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Abstract

In this note, we prove that there is an explicit polynomial in VP such that any ΣΠΣ
arithmetic circuit computing it must have size at least n3−o(1). Up to no(1) factors, this
strengthens a recent result of Kayal, Saha and Tavenas (ICALP 2016) which gives a poly-
nomial in VNP with the property that any ΣΠΣ arithmetic circuit computing it must have
size Ω̃(n3).

1 Introduction

Almost a decade ago, Agrawal and Vinay [AV08] showed that every low degree polynomial
that can be computed by an arithmetic circuit of small size (which are exactly those polyno-
mials in VP) can also be computed by a sub-exponential sized depth-4 circuit, which also has
some nice structural properties. More efficient representations were given by Koiran [Koi12]
and subsequently Tavenas [Tav15] gave an optimal construction. There are several nice as-
pects of these reduction to depth-4 circuits. Firstly, these results work for polynomials over
any field. Secondly, the depth-4 circuit obtained thus is rather structured: it is a homoge-
neous ΣΠΣΠ circuit (see Section 2 for definitions). As already observed by Agrawal and
Vinay, an important upshot of these depth reduction results is that they perhaps simplify
the question of proving lower bounds for arbitrary-depth arithmetic circuits – that is, in
order to separate VP from VNP, it suffices to prove strong exponential (the exact param-
eters are dictated by the strength of the parameters in the depth reduction) lower bounds
for the aforementioned depth-4 circuits. Indeed, a series of papers building on the shifted
partial derivate method of Kayal [Kay12], show exponential lower bounds (though not yet
strong enough to show VP different from VNP) for restricted classes of depth-4 circuits
[GKKS14, FLMS15, KS14, KLSS14, KS15].

Since any polynomial has a trivial representation as a depth-2 circuit as a sum of mono-
mials (for which we can also prove strong lower bounds, trivially) and since already we
have non-trivial depth reduction at depth-4, its natural to ask if depth-3 circuits, i.e. ΣΠΣ
circuits, can simulate VP nontrivially. Here the state of affairs is more complicated. In an
influential paper, Nisan and Wigderson [NW97] introduced the partial derivative method
and proved an exponential lower bound for homogeneous ΣΠΣ circuits computing the el-
ementary symmetric polynomial. They also note that by a simple interpolation idea at-
tributed to Ben-Or, the elementary symmetric polynomials can be computed by a highly
non-homogeneous ΣΠΣ circuit. As the elementary symmetric polynomials have small arith-
metic circuits, any depth reduction to ΣΠΣ circuits cannot yield homogeneous circuits. A
decade before the depth reduction theorems of Agrawal and Vinay, Grigoriev and Karpin-
ski [GK98] proved that any depth-3 circuit computing the Determinant over a fixed finite
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field requires exponential size. A natural question that arises from their work is to prove a
similar lower bound for an explicit family of polynomials over characteristic zero. The best
lower bound over large fields is the Ω(n2) lower bound for the symmetric polynomial due to
Shpilka and Wigderson [SW01]. So if at all there is a depth reduction to depth-3, it cannot
work over arbitrary fields (since [GK98] precludes such bounds) and has to crucially exploit
properties of the underlying large field. In a surprising result, Gupta, Kamath, Kayal and
Saptharishi [GKKS16] proved such a non-trivial reduction to depth-3 over suitably large
enough fields.

In light of these results, it is important to understand the power of non-homogeneous
depth-3 circuits over characteristic zero. In a recent result, Kayal, Saha and Tavenas [KST16]
prove a near cubic lower bound for ΣΠΣ circuits, improving on the Ω(n2)-lower bound of
[SW01]. In particular, they designed a polynomial family {fn}n∈N such that for every
n ∈ N the polynomial fn is a Θ(n)-variate polynomial of degree Θ(n) and any depth three

circuit computing the polynomial must have size Ω
(

n3

log2 n

)
. Their polynomial family was

computable in VNP.
Here, we design a polynomial family {hn}n∈N computable in VP such that for every n ∈

N, the polynomial hn is a Θ(npoly log n)-variate polynomial of degree Θ(npoly log n) and

any depth three circuit computing the polynomial must have size n3/2O(log2/3 n). Therefore,
our result is a more direct strengthening of the result of [SW01] and up to no(1) factors, we
are able to prove the same lower bound as [KST16] for a polynomial in VP.

Our main result can be stated more formally as follows:

Theorem 1. There exists an explicit polynomial family {hn}n∈N computable in VP on
Θ(npoly log n) variables and of degree Θ(n poly log n) (in fact by depth 6 circuits of polyno-

mial size) such that any depth 3 circuit computing it has size n3/2O(log2/3 n).

Both our construction and proof heavily build upon the ideas in [KST16].

2 Preliminaries

We recall some notions related to arithmetic circuits. See the surveys of Shpilka and Yehu-
dayoff [SY10] and Saptharishi [Sap] for a more thorough treatment. Throughout this section,
F will denote an arbitrary field.

Polynomial rings. We work over the standard multivariate polynomial ring
F[x1, . . . , xN ]. For a parameter ` ∈ N, we use M` to denote the set of monomials of degree
at most `. For a parameter k ∈ N and f ∈ F[x1, . . . , xN ], we use ∂k(f) to denote the set of
all kth order partial derivatives of f .

Shifted partial derivatives. Let f(x1, . . . , xN ) ∈ F[x1, . . . , xN ] be an arbitrary poly-
nomial. Given parameters k, ` ∈ N, we define 〈∂kf〉≤` as follows.

〈∂kf〉≤` = {m · g | m ∈M`, g ∈ ∂k(f)}.

We will use dim(〈∂kf〉≤`) to denote the dimension of the F-linear span of 〈∂kf〉≤`. This will
be our measure of complexity of the polynomial f .

The following is easy to prove.

Fact 2. Let f be as above and L an affine change of co-ordinates. Then for any k, ` ∈ N,
g = f ◦ L satisfies dim(〈∂kg〉≤`) ≤ dim(〈∂kf〉≤`). In particular, if L is invertible, then
dim(〈∂kg〉≤`) = dim(〈∂kf〉≤`).

It is usually more convenient to lower bound dim(〈∂kf〉≤`) by considering only a subset
S of ∂k(f), where S is chosen so that the derivatives in S satisfy a nice distance property
that we now define. Given two multilinear monomials m,m′ over variables x1, . . . , xN , we
can think of them as subsets of {x1, . . . , xN} and define m∆m′ analogously. The following
lemma is implicit in [FLMS15, CM14].
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Lemma 3. Let f ∈ F[x1, . . . , xN ] be homogeneous and k, ` ∈ N be arbitrary. Assume that we
have S ⊆ ∂k(f) such that each g ∈ S is a multilinear monomial and further that |g∆g′| ≥ 2τ
for distinct g, g′ ∈ S. Then, dim(〈∂kf〉≤`) ≥ |S|

(
N+`
`

)
− |S|2

(
N+`−τ
`−τ

)
.

Subspace restrictions. Let f ∈ F[x1, . . . , xN ] and V be an affine subspace of FN of
dimension m. The restriction g = f |V ∈ F[Y1, . . . , Ym] of f to the subspace V is defined as
follows. We can find an invertible affine change of co-ordinates L of the space FN so that
V = L−1(Fm × {0}N−m). We let g be the polynomial obtained by setting xi = 0 for all
i > m in the polynomial f ◦ L. While L is not unique, changing the map L only affects g
by a change of co-ordinates. In particular, dim(〈∂kg〉≤`) remains unchanged for any k, `.

Circuits. We consider depth-3 and depth-4 arithmetic circuits of the following form. The
circuits are layered (i.e. each gate occurs in a layer i ∈ {0, 1, 2, 3, 4}) and gates at layer i
take as inputs (any number of) gates from layer i − 1 and feed into gates at layer i + 1.
The largest layer contains a unique output gate. The 0th layer contains gates that compute
variables and constants. The remaining layers alternate between product (×) and sum (+)
gates.1 The largest layer contains the unique output gate (which may be a + or a × gate).
All gates are allowed to have unbounded fan-in. The size of the circuit is the number of
wires in the circuit.

Depth-3 and depth-4 circuits with an output + gate are referred to as ΣΠΣ and ΣΠΣΠ
circuits respectively. For parameters D, t ∈ N, we use ΣΠ(D)ΣΠ(t) to denote ΣΠΣΠ circuits
where the × gates at layers 3 and 1 have fan-ins bounded by D and t respectively. In this
case, the parameter t is called the bottom fan-in of the circuit.

The following was shown by [GKKS14].

Lemma 4. Let C be a ΣΠ(D)ΣΠ(t) circuit of size s computing a polynomial f ∈
F[x1, . . . , xN ]. Then, dim(〈∂kf〉≤`) ≤ s ·

(
D
k

)(
N+`+k(t−1)
`+k(t−1)

)
.

3 A hard polynomial in VP

In this section, we define an explicit family of polynomials in VP for which we will prove the
ΣΠΣ circuit lower bound. In Section 3.1, we define an explicit family of polynomials and
lower bound the dimension of the space of shifted partial derivatives of these polynomials.
This builds upon the ideas of Kumar and Saraf [KS15]. In Section 3.2, we will use these
polynomials to define our family of hard polynomials. This is done in a simple generic way
that ensures that each “large enough” subspace restriction of the newly defined polynomials
contains a copy of the polynomials of high shifted partial derivative complexity.

Both these steps are analogous to the construction of [KST16].

3.1 Polynomials with high shifted partial derivative complexity

We start with a variant of our construction. Let k, t, n ∈ N be arbitrary parameters (which
we will fix later). For each i ∈ [k], let Xi and Y(t−1)(i−1)+1, . . . , Y(t−1)i be t sets of n
variables each. These tk sets of variables are pairwise disjoint. Let X = ∪i∈[k]Xi and
Y = ∪i∈[k],j∈[t−1]Y(t−1)(i−1)+j .

We use xi,p and yj,q (p, q ∈ [n]) to denote the variables of Xi and Yj respectively. Let
yi,j denote the monomial y(t−1)(i−1)+1,j · y(t−1)(i−1)+2,j · · · y(t−1)i,j .

SkewPGIP′n,k,t(X,Y ) =
∑

j1,j2,...,jk∈[n]

x1,j1y1,j1 · x2,j2y2,j2 · · ·xk,jkyk,jk

The polynomial is a product of a generalization of the inner product polynomial [NW97,
KS15], it is multilinear and homogeneous. We call it skew because of the skewness in the
number of X and Y variables. The polynomial can be computed by a ΠΣΠ circuit of size

1All our sum gates are allowed to compute arbitrary F-linear combinations of their inputs.
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O(nkt) with bottom fan-in t. The total number of variables is nkt and the degree of the
polynomial is kt.

We now define a version of the above polynomial such that it is on fewer variables. We
reduce the number of variables by replacing each n-variable set of variables Yj by a set
Zj of C log n fresh variables, where C is as defined below. We do this substitution while
maintaining homogeneity and a certain distance property. Before describing the construction
of the polynomial we state a standard combinatorial lemma which will be useful in the
construction.

Lemma 5. There exists constants C0 < C and an injective map φ : [n] → 2[C logn] such
that

• for each j ∈ [n], let φ(j) = Sj ⊆ [C log n] then |Sj | = C0 log n,

• for each j 6= j′ ∈ [n], |Sj∆Sj′ | ≥ 2 log n.

It is easy to see that such constants and map φ exist where the description of φ can
be computed in time nO(C). The existence of such a map is implicit in, e.g., [KST16,
Proposition 15].

Let Zi = {zi,u | u ∈ [C log n]}. Given a φ as above, we will map each yi,j variable to
a monomial in Zi variables as follows: yi,j −→

∏
u∈φ(j) zi,u. With slight abuse of notation

let us denote this monomial on Zi variables by φ(yi,j). Similarly, let zij be the monomial
φ(y(t−1)(i−1)+1,j) · φ(y(t−1)(i−1)+2,j) · · ·φ(y(t−1)i,j).

Now we are ready to define our final polynomial.

SkewPGIPn,k,t(X,Z) =
∑

j1,j2,...,jk∈[n]

x1,j1z1,j1 · x2,j2z2,j2 · · ·xk,jkzk,jk

Note that the above is a polynomial on N := n · k + C · log n · (t − 1) · k variables as
opposed to nkt variables and its degree is d := k + C0 · log n · (t − 1) · k. Due to the first
property of φ as stated in Lemma 5, the polynomial is multilinear and homogeneous. It is
also computable by a polynomial sized ΠΣΠ circuit with bottom fan-in O(t log n).

We will need a lower bound on dim(〈∂kSkewPGIPn,k,t(X,Z)〉≤`), proved below.

Lemma 6. dim(〈∂kSkewPGIPn,k,t(X,Z)〉≤`) ≥ nk
(
N+`
`

)
− n2k

(
N+`−τ
`−τ

)
, where τ = (t −

1) log n.

Proof. We use Lemma 3 with a judicious choice of S. The proof is motivated by [KS15].
Let J = (j1, j2, . . . , jk) denote a k tuple where each ji ∈ [n]. Let ∂J(·) de-

note the partial derivative with respect to the variables x1,j1 , x2,j2 . . . xk,jk . Let S =
{∂J(SkewPGIPn,k,t(X,Z)) | J ∈ [n]k}. Clearly, |S| = nk.

From the definition of the polynomial it follows that for any fixed J ∈ [n]k,
∂J(SkewPGIPn,k,t(X,Z)) is the multilinear monomial z1,j1 · z2,j2 . . . · zk,jk . Let us denote
this monomial by mJ . For J 6= J ′, there exists a 1 ≤ i ≤ k such that ji 6= j′i. And using the
second condition in Lemma 5, |mJ∆m′J | ≥ 2(t− 1) log n.

Applying Lemma 3 now finishes the proof.

3.2 An explicit polynomial hard under subspace restrictions

Now we will design a modified polynomial in VP which has a high shifted partial derivative
measure even under subspace restrictions.

Let g(V ) = g(v1, . . . vN ) be any polynomial on N variables. We will now define another
polynomial, fN (U,W ) where |U | := C ′N logN and W = {w1, . . . , w2N} with the following
property. For every subset A ⊆ [2N ] of size N, there exists a 0-1 assignment a to the variables
in U such that fN (U,W )|u←a = g(WA) := g(wi1 , . . . , wiN ), where A = {i1, . . . , iN}.

By Lemma 5, we know that there exists constants C ′0 < C ′ and an injective map φ :
[2N ] → 2[C′ logN ] such that for any 1 ≤ i ≤ [2N ], φ(i) = Ti and |Ti| = C ′0 logN . (Here, we
will not need the second property of the map.)

4



Let U1, U2, . . . , UN be pairwise disjoint sets of C ′ logN variables each and let U = U1 ∪
U2∪. . .∪UN . For each 1 ≤ i ≤ N , we denote the elements of Ui by {ui,1, ui,2, . . . , ui,C′ logN}.

We define f̃N (U,W ) on C ′N logN + 2N variables as follows:

f̃N (U,W ) = g

 2N∑
i=1

wi
∏
j∈φ(i)

u1,j ,

2N∑
i=1

wi
∏
j∈φ(i)

u2,j , . . . ,

2N∑
i=1

wi
∏
j∈φ(i)

uN,j


Proposition 7. Let g(V ) = g(v1, . . . vN ) be any polynomial on N variables. For any set
A ⊆ [2N ] there exists a setting of variables in the set U such that f̃N (U,W ) = g(WA).

Proof. Let A = {a1, a2, . . . , aN}. Set ui,j = 1 if and only if j ∈ φ(ai). It is easy to see that
this encoding proves the proposition above.

Note that the above construction of f̃N uses the polynomial g in a black-box way. Also,
f̃N adds depth 2 to the depth of the circuit computing g and increases its size by a small
polynomial in N .

Finally, by instantiating the above construction with g being the SkewPGIPn,k,t poly-
nomial, we obtain the polynomial fN for which we prove our lower bound. Let N be equal
to m1 + m2, where m1 := n · k and m2 := C · log n · (t − 1) · k. Let V = X ∪ Z and let us
also assume a natural ordering on the V variables, say V = {v1, . . . , vN}. Define

fN (U,W ) := SkewPGIPn,k,t

 2N∑
i=1

wi
∏
j∈φ(i)

u1,j ,

2N∑
i=1

wi
∏
j∈φ(i)

u2,j , . . . ,

2N∑
i=1

wi
∏
j∈φ(i)

uN,j

 .

Remark 8. It follows quite straightforwardly from the above construction that fN actually
has a depth-6 homogeneous circuit of polynomial size.

4 Setting of parameters and the lower bound

In this section, we prove the ΣΠΣ circuit lower bound. As in [KST16], we first prove a
ΣΠΣΠ circuit lower bound with certain constraints on the fan-ins of the gates. We then use
a restriction argument [SW01, KST16] to prove the main result.

Fact 9. Let N, `, τ be positive integers with τ ≤ `. Then, we have(
N + `

`

)
·
(
N + `+ τ

`+ τ

)τ
≤
(
N + `+ τ

`+ τ

)
≤
(
N + `

`

)
·
(
N + `

`

)τ
.

Lemma 10. Let n, k,D, ε, t ∈ N be such that ε = 1/log1/3 n, k = ε log n/2, N = n · k + C ·
log n · (t− 1) · k and D = N1−ε. 2 Then any ΣΠ(D)ΣΠ(t) computing SkewPGIPn,k,t(X,Z)

requires size nΩ(log1/3 n).

Proof. Let s denote the size of a ΣΠ(D)ΣΠ(t) circuit computing SkewPGIPn,k,t(X,Z). By
Lemma 4, we then know that for any parameter ` ∈ N, we have

dim(〈∂kSkewPGIPn,k,t(X,Z)〉≤`) ≤ s ·
(
D

k

)(
N + `+ k(t− 1)

`+ k(t− 1)

)
. (1)

We choose our parameter ` so as to obtain a lower bound on
dim(〈∂kSkewPGIPn,k,t(X,Z)〉≤`), which will then yield a lower bound on s.

By Lemma 6 we know that

dim(〈∂kSkewPGIPn,k,t(X,Z)〉≤`) ≥ nk
(
N + `

`

)
− n2k

(
N + `− τ
`− τ

)
,

2To get a superpolynomial lower bound, the constant 1/3 in the definition of ε can be replaced by anything
strictly smaller than 1/2.
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where τ = (t − 1) log n. We choose ` so that
(
N+`
`

)τ
= nk

2 . By Fact 9, this implies that

dim(〈∂kSkewPGIPn,k,t(X,Z)〉≤`) ≥ 1
2n

k
(
N+`
`

)
.

By (1), this implies

s ·
(
D

k

)
·
(
N + `+ k(t− 1)

`+ k(t− 1)

)
≥ 1

2
· nk ·

(
N + `

`

)
∴ s ≥ nεk ·

(
`

N + `

)k(t−1)

using Fact 9 and D = N1−ε.

As we have set ` so that
(
N+`
`

)τ
=
(
N+`
`

)(t−1) logn
= nk

2 , we get that

s ≥ 1

2
· nεk−(k2/ logn) = nΩ(log1/3 n)

where the final equality follows by our choice of ε and k.

Remark 11. Note that the above proof works for any value of t. Note also that the pa-
rameter t considered as the bottom fan-in of the circuit in the above lemma is the same as
the parameter t used in defining the polynomial SkewPGIPn,k,t. As long as t ≤ poly(n),

nΩ(log1/3 n) is superpolynomial in N .

4.1 Putting it together

In this section we prove Theorem 1.
Let n ∈ N be arbitrary. Let the parameters k, t, ε,N be chosen as in Lemma 10. Further

we set t = N/k log n > N1−ε. Note that this implies that N = Θ(nk).
The polynomial family that we prove this lower bound for is {hn}n∈N, where hn :=

fN (U,W ) for fN is as defined in Section 3.2. Let m denote the number of variables in
fN (U,W ) and ∆ denote the degree of the polynomial. Note that m = O(N logN) and
∆ = O(N logN) and hence ∆ = Θ(m).

Now we prove that any ΣΠΣ circuit computing hn must have size Ω(n3/2O(log2/3 n)).

Proof. Let C denote the ΣΠΣ circuit computing fN (U,W ). Let L denote the set of (affine)
linear functions computed by + gates at layer 1. We say that L ∈ L is W -relevant if it
depends on some variable w ∈ W (i.e., the coefficient of w in the linear function L is non-
zero). The W -degree of a × gate at layer 2 is the number of W -relevant gates that feed into
it.

Let a × gate in the circuit be called heavy if the W -degree of the gate is > N2(1−ε) and
light otherwise. Suppose there are ≥ N heavy × gates in the circuit then C has at least
N3−2ε wires and hence we are done.

Otherwise, the number of heavy × gates in the circuit is at most N . Then, as in
[SW01, KST16], using at most N different affine restrictions we eliminate all the heavy
gates as follows. As long as there is a heavy gate in the circuit, we pick one such gate
arbitrarily. Call this gate P .

We choose an arbitrary W -relevant L feeding into P . Since L is W -relevant, we can
write L = αwi + L′(U,W \ {wi}) for α 6= 0 and some i ∈ [2N ]. We consider the restriction
where L(U,W ) = 0, which is equivalent to setting wi = − 1

αL
′. Substituting this into the

circuit C eliminates the variable wi from the circuit and moreover sets the product gate P
to 0. Note that this may cause further simplifications, such as eliminating other heavy gates
by either setting them to 0 or making them light.

After at most N such restrictions (effectively writing N ′ ≤ N variables wi1 , . . . , wiN′ as
linear combinations of the other variables), the circuit C simplifies to a circuit C′ such that
each × gate in C′ has W -degree at most N2(1−ε). Let A ⊆ [2N ] be a set of size N such that
the variables wi (i ∈ A) are not restricted by the above process. By Proposition 7, we can set
the variables in U to values in F so that the circuit C′′ now computes SkewPGIPn,k,t(WA).
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Having restricted the variables in U , this also ensures that the formal degree of each × gate
in C′′ is at most N2(1−ε).

Now, as in [KST16], we note that any such ΣΠΣ circuit can then be converted into a

ΣΠ(N1−ε)ΣΠ(N1−ε) circuit C′′′ of the same size as C′′ (up to a constant multiplicative factor)
as follows. We write each product gate in C′′ as a product of N1−ε polynomials, each of
which is in turn a product of at most N1−ε linear forms.

But then, using Lemma 10 we know any ΣΠ(N1−ε)ΣΠ(N1−ε) circuit computing
SkewPGIPn,k,t(WA) must have superpolynomial size. This proves Theorem 1.
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