterexample works is that postselecting the distributions
on seeing the same outcome y1 = y2 = y3 heavily skews the distributions towards more likely yi outputs, and in this example
we will almost always have y = x, and hence will almost always output b̂ = 111.
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furthermore that D0(y) ≤ D1(y) + δy and D1(y) ≤ D0(y) + δy. Therefore we have that

Pr[b̂ = 111|S]

Pr[b̂ = 000|S]
=

∑
y∈{0,1}n D1(y)3∑
y∈{0,1}n D0(y)3

(27)

≤
∑
y∈{0,1}n(D0(y) + δy)3∑

y∈{0,1}n D0(y)3
(28)

=

∑
y∈{0,1}n D0(y)3 + 3D0(y)2δy + 3D0(y)δ2

y + δ3
y∑

y∈{0,1}n D0(y)3
(29)

= 1 + 3
〈δ,D2

0〉
〈D0, D2

0〉
+ 3
〈δ2, D0〉
〈D2

0, D0〉
+
|δ3|1
|D3

0|1
(30)

≤ 1 + 3
εmaxyD0(y)2

〈D0, D2
0〉

+ 3
ε2 maxyD0(y)

〈D2
0, D0〉

+
ε3

|D3
0|1

(31)

≤ 1 + 3
εmaxyD0(y)2

〈D0, D2
0〉

+ 3
ε2 maxyD0(y)

〈D2
0, D0〉

+
2−3cn

2−2n
(32)

where on line 30 we expressed these sums as inner products, on line 31 we used the fact the sums in the
denominators are maximized when the weight of δ is placed on a single item, line 32 follows from the fact the

denominator is minimized by the unform distribution. We now need to bound the terms
maxyD0(y)2

〈D0, D2
0〉

and

maxyD0(y)

〈D0, D2
0〉

as a function of the universe size N = 2n. One can easily show that the first is upper bounded

by Θ(N2/3), and the second is upper bounded by Θ(N4/3).
To see this, let k = max

y
D0(y), so 2−n ≤ k ≤ 1. Then we have that

maxyD0(y)2

〈D0, D2
0〉

≤ k2

k3 + (1−k)3

(N−1)2

because given k, the denominator is minimized by spreading the remaining probability mass evenly over the
remaining N − 1 elements. By taking the derivative of this as a function of k and setting it equal to zero,
we see that the maximum occurs at a solution to the equation k

(
(−5− (N − 1)2)k3 + 12k2 − 9k + 2

)
= 0.

As N →∞ the real roots of this equation are 0 and Θ(N−2/3) (plus two complex roots), and one can easily
show the first is a minimum while the second is the maximum. Hence this quantity is maximized when
k = Θ(N−2/3), which implies the quantity is upper bounded by

maxyD0(y)2

〈D0, D2
0〉

≤ N−4/3

N−2 + (1−N−2/3)3

(N−1)2

=
N−2/3

Θ(N−2)
= Θ(N2/3)

A similar proof shows that the second quantity is upper bounded by Θ(N4/3).
Therefore we have that

Pr[b̂ = 111|S]

Pr[b̂ = 000|S]
≤ 1 + 3 ∗ 2−cn22n/3 + 3 ∗ 2−2cn24n/3 +

2−3cn

2−2n
(33)

≤ 1 + o(1) (34)

since we have c > 2/3. Note that the identical proof holds for the case where D0 and D1 are switched,

therefore we have that
Pr[b̂ = 000|S]

Pr[b̂ = 111|S]
≤ 1 + o(1) as well. Hence we have

1− o(1) ≤ Pr[b̂ = 111|S]

Pr[b̂ = 000|S]
≤ 1 + o(1)
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So as n→∞, these strings become equiprobable.
Case 2: 111 and 100 We have that

Pr[b̂ = 111|S]

Pr[b̂ = 100|S]
=

∑
y∈{0,1}n D1(y)3∑

y∈{0,1}n D0(y)2D1(y)
(35)

≤
∑
y∈{0,1}n D1(y)(D0(y)2 + 2D0(y)δy + δ(y)2)∑

y∈{0,1}n D0(y)2D1(y)
(36)

= 1 + 2

∑
y∈{0,1}n D1(y)D0(y)δy∑
y∈{0,1}n D0(y)2D1(y)

+

∑
y∈{0,1}n D1(y)δ2

y∑
y∈{0,1}n D0(y)2D1(y)

(37)

= 1 + 2
〈δy, D0D1〉
〈D0, D0D1〉

+
〈δ2
y, D1〉

〈D2
0, D1〉

(38)

≤ 1 + 2
εmaxyD0(y)D1(y)

〈D0, D0D1〉
+
ε2 maxyD1(y)

〈D2
0, D1〉

(39)

≤ 1 + 2ε
maxyD0(y)2 + δyD0(y)

〈D0, D0D1〉
+ ε2 maxyD1(y)

〈D2
0, D1〉

(40)

≤ 1 + 2ε
maxyD0(y)2

〈D0, D2
0〉 − εmaxyD0(y)2

+ 2ε2 maxyD0(y)

〈D0, D0D1〉 − εmaxyD0(y)2
(41)

+ ε2 maxyD1(y)

〈D0, D2
0〉 − εmaxyD0(y)2

(42)

Where line 42 comes from the fact that D1(y) ≥ D0(y)−δy for all y. We now show that this is upper bounded

by 1+o(1), by showing that the term
maxyD0(y)2

〈D0, D2
0〉 − εmaxyD0(y)2

, the term
maxyD0(y)

〈D0, D0D1〉 − εmaxyD0(y)2
and

the term
maxyD1(y)

〈D0, D2
0〉 − εmaxyD0(y)2

are upper bounded by O(22n/3), O(24n/3) and O(24n/3), respectively.

This, combined with the fact that ε = O(2−cn) for c > 2/3, implies that fracPr[b̂ = 111|S]Pr[b̂ = 100|S] ≤
1 + o(1) as desired.

For the first term, let k = max
y

D0(y). The this term is upper bounded by

k2

k3 − k3

(N−1)2 − εk2

because the denominator is minimized by spreading the remaining probability mass evenly over the remaining
N − 1 elements. One can easily show this function is maximized by setting k = Θ(N−2/3). Indeed, taking
the derivative of this equation and setting it equal to 0, one can see that the extreme values of k satisfy
k(−2(N − 1)2k3− 3k+ 2) = 0. Hence the optimal value of k satisfies k = Θ(N−2/3). For this value of k, the
term evalues to O(N2/3).

For the second term, if we let k be defined as above, then by the same reasoning we have that the term
is uppor bounded by

k

k3 − k3

(N−1)2 − εk2

Again by a similar proof, one can easily show the function is maximized by setting k = O(N−2/3), which
implies the term is upper bounded by O(24n/3).

For the third term, let k = max
y

D1(y). By a similar argument as above, we have that

maxyD1(y)

〈D2
0, D1〉

≤ maxyD1(y)

〈D2
1, D1〉 − 2〈δ,D2

1〉+ 〈δ2, D1〉
≤ k

k3 − (1−k)3

(N−1)2 − 2εk2 + ε2k

One can show that this term is maximized be setting k = Θ(N−2/3), and therefore this term is upper
bounded by O(N4/3). Indeed, taking the derivative of this quantity with respect to k and setting it equal
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to zero, one can see that the maximum value of k satisfies (−2(N − 1)2 + 2)k3 + (2ε− 3)k2 + 1 = 0, which
implies the maximum value satisfies k = Θ(N−2/3).

We’ve now shown that
Pr[b̂ = 111|S]

Pr[b̂ = 100|S]
≤ 1+o(1). Now consider the opposite ratio. By the same reasoning

as before, we have that

Pr[b̂ = 100|S]

Pr[b̂ = 111|S]
=

∑
y∈{0,1}n D0(y)2D1(y)∑

y∈{0,1}n D1(y)3
(43)

≤ 1 + 2
〈δ,D2

1〉∑
y∈{0,1}n D1(y)3

+
〈δ2, D1〉∑

y∈{0,1}n D1(y)3
(44)

≤ 1 + 2ε
maxyD1(y)∑
y∈{0,1}n D1(y)3

+ ε2 maxyD1(y)2∑
y∈{0,1}n D1(y)3

(45)

≤ 1 + o(1) (46)

Where on line 46 we used the fact that we previously upper bounded these terms when handling Case 1.
Hence as n→∞ the strings b̂ = 111 and b̂ = 100 become equiprobable.

Case 3: 111 and 110 We have that

Pr[b̂ = 111|S]

Pr[b̂ = 110|S]
=

∑
y∈{0,1}n D1(y)3∑

y∈{0,1}n D0(y)D1(y)2
(47)

≤ 1 +

∑
y∈{0,1}n δyD1(y)2∑

y∈{0,1}n D0(y)D1(y)2
(48)

= 1 +
〈δy, D2

1〉
〈D0, D2

1〉
(49)

≤ 1 +
εmaxyD1(y)2

〈D0, D2
1〉

(50)

≤ 1 +
εmaxyD1(y)2

〈D1, D2
1〉 − 〈δy, D2

1〉
(51)

≤ 1 +
εmaxyD1(y)2

〈D1, D2
1〉 − εmaxyD1(y)2

(52)

≤ 1 + o(1) (53)

Where on line 51 we used the fact that D0(y) ≥ D1(y)−δ(y), on line 52 we used that fact that the numerator
is minimized if all the mass of δy is placed on the maximum likelihood event of D1, and on line 53 we used
the fact that this is the same as the first term we bounded in Case 2.

Now consider the opposite ratio. We have that

Pr[b̂ = 110|S]

Pr[b̂ = 111|S]
=

∑
y∈{0,1}n D0(y)D1(y)2∑

y∈{0,1}n D1(y)3
(54)

≤
∑
y∈{0,1}n(D1(y) + δ(y))D1(y)2∑

y∈{0,1}n D1(y)3
(55)

= 1 +

∑
y∈{0,1}n δ(y)D1(y)2∑
y∈{0,1}n D1(y)3

(56)

≤ 1 + o(1) (57)

Where the last line follows from our previous arguments in Case 1. Hence we have that 1 − o(1) ≤
Pr[b̂ = 111|S]

Pr[b̂ = 110|S]
≤ 1 + o(1) as desired.
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Hence we have shown 1 − o(1) ≤ Pr[b̂ = 111|S]

Pr[b̂ = x|S]
≤ 1 + o(1) for any three-bit string x. Hence all strings

are equiprobable, so in the case the distributions are ε-close, the algorithm’s error probability tends to 1/4
as n→∞, and hence the algorithm is correct in this case.

To complete the proof, we now show that the probability of error is low then the distributions are 1− ε
far apart in total variation distance.

Suppose the distributions are 1−ε far apart in total variation distance. By the definition of total variation
distance, there must exist some event T ⊆ {0, 1}n for which |D0(T ) −D1(T )| ≥ 1 − ε, where the notation

D0(T ) indicates the probability that D0 outputs an element of the set T , i.e. DO(T ) =
∑
y∈T

D0(y). Without

loss of generality we have that D0(T )−D1(T ) ≥ 1− ε, which implies D1(T̄ )−D0(T̄ ) ≥ 1− ε. Since D0 and
D1 are probability distributions, this implies D0(T ) ≥ 1− ε and D1(T ) ≤ ε, and likewise D1(T̄ ) ≥ 1− ε and
D0(T̄ ) ≤ ε. In other words D0 has almost all its probability mass in T and D1 has almost all its probability
mass in T̄ .

We’ll now show that under these distributions, one will almost certainly see the output b̂ = 000 or b̂ = 111.
As before, we’ll show this by proving that for large n, the strings b̂ = 000 or 111 are far more likely than
b̂ = 001 or b̂ = 011, which implies the algorithm almost always outputs the correct answer.

Let k0 = max
y∈T

D0(y) and let k1 = max
y∈T̄

D1(y). Suppose without loss of generality that k0 ≥ k1 (otherwise

exchange D0 and D1 in the argument). Then we have that

Pr[b̂ = 000|S]

Pr[b̂ = 100|S]
=

∑
y∈{0,1}n D0(y)3∑

y∈{0,1}n D0(y)2D1(y)
(58)

=
〈D2

0, D0〉
〈D2

0, D1〉
(59)

≥
k3

0 + (1−k0)3

(N−1)2

εk2
0 + ε2k1

(60)

≥
k3

0 + (1−k0)3

(N−1)2

εk2
0 + ε2k0

(61)

where line 58 follows from the same arguments as the previous section, and line 60 follows because the
numerator is minimized by placing the uniform distribution on all elements other than the element responsible
for k0, and the denominator is maximized if all the weight that D0 has on T̄ is placed on the element of
maximal weight under D1, and vice versa. Line 61 follows from the fact that k0 ≥ k1

Now we show that this quantity is ω(1), i.e. it approaches infinity as n→∞. Suppose by contradiction
that there exists a constant c > 1 which is an upper bound for this quantity. Since ε = o(N−2/3), there

exists an n0 such that for all n > n0, ε <
1

2c
N−2/3. We claim that for all n > n0, this quantity is greater

than c, which is a contradiction.
To see this, we break into three cases.
Case 1: k0 ≥ N−2/3

In this case, the numerator is at least k3
0, while the denominator is at most

1

10c
N−2/3k2

0+
1

100c2
N−4/3k0 ≤

1

2c
k3

0 +
1

4c2
k3

0 <
1

c
k3

0, where the last step follows from the fact that
1

2c

1

4c2
<

1

c
for any c > 1. Therefore the

quantity on line 61 is strictly greater than
k3

0
1
ck

3
0

= c as desired.

Case 2: k0 ≤ N−2/3

In this case the numerator is at least
(1− k0)3

(N − 1)2
which is ≥ 0.75N−2 for sufficiently large n, while the

denominator is εk2
0 + ε2k0 ≤

1

2c
N−2 +

1

4c2
N−2 <

3

4c
N−2 for c > 1, which follows from our upper bounds

on ε and k0. Hence the quantity on line 61 is strictly greater than c as desired.

42



Therefore we have shown that and n → ∞, the string b̂ = 000 (or b̂ = 111, if k0 < k1) is much more

likely to occur than b̂ = 001.
A similar proof holds to show that the string b̂ = 000 (or b̂ = 111) is more likely to occur than b̂ = 110;

indeed by the same arguments as above, assuming k0 ≥ k1, we have

Pr[b̂ = 000|S]

Pr[b̂ = 110|S]
≥
k3

0 + (1−k0)3

(N−1)2

ε2k0 + εk1
≥
k3

0 + (1−k0)3

(N−1)2

ε2k0 + εk0
≥ ω(1)

Hence the string b̂ = 000 is far more likely to occur than the strings b̂ = 001 or b̂ = 011 (assuming

k0 > k1, otherwise the string b̂ = 111 is more likely to occur than 001 or 011), and hence the algorithm errs
with probability o(1) when the distributions are 1− ε far apart. This completes the proof.

E Missing Proofs From Section 4

In this section we provide the missing proofs from Section 4. We begin with Lemma 4.5, restating the lemma
here for convenience.

Lemma 4.5 (restated) Let a ≥ 40, n be a sufficiently large integer and ε be a real such that 0.5 < ε < 1.
Then there exists an (explicitly given) univariate polynomial P : R→ R such that:

• P (x) = (−a)x for x ∈ {0, . . . , ε · n}.

• |P (x)| ≤ ax/2 for x ∈ {ε · n+ 1, . . . , n}.

• P has degree of at most

(
1 +

10

a

)
· ε · n+ 3.

Proof of Lemma 4.5. We begin by constructing the polynomial P : R→ R whose existence is claimed by the
lemma.

Construction of P . Let N =

⌈(
1 +

10

a

)
· ε · n+ 2

⌉
. We define P through interpolation to be the unique

polynomial of degree at most N satisfying the following properties.

• P (x) = (−a)x for x ∈ {0, . . . , ε · n}.

• P (x) = 0 for x ∈ {ε · n+ 1, . . . , N}.

Analysis of P . Under the above definition, it is obvious that the first and the last conditions in Lemma 4.5
are satisfied by P . In the rest of the proof, we establish that P also satisfies the second condition claimed
by Lemma 4.5, i.e.,

|P (x)| ≤ ax/2 for x ∈ {ε · n+ 1, . . . , n}. (62)

When ε is a constant strictly between 1/2 and 1 and a is a sufficiently large constant, Equation (62)
is an easy consequence of standard bounds on the growth rate of low-degree polynomials defined through
interpolation (cf. [RS10, Lemma 3.1]). However, our applications require us to consider ε ≈ 1− 1/3 log n =
1− o(1) and a = Θ(log n). To handle this parameter regime, a more delicate analysis seems to be required.

For each i ∈ {0, . . . , ε · n}, define the polynomial ei as

ei(x) :=
∏

j∈{0,...,N}\{i}

x− j
i− j

. (63)

Observe that
when x ∈ {0, . . . , N}, ei(x) is equivalent to 1x=i. (64)

Moreover, each ei(x) has degree at most N . Hence, we may write

P =
∑

i∈{0,...,ε·n}

ei · (−a)i. (65)
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Indeed, the right hand side of Equation (65) is a polynomial of degree of at most N , and by Observation (64),
the right hand side agrees with P at all N inputs in {0, 1, . . . , N}. It follows that the right hand side of
Equation (65) and P are equal as formal polynomials.

Thus, for any x, P (x) can be expressed as follows.

P (x) :=
∑

i∈{0,...,ε·n}

ei(x) · (−a)i. (66)

For x ∈ {ε ·n+1, . . . , N}, as P (x) = 0, Equation (62) trivially satisfied. So we assume x ∈ {N+1, . . . , n}
from now on. Observe that for each i ∈ {0, . . . , ε · n},∏

j∈{0,...,N}\{i}

(x− j) =
∏

j∈{x−N,...,x}\{x−i}

j =
x−N
x− i

x∏
j=x−N+1

j ≤
x∏

j=x−N+1

j = x!/(x−N)! (67)

and ∏
j∈{0,...,N}\{i}

|i− j| =
i−1∏
j=0

(i− j) ·
N∏

j=i+1

(j − i) = i! · (N − i)!. (68)

Using Equation (68) and Inequality (67), we can bound |ei(x)| by

|ei(x)| ≤ x!/(x−N)!

i! · (N − i)!

=
x!

(x−N)! ·N !
· N !

i! · (N − i)!

=

(
x

N

)
·
(
N

i

)
. (69)

(70)

Combining Expression (69) with Equation (66), we can bound |P (x)| by

|P (x)| ≤
ε·n∑
i=0

|ei(x)| · ai

≤
ε·n∑
i=0

(
x

N

)
·
(
N

i

)
· ai

=

(
x

N

)
·
ε·n∑
i=0

(
N

i

)
· ai. (71)

Now, we are going to bound
∑

i∈{0,...,ε·n}

(
N

i

)
· ai, as it is independent of the variable x. Note that for

i ∈ {0, . . . , ε · n− 1}, we have [(
N

i+ 1

)
· ai+1

]/[(N
i

)
· ai
]

=
N − i
i+ 1

· a

≥N − ε · n
ε · n

· a (i ≤ ε · n− 1)

≥
(
1 + 10

a

)
· ε · n− ε · n
ε · n

· a (N ≥
(

1 +
10

a

)
· ε · n)

≥10

a
· a ≥ 2.
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Hence, ∑
i∈{0,...,ε·n}

(
N

i

)
· ai

≤
∑

i∈{0,...,ε·n}

(
N

ε · n

)
· aε·n · 2−ε·n+i

≤2 ·
(
N

ε · n

)
· aε·n. (72)

(73)

Combining Expression (72) with Expression (71), it follows, in order to establish that Equation (62) holds,
it suffices to show that

2 ·
(
x

N

)
·
(
N

ε · n

)
· aε·n

/
ax ≤ 1/2 for x ∈ {N + 1, . . . , n}. (74)

Note the left side of inequality (74) is maximized if and only if the function

f(x) :=

(
x

N

)/
ax (75)

is maximized. So now we are going to derive the value x? ∈ {N + 1, . . . , n} maximizing f(x?).
When x ∈ {N + 1, . . . , n}, we have

f(x+ 1)/f(x) =

[(
x+ 1

N

)/
ax+1

]/[(x
N

)/
ax
]

=
x+ 1

a(x−N + 1)
=

1

a
·
(

1 +
N

x−N + 1

)
. (76)

By Equation (76), we can see that f(x + 1)/f(x) is a decreasing function in x. Therefore, f(x) is
maximized when x is the smallest integer such that f(x+ 1)/f(x) ≤ 1, which is equivalent to

1 +
N

x−N + 1
≤ a.

=⇒ N

x−N + 1
≤ a− 1

=⇒ (a− 1) · x ≥ a ·N − (a− 1).

Therefore, the maximizer of f(x) is

x? =

⌈
a ·N
a− 1

− 1

⌉
. (77)

Now, it suffices to verify that inequality (74) holds when x = x?, i.e.,

2 ·
(
x?

N

)
·
(
N

ε · n

)
· aε·n ≤ ax

?

/2. (78)

Establishing Inequality (78). We claim that(
x?

N

)
≤ (2e · a)x

?−N . (79)
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It is easy to see that x? ≥ N by Equation (77). When x? = N , we have

(
x?

N

)
= 1 ≤ (2e · a)

x?−N
. And

when x? > N , we have x? −N =

⌈
N

a− 1
− 1

⌉
≥ 1, which in turn means

N

a− 1
> 1.

If
N

a− 1
> 2, we have

⌈
N

a− 1
− 1

⌉
≥ N

a− 1
− 1 ≥ N

2(a− 1)
. Otherwise,

N

a− 1
∈ (1, 2], and we also have⌈

N

a− 1
− 1

⌉
= 1 ≥ N

2(a− 1)
. Putting them together, we can see that when x? > N ,

x?

x? −N
=

⌈
a ·N
a− 1

− 1

⌉/⌈ N

a− 1
− 1

⌉
≤ a ·N
a− 1

/ N

2(a− 1)
≤ 2a. (80)

Combining Inequality (80) with the inequality

(
n

m

)
≤
(en
m

)m
, we have(

x?

N

)
=

(
x?

x? −N

)
≤
(

e · x?

x? −N

)x?−N
≤ (2e · a)

x?−N
,

when x? > N . This proves our Claim (79).

Now we bound

(
N

ε · n

)
. As N ≥

(
1 +

10

a

)
· ε · n and a ≥ 40, we have

e ·N
N − ε · n

= e ·
(

1 +
ε · n

N − ε · n

)
≤ e ·

(
1 +

a

10

)
≤ ae

5
,

and (
N

ε · n

)
=

(
N

N − ε · n

)
≤
(

e ·N
N − ε · n

)N−ε·n
≤
(ae

5

)N−ε·n
. (81)

Putting Inequalities (79) and (81) together, we have

2 ·
(
x?

N

)
·
(
N

ε · n

)
· aε·n (82)

≤2 · (2e · a)
x?−N ·

(ae
5

)N−ε·n
· aε·n (83)

≤2 · (2e)x
?−N ·

(e
5

)N−ε·n
· ax

?

. (84)

As

(
1 +

10

a

)
· ε · n+ 2 ≤ N =

⌈(
1 +

10

a

)
· ε · n+ 2

⌉
≤
(

1 +
10

a

)
· ε · n+ 3 and a ≥ 40, we have

x? −N =

⌈
N

a− 1
− 1

⌉
≤ N

a− 1
≤ 1

a− 1
·
[(

1 +
10

a

)
· ε · n+ 3

]
≤ 2

a
· ε · n+

1

10
,

and

N − ε · n ≥ 10

a
· ε · n+ 2.

Therefore, we can further bound (84) by

2 · 2 2
a ·ε·n+ 1

10 ·
(e

5

) 10
a ·ε·n+2

· ax
?

≤ ax
?

/2,

which establishes Inequality (78) and completes the proof.
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Now we provide the simple proof for Lemma 4.1. We first restate it for the reader’s convenience.

Lemma 4.1 (restated) Let f : D → {0, 1} with D ⊆ {0, 1}M be a partial function, ε be a real in [0, 1/2),

and d be an integer such that d̃egε(f) > d.

Let µ : {0, 1}M → R be a dual witness to the fact d̃egε(f) > d as per Theorem 3.4. If f satisfies
the stronger condition that deg+

ε (f) > d, let µ to be a dual witness to the fact that deg+
ε (f) > d as per

Theorem 3.6.
We further define µ+(x) := max{0, µ(x)} and µ−(x) := −min{0, µ(x)} to be two non-negative real

functions on {0, 1}M , and µi− and µi+ be the restrictions of µ− and µ+ on f−1(i) respectively for i ∈ {0, 1}.
Then the following holds:

• µ+ and µ− have disjoint supports.

• 〈µ+, p〉 = 〈µ−, p〉, for any polynomial p of degree at most d. In particular, ‖µ+‖1 = ‖µ−‖1 =
1

2
.

• ‖µ1
+‖1 > ε and ‖µ0

−‖1 > ε.

• If deg+
ε (f) > d, then ‖µ1

+‖1 = 1/2.

Proof of Lemma 4.1. The first two claims follows directly from Theorem 3.4 and the definitions of µ+ and
µ−.

For the third claim, by Theorem 3.4, we have

∑
x∈D

f(x) · µ(x)−
∑
x/∈D

|µ(x)| > ε.

Hence, ‖µ1
+‖1 − ‖µ1

−‖1 −
∑
x/∈D

|µ−(x)| > ε.

This implies that ‖µ1
+‖1 − ‖µ1

−‖1 − (0.5− ‖µ1
−‖1 − ‖µ0

−‖1) > ε.

Hence, ‖µ1
+‖1 − (0.5− ‖µ0

−‖1) > ε.

Therefore, ‖µ1
+‖1 > ε, and (0.5− ‖µ0

−‖1) < 0.5− ε, which means ‖µ0
−‖1 > ε.

Finally, the last claim follows directly from Theorem 3.6.

F Proof of Theorem 7.1: NISZKcc 6⊆ UPPcc

In this appendix, we define the communication complexity classes NISZKcc and UPPcc and prove that
NISZKcc 6⊆ UPPcc.

F.1 Preliminaries

F.1.1 Representation of Boolean Functions

Up until this point of the paper, we have considered functions f : {0, 1}n → {0, 1}. However, in order to
define and reason about UPPcc communication complexity, it will be highly convenient to consider functions
f : {−1, 1}n → {−1, 1} instead, where 1 is interpreted as logical FALSE and −1 is interpreted as logical
TRUE. Hence, throughout this appendix, a total Boolean function f will map {−1, 1}n → {−1, 1}. We will
sometimes refer to the outputs of f as TRUE and FALSE rather than −1 and 1 for clarity.

The following additional convention will be highly convenient: we define partial Boolean functions to
map undefined inputs to 0. That is, a partial Boolean function on {−1, 1}n will be thought as a map from
{−1, 1}n → {−1, 0, 1}. We use Df to denote the domain of f , i.e., Df := {x ∈ {−1, 1}n : f(x) ∈ {−1, 1}}.
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F.1.2 Entropy Estimation

The definition of NISZK (cf. Definition 3.2) is quite technical. Fortunately, there is a simple complete problem
for NISZK named Entropy Estimation, which basically asks one to estimate the entropy of a distribution.
Formally, it is defined as follows.

Definition F.1 (Entropy Estimation (EA) [GSV99]). The promise problem Entropy Estimation, denoted
EA = (EAYES,EANO), is defined such that EA−1(1) = EAYES and EA−1(0) = EANO, where

EAYES := {(X, k) : H(X) > k + 1}
EANO := {(X, k) : H(X) < k − 1.}

Here, k is an integer specified as part of the input in binary and X is a distribution encoded as a circuit
outputting n bits.

F.1.3 Definition of Communication Models

Sign-Rank and UPPcc. The original definition of unbounded error communication complexity (UPPcc)
defined by Babai et al. [BFS86] is for total functions, but it is straightforward to generalize the definition
to partial functions. Consider a partial Boolean function f : X × Y → {−1, 0, 1}. In a UPP protocol of f ,
Alice receives an input x ∈ X ⊆ {−1, 1}nx , and Bob receives an input y ∈ Y ⊆ {−1, 1}ny . Each has an
unlimited source of private randomness, and their goal is to compute the joint function f(x, y) of their inputs
with minimal communication for all pair (x, y) such that f(x, y) 6= 0. We say the protocol computes f if for
any input (x, y) ∈ f−1({−1, 1}), the output of the protocol is correct with probability strictly greater than
1/2. The cost of a protocol for computing f is the maximum number of bits exchanged on any input (x, y).
The unbounded error communication complexity UPP(f) of a function f is the minimum cost of a protocol
computing f . A partial function f is in the complexity class UPPcc if UPP(f) = O(logc n) for some constant
c, where n = max{nx, ny}.

The sign-rank of a matrix A with entries in R is the least rank of a real matrix B with Aij ·Bij > 0 for
all i, j such that Ai,j 6= 0.

Paturi and Simon [PS86] showed that UPP(f) = log(sign-rank([f(x, y)]x∈X,y∈Y )) + O(1).7 Therefore,
the sign-rank characterizes the UPPcc complexity of a communication problem.

Definition of NISZKcc. We now define the NISZKcc complexity of a Boolean function f . This is a natural
extension of the original definition by Goldreich, Sahai and Vadhan [GSV99], and follows the canonical
method of turning a complexity class into its communication analogue introduced by Babai, Frankl and
Simon [BFS86].

Definition F.2 (NISZKcc). In a NISZK-protocol for a partial Boolean function f : X × Y → {−1, 0, 1}
with X ⊆ {−1, 1}nx and Y ⊆ {−1, 1}ny , there are three computationally-unbounded parties Alice, Bob, and
Merlin. Alice holds an input x ∈ X while Bob holds an input y ∈ Y. The goal of Merlin is to convince Alice
and Bob that f(x, y) = 1, in a non-interactive and zero knowledge fashion.

Specifically, there is a public random string shared between the three parties σ ∈ {0, 1}r. Additionally,
Alice and Bob can also use shared randomness between them, which is not visible to Merlin. The protocol
starts by Merlin sending a message m = m(x, y, σ) to Alice (without loss of generality, we can assume the
message is a function of x, y and σ). Then Alice and Bob communicate, after which Alice outputs “accept”
or “reject”. A NISZK communication protocol for f also must satisfy additional conditions. The first two
are the standard notions of completeness and soundness for probabilistic proof systems.

• Completeness: For all (x, y) ∈ f−1(1), there is a strategy m∗ for Merlin that causes Alice to output
accept with probability ≥ 2/3 (where the probability is taken over both the public random string σ
and the shared randomness between Alice and Bob that is not visible to Merlin).

7Paturi and Simon’s proof was in the context of total functions, but their result is easily seen to apply to partial functions
as well.
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• Soundness: For all (x, y) ∈ f−1(0), and for every strategy for Merlin, Alice outputs accept with
probability ≤ 1/3.

Let the worst case communication cost be wV , where this cost includes both the length of Merlin’s message
m∗(x, y, σ) and the total number of bits exchanged by Alice and Bob. Finally, a NISZK communication
protocol must also satisfy the following zero knowledge condition

• Zero Knowledge: There is a public-coin randomized communication protocol S with output in {0, 1}k
and worst case communication complexity wS , such that for all (x, y) ∈ F−1(1), the statistical distance
between the following two distributions is smaller than 1/n, where n = max(nx, ny).

– (A) Choose σ uniformly from {0, 1}r, and output m∗(x, y, σ).

– (B) The output distribution of S on (x, y).

Finally, the cost of the NISZK communication protocol is defined as r + max(wV , wS). The quantity
NISZKcc(f) is defined as the minimum of the cost of all NISZK protocols for f .

Remark F.3. In the original definition in [GSV99] (see also Definition 3.2 in Section 3.1 of this work), it
is required that the statistical difference between the distributions (A) and (B) is negligible. In the context of
communication complexity, where protocols of cost polylog(n) are considered efficient, negligible corresponds

to 1/ logω(1)(n). However, since for polylogarthmic cost protocols, the difference between the distributions (A)
and (B) can be amplified from 1/ polylog(n) to 1/nω(1) with a polylogarithmic blowup in cost (cf. Lemma 3.1
in [GSV99]), we simply require the difference to be at most 1/n here.

F.1.4 Approximate Degree, Threshold Degree, and Their Dual Characterizations

Since we are now considering Boolean functions mapping {−1, 1} to {−1, 1} rather than {0, 1}, it is convenient
to redefine approximate degree and threshold degree in this new setting and state the appropriate dual
formulations.

Definition F.4. Let f : {−1, 1}M → {−1, 0, 1} be a partial function. Recall that the domain of f is
Df := {x ∈ {−1, 1}M : f(x) ∈ {−1, 1}}.

• The approximate degree of f with approximation constant 0 ≤ ε < 1, denoted d̃egε(f), is the least
degree of a real polynomial p : {−1, 1}M → R such that |p(x)−f(x)| ≤ ε when x ∈ Df , and |p(x)| ≤ 1+ε

for all x 6∈ Df . We refer to such a p as an approximating polynomial for f . We use d̃eg(f) to denote

d̃eg1/3(f).

• The threshold degree of f , denoted deg±(f), is the least degree of a real polynomial p such that
p(x) · f(x) > 0 for all x ∈ Df .

Remark F.5. All the results from earlier in this paper regarding partial functions mapping (subsets of)
{0, 1}n to {0, 1} can be translated to results regarding functions mapping {−1, 1}n to {−1, 0,−1} as considered
in this appendix. Specifically, given a partial function f : {−1, 1}M → {−1, 0, 1} with domain Df , let

D
{0,1}
f :=

{(
1− x1

2
, . . . ,

1− xM
2

)
: (x1, . . . , xM ) ∈ Df

}
. Consider the partial function f{0,1} : D

{0,1}
f →

{0, 1} defined as

f{0,1}(x1, . . . , xM ) =
1− f((−1)x1 , . . . , (−1)xM )

2
.

Then it is easy to see that d̃egε(f) is equal to d̃egε/2(f{0,1}), for any ε ∈ [0, 1).

We recall the definitions of norm, inner product and high pure degree, now with respect to Boolean repre-

sentation in {−1, 1}. For a function ψ : {−1, 1}M → R, define the `1 norm of ψ by ‖ψ‖1 =
∑

x∈{−1,1}M
|ψ(x)|.

If the support of a function ψ : {−1, 1}M → R is (a subset of) a set D ⊆ {−1, 1}M , we will write ψ : D → R.
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For functions f, ψ : D → R, denote their inner product by 〈f, ψ〉 :=
∑
x∈D

f(x)ψ(x). We say that a function

ψ : {−1, 1}M → R has pure high degree d if ψ is uncorrelated with any polynomial p : {−1, 1}M → R of total
degree at most d, i.e., if 〈ψ, p〉 = 0.

Theorem F.6. Let f : {−1, 1}M → {−1, 0, 1} be a partial function and ε be a constant in [0, 1). d̃egε(f) > d
if and only if there is a real function ψ : {−1, 1}M → R such that:

1. (Pure high degree): ψ has pure high degree of d.

2. (Unit `1-norm): ‖ψ‖1 = 1.

3. (Correlation):
∑
x∈Df

ψ(x)f(x)−
∑
x 6∈Df

|ψ(x)| > ε.

Theorem F.7. Let f : {−1, 1}M → {−1, 0, 1} be a partial function. deg±(f) > d if and only if there is a

real function ψ : {−1, 1}M → R such that:

1. (Zero Outside of Domain): ψ(x) = 0 when x /∈ Df .

2. (Pure high degree): ψ has pure high degree of d.

3. (Sign Agreement): ψ(x) · f(x) ≥ 0 for all x ∈ Df .

4. (Non-triviality): ‖ψ‖1 > 0.

Orthogonalizing Distributions. If ψ is a dual witness for the fact that deg±(f) > d as per Theorem F.7,
then ψ · f is a d-orthogonalizing distribution for f , as defined next.

Definition F.8. A distribution µ : {−1, 1}n → [0, 1] is d-orthogonalizing for a function h : {−1, 1}n →
{−1, 0, 1} if

Ex∼µ[h(x)p(x)] = 0

for every polynomial p : {−1, 1}n → R with deg p ≤ d. In other words, µ is d-orthogonalizing for h if the
function µ(x)h(x) has pure high degree d.

F.1.5 Pattern Matrices

As indicated in Section 7, Razborov and Sherstov [RS10] showed that in order to turn a function f : {−1, 1}n →
{−1, 0, 1} that has high threshold degree into a matrix M with high sign-rank (and hence high UPPcc com-
plexity), it suffices to show exhibit a dual witness ψ to the fact that deg±(f) is large, such that ψ satisfies an
additional smoothness condition. The transformation from f to the matrix M relies on the pattern matrix
method introduced by Sherstov [She11a]. Pattern matrices are defined as follows.

Let n and N be positive integers for which n divides N . Let P(N,n) denote the collection of subsets S ⊂
[N ] for which S contains exactly one member of each block {1, 2, . . . , N/n}, {N/n+ 1, . . . , 2N/n}, . . . , {(n−
1)N/n + 1, . . . , N}. For x ∈ {−1, 1}N and S ∈ P(N,n), let x|S denote the restriction of x to S, i.e.,
x|S = (xs1 , . . . , xsn) where s1 < · · · < sn are the elements of S.

Definition F.9. For φ : {−1, 1}n → R, the (N,n, φ)-pattern matrix M is given by

M = [φ(x|S ⊕ w)]x∈{−1,1}N ,(S,w)∈P(N,n)×{−1,1}n .

Note that M is a matrix with 2N rows and (N/n)n2n columns.

When φ is partial function {−1, 1}n → {−1, 0, 1}, the (N,n, φ)-pattern matrix M can be viewed as a
communication problem as follows: Alice and Bob aim to evaluate the φ(u) for some “hidden” input u to φ.
Alice gets a sequence of bits x ∈ {−1, 1}N , while Bob gets a set of coordinates S = {s1, . . . , sn} and a shift
w ∈ {−1, 1}n. The hidden input u is simply x|S ⊕ w.

Note that Mx,y is defined (i.e., Mx,y 6= 0) if and only if φ(u) is defined (φ(u) 6= 0). This is the reason we
represent a partial function by a function {−1, 1}n → {−1, 0, 1}.
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F.1.6 Symmetrization

We introduce the notion of symmetrization in this subsection, which is one of the key technical ingredients
in our proof.

Definition F.10. Let T : {−1, 1}k → D, where D is a finite subset of Rn for some n ∈ N. The map T is
degree non-increasing if for every polynomial p : {−1, 1}k → R, there exists a polynomial q : D → R with
deg(q) ≤ deq(p) such that

q(T (x)) = E
y s.t. T (y)=T (x)

[p(y)]

for every x ∈ {−1, 1}k. We say that a degree non-increasing map T symmetrizes a function f : {−1, 1}k → R
if f(x) = f(y) whenever T (x) = T (y), and in this case we say that T is a symmetrization for f .

For any function ψ : {−1, 1}k → R, a symmetrization T : {−1, 1}k → D for ψ induces a symmetrization
function ψ̃ : D → R defined as ψ̃(z) := Ex∈T−1(z)[ψ(x)] (if T−1(z) is empty, we let ψ̃(z) to be 0). It will also

be convenient to define an “unnormalized” version ψ̂ of ψ̃, defined via ψ̂(z) :=
∑

x∈T−1(z)

ψ(x). Observe that

if µ is a distribution on {−1, 1}k, then µ̂ is a distribution on D.

Let T : {−1, 1}k → D be a degree non-increasing map. A function ψ̂ : D → R naturally induces an un-

symmetrized function ψ : {−1, 1}k → R by setting ψ(x) =
1

T−1(z)
ψ̂(z) where z = T (x). That is, ψ spreads

the mass of ψ̂(z) out evenly over points x ∈ T−1(z). Observe that, for any ψ̂ and any degree non-increasing
map T , the induced function ψ is symmetrized by T .

F.1.7 Dual Objects

A key technical ingredient in Bun and Thaler’s [BT16] methodology for proving sign-rank lower bounds is
the notion of a dual object for a Boolean function f , which is roughly a dual witness ψ for the high one-sided
approximate degree of f , that satisfies additional metric properties. We introduce a related definition below.
The difference between our definition of a dual object and Bun and Thaler’s is that our definition only
requires ψ to witness the high approximate degree (rather than one-sided approximate degree) of f .

Definition F.11 (Dual Object). Let f : {−1, 1}k → {−1, 0, 1} be a partial function, and let T : {−1, 1}k →
D be a degree non-increasing symmetrization for f . Let ψ̂ : D → R be any function, and let ψ be the
associated function on {−1, 1}k induced by T . We say that ψ̂ is a (d, ε, η)-dual object for f (with respect to
T ) if:

•
∑

x∈Df
ψ(x)f(x)−

∑
x∈{−1,1}k\Df

|ψ(x)| > ε (85)

• ‖ψ‖1 = 1 (86)

• ψ has pure high degree at least d (87)

• ψ̂(z+) ≥ η for some z+ satisfying f̂(z+) = 1 (88)

Remark F.12. The first three Conditions (85), (86) and (87) together are equivalent to requiring that ψ is

a dual witness for d̃egε(f) > d as per Theorem F.6. Condition (88) is an additional metric property that is
crucial for the construction of a smooth orthogonalizing distribution of GapMaj(f).

F.2 The Key Technical Ingredient

We now define a class of functions Cd,a, and establish that for appropriate values of d and a, for any function
f ∈ Cd,a, it holds that the pattern matrix of GapMaj(f) has large sign-rank.
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Definition F.13. Let f : {−1, 1}k → {−1, 0, 1} be a partial function and let d, a > 0. Then f is in class
Cd,a if there exists a symmetrization T : {−1, 1}k → D for f such that:

• There exists a (d, ε, ε/2)-dual object for f with respect to T , such that
ε

1− ε
> a. (89)

• f evaluates to FALSE (i.e. f(x) = 1) for all but at most a 2−d fraction of inputs in {−1, 1}k.
(90)

Now we are ready to state the key technical claim that we use (cf. Section F.3 below) to separate NISZKcc

and UPPcc.

Theorem F.14. Let ε ∈ (0, 0.1), consider a partial function f : {−1, 1}k → {−1, 0, 1} ∈ Cm,40/ε such that

ε ·m > 50. Let F := GapMajm,1−ε(f) and n := m · k. Then the (236+6 log ε−1

· n, n, F )-pattern matrix M has
sign-rank of exp(Ω(ε ·m)).

F.2.1 Proof for Theorem F.14

We need the following theorem for lower bounding sign-rank, which is implicit in [RS10, Theorem 1.1].

Theorem F.15 (Implicit in [RS10, Theorem 1.1]). Let h : {−1, 1}n → {−1, 0, 1} be a Boolean function and
α > 1 be a real number. Suppose there exists a d-orthogonalizing distribution µ for h such that µ(x) ≥
2−αd2−n for all but a 2−Ω(d) fraction of inputs x ∈ {−1, 1}n. Then the (23αn, n, h)-pattern matrix M has
sign rank exp(Ω(d)).

For a partial function f : {−1, 1}n → {−1, 0, 1} and its gapped majority version hm := GapMajm,1−ε(f),
we use Z(hm) to denote the set

{x = (x1, x2, . . . , xm) ∈ {−1, 1}nm : f(xi) = 1 for all xi}.

That is, Z(hm) is the set of inputs to hm such that all copies of f evaluates to FALSE.
The following theorem asserts the existence of the d-orthogonalizing distribution for GapMaj(f) that is

needed to apply Theorem F.15.

Theorem F.16. Let ε ∈ (0, 0.1), m be an integer such that ε · m > 50, and f be partial function
f : {−1, 1}k → {−1, 0, 1} with a (d1, ε2, η)-dual object (with respect to symmetrization T : {−1, 1}k → D)

such that
ε2

1− ε2
> 40/ε. Let hm := GapMajm,1−ε(f) and d = min{d1, ε/4 · m}. Then there exists a

d-orthogonalizing distribution µ : {−1, 1}mk → [0, 1] for hm such that

µ(x) ≥ 2−2d ·
(
m

d

)−2

· (2η)m2−mk

for all x ∈ Z(hm).

Before proving Theorem F.16, we show that combining it with Theorem F.15 implies Theorem F.14.

Proof of Theorem F.14. By Condition (89) of f ∈ Cm,40/ε, f has a (m, ε2, ε2/2)-dual object with respect to

T such that
ε2

1− ε2
> 40/ε. Applying Theorem F.16, for d = min{m, ε/4 · m} = ε/4 · m, there exists a

d-orthogonalizing distribution µ : {−1, 1}mk → [0, 1] for F such that µ(x) > 2−2d ·
(
m

d

)−2

· εm2 2−mk for all

x ∈ Z(F ).

By the inequality

(
a

b

)
≤
(e · a

b

)b
, we have(
m

d

)
≤ (4e/ε)d ≤ 2(4+log ε−1)d. (91)
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Since
ε2

1− ε2
> 40/ε, we have 1− ε2 <

ε2

40/ε
≤ ε

40
, hence ε2 > 1− ε/40. Therefore,

εm2 ≥ (1− ε/40)m ≥ 4−εm/40 ≥ 2−d/5, (92)

where the second inequality holds by the inequality (1− x)1/x ≥ 1/4 for all x ∈ (0, 0.5).
Putting Inequalities (91) and (92) together, we have for all x ∈ Z(F ),

µ(x) > 2−mk · 2−(2+2(4+log ε−1)+1/5)d > 2−mk · 2−(12+2 log ε−1)d. (93)

And by Condition (90) of f ∈ Cm,40/ε, f(x) = 1 for all but at most a 2−m fraction of inputs in {−1, 1}k.

Hence, by a union bound, there is at most a m · 2−m ≤ 2−m/2 ≤ 2−d fraction of inputs do not belong to
Z(GapMajd,1−ε(f)) = Z(F ).

By the above fact and Inequality (93), we conclude that µ is a d-orthogonalizing for F such that µ(x) ≥
2−mk · 2−(12+2 log ε−1)d for all but a 2−d fraction of inputs in {−1, 1}mk. Therefore, invoking Theorem F.15,

the (236+6 log ε−1

· n, n, F )-pattern matrix M has sign-rank exp(Ω(d)) = exp(Ω(ε ·m)).

F.2.2 Proof of Theorem F.16

Additional Notation. Let f : {−1, 1}k → {−1, 0, 1} be as in the statement of Theorem F.16, and let
T : {−1, 1}k → D be the symmetrization for f associated with the assumed (d1, ε2, η)-dual object for f .
Define Tm : {−1, 1}mk → Dm by Tm(x1, . . . , xm) := (T (x1), . . . , T (xm)). Since T is degree non-increasing,
it is easy to see that Tm is also degree non-increasing. Moreover, Tm is a symmetrization for hm. The map
Tm induces a symmetrized version h̃m : DM → R of hm given by h̃m = GapMajm,1−ε(f̃).

Throughout the proof, we let c ∈ f̃−1(1) denote the point on which the dual object ψ̂ for f has ψ̂(c) ≥ η
(cf. Condition (88) within Definition F.11).

Proof Outline. Our proof follows roughly the same steps as in [BT16]. Let Z+ := Tm(Z(hm)) ⊆ Dm. At
a high level, our proof will produce, for every z ∈ Z+, a d-orthogonalizing distribution µz that is targeted
to z, in the sense that

µ̂z(z) ≥ 2−O(d) ·
(
m

d

)−2

· (2η)m.

Since the property of d-orthogonalization is preserved under averaging, we construct the final distribution
by a convex combination of these constructed distributions µz’s so that it places the required amount of
probability mass on each input x ∈ (Tm)−1(Z+) = Z(hm). The goal therefore becomes to construct these
targeted distributions µz. We do this in two stages.

Stage 1. In the first stage (see Claim 4 below), we construct distributions µz for every z belonging to a
highly structured subset G ⊂ Z+ that we now describe. The set G consists of inputs in Z+ for which c is
repeated many times (specifically, at least (1− ε/4) ·m times).

Stage 2. In the second stage (see Claim 5 below), we show that given the family of distributions {µz : z ∈ G}
constructed in Stage 1, we can construct appropriate distributions µz for z belonging to the entire set Z+.

We begin Stage 1 with a lemma.

Lemma F.17. Let ` = (1 − ε/4) · m, and let f , T , and T ` be as above. Consider the partial function
g` : {−1, 1}k` → {−1, 0, 1} defined as g` := GapMaj`,1−2ε/3(f). There exists a function ψ : {−1, 1}k` → [0, 1]

symmetrized by T ` with the following properties.

• ψ is a dual witness for deg±(g`) > d as per Theorem F.7, where d = min{ε/4 ·m, d1}. (94)

• ‖ψ‖1 = 1. (95)

• ψ̂(c, . . . , c︸ ︷︷ ︸
` times

) ≥ (2η)`/6. (96)
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Proof. The proof of this lemma is just analyzing the dual witness constructed for GapMaj`,1−2ε/3(f) in
Theorem 4.4. The analysis is as follows.
Properties of the dual witness constructed in Theorem 4.4. We formalize some properties of the
dual witness constructed by Theorem 4.4 below. The original theorem deals with partial functions with
signature {0, 1}M → {0, 1}, but with the transformation described in Remark F.5, it is straightforward to
obtain from it the following result for partial functions with signature {−1, 1}M → {−1, 0, 1}.

Proposition F.18 (Implicit in Theorem 4.4). Let f : {−1, 1}M → {−1, 0, 1} be a partial function, n be a

sufficiently large integer, d be an integer, ε ∈ (0.5, 1) and ε2 ∈ (0.98, 1) be two constants. Let a =
ε2

1− ε2
,

N = min

(
d,

(
1−

(
1 +

10

a

)
· ε
)
· n− 4

)
and F := GapMajn,ε(f).

Suppose d̃egε2(f) > d, and let µ be a dual witness to this fact as per Theorem F.6. Define µ+(x) :=

max{0, µ(x)} and µ−(x) := −min{0, µ(x)} to be two non-negative real functions on {−1, 1}M (analogous to
Lemma 4.1).

Then there exists a function ψold : {−1, 1}n·M → R such that

• ψold takes non-zero values only on the domain of F . (97)

• ψold(x) ∈
[

1

2
·
∏

i
µ+(xi),

3

2
·
∏

i
µ+(xi)

]
when F (x) = FALSE. (98)

• −ψold(x) ∈
[

1

2
·
∏

i
µ−(xi),

3

2
·
∏

i
µ−(xi)

]
when F (x) = TRUE. (99)

• ψold has pure high degree N . (100)

Now, let ϕ̂ be the (d1, ε2, η)-dual object with respect to T , and ϕ be the associated function from

{−1, 1}k → R. By Remark F.12, ϕ is a dual witness for d̃egε2(f) > d1. And by assumption,
ε2

1− ε2
>

40/ε > 400, which means ε2 > 0.98. So we can invoke Proposition F.18 to construct the function ψold for
F := g` = GapMaj`,1−2ε/3(f).

Verification of Conditions (94)-(96). We simply set ψ := ψold/‖ψold‖1. Conditions (95) follows immedi-
ately from the definition of ψ.

To check Condition (94), note that ψold has pure degree

min

(
d1,

(
1−

(
1 +

10

40/ε

)
· (1− 2ε/3)

)
· `− 4

)
≥min

(
d1,

(
1− 1− ε

4
+

2ε

3
+
ε2

6

)
· (1− ε/4) ·m− 4

)
≥min (d1, ε/4 ·m) . (ε ·m ≥ 50 and ε < 0.1)

Together with Properties (97), (98) and (99) (recall that -1 represents TRUE and 1 represents FALSE),
this implies that ψ satisfies Condition (94).

Finally, we verify Condition (96). Let zc = (c, . . . , c︸ ︷︷ ︸
` times

). Since f̃(c) = FALSE, we have g̃`(zc) = FALSE and

therefore F (x) = FALSE for x such that T `(x) = zc. So we have
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ψ̂old(zc) =
∑

x∈(T `)−1(zc)

ψold(x)

≥ 1

2
·

∑
x∈(T `)−1(zc)

∏̀
i=1

µ+(xi) (Condition (98))

=
1

2
·
∏̀
i=1

∑
x∈T−1(c)

µ+(x)

≥ 1

2
·
∏̀
i=1

ϕ̂(c) ≥ 1

2
· η`,

where the second last inequality holds since ϕ̂(c) =
∑

x∈T−1(c)

ϕ(x) and ϕ(x) ≤ µ+(x) as µ+(x) :=

max{0, µ(x)}, and the last inequality is due to Condition (88) from the definition of a (d1, ε2, η)-dual object.

Also, by Properties (98) and (99), combined with the fact that ‖µ+‖1 = ‖µ−‖1 =
1

2
, we have

‖ψold‖1 ≤
3

2
·
(
‖µ+‖`1 + ‖µ+‖`1

)
=

3

2
· 2−` · 2 = 3 · 2−`.

Putting them together, we have

ψ̂(zc) ≥
η`/2

‖ψold‖1
= (2η)`/6.

This establishes Condition (96) and completes the proof of Lemma F.17.

With the above lemma, we are now ready to complete Stage 1 by showing that for every input w ∈ Dm

that is close in Hamming distance to the special point zc = (c, . . . , c︸ ︷︷ ︸
m times

), there is an orthogonalizing distribution

for hm that places substantial weight on w.
Let G denote the set of inputs in Z+ that take the value c on at least (1− ε/4) ·m coordinates. That is,

G = {z ∈ Z+ :

m∑
i=1

1zi=c ≥ (1− ε/4) ·m}.

Claim 4. Let G be as above. For every w = (w1, . . . , wm) ∈ G, there exists a d-orthogonalizing distribution
νw : {−1, 1}km → [0, 1] for hm such that νw is symmetrized by Tm and ν̂w(w) ≥ (2η)m/6.

Proof. Let ` = (1− ε/4) ·m, I = {i1, . . . , i`} denote the first ` coordinates on which w takes the value c.
Then we define the distribution ν̂w by

ν̂w(z) =

{
|ψ̂(zi1 , . . . , zi`)| if zi = wi for all i /∈ I
0 otherwise

where ψ̂ is the function from Lemma F.17 for g`. It is immediate from the definition that ν̂w is a distribution
on Dm, and hence νw is a distribution on {−1, 1}km. Moreover, ν̂w(w) ≥ (2η)`/6 ≥ (2η)m/6.

To show that νw is d-orthogonalizing, let p1, . . . , pm be polynomials over {−1, 1}k whose degrees sum to
at most d. Let p̃1, . . . , p̃m : D → R denote polynomials satisfying the property that for all i and all z in the
image of T , p̃i(z) := Ex∈T−1(z)[pi(z)]. (Since T is degree non-increasing, there exist such p̃i’s whose degrees
sum to at most d, but we will not make use of this property in this proof).
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Observe that:∑
x=(x1,...,xm)∈{−1,1}km

νw(x)hm(x)

m∏
i=1

pi(xi) =
∑

z=(z1,...,zm)∈Dm
ν̂w(z)h̃m(z)

m∏
i=1

p̃i(zi)

=
∑

z=(z1,...,zm)∈Dms.t.
∀i/∈I zi=wi

|ψ̂(zi1 , . . . zi`)| · h̃m(z)

m∏
i=1

p̃i(zi)

=
∑

z=(z1,...,zm)∈Dms.t.
∀i/∈I zi=wi

ψ̂(zi1 , . . . zi`)

m∏
i=1

p̃i(zi)

=

(∏
i/∈I

p̃i(wi)

) ∑
z=(z1,...,z`)∈D`

ψ̂(z)
∏
i∈I

p̃i(zi)

=

(∏
i/∈I

p̃i(wi)

) ∑
x=(x1,...,x`)∈{−1,1}k·`

ψ(x)
∏
i∈I

pi(xi)

= 0.

Here, the second equality holds by definition of ν̂w, and the final equality holds because ψ has pure high

degree at least d, and
∏
i∈I

pi(x) is a polynomial of total degree at most d. To see the second inequality holds,

suppose ψ̂(zi1 , . . . zi`) > 0, as ψ agrees in sign with g`, we must have g̃`(zi1 , . . . zi`) = FALSE. Recall that g` :=
GapMaj`,1−2ε/3(f). This means that there are at least (1−2ε/3)·` = (1−2ε/3)(1−ε/4)·m ≥ (1−ε)·m copies

of f that evaluate to FALSE. Hence h̃m(z) itself must be FALSE. So |ψ̂(zi1 , . . . zi`)| · h̃m(z) = ψ̂(zi1 , . . . zi`).

Similarly, when ψ̂(zi1 , . . . zi`) < 0, again as ψ agrees in sign with g`, we must have g̃`(zi1 , . . . zi`) = TRUE.
So there are at least (1 − 2ε/3) · ` = (1 − 2ε/3)(1 − ε/4) ·m ≥ (1 − ε) ·m copies of f evaluate to TRUE.

Hence h̃m(z) must be TRUE as well. So |ψ̂(zi1 , . . . zi`)| · h̃m(z) = −ψ̂(zi1 , . . . zi`) ·−1 = ψ̂(zi1 , . . . zi`). Putting

them together, we can see |ψ̂(zi1 , . . . zi`)| · h̃m(z) = ψ̂(zi1 , . . . zi`) for all z appearing in the summation, so
the second inequality holds.

Stage 2. Now we move to Stage 2. With the distributions constructed for w ∈ G, for any point v ∈ Z+, we
construct a d-orthogonalizing distribution that puts significant weight on it.

Claim 5. Let G be as before, and suppose that for every w ∈ G there exists a d-orthogonalizing distribution
νw : {−1, 1}km → [0, 1] for hm that is symmetrized by Tm, and satisfies ν̂w(w) ≥ δ. Then for every
v ∈ (Z+ \G), there exists a d-orthogonalizing distribution ρv for hm that is symmetrized by Tm, and

ρ̂v(v) ≥ 6δ · 2−2d ·
(
m

d

)−2

.

The main technical ingredient in the proof of Claim 5 is the construction of a function φ : {0, 1}m → R
of pure high degree d for which φ(1m) is “large”. This can be viewed as a dual formulation of a bound on
the growth of low-degree polynomials. The construction of φ appears as part of the proof of such a bound
in [RS10].

Remark F.19. We choose to state Lemma F.20 below for a function φ : {0, 1}m → R, rather than applying
our usual convention of working with functions over {−1, 1}m, because it makes various statements in the
proof of Claim 5 cleaner. To clarify the terminology below, we recall that a function φ : {0, 1}m → R has

pure high degree d if
∑

x∈{0,1}m
φ(x) · p(x) = 0 for every polynomial p : {0, 1}m → R of degree at most d. The

Hamming weight function |·| : {0, 1}m → [m] counts the number of 1’s in its input, i.e. |s| = s1+s2+· · ·+sm.
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Lemma F.20 (cf. [RS10, Proof of Lemma 3.2]). Let d be an integer with 0 ≤ d ≤ m− 1. Then there exists
a function φ : {0, 1}m → R such that

• φ(1m) = 1 (101)

• φ(x) = 0 for all d < |x| < m (102)

• φ has pure high degree at least d (103)

•
∑
|x|≤d

|φ(x)| ≤ 2d
(
m

d

)
(104)

Proof of Claim 5. Fix v ∈ (Z+ \ G). Define an auxiliary function φ̂v : Dm → [0, 1] as follows. For any
z = (z1, . . . , zm), let

φ̂v(z) :=
∑

s∈{0,1}m s.t.
∀i zi=(1−si)c+sivi

φ(s),

where φ is as in Lemma F.20, with d set as in the conclusion of Claim 4 (observe that if there is some zi
such that zi 6= c and zi 6= vi, then φ̂v(z) = 0).

Letting φv denote the function on {−1, 1}km induced from φ̂v by Tm, we record some properties of φv
and φ̂v.

• φ̂v(v) = φ(1m) = 1 (105)

• supp φ̂v ⊂ G ∪ {v} (106)

• φv has pure high degree at least d (107)

• ‖φv‖1 ≤ 2d
(
m

d

)
+ 1 (108)

• φ̂v is supported on at most d

(
m

d

)
points in Dm (109)

Verifying Conditions (105)-(109). For s ∈ {0, 1}m, we define

τ(s) := ((1− s1)c+ s1v1, . . . , (1− sm)c+ smvm).

Then we can see φ̂v(z) =
∑

s∈τ−1(z)

φ(s).

To see Condition (105) holds, note that v /∈ G, so there are strictly larger than ε/4 ·m = d coordinates
vi in v satisfies vi 6= c. Which means for τ(s) = v, |s| > d. So by Condition (102), the only s ∈ τ−1(v)

satisfying φ(s) 6= 0 is 1m, and we have φ̂v(v) = φ(1m) = 1.

To verify Conditions (106) and (109), note that when φ̂v(z) > 0 for z 6= v, it means there exists some
s with |s| ≤ d, such that z = τ(s). By the definition of τ , it means z takes the value c on at least
m − |s| ≥ m − d = (1 − ε/4) · m coordinates, therefore z ∈ G. Moreover, one can see there are at most
d∑
i=0

(
m

i

)
≤ d ·

(
m

d

)
such z’s.

For Condition (107), it is enough to show that if p1, . . . , pm are polynomials over {−1, 1}k whose degrees

sum to at most d, then
∑

x=(x1,...,xm)∈{−1,1}km
φv(x)

m∏
i=1

pi(xi) = 0. To establish this, let p̃1, . . . , p̃m : D → R

denote polynomials satisfying deg(p̃i) ≤ deg(pi), and such that for all i and all zi in the image of T ,
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p̃i(zi) := Ex∈T−1(zi)[pi(zi)]. Such polynomials are guaranteed to exist, since T is degree non-increasing.
Then: ∑

x=(x1,...,xm)∈{−1,1}km
φv(x)

m∏
i=1

pi(xi) =
∑

z=(z1,...,zm)∈Dm
φ̂v(z)

m∏
i=1

p̃i(zi)

=
∑

z=(z1,...,zm)∈Dm

 ∑
s∈{0,1}m s.t.

∀i zi=(1−si)c+sivi

φ(s)

 m∏
i=1

p̃i(zi)

=
∑

s∈{0,1}m
φ(s)

m∏
i=1

p̃i((1− si)c+ sivi)

= 0,

To see that the final equality holds, recall that that degrees of the polynomials p̃i sum to at most d. Hence,

p(s1, . . . , sm) :=

m∏
i=1

p̃i((1 − si)c + sivi) is a polynomial of degree strictly at most d over {0, 1}m. The final

equality then follows from the fact that φ has pure high degree at least d.
To establish Condition (108), we check that∑

z∈Dm,z 6=v

|φ̂v(z)| ≤
∑

s∈{0,1}m,s 6=1m

|φ(s)| ≤ 2d
(
m

d

)
,

where the final inequality holds by Condition (104).
Construction and analysis of ρv. Up to normalization, the function φv · hm has all of the properties
that we need to establish Claim 5, except that there are locations where it may be negative. We obtain
our desired orthogonalizing distribution ρv by adding correction terms to φ̂v in the locations where φ̂v may
disagree with h̃m in sign. These correction terms are derived from the distributions ν̂w whose existence are
hypothesized in the statement of Claim 5. We start by defining

P̂v(z) =
δ

2d
(
m
d

)
+ 1

h̃m(z)φ̂v(z) +
∑

w∈(supp φ̂v\{v})

ν̂w(z). (110)

Observe that each w appearing in the sum on the right hand side of (110) is in the set G, owing to Condition
(106). This guarantees that each term ν̂w in the sum is well-defined.

Now we check that P̂v is nonnegative. Since each term ν̂w appearing in the sum on the right hand
side of (110) is a distribution (and hence non-negative), it suffices to check that P̂v(z) ≥ 0 for each point

z ∈ supp φ̂v. On each such point with z 6= v, Condition (108) guarantees that
δ

2d
(
m
d

)
+ 1

h̃m(z)φ̂v(z) ≥ −δ.

Moreover, the contribution of the sum is at least ν̂z(z) ≥ δ by hypothesis. Hence, P̂v is a non-negative
function.

Next, we check that normalizing P̂v yields a distribution ρ̂v := P̂v/‖Pv‖1 for which ρ̂v(v) ≥ 6δ · 2−2d ·(
m

d

)−2

as required. By construction, P̂v(v) = δ/

(
2d
(
m

d

)
+ 1

)
. Moreover, Conditions (105), (108), and

(109) together show that ‖P̂v‖1 ≤ δ + d

(
m

d

)
≤ 2d

(
m

d

)
. Hence,

P̂v(v) ≥ δ/
(

2d

(
m

d

)
·
(

2d
(
m

d

)
+ 1

))
≥ 6δ/

(
22d ·

(
m

d

)2
)
,

as d = ε/4 ·m ≥ 10 by assumption.
Finally, we must check that ρv = Pv/‖Pv‖1 is d-orthogonalizing for hm. To see this, observe that Pv ·hm

is a linear combination of the functions φv and νw · hm for w ∈ (supp φ̂v \ {v}). Moreover, each of these
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functions has pure high degree at least d (φv does so by Condition (107), while νw ·hm does by the fact that
νw is d-orthogonalizing for hm). By linearity, it follows that Pv · hm has pure high degree at least d, so ρv is
d-orthogonalizing for hm as desired.

This completes the proof of Claim 5.

At last we are ready to conclude the prooof of Theorem F.16. By Claim 4, for every w ∈ G there
exists a d-orthogonalizing distribution νw : {−1, 1}km → [0, 1] for hm that is symmetrized by Tm, with
ν̂w(w) ≥ (2η)m/6. Thus, by Claim 5, it is also true that for every v ∈ (Z+ \G), there is a d-orthogonalizing

distribution ρv : {−1, 1}km → [0, 1] that is symmetrized by Tm, with ρ̂v(v) ≥ (2η)m · 2−2d ·
(
m

d

)−2

. Now,

for each element z ∈ Z+, we define its weight, Wz = |(Tm)−1(z)|. Consider the following distribution:

µ̂(z) =

(∑
z∈Z+

Wz

)−1

·

∑
w∈G

Ww · ν̂w(z) +
∑

v∈(Z+\G)

Wv · ρ̂v(z)

 .

We verify that the (un-symmetrized) distribution µ : ({−1, 1}k)m → [0, 1] satisfies our requirements. As µ̂
is a convex combination of d-orthogonalizing distributions for h̃m, it is itself a d-orthogonalizing distribution
for h̃m, therefore µ is a d-orthogonalizing distribution for hm. Now for each x ∈ Z(hm), let w = Tm(x), we
have

µ(x) ≥

(∑
z∈Z+

Wz

)−1

· 1

Ww
·Ww · (2η)m · 2−2d ·

(
m

d

)−2

= |Z(hm)|−1
(2η)m · 2−2d ·

(
m

d

)−2

≥ 2−mk · (2η)m · 2−2d ·
(
m

d

)−2

.

This completes the proof.

F.3 Exhibiting A Problem Separating NISZKcc From UPPcc

Now we are ready to prove the communication complexity classes separation NISZKcc 6⊂ UPPcc. In order to
utilize our lifting Theorem F.14, we have to choose a partial function f that satisfies: (1) it has an efficient
NISZK protocol, so that GapMaj(f) also is in NISZK; (2) it belongs to our partial function class Cd,a for
appropriate choices of d and a (cf. Definition F.13). However, it turns out that the Col function, which we
used in the query complexity case, does not satisfy the second condition in the definition of Cd,a. In fact,
Cd,a requires the function evaluates to FALSE nearly everywhere, but Col is undefined on most inputs, as a
random function is neither a permutation nor k-to-1.

To address this issue, we use the PTP problem (cf. Definition 3.15) instead of Col. We have the following
lemma, showing PTP is the function we want.

Lemma F.21. PTPn ∈ Cd,a for any a > 1 and d = Ω( 3
√
n/a).

We defer the proof of Lemma F.21 to Appendix G, restricting ourselves here to a brief sketch as follows.
Bun and Thaler [BT16] gave a primal condition that implies the existence of a suitable dual object. The
existence of dual object required by Cd,a (namely, Condition (89)) can be easily proved by combining this
primal condition with a simple modification of Kutin’s proof for the approximate degree of Col. For Condi-
tion (90) of Cd,a, it suffices to use a Chernoff bound to show a random function from [n] → [n] is far from
any permutation. The details of the proof can be found in Appendix G.

Now we are ready to prove the communication complexity class separation NISZKcc 6⊂ UPPcc.

Theorem. (Restatement of Theorem 7.1) NISZKcc 6⊂ UPPcc.
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Proof. Let k be a sufficiently large integer, and ε = 1/10 log k, then by Lemma F.21, PTPk ∈ Cd,40/ε for

some d = Ω(
3
√
k/ log k). Then we define F := GapMajd,1−ε(PTPk), n := d ·k, and M be the (N,n, F )-pattern

matrix for N = 236+6 log ε−1

· n. Invoking Theorem F.14, we have UPPcc(M) = Ω(d · ε) = Ω(
3
√
k/ log2 k) =

Ω( 4
√
n/ log2 n). Recall that in the communication problem (cf. Section F.1.5), Alice gets an input of length

N = polylog(n) · n, while Bob gets an input of length at most n · lnN + n = polylog(n) · n. Therefore, we
conclude that M is not in UPPcc by the definition of UPPcc in Section F.1.3.

Showing it is sufficient to construct an NISZK protocol for F . Next we show M is in NISZKcc.
We claim that it is enough to show that F admits an efficient NISZKdt protocol P . First we recall some
notation from Section F.1.5. In the communication problem corresponding to M , Alice gets a sequence of
bits x ∈ {−1, 1}N , while Bob gets a set of coordinates S = {s1, . . . , sn} and a shift w ∈ {−1, 1}n. They
together want to compute F (u) for u = x|S ⊕w. Alice and Bob can simulate P to solve M as follows: Alice
interacts with the prover as if she were the verifier in P . Whenever she needs the value of ui, she asks Bob
to send her the value of si and wi. Then she knows ui = xsi ⊕ wi. The correctness of this protocol follows
directly from the correctness of P , and it only incurs a logarithmic overhead in the running time. Therefore,
if F admits an efficient NISZK protocol, it can be transformed to an efficient NISZKcc protocol for M .

Reduction to EA. Now we prove that F has an efficient NISZKdt protocol by reducing it to EA, which is
NISZK-complete (cf. Definition F.1). Given an input x ∈ {−1, 1}d·k to F , let x = (x1, . . . , xd), where xi
denotes the input to the i-th copy of PTPk. By the definition of PTPk, we further interpret xi as a function
fi : [k]→ [k].

We define the distribution D(x) as follows: pick i ∈ [d] and x ∈ [k] at uniformly random, and then
output the pair (i, fi(x)). For a function f : [k] → [k], let Df be the distribution obtained by outputting

f(x) for a uniformly randomly chosen x ∈ [k]. Then we can express D(x) as D(x) :=
1

d
·
d∑
i=1

{i} ×Dfi . Note

when f is a permutation, i.e. PTP(f) = TRUE, we have H(Df ) = log(k). And when PTP(f) = FALSE,
by the definition of PTPk, the size of the support of the distribution Df is at most 7/8 · k, therefore
H(Df ) ≤ log(k · 7/8) ≤ log k − 0.18.

Also, let the output of D(x) be the random variable pair (X,Y ), note Y depends on X, we have

H(D(x)) = H(X,Y ) = H(X) +H(Y |X) = log d+
1

d
·
d∑
i=1

H(Dfi).

With the above observation, we can bound H(D(x)) easily: when F (x) = TRUE,

H(D(x)) ≥ log d+ (1− ε) · log k ≥ log d+

(
1− 1

10 log k

)
· log k ≥ log n− 1

10
,

as there is at least a 1 − ε fraction of fi’s satisfy H(Dfi) = log k and log d + log k = log dk = log n; when
F (x) = FALSE,

H(D(x)) ≤ log d+ ε · log k + (1− ε) · (log k − 0.18) ≤ log n− 0.15,

as there is at least a 1− ε fraction of fi’s satisfy H(Dfi) ≤ log k − 0.18, and (1− ε) · 0.18 ≥ 0.15 when k is
sufficiently large.

Finally, we take the reduction to be A(x) = D(x)⊗50, i.e., a sample from A(x) is a sequence of 50 i.i.d.

samples from D(x). Then we can see when F (x) = TRUE, H(A(x)) ≥ 50

(
log n− 1

10

)
≥ 50 log n− 5, and

when F (x) = FALSE, H(A(x)) ≤ 50(log n− 0.15) ≤ 50 log n− 7.5. Therefore, the pair (A(x), 50 log n− 6.25)
is a valid reduction to EA and this completes the proof.

G PTP is in Cd,a
In order to show PTP ∈ Cd,a, we need to prove the existence of a suitable dual object, and show that nearly
all inputs to PTPn evaluate to FALSE.
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G.1 Nearly All Inputs to PTP Evaluate to FALSE

We begin with the second condition, which is relatively easy. It is tantamount to verify that nearly every
function from [n]→ [n] is far from any permutation, which can in turn be proved by a simple application of
a Chernoff bound.

Lemma G.1. With probability at least 1− 2Ω(n), a random function f from [n]→ [n] satisfies PTPn(f) =
FALSE.

Proof. For each i in [n], we define the random variable xi to be the indicator of whether f−1(i) 6= ∅, and

we let X :=
1

n
·
n∑
i=1

xi. Then we have Pr[xi = 0] =

(
1− 1

n

)n
≈ e−1. S xi takes values in {0, 1}, we have

E[X] = E[xi] ≈ 1− e−1.
Although the xi’s are not independent, by [DR96], they are negatively associated, which means that we

can still apply a Chernoff bound to obtain the following concentration result:

Pr[X > 0.65] ≤ e−Ω(n),

as 1 − e−1 ∼ 0.63 < 0.65. Note that for a function f with X ≤ 0.65, we have PTPn(f) = FALSE, as it
must differ on at least 0.35 · n > n/8 coordinates with any permutation. This completes the proof.

G.2 A Primal Condition

In order to show the existence of a suitable dual object for the PTP problem, we introduce a sufficient primal
condition that was given in [BT16]. The original statement from [BT16] only considers total functions. But
it is easy to observe that the proof in [BT16] makes no use of the fact that the function is total; hence the
original proof works for partial functions as well.

Definition G.2. Let T : {−1, 1}k → D be a symmetrization for a partial function f : {−1, 1}k → {−1, 0, 1}.
Let V = T−1(Ṽ ) for some Ṽ ⊆ f̃−1(1). We say that p : {−1, 1}k → R is a weak ε-error one-sided
approximation to f under the promise that the input x is in V ∪f−1(−1) (with respect to T ) if the following
holds. Define q : {−1, 1}k → R by q(x) := Ey:T (y)=T (x)[p(y)]. Then q satisfies the following three properties:

• q(x) ≤ −1 + ε for all x ∈ f−1(−1).

• |q(x)− 1| ≤ ε for all x ∈ V .

• |q(x)| ≤ 1 + ε for all x ∈ {−1, 1}k such that f(x) 6= 0 and x 6∈ (f−1(−1) ∪ V ).

Theorem G.3 (Essentially Theorem B.1 in [BT16]). Let T be a symmetrization for f . Let V = T−1(z+) for
some z+ ∈ f̃−1(1). If there does not exist a weak 2η-error, degree-d one-sided approximation to f under the

promise that the input is in V ∪ f−1(−1), then there exists a function ψ̂ : D → R with ψ being the associated
function on {−1, 1}k induced by T , such that

• 〈ψ, f〉 ≥ ε and ψ only takes non-zero values on Df . (111)

• ‖ψ‖1 = 1 (112)

• ψ has pure high degree at least d (113)

• f(x) = −1 =⇒ ψ(x) < 0 (114)

• ψ̂(z+) ≥ η for some z+ ∈ D satisfying f̃(z+) = 1 (115)

Observe that the conditions in the above theorem are indeed strictly stronger than our requirements for
a (d, ε, η)-dual object.8 So we have the following corollary.

Corollary G.4. Let T be a symmetrization for f . Let V = T−1(z+) for some z+ ∈ f̃−1(1). If there does
not exist a weak 2η-error, degree-d one-sided approximation to f under the promise that the input is in
V ∪ f−1(−1), then f has a (d, 2η, η)-dual object.

8In our definition of a (d, ε, η)-dual object, we don’t require ψ to be zero outside of Df , and Condition (114) is not demanded
as well.
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G.3 Existence of a Suitable Dual Object for PTP

We begin by defining a natural symmetrization T : {−1, 1}M → D for PTPn, which is also used in [BT16].
Let x ∈ {−1, 1}M be an input to PTPn, and let f be the corresponding function from [n] → [n]. We

define T1(x) := (|f−1(1)|, |f−1(2)|, . . . , |f−1(n)|) ∈ Rn. And for any vector v ∈ Rn, we define T2(v) be the
vector in Rn which sorts the coordinates in v in increasing order. Our final symmetrization is defined as
T := T2 ◦ T1, that is, first count the number of occurrences of each value in the image, and then sort them
in ascending order. It is easy to see that T symmetrizes PTP, and by Lemma C.2 in [BT16], it is a degree
non-increasing map.

Let z+ be the point in the symmetrized domain D representing all the 2-to-1 inputs and V = T−1(z+).
We prove the following lemma in this subsection.

Lemma G.5. For all ε ∈ (0, 1), any weak ε-error, degree-d one-sided approximation to PTPn under the

promise that the input is in V ∪ f−1(−1), must have d = Ω
(

(1− ε) · n1/3
)

.

Our proof is a simple modification of Kutin’s lower bound for approximate degree of Col [Kut05]. We
use a more sophisticated version of a lemma from Paturi [Pat92], as we want an explicit dependence on the
approximate error, rather than treating it as a small constant.

Following Kutin [Kut05], we define a special collection of functions which are a-to-1 on one part of the
domain and b-to-1 on the other part. We call a triple of numbers (m, a, b) valid if a|m and b|(n −m). For
each valid triple (m, a, b), we define

gm,a,b(i) =

{
di/ae if 1 ≤ i ≤ m
n− b(n− i)/bc if m < i ≤ n.

and Rm,a,b := T−1(T (gm,a,b)).
We have the following important lemma from [Kut05].

Lemma G.6 (Lemma 2.2 in [Kut05]). Let P (x) be a degree-d polynomial in {−1, 1}M . For a valid triple
(m, a, b), define Q(m, a, b) by

Q(m, a, b) = Ey:y∈Rm,a,b [P (y)].

Then Q(m, a, b) is a degree-d polynomial in m, a, b.

Now, suppose there is a weak ε-error, d-degree one-sided approximation p to f under the promise that

the input is in V ∪ f−1(−1). We are going to show that d = Ω
(

(1− ε) · n1/3
)

.

By Lemma G.6, let c1 = 1− ε, then there is a degree-d polynomial Q(m, a, b) such that

• Q(m, 1, 1) ≤ −1 + ε = −c1 for any m.

• Q(m, 2, 2) ∈ [c1, 2− c1] for any 2|m.

• Q(m, a, b) ∈ [−2 + c1, 2− c1] for any valid (m, a, b) such that PTP(gm,a,b) = FALSE.

We need the following lemma by Paturi [Pat92].

Lemma G.7 (Paturi [Pat92]). Let a, b be two reals and q : R → R be a univariate polynomial such that
|q (j) | ≤ δ for all integers j ∈ [a, b], and suppose that |q (dxe)− q (x)| ≥ c · δ for some x ∈ [a, b] and a real

c ∈ (0, 1). Then deg (q) = Ω
(
c ·
√

(x− a+ 1) (b− x+ 1)
)

.

Now we prove Lemma G.5 by showing the polynomialQmust have degree at least d = Ω
(

(1− ε) · n1/3
)

=

Ω
(
c1 · n1/3

)
. The following proof basically mimics the original proof in [Kut05].

Proof of Lemma G.5. Let M = n/2, depending on the value of Q(M, 1, 2), there are two cases.
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• Q(M, 1, 2) ≥ 0 : Let g(x) = Q(M, 1, 2x) and k be the least positive integer such that |g(k)| ≥ 2. Then
we have |g(x)| ≤ c1 for all positive integers < k, and g(1) − g(1/2) ≥ c by assumption. Hence by
Theorem G.7, we have

d = Ω(c1 ·
√
k).

Now, let c = 2k and consider the polynomial h(i) = Q(n − ci, 1, c). For any integer i with dn/4ce ≤
i ≤ bn/cc, the triple (n− ci, 1, c) is valid, and it is easy to see PTP evaluates to FALSE on gn−ci,1,c for
all those i’s, as at least n/4 inputs belong to the c-to-1 part and c ≥ 2. Hence we have |h(i)| ≤ 2− c1
for i in that range. But

∣∣∣h( n
2c

)∣∣∣ = |Q(M, 1, c)| = |g(k)| ≥ 2. Therefore, by Theorem G.7, we have

d = Ω(c1 · n/c) = Ω(c1 · n/k).

Putting them together, we have d3 = Ω(c31 · n/k · k) = Ω(c31 · n), which means d = Ω(c1 · n1/3).

• Q(M, 1, 2) < 0 : We let g(x) = Q(M, 2x, 2) and k be the least positive integer such that |g(k)| ≥ 2.

Then we have g(1)− g(1/2) ≥ c1. So again by Theorem G.7, we have d = Ω(c1 ·
√
k).

Then, let c = 2k and h(i) = Q(ci, c, 2). For any integer i with 0 ≤ i ≤ bn/cc, the triple (ci, c, 2) is valid
(both n and c is even), and clearly PTP(gci,c,2) = FALSE for those i’s. Hence we have |h(i)| ≤ 2− c1.

But
∣∣∣h( n

2c

)∣∣∣ = |g(k)| ≥ 2. Again by Theorem G.7, we have d = Ω(c1 · n/k).

Similarly, we also have d = Ω(c1 · n1/3) in this case. This competes the proof.

G.4 Proof for Lemma F.21

Finally, we prove Lemma F.21.

Proof of Lemma F.21. Let η =
1− 1/2a

2
, by Lemma G.5 and Corollary G.4, there exists a (d, 2η, η)-dual

object for PTPn with respect to symmetrization T , for some d = Ω((1 − 2η) · n1/3) = Ω(n1/3/a). Note
2η

1− 2η
> a, hence this dual object satisfies Condition (89) of Cd,a.

And by Lemma G.1, the Condition (90) of Cd,a follows immediately.
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