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Abstract

We give a combinatorial analysis (using edge expansion) of a variant of the iterative expander con-
struction due to Reingold, Vadhan, and Wigderson [RVW02], and show that this analysis can be formal-
ized in the bounded-arithmetic system VNC1 (corresponding to the “NC1 reasoning”). As a corollary,
we prove the assumption made by Jeřábek [Jeř11b] that a construction of certain bipartite expander
graphs can be formalized in VNC1. This in turn implies that every proof in Gentzen’s sequent calculus
LK of a monotone sequent can be simulated in the monotone version of LK (MLK) with only polyno-
mial blowup in proof size, strengthening the quasipolynomial simulation result of Atserias, Galesi, and
Pudlák [AGP02].
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1 Introduction

Expander graphs have become one of the most useful combinatorial objects in theoretical computer sci-
ence, with many beautiful applications in computer science and mathematics [HLW06], and responsible for
several breakthroughs in computational complexity [Rei08, Din07]. These graphs have seemingly contra-
dictory properties: sparseness and high connectivity. The high connectivity can be measured in a number
of different, but essentially equivalent ways: vertex expansion (every small subset of vertices “expands”,
i.e., has a larger neighborhood), edge expansion (every small subset of vertices has many edges leaving
the set), or fast mixing time (a random walk on a regular expander graph quickly converges to the uniform
distribution on vertices).

The existence of expander graphs of constant degree can be argued nonconstructively using a sim-
ple probabilistic argument: for any constant d ≥ 3, a random d-regular graph is almost surely an ex-
pander [Pin73]. Constructing such graphs efficiently deterministically is much more difficult. The first ex-
plicit constructions were given by Margulis [Mar73] and Gabber and Galil [GG81]. Lubotzky, Phillips, and
Sarnak [LPS88] gave a construction of expanders with particularly interesting properties, called Ramanujan
graphs. All of these constructions are algebraic in nature: a graph is defined using a certain algebraic object
(e.g., a group). Moreover, the analysis of correctness of the constructions is also algebraic. It relies on
the algebraic notion of high connectivity called the eigenvalue gap and defined as follows. Consider the
adjacency matrix of a given undirected d-regular graph, compute its eigenvalues, and order them according
to the absolute value. It can be easily checked that d is the largest value. The difference between d and (the
absolute value of) the second largest eigenvalue is the eigenvalue gap. The bigger this eigenvalue gap, the
more connected the graph is. From this point of view, a d-regular expander is a graph with the eigenvalue
gap at least Ω(d), i.e., the second largest eigenvalue should be at most some constant fraction of the degree.

A simpler, fully combinatorial construction of constant-degree expanders was given by Reingold, Vad-
han, and Wigderson [RVW02]. They start with constant-size expander graphs (which can found by brute-
force search), and iteratively apply certain graph operations that increase the size of the graph while pre-
serving its expansion property. This way, one can quickly construct an expander graph of any given size.
While the construction of [RVW02] is combinatorial, its analysis is still algebraic and is based on estimating
the eigenvalue gap. Alon, Schwartz, and Shapira [ASS08] gave a different construction of expanders, which
combines algebraically constructed expanders of Alon and Roichman [AR94] with only two applications
of a certain graph operation (replacement product), to obtain a constant-degree expander of arbitrary size.
They also gave a fully combinatorial analysis of the replacement product operation they used in the second
stage of the construction. Their full analysis, however, is still algebraic, as it relies on the algebraic con-
struction and the eigenvalue gap analysis of [AR94]. In this respect, the situation in [ASS08] is similar to
that in [RVW02] where the analysis of a related graph operation (zig-zag product) can be done in terms of
min-entropy, while the analysis of the complete construction is still based on eigenvalues.

The focus of our paper is to give a construction of expanders with a simple analysis, where simplicity
is measured in terms of the power of a system of bounded arithmetic needed to formalize the analysis.
Informally, systems of bounded arithmetic are obtained by restricting the power of the standard first-order
theory of Peano arithmetic. It is possible to devise systems of bounded arithmetic that correspond to systems
of reasoning using only concepts from a given complexity class, e.g., P or NC1. A natural question is: what
is the weakest complexity class so that the existence of expander graphs can be proved using only the
concepts of that complexity class?

The known expander constructions mentioned above can be formalized within a system of polytime
reasoning, intuitively because eigenvalues and matrix determinants are known to be computable in polytime.
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Our main result is a construction of expanders that can be formalized within a system of NC1 reasoning,
VNC1 (see below for a formal definition). As NC1 algorithms are not known to compute the eigenvalues or
determinant of a given matrix, any such formalization of an expander construction in VNC1 must necessarily
avoid the use of eigenvalues, and hence be “combinatorial” in that sense.

As expanders are used in a number of complexity-theoretic results, formalizing the expander construc-
tion within a weak system of bounded arithmetic is an important step in formalizing these complexity-
theoretic results within the bounded-arithmetic framework, which in turn may have other implications. For
example, in proof complexity, we can use our expander construction to argue that any Gentzen’s sequent
calculus LK proof (of a monotone sequent) can be simulated by a monotone LK (MLK) proof, with only
polynomial blowup in proof size, improving upon the quasipolynomial simulation shown by Atserias, Galesi
and Pudlák [AGP02], and answering a question of Pudlák and Buss [PB94]. This simulation result follows
by the work of Jeřábek [Jeř11b] who proved the result under the assumption that a certain expander graph
family can be proved to exist within a system of NC1 reasoning. Our paper proves a strengthening of the
assumption needed by Jeřábek.

1.1 Our results

Our main contribution is the analysis of one of the iterative expander constructions from [RVW02], which
we show to be formalizable in the bounded-arithmetic system VNC1 (of NC1 reasoning). As in [RVW02],
the expander construction is fully explicit in the sense that that there is a deterministic polynomial-time
algorithm that, given a vertex name v in binary and a number i, outputs the value of the rotation map
Rot(v, i) = (w, j), where w is the name of the ith neighbor of v in the graph, and j is the number such that
v is the jth neighbor of w. Moreover, we show that there is an alternating linear-time algorithm that accepts
exactly the triples of the form ⟨v, i, Rot(v, i)⟩; this kind of explicitness is what we will use to argue that the
expander construction is formalizable in VNC1.

Theorem 1.1 (Main result: Informal version). The existence of an expander graph family can be proved
using NC1 reasoning only (within the system VNC1).

As our main application, building on Jeřábek [Jeř11b] and Atserias, Galesi and Pudlák [AGP02], we
show that every proof in Gentzen’s sequent calculus LK of a monotone sequent can be simulated by a
monotone LK (MLK) proof (a sequent calculus proof in which all formulas are positive) with only poly-
nomial blowup in size. This answers a question of Pudlák and Buss [PB94]. Previously, [AGP02] showed
such simulation with quasipolynomial blowup in proof size.

Theorem 1.2 (Main application). MLK polynomially simulates LK on monotone sequents.

It is easy to show that the intuitionistic propositional sequent calculus LJ polynomially simulates MLK
(see Pudlák [Pud99] and Bilková [Bı́l01]); thus we get as an immediate corollary that propositional LJ
polynomially simulates LK on monotone sequents. Many of the principles that have been considered in
propositional proof complexity are expressed as monotone sequents, notably the pigeonhole principle and
the clique-coloring tautologies. As these principles have polynomial size LK proofs [Bus87], Theorem 1.2
implies that they also have polynomial size proofs in MLK as well as in propositional LJ. The prior best
known results for the pigeonhole principle were the quasipolynomial size MLK proofs of Atserias, Galesi
and Gavaldà [AGG01].

It remains an open problem whether tree-like MLK can polynomially simulate MLK, equivalently
whether tree-like MLK can polynomially simulate LK on monotone sequents. Note that [AGP02] give a
quasipolynomial simulation.
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Intuitively, to simulate an LK proof within MLK, one needs to construct (and prove correctness of)
a monotone formula for the majority function. Such monotone formulas can be built using the classical
AKS sorting networks [AKS83]. Jeřábek [Jeř11b] shows that the analysis of AKS sorting networks can
be formalized within a certain system of NC1 reasoning (slightly more powerful than VNC1), under the
assumption that the existence of expander graphs, with certain parameters, is also formalizable within the
same system. Our Theorem 1.1 proves the assumption needed by Jeřábek (actually a slightly stronger
version, as our proof of the existence of expanders is in the weaker system VNC1), and so Theorem 1.2
immediately follows.

1.2 Relation to previous work

1.2.1 Expander constructions

The expander graph construction that we analyze is a variant of the iterative construction of expanders given
in [RVW02]. The idea is to start with a constant-size expander graph (found, say, by exhaustive search), and
iteratively increase the size of the graph while keeping its expansion larger than some universal constant.
The notion of expansion used by [RVW02] is in terms of the eigenvalue gap. To analyze the expansion of the
final graph, Reingold, Vadhan, and Wigderson [RVW02] bound the effect of the graph operations they used
(graph powering, graph tensoring, and zig-zag product) on the second largest eigenvalue of the adjacency
matrix of the resulting graph. The analysis of graph powering (where an edge of the kth power of a graph
G is a walk of length k in G) and graph tensoring (where an edge of the tensor product of G and H consists
of a pair of edges, one from G and one from H) is immediate from the basic linear algebra. The analysis of
the zig-zag product (a way to compose a graph G with a graph H so that the new graph has the degree of
H) is technically the most difficult part of the algebraic analysis of the expander construction in [RVW02].

In [ASS08], a graph replacement product (closely related to the zig-zag product) is analyzed in terms
of edge expansion, avoiding any mention of the eigenvalue gap. Since replacement product can be used
instead of zig-zag product in an iterative expander construction along the lines of [RVW02], this gives
a combinatorial analysis of the part of the expander construction. In order to make the entire analysis
combinatorial, it suffices to analyze graph powering and graph tensoring also in terms of edge expansion.
This is exactly what we do in the present paper.

Our combinatorial analysis of graph tensoring, though subtle, is not very difficult. For the analysis to
go through, it turns out necessary to work with graphs that have sufficiently many self-loops around every
vertex (at least half the degree). On the other hand, graph powering is much more difficult to analyze com-
binatorially. Fortunately, here we were able to use the result of Mihail [Mih89] who gave a combinatorial
analysis of the mixing time of random walks on expanders in terms of edge expansion. (Interestingly, for
her proof, she also had to work with graphs that have many self-loops around every vertex.) Finally, us-
ing Mihail’s bounds, we are able to conclude the analysis of graph powering in terms of edge expansion,
borrowing some ideas from [AC88].

1.2.2 Bounded arithmetic

There is a long history of formalizing complexity results in bounded arithmetic; indeed, this was one of the
main motivations for the definitions of bounded arithmetic. First, bounded arithmetic theories can capture
a range of complexity classes, from uniform AC0 and uniform NC1, to polynomial time, polynomial space
and exponential time (see [Bus86, CN10]). Second, via the Paris-Wilkie or Cook translations, proofs in
bounded arithmetic can be viewed as uniform families of propositional proofs. For this reason, a proof in
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bounded arithmetic can sometimes yield new propositional proofs.
There has been considerable progress in formalizing advanced results from computational complexity

in weak theories of bounded arithmetic; these include approximate counting, randomized computations, and
Arthur-Merlin games [Jeř07, Jeř09], Toda’s theorem [BKZ15], and the PCP theorem [Pic15]. The present
paper continues this tradition by formalizing the construction of expander graphs in the weak fragment
VNC1 which corresponds to NC1 computation.

There are a number of prior works which use bounded arithmetic to obtain upper bounds in proof com-
plexity. A big advantage of using bounded arithmetic is that the proofs can be considerably simplified. A
classic example is the work by Paris and Wilkie [PW81] who showed that the proofs of the weak pigeonhole
principle in I∆0 constructed by [PWW88] yield constant-depth, polynomial-size Frege proofs of the propo-
sitional translations of the weak pigeonhole principle (via the “Paris-Wilkie translation”). Lower-depth,
quasipolynomial-size Frege proofs were later given by [MPW02] via a proof of the weak pigeonhole princi-
ple in a different fragment of bounded arithmetic. Similarly, [Pud92] gave proofs of Ramsey’s theorem in S2,
and these translate into quasipolynomial-size, constant-depth Frege proofs. Recently, [BKZ15] used formal-
ization of Toda’s theorem in bounded arithmetic with modular counting quantifiers to show that constant-
depth AC0(p)-proofs, for p a prime, can be translated into depth-three propositional proofs, with formulas
being Boolean combinations of mod p gates of small conjunctions. Another classic example is Cook’s the-
orem that extended Frege proofs have polynomial size proofs of their partial consistency statements, which
was established via provability in PV [Coo75].

The present paper establishes a new result of this type via a Cook-style translation: together with earlier
work of Jeřábek [Jeř11a], our formalization of expander graphs in VNC1 implies that the monotone propo-
sitional proof system MLK polynomially simulates the proof system LK. We will use the system VNC1

defined by Cook and Morioka [CM05]. We conservatively extend VNC1 to facilitate reasoning about the
compositions of NC1 functions, which allows us to simplify the formalization of our recursive expander
construction.

Remainder of the paper Section 2 contains basic definitions. Our expander construction is defined in
Section 3. The analysis of the relevant graph operations in terms of edge expansion is given in Section 4.
In Section 5, we present a construction of bipartite expanders needed by Jeřábek [Jeř11b]. In Section 6, we
show that the existence of our expander graphs is provable in VNC1, thereby proving a formal version of
Theorem 1.1. We derive Theorem 1.2 in Section 7. Section 8 contains concluding remarks.

2 Preliminaries

2.1 Notation

We consider undirected graphs, possibly with parallel edges and self-loops. For an undirected graph G =
(V,E) on n nodes, we usually associate the vertex set V with the set [n] = {1, 2, . . . , n}, and denote an
edge i ∼ j between nodes i and j as {i, j} ∈ E. In this notation, we also allow self-loops {i, i} ∈ E.

The summation
∑

{i,j}∈E means the sum over all edges in E, including parallel edges and self-loops,
where each edge e ∈ E is considered exactly once. With some fixed ordering on the nodes of G, we can
sum over all its edges between distinct vertices (i.e., excluding self-loops), using the summation

∑
{i<j}∈E ,

that views each edge in E between nodes i and j as going from the smaller to the large vertex, allowing for
parallel edges (i.e., counting each edge from i to j with multiplicity).

4



The adjacencies of a d-regular graph G are given via its rotation map RotG so that, for vertex v of G
and an index i ∈ [d], we have RotG(v, i) = (w, j) if w is the ith neighbor of v, and v is the jth neighbor of
w; so, in particular, the rotation map induces some fixed numbering of neighbors of a given vertex.

For an n-vertex graph G, its adjacency matrix is an n × n matrix A′ whose (i, j)th entry contains the
number of edges between vertices i and j in G. For d-regular graphs G, it will be more convenient for us
to consider the normalized adjacency matrix defined as 1

d · A
′. Note that the normalized adjacency matrix

A of G is the probability transition matrix for a random walk on G. That is, if π is a probability distribution
on vertices of G, then Aπ is the probability distribution induced by one step of a random walk on G starting
from a vertex distributed according to π. It is also easy to see that Ak is the normalized adjacency matrix of
the graph Gk.

For a vector v = (v1, . . . , vn), its squared ℓ2-norm is ∥v∥2 =
∑n

i=1 v
2
i . For two vectors v = (v1, . . . , vn)

and w = (w1, . . . , wn), their inner product is ⟨v, w⟩ =
∑n

i=1 viwi. The Cauchy-Schwarz inequality asserts
that ⟨v, w⟩2 ≤ ∥v∥2 · ∥w∥2.

We think of vectors as column vectors, and so we use Av to denote the multiplication of a matrix A by
a column vector v. However, we will often abuse the notation and also write vA instead of the more proper
notation vTA (where vT denotes the transpose of v). It will be clear from the context whether a vector is a
column or row vector.

2.2 Expanders

For a graph G = (V,E) and a subset U ⊆ V of vertices, we denote by U the set V \ U , and by E(U,U)
the set of edges between U and U . The edge expansion of a d-regular graph G = (V,E) on n vertices is
defined as

min
∅̸=U⊂V, |U |≤n/2

|E(U,U)|
d · |U |

= min
∅̸=U⊂V

|E(U,U)|
d ·min{|U |, |U |}

. (1)

For a graph G = (V,E) and a subset U ⊆ V of vertices, we denote by ΓG(U) the set of all neighbors
of U in G, i.e.,

ΓG(U) = {v ∈ V | ∃u ∈ U, {u, v} ∈ E}.

We drop the subscriptG if the graphG is understood from the context. We denote by Γ+(U) the set Γ(U)\U
of new neighbors of U . The vertex expansion of a graph G = (V,E) on n vertices is defined as

min
∅≠U⊂V,|U |≤n/2

|Γ+(U)|
|U |

.

2.3 Bounded arithmetic theory VNC1

A number of bounded arithmetic theories have been proposed for uniform NC1: these include the the-
ory Alog of Clote and Takeuti [CT92], the theory AID of Arai [Ara00], the theory VNC1 of Cook and
Morioka [CM05], and a reformulated version of VNC1 by Cook and Nguyen [CN10]. Jeřábek [Jeř11a]
describes a theory VNC1

∗ for NC1 under a relaxed notion of uniformity for logarithmic depth circuits.
Cook and Morioka [CM05] define VNC1 using tree recursion (TreeRec). Cook and Nguyen [CN10]

give an equivalent definition of VNC1 using the Boolean formula value problem. It is easier to formalize the
expander graph construction with tree recursion, so we work with the version of VNC1 as defined by Cook
and Morioka [CM05].

The bounded arithmetic theory VNC1 is an extension of the theory V0 of bounded arithmetic; V0 corre-
sponds in power to AC0. V0 is a second-order (two-sorted) system of arithmetic, with two sorts of numbers
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(first-order objects) and strings (second order objects). Strings are viewed as members of {0, 1}∗. The no-
tation X(i), where X is a string and i ≥ 0 is a natural number, means the Boolean value of the ith entry in
string X . Sometimes i∈X is written instead of X(i). The constants 0 and 1 are number terms, and addition
and multiplication are number functions. Another term of type number is string length |X|, defined to be
the value of the largest element in X when viewed as a set plus 1. Addition and multiplication are defined
for numbers only, and equality is defined both for numbers and strings. The axioms of V0 consist of a fi-
nite set of “BASIC” open axioms defining simple properties of the constants, relation symbols and function
symbols, plus ΣB0 -Comprehension axioms

ΣB0 -COMP: ∃X≤y ∀z<y (X(z)↔ φ(z))

for any formula φ in ∆B
0 not containing X as a free variable, but possibly containing free variables other

than z. A ∆B
0 formula is one in which all quantifiers are bounded and which contains no second-order

quantifiers. We write (∃X≤y)ψ for ∃X((|X|≤y) ∧ ψ).
Let φ(i, x⃗, X⃗)[p, q] and ψ(i, x⃗, X⃗) be ΣB0 -formulas. The notation “[p, q]” indicates that p and q are

propositional variables that may occur as atomic subformulas in φ. The ΣB0 -TreeRec property [CM05] is
defined by the formula Bφ,ψ(a, x⃗, X⃗, Z):

(∀i<a)[(Z(a+i)↔ ψ(i)) ∧ (Z(i)↔ φ(i, x⃗, X⃗)[Z(2i+1), Z(2i+2)])].

For i < a, this states that Z(i) is a Boolean function of the two values Z(2i+ 1) and Z(2i+ 2). Thus Z(i)
is computed by a circuit which is a formed as a binary tree with gate types specified by φ and input values
specified by ψ. We can always assume w.l.o.g. that a = 2|a|−1; we call this the “depth condition” and it
means the binary tree is exactly balanced and of depth |a|. This tree is of course a fanin two Boolean circuit.
The type of the i-th gate is determined by φ(i, x⃗, X⃗) and thus is a ΣB0 -property of i and the inputs x⃗ and X⃗ .

The theory VNC1 is defined as V0 plus the ΣB0 -TreeRec axioms (∃Z≤2a)Bφ,ψ(a, x⃗, X⃗, Z) for all φ
and ψ in ΣB0 . The language of VNC1 can be extended by adding a new relation symbol Rφ,ψ(i, a, x⃗, X⃗) for
every formula Bφ,ψ. The defining axioms for Rφ,ψ are

Bφ,ψ(a, x⃗, X⃗, Rφ,ψ) and i≥2a→ ¬Rφ,ψ(i, a, x⃗, X⃗).

Note that the defining axioms uniquely specify all values of Rφ,ψ, provably in VNC1. Adding the predicate
symbols Rφ,ψ and their defining axioms to VNC1 yields the theory VNC1(TreeRec).1 As an extension by
definitions, this theory is conservative over VNC1.

A key property of VNC1 is that it can ΣB1 -define precisely the (uniform) NC1 functions; this is discussed
in Section 6.1.

2.4 LK and MLK proof systems

The system MLK of monotone reasoning in [AGP02] is a variant of Gentzen’s sequent calculus LK in which
all formulas are positive. An LK proof is a list of sequents of the form φ1, . . . , φn→ ψ1, . . . ψm, interpreted
as
∧n
i=1 φi →

∨m
j=1 ψj . The axioms are φ→ φ, Γ→ 1, and 0→ Γ, for an arbitrary list of formulas Γ.

Let φ,ψ denote formulas and Γ,∆ lists of formulas. The main derivation rules of LK are as follows.

• Left derivation rules: φ,ψ,Γ→∆

(φ ∧ ψ),Γ→∆

φ,Γ→∆ ψ,Γ′→∆′

(φ ∨ ψ),Γ,Γ′→∆,∆′
Γ→ φ,∆

¬φ,Γ→∆

1Cook and Morika [CM05] call this theory VNC1(LTreeRec).
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• Right derivation rules: Γ→∆, φ, ψ

Γ→∆, (φ ∨ ψ)
Γ→∆, φ Γ′→∆′, ψ

Γ,Γ′→∆,∆′, (φ ∧ ψ)
φ,Γ→∆

Γ→∆,¬φ

• Cut rule: Γ→∆, φ φ,Γ′→∆′

Γ,Γ′→∆,∆′

Additionally, LK includes structural rules on both sides of a sequent such as weakening, contraction of
duplicate formulas, and changing order of formulas on the same side. LK is equivalent in power to Frege
systems, and tree-like LK is equivalent to LK, thus VNC1 proofs translate into polynomial-size LK proofs
[Ara00, CM05, CN10].

In Monotone LK (MLK), all formulas in the proof are over the ∧,∨ basis with no ¬.

3 Constructing edge expanders

Here we define an iterative construction of a constant-degree edge expander family, and argue its edge
expansion properties using simple combinatorial tools. The simplicity of the analysis will allow us (in
Section 6) to formalize it within the system VNC1. The construction is a variant of the iterative construction
given by Reingold, Vadhan, and Wigderson [RVW02], using the graph operations described next.

3.1 Graph operations

We define the graph operations that we will use to construct expanders.

• [Powering] For a graph G = (V,E) and an integer k ≥ 1, the kth power Gk is the graph on vertices
V where for each walk of length k from a vertex u to a vertex v in G there is an edge u ∼ v in Gk.

If RotG is the rotation map of G, then the rotation map of Gk is

RotGk(v, (i1, . . . , ik)) = (w, (jk, . . . , j1)),

where w is the vertex reached from v in G by edges i1, . . . , ik using the rotation map RotG, and
(jk, . . . , j1) describes the same sequence of edges in reverse order from w’s point of view. For in-
stance, RotG(v, i1) = (v′, j1) for some v′ ∈ V , then RotG(v′, i2) = (v′′, j2) for some v′′, etc.

• [Tensor product] For graphs G1 = (V1, E1) and G2 = (V2, E2), their tensor product G1 ⊗G2 is the
graph on vertices V1 × V2, where for every pair of edges u ∼ u′ in G1 and v ∼ v′ in G2 there is an
edge (u, v) ∼ (u′, v′) in G1 ⊗G2.

IfRotG1 andRotG2 are the rotation maps ofG1 andG2, respectively, then the rotation map ofG1⊗G2

is
RotG1⊗G2((v, w), (i, j)) = ((v′, w′), (i′, j′)),

where RotG1(v, i) = (v′, i′) and RotG2(w, j) = (w′, j′).

• [Replacement product] For a D-regular graph G = (V,E) on n vertices and a d-regular graph
H = (V ′, E′) on D vertices, the replacement product G ◦ H is a 2d-regular graph on nD vertices
{(v, i) | v ∈ V, 1 ≤ i ≤ D}. The graph G ◦H has the edges {(v, i) ∼ (v, j) | v ∈ V, i ∼ j ∈ E′}
as well as, for every edge v ∼ w in G such that w is the ith neighbor of v, and v is the jth neighbor
of w (i.e., RotG(v, i) = (w, j)), G ◦H has d parallel edges between (v, i) and (w, j).
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If RotG and RotH are the rotation maps of G and H , respectively, then the rotation map of the G ◦H
is

RotG◦H((v, i), j) =

{
((v, i′), j′) for RotH(i, j) = (i′, j′) if j ≤ d
((w, i′), j) for RotG(v, i) = (w, i′) if j > d.

• [Adding self-loops] For a d-regular graphG = (V,E), the graph⃝G is the 2d-regular graph obtained
from G by adding d parallel self-loops around every vertex of G; note that we count every self-loop
around vertex v as one edge v ∼ v.

If RotG is the rotation map of G, then the rotation map of⃝G is

Rot⃝G(v, i) =

{
RotG(v, i) if i ≤ d
(v, i) if i > d.

3.2 Effect of graph operations on edge expansion

For the operation of adding self-loops, the following lemma is obvious.

Lemma 3.1 (Self-loops). If G is a d-regular graph with edge expansion ϵ, then the graph⃝G is 2d-regular
with edge expansion ϵ/2.

For the remaining graph operations, we will give in Sections 4.1, 4.2, and 4.3, respectively, the combi-
natorial proofs (formalizable in VNC1) of the following three lemmas.

Lemma 3.2 (Powering). Let G be a d-regular graph with edge expansion ϵ. For every integer k ≥ 1, the
powered graph (⃝G)k has edge expansion at least

1

2
·

(
1−

(
1− ϵ2

4

)k/2)
.

Lemma 3.3 (Tensoring). Let G = (VG, EG) be a dG-regular graph with dG/2 self-loops at every vertex
and H = (VH , EH) be a dH -regular graph with dH/2 self-loops at every vertex. If G has edge expansion
ϵG and H has edge expansion ϵH , then the tensor product graph G ⊗ H has edge expansion at least
min{ϵG, ϵH}/50.

Lemma 3.4 (Replacement [ASS08]). Let G = (VG, EG) be a D-regular graph on n vertices, and let
H = (VH , EH) be a d-regular graph on D vertices. If G has edge expansion ϵG and H has edge expansion
ϵH , then G ◦H has edge expansion at least ϵ2GϵH/48.

3.3 Construction

With the analysis of graph operations in hand, we can now present our iterative construction of edge ex-
panders that will be shown formalizable in VNC1. Let G0 be a (2d)-regular graph of constant size, where
d is some constant. Let ϵ0 be the edge expansion of G0 such that ϵ0 ≥ 1/1296. Such a graph G0 exists
(by a counting argument) and can be found in constant time, using exhaustive search. Given G0, we will
define a bigger graph G1 that is also (2d)-regular and has edge expansion at least 1/1296. In general, given
a (2d)-regular graph Gi with edge expansion at least 1/1296, we define Gi+1 as follows:

Gi+1 = ((⃝((⃝Gi)⊗ (⃝Gi)))c) ◦H, (2)
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where c is some constant to be specified later, and H is a d-regular expander graph on (2(4d)2)c vertices,
with edge expansion at least 1/3. Again, such a graph can be found using exhaustive search.

Theorem 3.5. There is a constant c such that the graph Gi+1 = (Vi+1, Ei+1) defined from Gi = (Vi, Ei)
as above has the following parameters:

• |Vi+1| = |Vi|2 ·D, where D = (2(4d)2)c,

• the degree of Gi+1 is 2d,

• the edge expansion of Gi+1 is at least 1/1296.

Proof. The bounds on the size and the degree of Gi+1 follow easily from the definitions of the graph oper-
ations used to define Gi+1 from Gi. Let ϵ ≥ 1/1296 be the edge expansion of Gi. First, by Lemma 3.1, the
edge expansion of⃝Gi is at least ϵ/2. By Lemma 3.3, the edge expansion of G′ = (⃝Gi) ⊗ (⃝Gi) is at
least ϵ′ = ϵ/100. By Lemma 3.2, the kth power of the graph⃝G′ has edge expansion at least

1

2
·

(
1−

(
1− ϵ2

400

)k/2)
.

Choose k to be a sufficiently large constant c so that the edge expansion of the cth power of our graph, as
given by the formula above, is at least 1/3. Finally, by Lemma 3.4, the edge expansion of the graph Gi+1 is
at least (1/3)3/48 = 1/1296. This completes the proof.

A simple calculation shows that |Vi| is equal to (D · |V0|)2
i
/D, so the size of theGi grows rapidly with i.

This rapid growth in size helps make it possible to give the explicit constructions of the expanders Gi of
Section 3.4 and to formalize the construction in VNC1. However, it does make it more difficult to construct
an expander of a particular sizeM . Therefore, we give also a modified construction of expanders that allows
explicit constructions of edge expanders G̃i = (Ṽi, Ẽi) with |Ṽi| = 2i, and more generally of edge expanders
on exactly M vertices for arbitrary M .

Let c be a constant. Choose the constant d to be a sufficiently large power of two, d = 2ℓ, so that there
is a d-regular graph H on (2(4d)2)c vertices with edge expansion at least 1/3 and so that for all i ≤ cℓ+ 7,
there are 2d-regular graphs G̃i on 2i vertices with edge expansion at least 1/1296. These graphs H and G̃i
can be found by exhaustive search. We construct expander graphs G̃i with edge expansion ≥ 1/1296. For
i > 2cℓ+ 7, let i′ = ⌊(i−2cℓ−5)/2⌋ and i′′ = ⌈(i−2cℓ−5)/2⌉, so i = i′ + i′′ + 2cℓ+ 5. Define

G̃i = ((⃝((⃝G̃i′)⊗ (⃝G̃i′′)))c) ◦H. (3)

Theorem 3.6. There is a constant c such that the graph G̃i = (Ṽi, Ẽi) defined as above has the following
parameters:

• |Ṽi| = 2i,

• the degree of G̃i is 2d,

• the edge expansion of G̃i is at least 1/1296.

Proof. The proof is by induction on i. Assume the induction hypothesis holds for G̃i′ and G̃i′′ . The graph
operations used to define G̃i imply that

|Ṽi| = (2(4d)2)c · |Vi′ | · |Vi′′ | = 25d2c · |Vi′ | · |Vi′′ | = 2522cℓ2i
′
2i

′′
= 2i.
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They also imply that G̃i is 2d-regular. The induction hypotheses and Lemma 3.1 imply that ⃝G̃i′ and
⃝G̃i′′ each have edge expansion at least ϵ/2 for ϵ = 1/1296. Now, the same calculation as in the proof of
Theorem 3.5 establishes that G̃i has edge expansion at least 1/1296.

Now that we have constructed edge expanders of sizes 2i, it is easy to obtain an edge expander G̃ of
a given arbitrary size M . For this, choose i so that 2i−1 < M ≤ 2i. Partition the vertices of G̃i into M
disjoint subsets each of size 1 or 2. Define the graph G̃ by collapsing each of these subsets of vertices of G̃i
into a single vertex of G̃, and inheriting the edges from the all of the nodes in the subset.

Clearly, G̃ has exactlyM vertices. Since G̃i has degree 2d, the degree of G̃ is at most 4d; more precisely,
each vertex has degree 2d or 4d. By adding extra self-loops, we get a new graph that is 4d-regular. Let us
call this new 4d-regular graph by the same name G̃. The next claim shows that G̃ has expansion at least ϵ/2
where ϵ = 1/1296.

Proposition 3.7. For every set S of nodes in G̃, the number of edges in G̃ between S and S is

|E(S, S)| ≥ ϵ · (2d) ·min{|S|, |S|}.

Proof. Let S′ be the set of vertices in G̃i corresponding to the set S in G̃. The number of edges leav-
ing S in G̃ is exactly the number of edges leaving S′ in G̃i. As G̃i has edge expansion at least ϵ, and
min{|S′|, |S′|} ≥ min{|S|, |S|}, the claim follows.

3.4 Explicitness of the construction

The next theorem justifies the claim that our iterative construction of Gk is fully explicit, by describing
algorithms for the rotation maps of Gk. The input to the algorithm is a pair (v, i) specifying a vertex and an
edge in Gk; the output is the value of the rotation map. The value k is allowed to vary, and can readily be
computed from v.

Theorem 3.8. Fix constants c and d as above. There is a deterministic polynomial-time algorithm that,
given the name of a vertex v (in binary) of Gk and an index i ∈ [2d], outputs the value RotGk

(v, i).
Moreover, there is an alternating linear time algorithm which accepts the graph of Gk; namely, it accepts
exactly the triples of the form ⟨v, i, RotGk

(v, i)⟩.

It may be unexpected that we discuss alternating linear time, but the point is that this is what we need
for the formalization of our arguments in the bounded arithmetic theory VNC1 in Section 6. For that, the
important thing is the computational complexity ofRotGk

as a function of the size |Vk| of the graph, whereas
Theorem 3.8 expresses runtimes in terms of the size of the name of the vertex. But, the alternating linear
time algorithm of Theorem 3.8 will be viewed as an alternating logarithmic time algorithm for purposes of
formalization in VNC1. (In the same setting, the polynomial time algorithm would be a polylogarithmic
time algorithm, and it is open whether such algorithms can in general be formalized in VNC1.)

Proof of Theorem 3.8. The construction of the polynomial algorithm is very simple. We start with a fixed
rotation map RotG0 for G0 = (V0, E0) on n0 = |V0| vertices, and a fixed d-regular graph H with rotation
mapRotH . Computing RotGk

requires either an evaluation ofRotG0 or RotH or at most 2c many recursive
calls to RotGk−1

. If v is an ℓ-bit description of a vertex in Gk, we have that Gk has approximately 2ℓ

vertices, and that k ≤ log ℓ. It follows that the recursive calls are nested to depth ≤ log ℓ, so the overall
runtime of the algorithm is polynomial.
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To describe the alternating algorithm, we need to describe the representation of vertices of Gk more
carefully. For the purpose of giving a recursive algorithm, it is slightly easier to give an algorithm for the
rotation map RotG′

k
of the graph G′

k = ⃝Gk. This suffices to prove the theorem, since RotGk
and RotG′

k

have the same vertices and RotGk
is just a restriction of RotG′

k
.

We have G′
k equal to the (4d)-regular graph ⃝((⃝(G′

k−1 ⊗ G′
k−1))

c ◦ H). A vertex of H is named
by a binary string of length ℓh = ⌈log |H|⌉. A vertex v of G′

k will be named by a string of fixed length
ℓk. For k = 0, a vertex is named using ℓ0 = ⌈log |V0|⌉ bits. For k ≥ 1, a vertex v of G′

k is named by a
concatenation v1v2i of (names of) vertices v1 and v2 of G′

k−1 and a vertex i of H . Thus, ℓk = 2ℓk−1 + ℓh,
so ℓk = 2kℓ0 + (2k−1)ℓh.

The alternating linear time algorithm for the rotation map RotG′
k

takes as input two names v1v2i and
v′1v

′
2i

′ and values j, j′ < d, and should accept if and only if

RotG′
k
(v1v2i, j) = (v′1v

′
2i

′, j′).

The algorithm works as follows.

First, if either j ≥ d or j′ ≥ d, then it accepts iff v′1v
′
2i

′ = v1v2i and j = j′ (since
j ≥ d indicates a self-loop of G′

k). Otherwise, by the definition of replacement product,
the vertices i and i′ in H indicate edges to traverse in (⃝(G′

k−1 ⊗ G′
k−1))

c. We have that
i < (2(4d)2)c encodes a sequence of values ⟨i1, . . . , ic⟩, with each is < 2(4d)2 indicat-
ing an edge of ⃝(G′

k−1 ⊗ G′
k−1). Without loss of generality, these edges are encoded with

is = αs(4d)
2 + βs(4d) + γs with βs, γs < 4d: when αs = 1, the edge is a self-loop, and other-

wise αs = 0 and βs and γs encode edges in the first and second components G′
k−1 of the tensor

product. Likewise, i′ encodes a sequence ⟨i′c, . . . , i′1⟩, with each i′s = α′
s(4d)

2 + β′s(4d) + γ′s.
The algorithm nondeterministically guesses the values i1, . . . , ic, the values αk, βk, γk, the
values i′c, . . . , i

′
1, the values α′

k, β
′
k, γ

′
k, and finally values w1

0=v1, w
1
2, . . . , w

1
c−1, w

1
c=v

′
1 and

w2
0=v2, w

2
2, . . . , w

2
c−1, w

2
c=v

′
2, where each w1

s , w
2
s is a ℓk−1 bit string, intended to name a

vertex of G′
k. The intent is that the pairs w1

s , w
2
s are the members of the tensor product

⃝(G′
k−1 ⊗ G′

k−1) which are obtained by traversing the c edges encoded by i, and in reverse
order by i′. The algorithm then branches universally to check one of the following conditions:

a. The guessed sequences i1, . . . , ic and i′c, . . . , i
′
1 are the values actually encoded by i and i′.2

b. Universally choose a value s and verify (using constantly many alternations) that is =
αs(4d)

2 + βs(4d) + γs and that i′s = α′
s(4d)

2 + β′s(4d) + γ′s.
c. Universally choose a single value s ∈ {1, 2, . . . c}. If αs = 1, then verify that α′

s = 1
and β′s = β2 and γ′s = γs and that w1

s = w1
s+1 and w2

s = w2
s+1. (This corresponds to

traversing a self-loop in the tensor product.) Otherwise, universally choose to do one of:
i. Verify that RotG′

k−1
(ws, βs) = (ws+1, β

′
s), or

ii. Verify that RotG′
k−1

(w′
s, γs) = (w′

s+1, γ
′
s)

The algorithm accepts iff the check a.-c. accepts.

To analyze the runtime of the algorithm, note that it runs for linear time making constantly many alter-
nations, and then makes one recursive call to G′

k−1. The recursive call uses a parameter less than half the
length of the first input. Thus, the overall runtime is linear. Moreover, since k = O(log n), the algorithm
makes only O(log n) many alternations.

2If i and i′ encode the sequences by using a base (2(4d)2)c representation, this is verifiable in linear time with a constant
number of alternations [Lip78]. With this encoding, the correctness is ∆0-definable as is needed later for formalization in VNC1.
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Remark 3.9. Theorem 3.8 also holds for the graphs G̃k. The algorithms are almost identical to those given
above for Gk, and we leave the details to the reader. The principal difference is that the alternating linear
time algorithm for recognizing the graph of G̃k may make a (single) recursive call to either G̃k′ or G̃k′′
where k′ = ⌊(k−2cℓ−5)/2⌋ and k′′ = ⌈(k−2cℓ−5)/2⌉.

The recursive algorithm is actually a little simpler than it appears at first glance. The graph G̃k is
defined recursively in terms of the two graphs G̃k′ and G̃k′′ , with k′′ equal to either k′ or k′ + 1. In
the next round of the iteration, both of G̃k′ and G̃k′′ can be defined recursively from G̃j′ and G̃j′′ where
j′ = ⌊(k′−2cℓ−5)/2⌋ and j′′ = ⌈(k′′−2cℓ−5)/2⌉, i.e., j′′ is equal to either j′ or j′ + 1. More generally,
iterating the levels of recursion only requires computing pairs of graphs G̃j′ and G̃j′′ with j′′ equal to either
j′ or j′ + 1. Although it is not strictly needed, this property of the recursive definition G̃k will be used to
simplify the proof of Theorem 6.9 that VNC1 can prove the existence of expander graphs of arbitrary size.

4 Effect of graph operations on edge expansion: Proofs

In this section, we analyze how graph operations used in the recursive construction of Theorem 3.5 affect
edge expansion. We analyze powering (in Section 4.1), tensor product (in Section 4.2), and replacement
product (in Section 4.3).

4.1 Graph powering

The main result of this subsection is the following.

Lemma 4.1. LetG be a d-regular graph with edge expansion ϵ. For every integer k ≥ 1, the powered graph
(⃝G)k has edge expansion at least

1

2
·

(
1−

(
1− ϵ2

4

)k/2)
.

Our analysis will be done in two stages. First, we use the result of Mihail [Mih89] showing that a random
k-step walk on an edge expander⃝G quickly converges to the uniform distribution over the vertices of⃝G.
Then we show that such convergence to the uniform distribution implies good edge expansion of (⃝G)k,
using some ideas from [AC88].

4.1.1 Edge expansion implies fast mixing

To see why edge expansion is related to the mixing time, consider the following experiment. LetG = (V,E)
be a graph on n vertices, and let U ⊂ V be a subset of at most n/2 vertices. Pick a vertex u uniformly at
random from U and then pick an edge (u, v) incident to u uniformly at random. Clearly, the probability that
v is outside of U is exactly the edge expansion of U in G. Similarly, if we pick a random vertex u from
U and then instead of performing a single step of a random walk we perform k steps, then the probability
that we end up at a vertex outside of U is exactly the edge expansion of U in Gk. It is well known that the
probability distribution induced by taking a random k-step walk on a d-regular graphG tends to the uniform
distribution on the vertices of G; the mixing time bounds the distance from the uniform distribution in terms
of the number of steps k. Assuming k is large enough, we get that the edge expansion of Gk is close to
|U |/|V |, which is at least 1/2 since |U | ≤ |V |/2. The closeness of the edge expansion of Gk to 1/2 is
bounded by a function of the mixing time of G.
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Mihail [Mih89] gave a combinatorial proof of the following result showing the exponentially fast con-
vergence of a random walk on a regular graph to the uniform distribution.

Lemma 4.2 ([Mih89]). Let G be a d-regular graph with edge expansion ϵ. Let A be the normalized ad-
jacency matrix of G′ = ⃝G. Let π be any initial distribution on vertices of G′, and let u be the uniform
distribution on vertices of G′. Then

∥Akπ − u∥2 ≤ (1− (ϵ2/4))k · ∥π − u∥2.

Proof of Lemma 4.2. Let e = π − u be the discrepancy vector between the current probability distribution
π and the uniform distribution u. After one step on G, the discrepancy vector becomes e′ = Aπ − u =
Aπ −Au = Ae. The proof proceeds in two stages:

1. Show that ∥e∥2 − ∥e′∥2 ≥ (2d)−1 ·
∑

{i,j}∈E(ei − ej)2.

2. Use the edge expansion of G to show that there are many edges {i, j} in G where ei and ej are
significantly different, implying that ∥e′∥2 ≪ ∥e∥2.

The analysis of a k-step walk follows by induction on k.
For stage 1, we prove the following.

Claim 4.3. Let G = (V,E) be a d-regular graph on V = {1, . . . , n}. Let A be the normalized adjacency
matrix for the graph G′ =⃝G. For any f ∈ Rn, we have

∥f∥2 − ∥Af∥2 ≥ 1

2d
·
∑

{i,j}∈E

(fi − fj)2.

Proof of Claim 4.3. For each i ∈ V , we have

(Af)i =
fi
2
+

∑
j:{i,j}∈E

fj
2d

=
∑

j:{i,j}∈E

fi + fj
2d

.

Using this, we get

∥Af∥2 =
∑
i∈V

((Af)i)
2 =

∑
i∈V

1

d
·
∑

j:{i,j}∈E

fi + fj
2

2

(4)

≤
∑
i∈V

1

d
·
∑

j:{i,j}∈E

(
fi + fj

2

)2
 [Cauchy-Schwarz

applied |V | times]

=
1

2d
·
∑

{i,j}∈E

(fi + fj)
2 .

Since

∥f∥2 =
∑
i∈V

f2i =
∑

{i,j}∈E

f2i + f2j
d

,

we get

∥f∥2 − ∥Af∥2 =
1

d
·
∑

{i,j}∈E

(
f2i + f2j −

(fi + fj)
2

2

)
=

1

2d

∑
{i,j}∈E

(fi − fj)2,

as required.
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Next, for stage 2, we prove the following two claims.

Claim 4.4. Let G = (V,E) be a d-regular graph on n vertices with edge expansion ϵ. For any h : V → R,
let the vertices in V = {1, . . . , n} be ordered so that h(1) ≥ h(2) ≥ · · · ≥ h(n). Then∑

{i,j}∈E

|h(i)− h(j)| ≥ (ϵd) ·
∑
i∈V
|h(i)− h(⌊n/2⌋)| .

Proof of Claim 4.4. For simplicity, assume n is even. Define h0(i) = h(i)− h(n/2). We have∑
{i,j}∈E

|h(i)− h(j)| =
∑

{i,j}∈E

|h0(i)− h0(j)| [definition of h0]

=
∑

{i<j}∈E

(h0(i)− h0(j)) [ordering of h0(i)’s]

=
∑

{i<j}∈E

j−1∑
k=i

(h0(k)− h0(k + 1)) [telescoping sum]

=
n−1∑
k=1

∑
{i≤k<j}∈E

(h0(k)− h0(k + 1)) [change order of summation]

=

n−1∑
k=1

(h0(k)− h0(k + 1)) ·
∑

{i≤k<j}∈E

1 [re-arranging]

=

n−1∑
k=1

(h0(k)− h0(k + 1)) · |E([k], [k])|. [definition of E([k], [k])

We split the last summation over k into two sums, over 1 ≤ k ≤ (n/2)− 1 and over n/2 ≤ k ≤ n− 1, and
use the edge expansion of G to lower-bound |E([k], [k])| by ϵdk and ϵd(n− k), respectively. We get

∑
{i,j}∈E

|h(i)− h(j)| ≥
n/2−1∑
k=1

(h0(k)− h0(k + 1)) · (ϵdk) +
n−1∑
k=n/2

(h0(k)− h0(k + 1)) · (ϵd(n− k))

= (ϵd) ·

n/2−1∑
k=1

k · (h0(k)− h0(k + 1)) +

n−1∑
k=n/2

(n− k) · (h0(k)− h0(k + 1))


= (ϵd) ·

n/2−1∑
k=1

h0(k) +

n∑
k=n/2

(−h0(k))

 [since h0(n/2) = 0]

= (ϵd) ·

n/2∑
k=1

|h0(k)|+
n−1∑

k=n/2+1

|h0(k)|

 ,

where the last equality is due to the fact that h0(k) ≥ 0 for k ≤ n/2, and h0(k) ≤ 0 for k > n/2.

As a corollary, we get the following.
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Claim 4.5. Let G = (V,E) be a d-regular graph on n vertices with edge expansion ϵ. For any g : V → R,
let the vertices in V = {1, . . . , n} be ordered so that g(1) ≥ g(2) ≥ · · · ≥ g(n). If g(⌊n/2⌋) = 0, then∑

{i,j}∈E

(g(i)− g(j))2 ≥ ϵ2d

2
·
∑
i∈V

g(i)2.

Proof of Claim 4.5. We define new functions g+, g− : V → R by g+(v) = max{g(v), 0} and g−(v) =
min{g(v), 0}, for all v ∈ V . Note that g+(i) = g(i) for i ≤ ⌊n/2⌋ and is 0 elsewhere, and g−(i) = g(i)
for i > ⌊n/2⌋ and is 0 elsewhere. It follows that∑

i∈V
g+(i)2 +

∑
i∈V

g−(i)2 =
∑
i∈V

g(i)2. (5)

Clearly, we have∑
{i,j}∈E

(g(i)− g(j))2 ≥
∑

{i,j}∈E

(
g+(i)− g+(j)

)2
+

∑
{i,j}∈E

(
g−(i)− g−(j)

)2
. (6)

We will show that the statement of the claim holds for both g+ and g−, which, by (5) and (6), will imply the
claim also for the case of g. We consider the case of g+ first; the case of g− is similar.

Observe that, for every f : V → R, we have that∑
i∈V

f(i)2 =
∑

{i,j}∈E

f(i)2 + f(j)2

d
≥ 1

2d
·
∑

{i,j}∈E

(f(i) + f(j))2,

where we used the simple fact that a2 + b2 ≥ (a+ b)2/2, for all a, b ∈ R. Applying this to g+, we get∑
{i,j}∈E

(g+(i)− g+(j))2

≥

 ∑
{i<j}∈E

(g+(i)− g+(j))2
 ·

 ∑
{i<j}∈E

(g+(i) + g+(j))2

 ·((2d) ·∑
i∈V

g+(i)2

)−1

≥

 ∑
{i<j}∈E

(g+(i)2 − g+(j)2)

2

·

(
(2d) ·

∑
i∈V

g+(i)2

)−1

,

where the last inequality is by Cauchy-Schwarz. Since g+(i)2 ≥ g+(j)2 for i < j, we can replace (g+(i)2−
g+(j)2) inside the first factor above with |g+(i)2 − g+(j)2|, and then apply Claim 4.4 with h(i) = g+(i)2.
We get that

∑
{i,j}∈E

(g+(i)− g+(j))2 ≥

 ∑
{i<j}∈E

|g+(i)2 − g+(j)2|

2

·

(
(2d) ·

∑
i∈V

g+(i)2

)−1

≥ (ϵd)2 ·

(∑
i∈V

g+(i)2

)2

·

(
(2d) ·

∑
i∈V

g+(i)2

)−1

≥ ϵ2d

2
·
∑
i∈V

g+(i)2,
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which means that the required claim holds for g+.
Finally, for the case of g−, we use the same reasoning as above applied to

∑
{i<j}∈E(g

−(j)− g−(i))2,
and using the fact that g−(j)2 ≥ g−(i)2 for i < j. Reversing the order of vertices of V (so that node n
becomes the first node, node n− 1 the second node, and so on), and applying Claim 4.4 with h(i) = g−(i)2

(for the new vertex order), we get the claim for g− as well.

We are now ready to finish the proof of the lemma. Let e = π − u. Since Au = u, we get that
Aπ − u = A(π − u) = Ae. We have by Claim 4.3 that

∥e∥2 − ∥Ae∥2 ≥ 1

2d
·
∑

{i,j}∈E

(ei − ej)2. (7)

Order the nodes in V so that e1 ≥ e2 ≥ · · · ≥ en. For each i ∈ V , define g(i) = ei−em, wherem = ⌊n/2⌋.
By Claim 4.5 applied to G with the function g, we get

∑
{i,j}∈E

(g(i)− g(j))2 ≥ ϵ2d

2
·
∑
i∈V

g(i)2. (8)

Since (ei − ej)2 = (g(i)− g(j))2, we conclude by Eqs. (7) and (8) that

∥e∥2 − ∥Ae∥2 ≥ 1

2d
· ϵ

2d

2
·
∑
i∈V

g(i)2 =
ϵ2

4
·
∑
i∈V

g(i)2. (9)

Finally, we have

∑
i∈V

g(i)2 =
∑
i∈V

(ei − em)2 =

(
n∑
i=1

e2i

)
+ n · e2m − (2em) ·

n∑
i=1

ei ≥ ∥e∥2,

where the last inequality is because
∑

i∈V ei =
∑

i∈V πi −
∑

i∈V ui = 0 and ne2m ≥ 0. By Eq. 9, this
implies that

∥Ae∥2 ≤ (1− ϵ2/4) · ∥e∥2. (10)

Applying Eq. (10) inductively, we get that

∥Ake∥2 ≤ (1− ϵ2/4)k · ∥e∥2,

as required.

4.1.2 Mixing implies edge expansion

Let G′ = ⃝G, and let G′′ = (G′)k. Next we relate the edge expansion of G′′ to the mixing time of a
k-step random walk on G′. Let u denote the uniform distribution on the vertices of G′′. For a subset U of
vertices of G′′, we denote by uU the probability distribution that is uniform over U , i.e., every vertex in U
gets weight 1/|U |, and every vertex outside of U gets weight 0. We denote by χU the characteristic vector
of the set U (whose ith entry is 1 if i ∈ U , and is 0 otherwise).
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Lemma 4.6. Suppose G′′ = (V,E) is a regular graph on n vertices, with normalized adjacency matrix A
such that for some δ > 0 the following holds: for every subset U ⊂ V of size at most |V |/2,

∥AuU − u∥2 ≤ δ · ∥uU − u∥2.

Then G′′ has edge expansion at least (1−
√
δ)/2.

Proof. The edge expansion in G′′ of a given subset U ⊂ V of size at most n/2 is exactly

Prw∈U,{w,w′}∈E
[
w′ ∈ U

]
= ⟨χU , AuU ⟩.

Using the decomposition uU = u+ (uU − u), and observing that Au = u for a regular graph, we get

⟨χU , AuU ⟩ = ⟨χU , Au⟩+ ⟨χU , A(uU − u)⟩
= |U |/n+ ⟨χU , A(uU − u)⟩.

Next we upper-bound |⟨χU , A(uU − u)⟩|, using the Cauchy-Schwarz inequality:

Claim 4.7. We have ∣∣⟨χU , A(uU − u)⟩∣∣ ≤ √δ · |U |n
.

Proof of Claim 4.7. To simplify the calculations, we use the following simple fact. For any probability
distributions π1 and π2 over [n], any vector w ∈ Rn, and any C ∈ R, ⟨w, π1 − π2⟩ = ⟨w − Cu, π1 − π2⟩.
(For the proof, observe that C · ⟨u, π1 − π2⟩ = 0, since the vectors π1 and π2 add up to 1.)

By this fact and Cauchy-Schwarz, we get for any C ∈ R that∣∣⟨χU , A(uU − u)⟩∣∣ =
∣∣⟨χU − Cu,A(uU − u)⟩∣∣

≤
∥∥χU − Cu∥∥ · ∥A(uU − u)∥ .

Setting C = |U |, we compute the square of the first factor as follows:∥∥χU − Cu∥∥2 =
|U | · (n− C)2

n2
+
|U | · C2

n2
=
|U | · |U |

n

By the assumption of the lemma, we upper-bound the second factor as follows:

∥A(uU − u)∥ ≤
√
δ · ∥uU − u∥ =

√
δ ·

√
|U |

n · |U |
.

Overall, we obtain that

∣∣⟨χU , A(uU − u)⟩∣∣ ≤
√
|U | · |U |

n

δ · |U |
n · |U |

=

√
δ · |U |
n

,

which proves Claim 4.7.

It follows from Claim 4.7 that
⟨
χU , AuU

⟩
≥
(
|U |/n

)
· (1−

√
δ) ≥ 1

2 · (1−
√
δ), since |U | ≥ n/2.

We now give the proof of Lemma 4.1.

Proof of Lemma 4.1. By Lemma 4.2, we get for the normalized adjacency matrix A of the graph⃝G and
for every subset U ⊂ V that

∥AkuU − u∥2 ≤ (1− (ϵ2/4))k · ∥uU − u∥2.

Applying Lemma 4.6 concludes the proof.
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Constructivity. The proof of Lemma 4.1 provides an efficient (uniform NC1) algorithm for the contrapos-
itive: Given a non-expanding set U in the graph (⃝G)k, for some constant k > 0, the algorithm outputs a
set U ′ that is non-expanding in the graph G. First, for π = uU (the uniform distribution over the set U ), the
lack of edge expansion for U in (⃝G)k implies by Lemma 4.6 that

∥Akπ − u∥2 > δk · ∥π − u∥2,

for δ = 1 − (ϵ2/4), where A is the normalized adjacency matrix of the graph⃝G. There must exist an i,
1 ≤ i ≤ k, such that

∥Aiπ − u∥2 > δ · ∥Ai−1π − u∥2.

Let π′ = Ai−1π. Order the nodes in V so that π′(1) ≥ π′(2) ≥ · · · ≥ π′(n). For some 1 ≤ ℓ ≤ n, we get
that a set [ℓ], or its complement, is less than ϵ edge-expanding in G.

Finding a good 1 ≤ i < k and the distribution π′ involves powering the matrix A up to the constant
power k; this is computable in NC1. Sorting the nodes according to π′ can also be done in NC1. Finally,
there are at most n− 1 candidate sets [1], [2], . . . , [n− 1] (according to the ordering given by π′) to test for
poor edge expansion in G; these tests can be done in parallel, using an NC1 circuit for each test.

Remark 4.8. The bound on the edge expansion of Gk in terms of the edge expansion of G that we get in
Lemma 4.1 is almost the same as the one would get using the following well-known connection between
edge expansion and the eigenvalue gap. For a regular graph G with a normalized adjacency matrix A and
the second largest eigenvalue λ2 of A, the edge expansion ϵ of G satisfies the Cheeger inequalities [Alo86,
AM85, Dod84]:

(1− λ2)/2 ≤ ϵ ≤
√

2(1− λ2).

Using the left inequality, we can lower-bound the edge expansion of Gk by (1 − λk2)/2. Using the right
inequality, we get λ2 ≤ (1− ϵ2/2). So, the edge expansion of Gk is at least (1/2) · (1− (1− ϵ2/2)k).

4.2 Tensor product

Here we will show that the tensor product of two regular graphs G = (VG, EG) and H = (VH , EH) with
edge expansions ϵG and ϵH , respectively, results in a graph with the edge expansion Ω(min{ϵG, ϵH}). More
precisely, we prove the following result (not trying to optimize the constants).

Lemma 4.9. Let G = (VG, EG) be a dG-regular graph with dG/2 self-loops at every vertex and H =
(VH , EH) be a dH -regular graph with dH/2 self-loops at every vertex. If G has edge expansion ϵG and H
has edge expansion ϵH , then the tensor product graph G⊗H has edge expansion at least min{ϵG, ϵH}/50.

Before proving the lemma, we give some intuition. Suppose G is a dG-regular graph on nG vertices,
and H is dH -regular graph on nH vertices. As a “warm-up”, consider the special case of a subset of vertices
S of the tensor product G ⊗H such that S = A × B. Moreover, assume that |B| < nH/2. Then at least
ϵHdH |B| edges are leaving the set B in graph H . Each of these edges paired up with an edge from A will
be an edge leaving A × B in G ⊗ H , yielding a total of at least ϵHdH |B|dG|A| edges leaving A × B.
After normalization (division by dGdH |A||B|), this yields edge expansion ϵH from the set S. In the case,
B is larger than nH/2, but A is smaller than nG/2, we can use the edge expansion of A, to obtain the edge
expansion at least ϵG from S.

For general sets S of vertices inG⊗H , we consider the characteristic matrix of S, which is an nG×nH
0-1 matrix with (i, j)th entry being 1 iff (i, j) ∈ S. We then argue that it is possible to remove some rows or

18



some columns of this matrix so that the resulting matrix has a constant fraction of 1’s of the original matrix
(i.e., we removed only a constant fraction of vertices from S), and either every row or every column has at
most some constant fraction of 1’s.

Suppose we have the former case (the other case is treated similarly). That is, we removed some rows
of the characteristic matrix of S to obtain a new subset S′ that has the form {a1} × B1 ∪ · · · ∪ {ak} × Bk,
where ai ∈ VG and Bi ⊂ VH , and moreover, each |Bi| is at most some constant fraction of nH . Then for
each Bi, we can use edge expansion of H to argue that ϵH fraction of edges from Bi are leaving Bi. Ideally,
we would like then to argue that each such edge, when paired up with any edge from vertex ai, will leave
S′. This may not be true, however, as such an edge may go to some vertex in {aj}×Bj . To circumvent this
problem, we use the assumption that both of our graphs G and H have many self-loops around every vertex
(say, half of the degree). In that case, it is easy to argue that each edge leaving Bi in H , when paired up with
any self-loop around ai, yields an edge of G⊗H that leaves S. Since the number of self-loops around ai is
at least half the degree of G, this yields edge expansion at least ϵH/2 from each set {ai} × Bi. Since S′ is
the union of the pairwise disjoint such sets, we get the edge expansion at least ϵH/2 from S′. Finally, since
S′ contains a constant fraction of vertices from S, we conclude that the edge expansion from S is at least
Ω(ϵH).

We now give the formal proof. We start with a simple averaging result that will allow us to argue the
existence of a subset S′ of S with required properties.

Claim 4.10. Let A be an n×m 0-1 matrix with δ fraction of ones, for some 0 ≤ δ ≤ 1/2. Then either there
is a set of rows containing a total of at least (1/5)δnm ones so that each row contains less than (5/6)m
ones, or there is a set of columns containing at least (1/5)δnm ones so that each column contains less than
(5/6)n ones.

Proof. Let a be the fraction of rows containing at least 5/6 fraction of ones each, and let b be the fraction of
columns containing at least 5/6 fraction of ones each. For α = (4/5)δ, suppose that both a ≥ α and b ≥ α.
Consider an arbitrary subset I of ⌈αn⌉ = αn+γ1 such rows, and an arbitrary subset J of ⌈αm⌉ = αm+γ2
such columns. Define the sets

R = {(i, j) | i ∈ I, 1 ≤ j ≤ m, Ai,j = 1},

C = {(i, j) | 1 ≤ i ≤ n, j ∈ J, Ai,j = 1}.

Note that |R| and |C| are ≥ (5/6)αnm. It is also clear that |R ∪ C| ≤ δnm. On the other hand, by the
Inclusion-Exclusion principle, we have

|R ∪ C| = |R|+ |C| − |R ∩ C|
≥ (5/6)(αn+ γ1)m+ (5/6)n(αm+ γ2)− (αn+ γ1)(αm+ γ2)

= (5/3) · αnm− α2nm+ (5/6− α)(γ2n+ γ1m)− γ1γ2
≥ (5/3) · αnm− α2nm,

where the last inequality follows from α = (4/5) · δ ≤ 2/5 as δ ≤ 1/2 and from n,m ≥ 2. We may assume
w.l.o.g. that n,m ≥ 2, since the lemma is easy to prove directly if either n or m equals 1. We continue the
inequalities above to get

|R ∪ C| ≥
(
4

3
− 16

25
· δ
)
· δnm ≥

(
4

3
− 8

25

)
· δnm =

76

75
· δnm > δnm,
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a contradiction.
Hence either a or b must be small. Assume a < (4/5)δ. Then the rows with at least 5/6 fraction of ones

contain less than (4/5)δnm ones fromA. This leaves more than (1/5)δnm ones among the rows containing
less than 5/6 fraction of ones each. The case of b < (4/5)δ is analogous.

Proof of Lemma 4.9. Let S be any subset of vertices ofG⊗H of density δ ≤ 1/2. LetA be the 0-1 nG×nH
characteristic matrix of S, where Ai,j = 1 iff (i, j) ∈ S. Apply Claim 4.10 to A to obtain a submatrix A′ of
A containing at least (1/5)|S| ones in which either each row or each column contains at most 5/6 fraction of
ones. Suppose that A′ is obtained by removing some rows of A. Then the matrix A′ corresponds to a subset
S′ of S, with |S′| ≥ (1/5)|S|, such that S′ is the disjoint union S1 ∪ · · · ∪ Sk, where each Si = {ai} × Bi
for ai ∈ VG and Bi ⊂ VH , with |Bi| < (5/6)nH .

Observe that every edge leaving Bi in H , when paired with any self-loop of vertex ai of G, yields an
edge of G⊗H leaving S. By expansion of H , we have∣∣E (Bi, Bi)∣∣ ≥ ϵH · dH ·min{|Bi|, |Bi|}.

As |Bi| + |Bi| = nH and |Bi| < (5/6)nH , we get |Bi| > (1/5)|Bi|. Thus, for each subset Si of S′, we
have ∣∣E (Si, S)∣∣ ≥ dG

2
· ϵH · dH · |Si|

5
.

Summing over all subsets Si of S′, we get

|E(S′, S)| ≥ dG · dH · ϵH · |S′|/10
≥ dG · dH · ϵH · |S|/50,

implying the edge expansion for S at least ϵH/50.
The case of A′ obtained by removing some columns of the matrix A is analogous, yielding the edge

expansion at least ϵG/50. Thus, the edge expansion in G⊗H is at least min{ϵG, ϵH}/50.

Constructivity. The proof of Lemma 4.9 yields an efficient (uniform NC1) algorithm that, given a set S
that is non-expanding in a graph G⊗H , finds a non-expanding set either in G or in H . First, the algorithm
finds either a subset of vertices in G, or a subset of vertices in H to remove so as to get a subset S′ ⊆ S
as in the proof of Lemma 4.9. In the first case, one of the subsets Si = {ai} × Bi of S′, for ai ∈ VG and
Bi ⊆ VH , must be such that either Bi or its complement is non-expanding in H . We can check which by
trying at most |VG| such Bi’s. In the second case, an analogous algorithm finds a non-expanding set in G.

Remark 4.11. The conclusion of Lemma 4.9 is not true if there are not enough self-loops. For example,
consider a bipartite edge expanderG = (L∪R,E) with both sides of the same size. Then the tensor product
G⊗G does not expand at all if one considers the set (L× L) ∪ (R×R) of half the vertices of G⊗G. Of
course, G⊗G is not connected, but by adding a single self-loop to any vertex of G, we obtain G⊗G which
also does not expand almost at all even though it is connected.

4.3 Replacement product

The replacement product was combinatorially analyzed in [ASS08].

Lemma 4.12 ([ASS08]). Let G = (VG, EG) be a D-regular graph on n vertices, and let H = (VH , EH)
be a d-regular graph on D vertices. If G has edge expansion ϵG and H has edge expansion ϵH , then G ◦H
has edge expansion at least ϵ2GϵH/48.
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The proof idea is to partition a given subset S of vertices of G ◦H into n clusters ({a1} × B1) ∪ · · · ∪
({an} × Bn), where each ai ∈ VG and Bi ⊆ VH . View the clusters where |Bi| is at most some fraction of
|VH | as light, and the remaining clusters as heavy. For every light cluster, one can use the expansion of H to
lower-bound the expansion of Bi (within the copy of H associated with vertex ai of G). If there are many
vertices in light clusters, we get a good lower bound on the edge expansion of S. Otherwise, there are many
vertices in heavy clusters. Using the expansion properties of G, one can argue in this case that there will be
many edges between the set of vertices in heavy clusters and the vertices outside S.

We now give the proof of Lemma 4.12, along the lines of [ASS08].

Proof of Lemma 4.12. Let {1, . . . , n} be the vertices of G, and let V be the nD vertices of G ◦ H , where
G ◦ H has degree 2d. Let S be a subset of V of size at most |V |/2. We view the vertices of G ◦ H as
partitioned into clusters C1, . . . , Cn, where each Ci = {i} × VH . We partition S into subsets S ∩ Ci, for
1 ≤ i ≤ n. Each such subset is called light, if its size is less than (1− ϵG/4)D, or heavy otherwise. Denote
the (non-empty) light subsets by L1, . . . , Lm, and the heavy subsets by H1, . . . , Hm′ , where m+m′ ≤ n.

Claim 4.13. For a light set L, we have |E(L, V \ S)| ≥ ϵH · ϵG · d · |L|/4.

Proof of Claim 4.13. Let L′ be the complement of L within the cluster containing L. Note that L′ ⊆ V \S.
By the expansion of H , we have ∣∣E (L,L′)∣∣ ≥ ϵH · d ·min{|L|, |L′|}.

Since L is light, we have |L′| ≥ ϵG ·D/4 ≥ ϵG · |L|/4, and the claim follows since ϵG ≤ 1.

CASE 1: If |
∪
Li| ≥ ϵG · |S|/6, then, by Claim 4.13, we get that∣∣∣E (∪Li, V \ S

)∣∣∣ ≥ ϵH · (ϵG)2 · d · |S|
24

.

CASE 2: Otherwise, |
∪
Li| < ϵG · |S|/6 implies that |

∪
Hi| > (1 − ϵG/6) · |S| ≥ (5/6) · |S|. Since

each |Hi| ≥ (1− ϵG/4)D ≥ (3/4)D and |
∪
Hi| ≤ |S| ≤ Dn/2, we get that m′ ≤ (2/3)n. As G expands,

there are at least ϵGD · min{m′, n/3} edges in G leaving the m′ many vertices in G associated with the
heavy sets. By the definition of G ◦H , all but at most m′DϵG/4 of these edges contribute d parallel edges
leaving |

∪
Hi| in G ◦H (as each heavy set misses at most DϵG/4 vertices of its cluster). Thus, we get that∣∣∣E (∪Hi, V \

∪
Hi

)∣∣∣ ≥ ϵG ·D · d · (min{m′, n/3} −m′/4)

≥ ϵG ·D · d ·m′

4

≥ 5

24
· ϵG · d · |S|,

where the last inequality used the fact that Dm′ ≥ |
∪
Hi| ≥ (5/6) · |S|.

Suppose at least 4/5 of these edges go to
∪
Li. As each vertex in a particular cluster of G ◦ H has d

neighbors from the outside clusters, this would mean that |
∪
Li| ≥ ϵG · |S|/6, contradicting the assumption

of Case 2. Therefore, at least 1/5 of these edges miss
∪
Li (and hence also S), which means that∣∣∣E (∪Hi, V \ S

)∣∣∣ ≥ ϵG · d · |S|
24

.
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In both cases, we get that the edge expansion of S in the graph G ◦H is

|E(S, V \ S)|
(2d) · |S|

≥ ϵH(ϵG)
2

48
,

as required.

Constructivity. The proof of the contra-positive of Lemma 4.12 is constructive: there is an efficient (uni-
form NC1) algorithm that, given a non-expanding set S in the graph G ◦ H , will find a non-expanding set
either in G or in H . If the assumption of Case 1 holds, then one of the light sets Li, 1 ≤ i ≤ n, must
be non-expanding in H; we can decide which, by testing the edge expansion of each Li. Otherwise, by
Case 2, we conclude that the set of vertices in G that correspond to the heavy sets Hi in G ◦ H must be
non-expanding.

5 Constructing bipartite vertex expanders

Jeřábek [Jeř11b] needs the existence of certain bipartite vertex expanders to formalize the AKS sorting
networks in VNC1

∗. We define these graphs next. Recall that, for a set S of nodes in a graphG, Γ(S) denotes
the set of all neighbors of vertices in S.

Given constants α ∈ (0, 1) and A > 1, a bipartite (α,A) vertex expander is a bipartite graph G =
(L ∪R,E), where |L| = |R| = m, such that

1. the degree of G is at most A, and

2. for all ℓ ≤ m, every set S ⊆ [m] of vertices in either partition with |S| ≥ αℓ has |Γ(S)| ≥ (1− α)ℓ.

That is, for every set of vertices of size at least αℓ in one partition, there are at least (1 − α)ℓ neighbors in
the other partition.

The assumption required by [Jeř11b] is:

For α = 1/600, there exist a constant A and a parameter-free NC1
∗ function G(m) such that

VNC1
∗ proves “∀m ∈ N, G(m) is an (α,A) bipartite vertex expander on m+m vertices”.

We will argue that such bipartite vertex expanders can be efficiently obtained from our edge expanders
defined above.

Theorem 5.1. For any constant 0 < α < 1, there exist a constant A ≥ 1 and an efficient (uniform NC1)
algorithm that, for every m ∈ N, computes the rotation map of an (α,A) bipartite vertex expander on
m+m vertices.

Proof. We use the edge expander G̃ constructed in Proposition 3.7 with M = m, based on the construction
of Theorem 3.6. As observed in Remark 3.9, the rotation map of G̃ is in uniform NC1. The graph G̃ =
(Ṽ , Ẽ) has |V | = m, degree 4d, and expansion at least ϵ/2, where ϵ = 1/1296. Starting with G̃, we will

1. Convert the edge expander G̃ into a vertex expander, and

2. Turn the latter vertex expander into a bipartite (α,A) vertex expander on m+m vertices.
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1. GETTING A VERTEX EXPANDER FROM AN EDGE EXPANDER: Let G = (V,E) be the graph G̃ on
m nodes constructed above, but with a self-loop added to every node. So G has the constant degree 4d+ 1.

By Proposition 3.7, we have for every set S ⊆ V of size |S| ≤ m/2 that at least ϵ(2d)|S| edges are
leaving S in G̃. As the degree of G̃ is 4d, we conclude that the neighborhood Γ(S) of S in G contains at
least

ϵ · (2d) · |S|/(4d) = ϵ′ · |S|

distinct nodes from S, where ϵ′ = ϵ/2. As G has self-loops around every node, we get

|Γ(S)| ≥ (1 + ϵ′) · |S|, (11)

for every subset S of G with |S| ≤ m/2.
Consider the power graph Gi, for any i ≥ 1. Applying Eq. (11) inductively, we get for every subset S

of Gi with |S| ≤ m/2, and for every i ≥ 1 that

|ΓGi(S)| ≥ min{m/2, (1 + ϵ′)i · |S|}. (12)

Now let S be a subset of V of size |S| ≥ m/2. By Proposition 3.7, we have |Γ+(S)| ≥ ϵ′ · |S|, where
Γ+(S) = Γ(S) ∩ S is the set of new neighbors of S. It follows that

|Γ(S)| ≤ (1− ϵ′) · |S|. (13)

Applying Eq. (13) inductively, we get for every i ≥ 1, and for every subset S of V of size |S| ≥ m/2 that

|ΓGi(S)| ≤ (1− ϵ′)i · |S|. (14)

Claim 5.2. There exists a constant t′ = t′(α, ϵ′) such that, for every ℓ ≤ m and every set S of Gt
′

with
|S| ≥ αℓ, we have |ΓGt′ (S)| ≥ (1− α)ℓ.

Proof of Claim 5.2. Consider two cases: ℓ ≤ m/2, and ℓ > m/2. If ℓ ≤ m/2, then by Eq. (12) we get for
t1 = ⌈log1+ϵ′(1/α)⌉ that

|ΓGt1 (S)| ≥ min{m/2, (1 + ϵ′)t1 · αℓ}
≥ min{m/2, ℓ}
= ℓ.

If ℓ > m/2, then |S| ≤ m− αℓ < (1− (α/2)) ·m < m. For t2 = ⌈(log 1/α)/(log 1/(1− ϵ′))⌉, we get

|ΓGt2 (S)| ≤ (1− ϵ′)t2 ·m
≤ α ·m,

and hence, |ΓGt2 (S)| ≥ (1− α)m ≥ (1− α)ℓ. Taking t′ = max{t1, t2} concludes the proof.

2. GETTING A BIPARTITE VERTEX EXPANDER: Let Gt
′

be the vertex expander defined above. Observe
that it has m nodes, and has the constant degree A = (4d + 1)t

′
. We turn this graph into a bipartite graph

by taking two copies of the vertices of Gt
′
, denoted by L and R, connecting nodes i ∈ L and j ∈ R by an

edge iff {i, j} is an edge of Gt
′
. Claim 5.2 implies that the resulting graph is an (α,A) vertex expander.

Finally, the explicitness of this construction of (α,A) vertex expanders can be argued similarly to the
case of the edge expanders of Theorem 3.8: we trace the construction of Gt

′
to get an efficient (uniform

NC1) algorithm for computing the rotation map of the corresponding bipartite (α,A) expander on m +m
vertices.
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Constructivity. Given a non-expanding set S for the bipartite graph constructed in Theorem 5.1, we can
efficiently (in uniform NC1) reconstruct a non-expanding set for the graph G̃ of Proposition 3.7 upon which
this bipartite graph was based. Indeed, if S is non-expanding in the graph Gt

′
from the second stage of the

proof of Theorem 5.1, then one of the sets Si = ΓGi(S), for 0 ≤ i ≤ t′, is non-expanding in G (where
S0 = S). As t′ is constant, we can determine such a set S′ = Si in uniform NC1, given the adjacency matrix
of G. This S′ is also a non-expanding subset for G̃. Then, S′ corresponds to a non-expanding subset S̃ of
the graph G̃i constructed by Theorem 3.6.

6 Formalizing the construction in bounded arithmetic

This section discusses the formalization of the expander graph construction in the theory VNC1 of bounded
arithmetic. A high-level description of how we formalize the expander graph construction in VNC1 is as
follows:

1. The first step is to establish (in Section 6.4) that VNC1 can define the operations of graph powering,
replacement product, and tensoring. From this it follows that VNC1 can carry out the definition of
Gi+1 from Gi, for the graphs Gi defined in Section 3. Similarly, VNC1 can carry out the construction
of G̃i from G̃i′ and G̃i′′ as in (3).

2. For the second step, we wish to use induction on t to prove the existence of the graphGt for suitable t.
However, since VNC1 does not support induction on ΣB1 -formulas, we cannot use the usual induction
axioms for VNC1. Instead, we exploit the fact that the graph Gi+1 has size quadratic in the size
of Gi, namely |Gi+1| = Θ(|Gi|2). This large growth rate allows us to use ΣB1 -induction to prove
the existence of Gt for arbitrary (first-order) integers t. For this, Theorems 6.3 and 6.4 of Section 6.3
prove that the needed induction principle is provable in VNC1. The intuition is that the computational
content of the induction axioms corresponds to composing logarithmic depth circuits, and that since
the Gi’s are growing quadratically, arbitrary composition of logarithmic depth circuits for the Gi’s
yields a circuit which is still of only logarithmic depth.

The same ΣB1 -induction will also be used to prove the existence of the graphs G̃i, exploiting the fact
that the size of G̃i is quadratic in the sizes of G̃i′ and G̃i′′ .

3. Theorems 6.3 and 6.4 give the needed induction principle for handling compositions of circuits, but
more work is needed for VNC1 to formalize the iterated composition of circuits. What we mean by
“iterated composition” of circuits is that there are multiple circuits (about |(|t|)| many circuits) which
are arranged with the outputs of one circuit feeding into the inputs of the next circuit. To formalize this
circuit composition in VNC1, we need to modify Cook and Morioka’s definition [CM05] of TreeRec
tree recursion in VNC1. The problem with the TreeRec form of tree recursion is that the second
order inputs to a circuit defined by tree recursion are not used at the input gates of the circuit, but
rather are used throughout the circuit, indeed potentially at every gate in the circuit. To fix this,
Section 6.2 introduces a modified version of tree recursion, called TreeRec′, which allows the use of
second order inputs X0(i) only as input values. This allows composition of circuits using the inputs
X0 for the iteratively computed values. The TreeRec′ tree recursion and the new induction principle
of Section 6.3 then suffice to define Gt by using recursively the definition of Gi+1 from Gi.

4. The fourth step is to prove the expansion properties of Gi+1 follow from those of Gi. Or, more pre-
cisely, proving that if Gi+1 does not have the desired edge expansion then Gi also does not. This is
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done by Lemmas 6.5-6.7 which show how to formalize in VNC1, the arguments of Section 4 about
graph powering, replacement product, and tensor product. The arguments in Section 4 are construc-
tive, and as we argue below, they can be adapted to VNC1 with relatively minor modifications.

5. The fifth step is to use induction on t to prove the expansion properties for Gt. This is done in
Theorem 6.8; its proof again utilizes the induction principle introduced in Section 6.3. This shows
that VNC1 can prove the existence of expander graphs.

6. The sixth, and final step, is to note that the proof of Theorem 5.1 can be carried out in VNC1, so VNC1

proves the existence of bipartite vertex expanders.

This proof is given below. We start by proving some useful properties of VNC1 in Sections 6.1–6.3. We
show in Section 6.4 that VNC1 can express relevant graph properties. Section 6.5 argues that the Cauchy-
Schwarz inequality can be proved within VNC1. Section 6.6 shows that the edge expansion properties of
our graph operations can be proved within VNC1.

6.1 Defining NC1 functions within VNC1

Cook and Morioka [CM05, Lemma 13] show that VNC1(TreeRec) can prove the ΣB0 (TreeRec)-COMP
axioms. They then define the FNC1 functions F by using ΣB0 -formulas φ(i, x⃗, X⃗) and terms t(x⃗, X⃗) and
defining the string F (x⃗, X⃗) by3

F (x⃗, X⃗)(j) ↔ j<t(x⃗, X⃗) ∧ φ(j, x⃗, X⃗). (15)

They also show that the ΣB1 -definable functions of VNC1 are precisely the FNC1 functions [CM05, Theorem
17]. Recall that a ΣB1 -definition is given by VNC1 proof of (∃!Y )φ(x⃗, X⃗, Y ) where φ ∈ ΣB1 ; this serves as
a definition of the string function x⃗, X⃗ 7→ Y .

The definition of FNC1 functions using (15) is equivalent to the usual definition of the FNC1 functions
as the functions whose bit graphs are computable in UE∗-uniform NC1, or equivalently are computable in
ALogTime. Those functions are computed by a family {Cn}n of fanin ≤ 2 Boolean circuits, taking inputs
of length n and having depth O(log n). The UE∗-uniformity condition was defined by Ruzzo [Ruz81] and
means that the circuits Cn are described by two functions g(i, n) and p(i, w, n) which are computable in the
linear time hierarchy (equivalently, they have ΣB0 graphs). The first function g(i, n) returns the type of gate i
in Cn. The second function p(i, w, n) takes as input also a w ∈ {0, 1}∗: the bits of w describe a path in
the circuit starting at gate i and following successively the first or second input to gates according to the bits
of w. The value of p(i, w, n) is the index of the gate reached by following this path specified by w starting
from gate i in Cn. The functions g and p are in the linear time hierarchy; however, since they have inputs
of length O(log n), they run in time O(log n) using a constant number of alternations. For more details,
see [Ruz81].

We will need to carefully analyze the effect of composing FNC1 functions; for this reason it is important
that the existence of U∗

E-uniform NC1 circuits for FNC1 functions can be proved by the theory VNC1. This
follows from Theorem 6.2 below.

3This definition of FNC1 is same as what Cook and Morioka [CM05] call “VNC1(FNC1)”. We use just “FNC1 to keep the
notation less cumbersome.
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6.2 A modified tree recursion

TreeRec acts like a fanin two, Boolean circuit where the internal gate types are given by φ = φ(i, x⃗, X⃗).
A disadvantage of this definition of TreeRec is that the side parameters X⃗ can be used unrestrictedly by the
ΣB0 -formulas φ and ψ. The formula φ(i, x⃗, X⃗) defines the type of gate number i when the circuit has x⃗, X⃗
as inputs. Likewise, ψ(i, x⃗, X⃗) defines the True/False value of the i-th input. This differs from the usual
conventions of having a circuit have fixed gate types, and having the inputs affect only the values of input
gates. It also makes it difficult to define the notion of composing circuits, with the outputs of one family of
circuits serving as the inputs to another circuit.

We define a new formulation of tree recursion called TreeRec′ to address this problem. In a TreeRec′

definition, one of the second order inputs, X0, will serve as an “ordinary” input to the circuit, with the
values X0(j) specifying the True/False values on inputs to the circuit. The other second order inputs, X⃗ ′,
can be used to define gate types similarly as is done by TreeRec. This allows recursive computations on the
value X0 to be formalized with composition of circuits.

We assume X0 is one of the side string parameters X⃗ , so X⃗ is X0, X⃗
′. We modify the definition of

TreeRec so that the valuesX0(i) are used only as inputs to the TreeRec circuit, and are not used to determine
the gate types; in particular, X0 is not used by φ. The basic construction for the definition of TreeRec′ is
that a single gate in a TreeRec circuit, of gate type φ[−,−]:

φ[−,−]

p q (16)

is replaced by a small tree of binary gates

∨
∨ ∨

∧ ∧ ← ←

∧ ∧ ∧ ← ∧ ∧ ∧ ←

p p q φTT p p q φTF p p q φFT p p q φFF (17)

Here the binary gate r←s is ¬r ∧ s; and the values φpq are the truth values of φ(i, a, x⃗, X⃗)[p, q]. By
inspection, the circuit is depth four and fanin two: the top ∨ gate branches on the value of p; the next two ∨
gates branch on q. The last two levels select the correct value of φpq, for p = T,F and q = T,F based on the
values of p and q. In other words, the circuit (17) implements a “lookup table”, using the values p and q to
select the appropriate value φpq. Assuming that the four values of φpq are correctly computed, the effect of
replacing the binary gates (16) with the circuits (17) gives a circuit of depth 4|a| computing the same result
as the original TreeRec circuit of depth |a|.

We wish to replace the four leaf nodes of (17) labelled φpq with Boolean circuits which have as inputs
only the values X0(i). Since φ is ΣB0 -formula, such circuits can easily be described by a polynomial time
function of i, x⃗, X⃗ ′. These circuits are formed by applying the Paris-Wilkie transformation to φ, namely
by replacing bounded quantifiers in φ with conjunctions and disjunctions, and hardcoding the values of x⃗
and X⃗ ′ (but not X0) as constants. The result is that each leaf φpq of the circuit (17) can be replaced by
a fanin two circuit which (a) has as inputs only X0(j)’s and constants, (b) is size ≤ q(|a|, |x⃗|) and depth
≤ |q(|a|, |x⃗|)| for some polynomial q, and (c) there is a ΣB0 -definable number function f(p, q, i, a, x⃗, X⃗) of
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VNC1 which outputs a succinct description of the circuit. VNC1 is able to straightforwardly define f and
prove all these properties.

With this construction in hand, we define a modified version of tree recursion:

Definition 6.1. Let φ(i, a, x⃗, y0, X⃗ ′)[p, q] be a ΣB0 -formula and k(i, a, x⃗, y0, y⃗ ′) a ΣB0 -definable number
function. The ΣB0 -TreeRec′ property for φ and k is given by Bφ,k(a, x⃗,X0, X⃗

′, Z):

(∀i<a)[ (Z(i)↔ φ(i, a, x⃗, |X0|, X⃗ ′)[Z(2i+1), Z(2i+2)]) ∧ (Z(a+ i)↔ X0(k(i, a, x⃗, |X0|, |X⃗ ′|))) ].

The defining axioms for the predicate symbols Rφ,k(i, a, x⃗,X0, X⃗
′) are the formulas

Bφ,k(a, b, x⃗,X0, X⃗
′, Rφ,k) and i≥2a→ ¬Rφ,k(i, a, x⃗,X0, X⃗

′). (18)

Note that the gate type depends only on |X0|, not on the values of X(·). VNC1 proves that (18)
uniquely specifies all values of Rφ,k. Furthermore, it is not hard to see that VNC1 proves the existence
of string objects satisfying the conditions of (18). Thus, we may conservatively extend VNC1(TreeRec)
by adding all these predicate symbols along with their defining axioms. The resulting theory is called
VNC1(TreeRec,TreeRec′).

The main advantage of TreeRec′ definitions is that they can explicitly give UE∗-uniform log-depth cir-
cuits. For this, we assume that X0 is the only second-order input (so X⃗ ′ is missing). We also assume that
a = s(x⃗, |X0|) for some V 0-term s. The type of gate i is determined by i, |X0| and x⃗ and can be com-
puted in time polynomially bounded by x⃗ and |X0|. It is usually convenient to assume in addition that each
xi < |X0|O(1), so that we can think of |X0| as the size of the input (up to a polynomial); in fact, often x⃗ is
missing, so the only input is |X0|. The other condition needed for UE∗-uniformity is that there must be a
linear time hierarchy algorithm (i.e., a ΣB0 formula) determining the extended connection language for the
connectivity of gates in the circuit. Since the circuit is formed as a binary tree, with a natural numbering
system for gates, the extended connection language of the circuit is trivial. Specifically, suppose w ∈ {0, 1}
is a string of bits and i is a gate. Interpret bits “0” and “1” as selecting the first or second input to a gate, and
let w specify a path starting at gate i, and traversing inputs according to the bits of w. The gate at the end of
this path is gate i′ where i′ has binary representation obtain by concatenating the binary representation of i
and the string w. The type of gate i can be defined with a ΣB0 -formula using the ΣB0 -formula φ and the ΣB0 -
defined function k. Thus, with the assumptions stated above, a TreeRec′ definition defines a UE∗-uniform
circuit.

The next theorem states that every ΣB0 (TreeRec)-property has log-depth, fanin two, Boolean circuits in
the form used by TreeRec′.

Theorem 6.2. Let χ(x⃗,X0, X⃗
′) be a ΣB0 (TreeRec)-formula. Then there are a ΣB0 -formula φ(i, a, x⃗, y0, X⃗ ′),

a ΣB0 -defined function k(i, a, x⃗, y0, |y⃗ ′|), and a V 0-term s(x⃗, |X0|, |X⃗ ′|) so that VNC1(TreeRec,TreeRec′)
proves

χ(x⃗,X0, X⃗
′) ↔ Rφ,k(0, s(x⃗, |X0|, |X⃗ ′|), x⃗,X0, X⃗

′).

ΣB0 (TreeRec)-properties may involve composing multiple TreeRec predicates with built-in function sym-
bols, then combining them with Boolean operations and first-order quantifiers. Theorem 6.2 states that any
such property χ may expressed as a TreeRec′: the advantage is that this gives an explicit NC1 representation
of χ; namely in terms of logarithmic depth Boolean circuits. “Logarithmic” means as a function of the
values x⃗ and of the sizes |X0|, |X⃗ ′| of the second order inputs X0, X

′.
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Proof of Theorem 6.2. (Sketch.) The proof is by induction on the complexity of the formula χ. The in-
duction steps handle Boolean connectives and first-order quantifiers. The cases of Boolean connectives are
easily handled; e.g., a conjunction (AND) is handled by joining two TreeRec′ computations with a new
∧-gate (after padding as needed to make the two TreeRec′ have the same depth). First-order quantifiers ∀y
and ∃y are handled by combining multiple TreeRec′ computations with multiple ∧-gates or ∨-gates (respec-
tively). These constructions are fairly straightforward, and we leave the details to the reader.

The base case for the proof by induction handles atomic predicates of the forms t1 = t2 and t1 ≤ t2
and Xi(t1) where t1 = t1(x⃗,X0, X⃗

′) and t2 = t2(x⃗,X0, X⃗
′) are VNC(TreeRec,TreeRec′) terms. It is easy

to give (constant depth) TreeRec′ circuits checking equality (=) and inequality (≤), and to output a value
of Xi, once TreeRec′ definitions are given for the bitgraphs of t1 and t2. However, we need to prove that
the bitgraph of a VNC(TreeRec,TreeRec′) term t(x⃗,X0, X⃗

′) can be expressed with a TreeRec′ definition.
This fact is proved by induction on the complexity of terms. The base cases for this induction concern
the function symbols of V 0 and the TreeRec predicates. The symbols of V 0 have very simple logarithmic
depth circuits of course. And we already discussed about how to represent TreeRec predicates as TreeRec′

predicates.
The induction step handling composition of function symbols is harder. For simplicity, consider the

situation of composing two string functions F (x⃗,X0, X⃗
′) and F ′(x⃗, X⃗ ′) to define

G(x⃗, X⃗ ′) = F (x⃗, F ′(x⃗, X⃗ ′), X⃗ ′).

This case is simplified mainly becauseG has no dependence on any designatedX0. When proving this case,
since G has no dependence on X0, we end up with essentially a TreeRec expression for the bitgraph of G,
not a TreeRec′ expression. But then, we can choose another member of X⃗ ′ to serve as the new X0, and
convert this TreeRec definition to TreeRec′ form by the construction above.

Suppose that φ, k, s and φ′, k′, s′ respectively give TreeRec′ definitions of the bitgraphs of F and F ′.
Note that k′ is not needed, since F ′ does not depend on X0. We wish to give a TreeRec′ definition for the
bitgraph ofG by using the TreeRec′ definition of F with its leaves (inputs) replaced with TreeRec′ definitions
of F ′. For this, we can explicitly define φG and sG for a TreeRec′ definition of G in terms of φ, k, s and
φ′, k′, s′. (The function kG is not needed.) What it means for φ, k, s to give a TreeRec′ definition of the
bitgraph of F is that whenever Bφ,k(s(j, x⃗, |X0|, |X⃗ ′|), j, x⃗,X0, X⃗

′, Z) holds, we have F (x⃗,X0, X⃗
′)(j)↔

Z(0). And, φ′, k′, s′ similarly define the bitgraph of F ′. Since F and F ′ have polynomial growth rate,
we may assume w.l.o.g. that s and s′ do not depend on the input j. Also w.l.o.g., s(x⃗, |X0|, |X⃗ ′|) =

2|s(x⃗,|X0|,|X⃗′|)| − 1 always and similarly for s′(x⃗, |X⃗ ′|), and they are monotonically non-decreasing. Define
lvl(i) = |i+1|−1 so that lvl(i) is the level of the node Z(i) in the tree used in tree recursion. It is simple to
see that if the tree is moved so that it is rooted at ℓ instead of 0, then the node computing the value of Z(i) is
moved to position m = ℓ2lvl(i) + i. Conversely, ℓ = ⌊m/2lvl(m)−lvl(ℓ)⌋, namely the higher order lvl(ℓ) bits
of m. And i = m− ℓ2lvl(m)−lvl(ℓ), i.e., the remaining low order bits of m. To improve readability for these
expressions, define ℓ(m, s) = ⌊m/2lvl(m)−lvl(s)⌋ and ι(m, s) = m− ℓ2lvl(m)−lvl(s).

Let q(x⃗, y0, y⃗ ′) be a polynomial such that |F ′(x⃗, |X0|, |X⃗ ′|)| ≤ q(x⃗, |X0|, |X⃗ ′|). We set

sG(j, x⃗, |X0|, |X⃗ ′|) = 2|s(x⃗,|X0|,|X⃗′|)|+|s′(x⃗,q(x⃗,|X0|,|X⃗′|),|X⃗′|)| − 1

This makes sG(j, x⃗, |X0|, |X⃗ ′|) an upper bound on the depth of a Boolean circuit computing the j-th bit of
G(x⃗, X⃗ ′). Note that sG(j, x⃗, |X0|, |X⃗ ′|) satisfies the depth condition. The first level (at the root) of the cir-
cuit is a depth |s(x⃗, |X0|, |X⃗ ′|)| tree recursion (TreeRec′) computation, the nodes at depths |s(x⃗, |X0|, |X⃗ ′|)|
are the roots of trees computing a bit of the value of F ′(x⃗, X⃗ ′). The functions ℓ(m, s) and ι(m, s) with

28



s = s(x⃗, |X0|, |X⃗ ′|) help us index into the latter subtrees. Define

φG(i, a, j, x⃗, X⃗
′) ↔

[lvl(i)<|s(x⃗, |X0|, |X⃗ ′|)| ∧ φ(i, s(x⃗, |X0|, |X⃗ ′|), x⃗, X⃗ ′)]

∨[|s(x⃗, |X0|, |X⃗ ′|)|≤lvl(i) ∧ φ′(ι(i, s(x⃗, |X0|, |X⃗ ′|)), k(ℓ(i, s(x⃗, |X0|, |X⃗ ′|)), x⃗, |X0|, |X⃗ ′|), x⃗, X⃗ ′)].

It is not hard to verify this gives a TreeRec definition for the function G. In the last part, the point is that the
subtree rooted at position ℓ(i, s(x⃗, |X0|, |X⃗ ′|)) is computing the value of bit

k(ℓ(i, s(x⃗, |X0|, |X⃗ ′|)), x⃗, |X0|, |X⃗ ′|)

of F (x⃗, X⃗ ′). The value ι(i, s(x⃗, |X0|, |X⃗ ′|)) gives the relative position of i within that subtree.

6.3 A conservation result

We now prove the closure of VNC1 under a rule of inference based on a “telescoping” iteration. This turns
out to be exactly what is needed for the formalization of the expander graph construction inside VNC1. We
write

√
a for the greatest integer at most

√
a.

Theorem 6.3. Suppose χ(X) is a ΣB0 -formula containing onlyX free. and let ψ(a) be (∃X≤a)χ(X). Also
suppose VNC1 proves

(∀a)(ψ(a)→ ψ(
√
a)). (19)

Then VNC1 proves ψ(a)→ ψ(1), and thus also proves χ(Y )→ (∃X≤ 1)χ(X)).

Proof. By the Witnessing Lemma for VNC1, since VNC1 proves (19), there is an FNC1 function F such
that

χ(Y ) ∧ Y≤a → χ(F (a, Y )) ∧ |F (a, Y )|≤
√
a

is also provable. Furthermore, the bit graph of the function F is definable with a TreeRec′ definition, with
Y playing the role of X0. Since we are only interested in F (a, Y ) when |Y | ≤ a, we can assume that the
height of the TreeRec′ tree recursion is O(|a|).

For a VNC1 proof of ψ(a) → ψ(1), we iterate the function F . For notational simplicity, henceforth
assume |Y | = a. We must construct a uniform description (a TreeRec′ description) of a circuit computing
the bits of the iterated F ; the construction is to be carried out in VNC1 as a function of a = |Y | only.
Set a0 = a, and am+1 =

√
am. Define Y0 = Y , and set Ym+1 = F (Ym). We can form a circuit C

using bits of Y as inputs, and computing all bits of all the Ym’s, namely by composing the circuits for
the iterated applications of F . We have |am+1| ≤ 1

2 |am|, so |am| ≤ |a|/2m, therefore the depth of C is∑
mO(|am|) =

∑
mO(|a|/2m) = O(|a|). That is, C is an NC1 circuit. We shall argue that C can be

defined inside VNC1. This will imply that C is VNC1-provably in UE∗-uniform NC1, and allow us to prove
Theorem 6.3.

By padding circuit depths, the tree recursion circuit for the bit graph of F (Y ) w.l.o.g. has depth |s(a)| ex-
actly equal to c · |a| for c a fixed constant. More generally, we may assume that the circuit computing a bit of
Ym+1 from the bits of Ym has depth exactly c · |am|. LetM be the first value such that aM = 1. As functions
of a, the values a1, a2, . . . , aM are NC1 computable, and are ΣB0 -definable in VNC1, namely by the algo-
rithm which nondeterministically guesses the entire sequence of values, and then in parallel verifies that each
a2m+1 ≤ am < (am+1 + 1)2. For m1 < m2, the partial sums σm1,m2 = c · (|am1 |+|am1+1|+ · · ·+|am2 |)
are also NC1-computable and ΣB0 -definable in VNC1, using vector addition. In addition, σm1,m2 ≤ σ1,M =
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O(|a|). Thus we can define sm1,m2 = 2σm1,m2 − 1, and |sm1,m2 | equals the combined depth of the tree
recursion circuits computing the bit graph of Ym2 from the bitgraph of Ym1 .

The TreeRec′ definition of the d-th bit of F (Y ) is given by a ΣB0 -predicate φ(i, d, s(a), a) and a ΣB0 -
defined number function k(i, d, a). From these, letting j range over 1, . . . ,M , a TreeRec′-definition of the
d-th bit of Yj is given by a ΣB0 -defined predicate φ∗(i, j, d, a) and a polynomial time function k∗(i, d, a)
which are computed as follows. (The argument sG(a) is omitted from φ∗ as it is not needed.)

The TreeRec′-definition for the d-th bit of Yj describes a circuit C composed of layers; each layer com-
putes bits of a Ym from bits of Ym−1. The levels separating the layers are specified by values λm =
c(|aj+1| + · · · + |am|); so that λm is the depth at which bits of Ym are computed. The input i to φ∗ is the
index of a gate in C. For λm ≤ lvl(i), letting ℓm = ℓ(i, λm) gives the parent of i at level λm. Fixingm0 to be
the greatest value such that λm0 ≤ lvl(i), let ι = ι(i, ℓm0); this means that i is a gate in the level computing
a bit of Ym0 , and ι is the relative position of gate i within the subcircuit computing a bit of Ym0 . In fact, the
gate i is inside (nested) subcircuits computing bits of each Ym for j ≤ m ≤ m0. Let dm = dm(i, a) denote
the bit of Ym which is being computed. Of course, dj = d. For m > j, we have dm = k(ι, dm−1, am). The
dm values are computable with a FNC1 function which first existentially guesses the the values dj , . . . , dm0 ,
and universally checks that each dm = k(ι, dm−1, am) holds. Finally, the definition of the gate i is given by
the predicate φ(ι, dm, s(am0+1), am0+1). Putting all this together gives φ∗(i, j, d, a) as an NC1 computable
function. Set k∗(i, d) = dm0(i+ sG(a)) where sG(a) = σ1,M ; this gives the bit of Y which is the input to
the circuit at this leaf gate.

The predicate φ∗ gives a TreeRec′ definition of the d-th bit of Yj . We conclude (provably in the theory
VNC1(TreeRec,TreeRec′)) that, for any fixed a, Y , there is a string object Y ∗(j, d) encoding all the bits of
all the Yj’s; that is Y ∗(⟨j, d⟩) ↔ Yj(d). The above arguments defining φ∗ and proving the existence of Y ∗

can all be formalized in VNC1(TreeRec,TreeRec′). Therefore, that theory proves

φ(Yj) ∧ |Yj |≤aj → φ(Yj+1) ∧ |Yj+1|≤aj+1.

From this, φ(Y )→ φ(YM ) ∧ |YM | < 1 follows by ΣB0 -IND. The conclusion of Theorem 6.3 follows.

Theorem 6.3 used a descending induction; a similar theorem holds also for ascending induction:

Theorem 6.4. Suppose φ(X) is a ΣB0 -formula containing only X free. Also suppose VNC1 proves

φ(Y )→ (∃X)(|X| ≥ |Y |2 ∧ φ(Y )).

Then VNC1 proves (∃Y )φ(Y )→ (∀x)(∃X)(|X| > x ∧ φ(X)).

The proof of Theorem 6.4 is almost identical to the proof of Theorem 6.3. The most important difference
is that now the sequence a0, a1, . . . , aM is increasing instead of decreasing, and ai is a lower bound on |Yi|
instead of an upper bound. The proof also assumes w.l.o.g. that |Ym| = a

O(1)
m throughout the construction

in order to control the growth rates.

6.4 Expressing expander graph properties in VNC1

We now discuss how VNC1 can express properties about graphs, adjacency matrices, expansion properties,
and graph constructions such as powering, tensor product and replacement product. A graphG on n vertices
will be encoded in VNC1 as a string object (a second order object). Here n is a number (a first-order object),
and the intent is to represent G in terms of its adjacency matrix. The (i, j)-th entry of the adjacency matrix
is the number of edges between vertices i and j. It is represented by a three-place second order predicate
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A(i, j, k) where A(i, j, k) is true when there are exactly k edges between i and j. (Strictly speaking, we
should write A(⟨i, j, k⟩), but we suppress this notation.) Each i, j, k is a number (a first order object); it will
be important that we always have k < p(n) for some fixed polynomial p, since then k is ΣB0 -definable from
A, i, j, and we can write k = A(i, j) for the value of k.

Row vectors and column vectors (containing numbers) are likewise representable by strings, withA(i, k)
meaning that the i-th entry of the vector is equal to k.

With these conventions it is easy for VNC1 to ΣB0 - or ΣB1 -define many properties of the graphG encoded
as above. We illustrate this with several examples.

• For u < n, the set of edges containing vertex u can be defined as the set

E({u}) = {⟨u, v, k⟩ : (∃k′≤p(n))(k < k′ ∧A(u, v, k′)).

Note this allows for multiedges. The degree of v is |E({v})| and can be ΣB1 -defined with the Numones
function. G has degree d if each u ∈ [n] has degree d. There will always be a polynomial upper bound
p(n) on the degree.

• For U ⊂ [n], the set E(U,U) is defined similarly as

E(U,U) = {⟨i, j, k⟩ : i∈U ∧ j /∈U ∧ (∃k′≤p(n))(k < k′ ∧A(i, j, k′)).

• Rational numbers p/q are represented by pairs of integers (p, q) (not necessarily in reduced form).
The usual ordering p/q < p′/q′ is of course definable by pq′ < p′q, where q, q′ > 0. Pairs of rational
numbers may be added or multiplied or divided as usual.

The proof of the Cauchy-Schwarz theorem, and more generally the proofs of expansion properties in
Section 4, argue about sums of vectors of rational numbers. VNC1 can define summations of vectors
of integers [CN10], but it is not clear whether it can define summations of vectors of arbitrary rational
numbers. This will be handled in our VNC1 proofs by clearing the denominators so that we can argue
about summations of integers instead of about summations of rational numbers. In our applications,
the least common multiple of the denominators will be easily computed, making it easy to clear the
denominators.

• The edge expansion of a degree d graph G can thus be defined by as in equation (1) with V = [n].
This, however, is not a ΣB1 -definition, since it requires minimizing over all subsets U ⊂ [n]. Instead
we can define the property “G has edge expansion > p/q” as

(∀U<n)
(
0 < |U | ≤ n

2
→ |E(U,U)|

d · |U |
>
p

q

)
.

This is a ΠB1 -condition. Recall that “(∀U<n)” is quantifying over all subsets of [n].

• A rotation map is encoded by a second order object Rot(u, i, v, j) with the meaning that the i-th edge
of u is the same as the j-th edge of v. We can relate the rotation map Rot and the adjacency matrix A
by letting the i-th edge from u to v be the edge ⟨u, v, k⟩ such that

|{⟨u, i′, v, j⟩ : Rot(u, i′, v, j) ∧ i′ < i}| = k

Furthermore, the adjacency matrixA is ΣB1 -definable in terms of Rot, sinceA(u, v) = k holds exactly
when there are exactly k values ⟨i, j⟩ such that Rot(u, i, v, j). Since v, j are uniquely determined by
u, i, we also use the notation Rot(u, i) = (v, j).

It is also possible to ΣB1 -define a canonical rotation map as a function of the adjacency matrix.
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Graph operations are also readily defined by VNC1:

• To add self-loops to convert a d-regular G to a 2d-regular G′, define the adjacency matrix A′(u, v, k)
as

(u ̸= v ∧A(u, v, k)) ∨ (u = v ∧ k = d).

• (Graph Powering.) Let k > 1 be fixed. VNC1 can ΣB1 -define the graph power Gk from G as follows.
We write ⟨i1, . . . , ik⟩ for an efficient sequence coding so that each ⟨i1, . . . , ik⟩ is represented by an
integer < dk. Then Rot(u, ⟨i1, . . . , ik⟩) = (v, ⟨j1, . . . , jk⟩) holds iff

(∃⟨u0, . . . , uk⟩)[u0=u ∧ uk=v ∧
∧k

s=1
(Rot(us−1, is) = (us, jk−s+1))].

Since k is fixed and each ui < n, the quantifier is a bounded number quantifier.

• Similar arguments give ΣB1 -definitions of Tensor Product and Replacement Product. The construc-
tions are straightforward and we leave the details to the reader.

These constructions, along with Theorem 6.4, allow VNC1 to prove the existence of the graphs Gi
as defined by (2). Fix constants d and c, and fix a (2d)-regular G0 with edge expansion ϵ0. Also, fix
a rotation map Rot0 = RotG0 for G0. Given Gi and Roti, for i ≥ 0, VNC1 can prove the existence of
Gi+1 satisfying (2) along with the existence of Roti+1. Furthermore, by Theorem 6.4, VNC1 can prove the
existence of a second-order object encoding a sequence of graphs and rotation maps

(G0,Rot0), (G1,Rot1), (G2,Rot2), . . . , (G|a|,Rot|a|), (20)

so each Gi+1 and associated rotation map Roti+1 is obtained from Gi and Roti by Equation (2). Letting
the constant D = 2(4d)2)c as before, each Gi has (|V0| · 4D)2

i
/D many vertices, provably in VNC1. (See

Theorem 3.5.) The size of Gi+1 is greater than the square of the size of Gi; indeed, |Vi+1| = D · |Vi|2.
Therefore, Theorem 6.4 applies, to show that VNC1 can ΣB1 -define the sequence (20) as function of a, and
hence can ΣB1 -define G|a| and Rot|a| as functions of a.

Similar, only slightly more complicated, arguments allow VNC1 to prove the existence of the graphs G̃i
as defined by (3). Now i can be an arbitrary first-order (integer) value i = a, not just a length |a|. Fix
appropriate constants d = 2ℓ and c, and for i ≤ 2cℓ+8, fix graphs G̃i with edge expansion ≥ 1/1296 and
their rotation maps Roti. Using induction on ΣB0 -formulas, VNC1 proves the existence of a sequence of
values k0, . . . , ks such that k0 = a and each ki+1 = ⌊(ki−2cℓ−5)/2⌋, and such that s is the first value
where ks < 2cℓ+7. Given both G̃ki+1

and G̃ki+1+1 and their rotation maps Rotki+1
and Rotki+1+1, and

using the definition (3), VNC1 can prove the existence of both G̃ki and G̃ki+1 and their rotation maps.
Furthermore, the sizes of G̃ki and G̃ki+1 are both greater than the square of the size of G̃ki+1+1. Therefore,
by Theorem 6.4 again, VNC1 can prove the existence of a second-order object encoding a sequence of pairs
of graphs and rotation maps:

(G̃ks ,Rotks , G̃ks+1,Rotks+1), (G̃ks−1 ,Rotks−1 , G̃ks−1+1,Rotks−1+1), . . . , (G̃k0 ,Rotk0 , G̃k0+1,Rotk0+1),
(21)

with successive pairs of expander graphs obtained via (3). Since k0 = a, this shows that VNC1 can ΣB1 -
define G̃a and Rota as functions of a.

It is immediate from the definition ofGi, using induction on i, that VNC1 proves that eachGi has degree
2d (for the appropriate value of d). Likewise VNC1 proves that each G̃i has degree 2d. It is more difficult
to prove that VNC1 proves Gi and G̃i have the edge expansion properties of Theorems 3.5 and 3.6. This is
discussed in the next sections.
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6.5 Formalizing Cauchy-Schwarz

We now discuss how to formalize the proof of the Cauchy-Schwarz lemma in VNC1. This proof depends
on summations of vectors encoded by second-order order objects; in addition, care must be taken to handle
summations of rational numbers. Claims 4.3-4.5 supporting the proof of Lemma 4.2 use similar manipula-
tions of summations, and those arguments can be also be formalized in VNC1.

Let f, g ∈ Rn be vectors. The Cauchy-Schwarz identity states that ⟨f, g⟩2 ≤ ⟨f, f⟩ · ⟨g, g⟩, where ⟨·, ·⟩
denotes inner product. This can be proved as follows. Define f|| = ⟨f, g⟩ · g/⟨g, g⟩, namely the component
of f parallel to g. Define f⊥ = f − f||. Then,

⟨f, f⟩ = ⟨f⊥ + f||, f⊥ + f||⟩
= ⟨f⊥, f⊥⟩+ 2 · ⟨f⊥, f||⟩+ ⟨f||, f||⟩
= ⟨f⊥, f⊥⟩+ 2 · 0 + ⟨f, g⟩2/⟨g, g⟩.

The Cauchy-Schwarz inequality follows immediately, since ⟨f⊥, f⊥⟩ ≥ 0.
To formalize Cauchy-Schwarz, VNC1 uses second-order objects F and G encoding integer vectors f

and g. As discussed above, F (i, k) indicates that fi = k, and similarly for G(i, k). The permitted values
of i and k are bounded by integers, e.g., i < n and k < m. Given F and G encoding arbitrary (integer)
vectors f and g, and an integer c ≥ 0, VNC1 can prove the existence of vectors encoding f + g and cf
using ΣB0 -comprehension. Vector summation is well-known to be ΣB1 -definable in VNC1 [CN10] based on
the formalization of carry-save-addition ([Bus87]); in fact, since we are only summing vectors of integers,
the Numones function suffices to define vector summation. This allows VNC1 to define summations such as∑

i fi, and ⟨f, g⟩ =
∑

i figi. In addition, identities such as
∑

i fi +
∑

i gi =
∑

i(fi + gi) and
∑

i cfi =
c
∑

i fi and ⟨f, g + h⟩ = ⟨f, g⟩+ ⟨f, h⟩ are VNC1-provable.
This vector summation is almost enough to permit VNC1 to formalize the above proof of Cauchy-

Schwarz; however, the proof above has a division by ⟨g, g⟩, and uses summations of rationals, not of integers.
As was discussed earlier, it is not clear whether VNC1 can be extended to form summations of arbitrary
vectors of rational numbers — at least, when the denominators might be relatively prime — because of the
difficulty of computing a least common multiple of the denominators. But, for Cauchy-Schwarz for integer
vectors f and g, VNC1 can just multiply through by ⟨g, g⟩ and use integer vector summation. That is, set
f2 = ⟨f, g⟩g, and f1 = ⟨g, g⟩f⊥ = ⟨g, g⟩f − f2. Then, following the reasoning above, VNC1 proves

⟨g, g⟩2⟨f, f⟩2 = ⟨f1, f1⟩+ ⟨f, g⟩2

From this, since ⟨f1, f1⟩ ≥ 0 and taking square roots, VNC1 proves the Cauchy-Schwarz inequality.

6.6 Formalizing edge expansion properties in VNC1

We first discuss how Lemma 4.2 can be stated by VNC1, and how its proof can be formalized in VNC1. The
statement of Lemma 4.2 uses two distributions: an arbitrary distribution π and the uniform distribution u.
The uniform distribution u is just the vector with constant entries 1/n: these of course all share n as their
common denominator. However, even to state Lemma 4.2 in VNC1, we need to make the additional assump-
tion that the entries in π are rational numbers that share a common denominator. (Otherwise it is unclear
whether the vector summation implicit in the statement of Lemma 4.2 is definable in VNC1.) We henceforth
make this assumption about π. Similarly, the Claims 4.3, 4.4 and 4.5 use vectors f , h and g; we also must
assume that these vectors contain either integers, or rationals with a common denominator.
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With these assumptions the proofs given earlier formalize directly in VNC1; however, there are a few
new ingredients in the proof that deserve mention. First, in equation (4), there is a common denominator
of 4d2, which VNC1 handles by multiplying the equality by 4d2. The Cauchy-Schwarz inequality is being
applied |V | times in parallel, to vectors of length d; as discussed above this is formalizable in VNC1. Second,
in the first large displayed equation for the proof of Claim 4.4, a double summation is reordered: this also is
readily formalizable in VNC1, and VNC1 can prove summations are preserved under arbitrary reorderings.
The next large displayed equation for the proof of the same claim uses ϵ, and hence is working with rational
numbers instead of integers. As usual, VNC1 handles this by clearing the denominators. (This happens
whenever ϵ appears in an equation.) Third, the proof of Claim 4.5 uses a factor (2d ·

∑
i g

+(i)2)−1 in
many of its equations. VNC1 handles this by multiplying the equations by (2d ·

∑
i g

+(i)2). Fourth, in
deriving equation (8), it is necessary to reorder the vertices in V so that e1 ≥ e2 ≥ · · · ≥ en so as to apply
Claims 4.4 and 4.5. Since VNC1 can sort vectors of integers (sorting can be defined in terms of the Numones
function), this can also be formalized by VNC1. Fifth, the proof Lemma 4.2 began by defining e = π − u.
By the assumption that π contained rationals with a common denominator, the same holds for e. Hence, the
invocations of Claims 4.3, 4.4 and 4.5 can all use vectors of rational numbers with common denominators.

To formalize Lemma 4.6, we assume for simplicity that
√
δ is a rational. The proof starts with an

arbitrary, but fixed subset U ⊂ V . The uniform distribution u, and the uniform distribution uU are both
vectors of rationals with a common denominator. The proofs of Lemma 4.6 and Claim 4.7 now formalize
straightforwardly in VNC1.

This lets VNC1 prove Lemma 4.1 using Lemmas 4.2 and 4.6, where we assume w.l.o.g. that k is even, so
that the value for

√
δ is a rational. The argument about “Constructivity” at the end of Section 4.1 is directly

formalizable in VNC1. For U ⊂ V , we write edge-expG(U) to denote the edge expansion ratio

edge-expG(U) =
|E(U,U)|

d ·min{|U |, |U |}
.

The use of the notation edge-expG(U) implicitly assumes that U is nonempty and is not equal to V .
Lemma 4.1 as formalized in VNC1 becomes:

Lemma 6.5. Let k be even. VNC1 proves the following: Suppose Gk is the graph power of G as defined in
Section 6.4, and V is the common vertex set of G and Gk. Then

(∃U)[U ⊂ V ∧ edge-exp(⃝Gk)(U) < [12
(
1−

(
1− ϵ2

4

)k/2)
]→ (∃U)[U ⊂ V ∧ edge-expG(U) < ϵ].

The proofs of Claim 4.10 and Lemma 4.9 as given in Section 4.2 formalize directly in VNC1, at least
assuming that the edge expansions ϵG and ϵH are rational numbers:

Lemma 6.6. VNC1 proves the following: Let G = (VG, EG) be a dG-regular graph with dG/2 self-loops
at every vertex and H = (VH , EH) be a dH -regular graph with dH/2 self-loops at every vertex. Let
ϵ = min{ϵG, ϵH}. Then,

(∃U)[U ⊂ (VG ⊗ VH) ∧ edge-expG⊗H(U) < ϵ/50]

→ (∃U)[U ⊂ VG ∧ edge-expG(U) < ϵG] ∨ (∃U)[U ⊂ VH ∧ edge-expH(U) < ϵH ].

(The lemma could be simplified somewhat by taking ϵ = ϵG = ϵH .)
Similarly, the proofs of Lemma 4.12 and Claim 4.13 given in Section 4.3 are formalized directly

in VNC1, assuming ϵG and ϵH are rational numbers:
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Lemma 6.7. VNC1 proves the following: Let G = (VG, EG) be a D-regular graph on n vertices, and let
H = (VH , EH) be a d-regular graph on D vertices. Let ϵ = ϵ2GϵH/48, and let VG◦H denote the vertices of
G ◦H . Then,

(∃U)[U ⊂ VG◦H ∧ edge-expG◦H(U) < ϵ]

→ (∃U)[U ⊂ VG ∧ edge-expG(U) < ϵG] ∨ (∃U)[U ⊂ VH ∧ edge-expH(U) < ϵH ].

Finally, the arguments in Section 3.3 also formalize in VNC1 to combine Lemmas 6.5-6.7 to prove the
existence of expander graphs. For this, we need to formulate the arguments so as to apply Theorem 6.3. We
first how how to prove the existence of the edge expanders Gi in VNC1. To talk about the edge expansion
of Gi, we encode a subset U of Vi using a string Y of length exactly |Vi| + 1 = (|V0| · 4D)2

i
/D + 1, by

letting Y = U ∪ {|Vi|}. It follows from the discussion at the end of Section 6.4 that VNC1 can ΣB1 -define
Gi as a function of |Vi|, hence as a function of Y .

Let A(Y ) express the conditions that (a) |Y | = |Vi| + 1 for some i, and (b) Y encodes a subset U of
Vi such that edge-expGi

(U) < 1/1296. The (contrapositive of the) argument in Section 3.3, formalized in
VNC1, shows that the following is VNC1 provable:

(∃Y≤a)A(Y )→ (∃Y≤
√
a)A(Y ). (22)

For i = 0, this uses the fact that G0 has edge expansion ≥ 1/1296, and since G0 is a constant graph, this
can be checked by a enumerating all of the finitely many subsets.

Applying Theorem 6.3 to (22) gives that VNC1 proves

(∃Y≤a)A(Y )→ (∃Y≤1)A(Y ).

There are only four possible Y ’s with |Y | ≤ 1. The righthand side, (∃Y≤1)A(Y ), is a false ΣB0 -formula
asserting a finite property. Hence, VNC1 can trivially disprove (∃Y≤1)A(Y ) by direct evaluation. There-
fore, VNC1 proves ¬(∃Y )A(Y ), i.e., can prove that any Vi must be an expander. This completes the proof
of the following.

Theorem 6.8. There is a constant d so that VNC1 proves the existence of arbitrarily large, degree 2d graphs
with edge expansion ≥ 1/1296. Namely, VNC1 proves

(∀a)(∃V,E)[|V | ≥ a ∧ (V,E) is a degree 2d graph

∧(∀U)(U ⊆ V → edge-exp(V,E)(U) ≥ 1/1296)].

In fact, there is a ΣB1 -definable function G of VNC1 so that that VNC1 proves

(∀a)[G(a) is a degree 2d graph G(a) = (V,E) with |V | ≥ a
∧(∀U)(U ⊆ V → edge-exp(V,E)(U) ≥ 1/1296)].

VNC1 can also prove the existence of edge expander graphs of aribitrary size.

Theorem 6.9. There is a constant d = 2ℓ and a ΣB1 -definable function G of VNC1 so that VNC1 proves

(∀a)[G(a) is a 4d-regular graph G(a) = (V (a), E(a)) with |V | = a

∧(∀U)(U ⊆ V → edge-exp(V,E)(U) ≥ 1/(2 · 1296))].
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Proof. Pick appropriate constant values for d and c. VNC1 starts by proving the existence of G̃i for the
least i such that 2i ≥ a. As already argued, VNC1 can prove the existence of the sequence k0, . . . , ks with
k0 = i, and each ki+1 = ⌊(ki−2cℓ−5)⌋ and s the first value with ks < 2cℓ+7. In addition, by Section 6.4,
VNC1 can prove the existence of second-order objects encoding edge expanders G̃j = (Ṽj , Ẽj) for every
value j = ki or j = ki + 1 with i ≤ s. Recall that |Ṽj | = 2j . Let A(Y ) express the condition that for
some i ≤ s, either (a) |Y | = 2ki + 1 and Y encodes a subset U of Ṽki such that edge-expG̃ki

(U) < 1/1296,

or (b) |Y | = 2ki+1 + 1 and Y encodes a subset U of Ṽki+1 such that edge-expG̃ki+1
(U) < 1/1296. The

(contrapositive) of the argument in Section 3.3, now shows that

(∃Y≤a)A(Y )→ (∃Y≤
√
a)A(Y ).

is VNC1-provable. Applying Theorem 6.3 gives that VNC1 proves

(∃Y≤a)A(Y )→ (∃Y≤1)A(Y ).

Therefore, VNC1 proves ¬(∃Y≤a)A(Y ), i.e., it proves the edge expansion properties for arbitrary Y , and
hence the edge expansion properties of G̃i.

We have a ≤ 2i < 2a. Now, VNC1 can readily formalize the proof of Proposition 3.7, constructing a
graph on exactly a vertices, of degree 4d, with edge expansion at least 1/(2 · 1296).

Finally, VNC1 can also formalize the argument given in Section 5 to construct bipartite vertex expanders.
The only new proof ingredient is the use of logarithms to define t1 and t2 in the proof of Claim 5.2. VNC1 can
define rational approximations to logarithms; here we need only integers t1 and t2 such that (1+ϵ′)t1 ≥ 1/α
and (1− ϵ′)t2 ≤ α. Since ϵ′ is small, these values can be estimated as |⌈1/α⌉|/ϵ′. Actually, in the argument
for Section 5.2, we have α = 1/600 and ϵ′ = ϵ/D′ are fixed constants; hence t1 and t2 are constants as
well. Finally, at the very end of the proof of Theorem 5.1, we have A = (D′(2d) + 1)max{t1,t2}, where
t′ = max{t1, t2}. Thus A is also a constant. Here it is important that t′ is constant, or at least is not too
large, so that t′ can be used as an exponent.

Thus we have proved the following theorem.

Theorem 6.10. VNC1 proves Theorem 5.1 for any constant α. Namely, for any fixed rational 0 < α < 1,
there exists an A > 0 and a ΣB1 -defined function F (m) of VNC1 so that the following holds: VNC1 proves
that for allm, F (m) equals the rotation map RotG of an (α,A) bipartite vertex expander graphG onm+m
vertices.

As VNC1 is a subtheory of VNC1
∗, Theorem 6.10 is stronger than the assumption needed by Jeřábek [Jeř11a].

7 Application to monotone sequent calculus

In [PB94], Pudlák and Buss introduced a proof system for reasoning with monotone formulas, motivated
by strong lower bounds results for monotone circuits, and posed the question whether similar difference in
complexity holds in the propositional proof system setting. More specifically, they formulated monotone
sequent calculus and asked whether any non-monotone proof of a monotone sequent can be replaced by a
monotone proof at most polynomially larger. In [Pud99], Pudlák further investigated this question, focusing
in particular on the pigeonhole principle. There, he discussed the need to formalize properties of monotone
counting formulas such as AKS sorting networks of [AKS83], and asked whether there are small proofs of
basic properties of counting formulas.
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The pigeonhole principle was shown to have polynomial-size monotone sequent calculus proofs by
Atserias, Galesi and Gavaldá in [AGG01]; this paper was the first to use the name MLK for this system.
The same paper also gave quasipolynomial-size proofs of basic counting principles. Building upon the latter
result, Atserias, Galesi and Pudlák [AGP02] show that, in contrast to monotone circuit classes, monotone
proof systems are nearly as powerful as non-monotone ones: polynomial-size non-monotone proofs can be
simulated by monotone ones of quasipolynomial size. The quasipolynomial blowup is introduced in the
[AGG01] proofs of certain properties of threshold formulas.

To prove that every LK proof can be converted into an MLK proof of quasipolynomial size, [AGP02]
use monotone threshold formulas to eliminate negated variables. A threshold formula THn

k(x1, . . . , xn)
asserts that at least k variables xi are 1. The standard inductive definition builds THn

k as a disjunction of
THn/2

i (x1, . . . , xn/2) ∧ THn/2
j (xn/2+1, . . . , xn) for all pairs i, j ≤ n/2 such that i+ j ≥ k. This definition

yields quasipolynomial size formulas THn
k , and thus gives only quasipolynomial size LK proofs of properties

of THn
k . If LK is polynomially bounded, then so is MLK (as in this case properties of threshold functions

would have polynomial-size LK proofs). More generally, they use the the following lemma based on results
from [AGG01]:

Lemma 7.1 ([AGP02, Lemma 6]). Let THn
k be a polynomial-size monotone threshold formula. Then MLK

polynomially simulates LK on monotone sequents, provided that there are polynomial-size LK proofs of the
following sequents:

1. THn
k(x1, . . . , xn)→ 0 and 1→ THn

0 (x1, . . . , xn) for every n and k > n.

2. THn
k(x1, . . . , xi/0, . . . , xn)→ THn

k+1(x1, . . . , xi/1, . . . , xn) for all n, k, i with 0 ≤ k, i ≤ n.

Such polynomial-size monotone threshold formulas can be built using the classic construction of mono-
tone log-depth sorting networks by Ajtai, Komlós and Szemerédi [AKS83], known as AKS sorting networks.
A sorting network can be thought of as a circuit with n outputs gates, which contain the values of the input
gates in sorted order. That is, the kth output of a sorting network is 0 iff there are at least k 0s among inputs
to the network. The construction of AKS sorting networks is fairly involved; see [Pat90, Sei09] for exposi-
tions. At the end of the paper, Atserias et al. note that replacing their threshold formulas with monotone NC1

sorting networks of Ajtai, Komlós and Szemerédi would remove the blowup and allow for polynomial-size
simulation, provided the relevant properties can be proven with NC1 reasoning (not necessarily monotone).

Jeřábek [Jeř11b] has shown just that, under the assumption that bipartite expanders graphs with appro-
priate parameters can be constructed, and their properties proven in NC1 reasoning. More precisely, Jeřábek
[Jeř11b] has shown that AKS sorting networks (Paterson’s [Pat90] variant) are indeed formalizable in a
theory VNC1

∗ of NC1 reasoning, under the assumption of the existence of a family of bipartite expanders
provable in VNC1

∗ (with parameters as in Claim 5.2). The theory VNC1
∗ is somewhat stronger than VNC1

that we use, in that it can evaluate and reason about less uniform families of log-depth circuits; however,
proofs in VNC1

∗ still translate into polynomial-size LK proofs [Jeř11a]. Thus, Jeřábek obtains the following
result:

Theorem 7.2 ([Jeř11b, Theorem 5.5]). Suppose that there exists a constant D and a parameter-free NC1
∗

function G(m) such that VNC1
∗ proves that for all numbers m, G(m) is a ⟨1/600, D⟩ bipartite m+m

expander. Then MLK polynomially simulates LK on monotone sequents.

The construction in Theorem 5.1 gives expanders with the appropriate parameters, and Theorem 6.10
shows that it can be done in VNC1 (and thus VNC1

∗). As this proves the assumption of Theorem 7.2, we
immediately get the following corollary.

Theorem 7.3 (Main application). MLK polynomially simulates LK on monotone sequents.
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8 Conclusions and open problems

From the point of view of bounded reverse mathematics, the area that tries to pinpoint the minimal reasoning
power needed to prove mathematical theorems, it is very interesting to understand what is the complexity of
reasoning required to prove properties of expander graphs, and thus what is the the complexity of reasoning
in expander-based proofs such as the known proofs of SL = L [Rei08, RV05]. This paper makes a step in
this direction by showing that an expander construction can be formalized within the system VNC1.

A number of open questions remain. Can we formalize expanders in a weaker theory than VNC1, e.g.,
the system of TC0 reasoning? Can Reingold’s result that undirected graph connectivity is in deterministic
logspace [Rei08] be formalized in the system of logspace reasoning? The analysis of graph powering given
in this paper and the analysis of replacement product given in [ASS08] are not strong enough to achieve that
goal4.

Finally, as was already asked by [Jeř11b], can the AKS construction of expanders be modified to yield
UE∗-uniform sorting networks?
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