Greedy Strikes Again: A Deterministic PTAS for Commutative Rank of Matrix Spaces

Markus Bläser* Gorav Jindal† Anurag Pandey‡

September 23, 2016

Abstract

We consider the problem of commutative rank computation of a given matrix space, \(\mathcal{B} \subseteq \mathbb{F}^{n \times n} \). The problem is fundamental, as it generalizes several computational problems from algebra and combinatorics. For instance, checking if the commutative rank of the space is \(n \), subsumes problems such as testing perfect matchings in graphs and identity testing of algebraic branching programs. An efficient deterministic computation of the commutative rank is a major open problem, although there is a simple and efficient randomized algorithm for it. Recently, there has been a series of results on computing the non-commutative rank of matrix spaces in deterministic polynomial time. Since the non-commutative rank of any matrix space is at most twice the commutative rank, one immediately gets a deterministic \(\frac{1}{2} \)-approximation algorithm for the computation of the commutative rank. This leads to a natural question of whether this approximation ratio can be improved. In this paper, we answer this question affirmatively.

We present a deterministic PTAS for computing the commutative rank of a given matrix space. More specifically, given a matrix space \(\mathcal{B} \subseteq \mathbb{F}^{n \times n} \) and a rational number \(\epsilon > 0 \), we give an algorithm, that runs in time \(O(n^{1+\frac{\epsilon}{2}}) \) and computes a matrix \(A \in \mathcal{B} \) such that the rank of \(A \) is at least \((1-\epsilon) \) times the commutative rank of \(\mathcal{B} \). The algorithm is the natural greedy algorithm. It always takes the first set of \(k \) matrices that will increase the rank of the matrix constructed so far until it does not find any improvement, where the size of the set \(k \) depends on \(\epsilon \).

1 Introduction

In this paper, we consider the problem of computing the maximum rank of any matrix which lies in the linear span of \(m \) given input \(n \times n \) matrices \(B_1, B_2, \ldots, B_m \) over some underlying field \(\mathbb{F} \). This maximum rank is also called the commutative rank of the matrix space \(\mathcal{B} = \langle B_1, B_2, \ldots, B_m \rangle \). This problem was introduced by Edmonds in [Edm67]. Any matrix spanned by \(B_1, B_2, \ldots, B_m \) can be written as the homomorphic image of \(B = \sum_{i=1}^m x_i B_i \) under the substitution homomorphism, where we think of the \(x_i \) as indeterminates. It is not hard to see that the commutative rank of the \(\mathcal{B} \) is same as the rank of \(\mathcal{B} \) over the field of rational functions \(\mathbb{F}(x_1, x_2, \ldots, x_m) \), provided that \(\mathbb{F} \) is large enough. For this reason, this problem is also called the symbolic matrix rank sometimes. Since the rank of \(\mathcal{B} \) is the size of the largest nonzero minor in \(B \) and any minor of \(B \) is a polynomial of degree at most \(n \) in the variables \(x_1, x_2, \ldots, x_m \), by using the Schwartz-Zippel lemma [Zip79, Sch80], one immediately gets a randomized algorithm for computing the commutative rank of \(\mathcal{B} \) if the size of the field \(\mathbb{F} \) is large enough. The maximum matching problem in bipartite and general graphs is a special case of the commutative rank problem, as shown in [Lov79]. Even the linear matroid parity problem is special case of the commutative rank problem [Ori08].

Valiant [Val79] showed that a formula of size \(s \) can be written as a projection of the determinant of an \((s+2) \times (s+2) \) matrix having linear polynomials as entries. This shows that checking if a given matrix space is full rank is as hard as polynomial identity testing of formulas. In fact, it is even known that algebraic branching programs are computationally equivalent to the polynomials computed by determinants of a polynomial sized matrix, see [Vin91, Tod91, MV97]. So the problem of deciding whether a given matrix space is full rank is as hard as the...
polynomial identity testing of arithmetic branching programs. Algebraic branching programs are conjectured to be a stronger model for computing polynomials than formulas.

We remark that if the underlying field \mathbb{F} is not large enough, then this problem is hard. Buss et al. proved that the problem is NP-complete in [BFS99], when the field \mathbb{F} is of constant size.

1.1 Previous work

Since the general case of computing the commutative rank is as hard as identity testing for polynomials given as algebraic branching programs, several special cases of matrix spaces have been considered. There has been a lot of study in the case when all the matrices B_i are of rank 1 [Lov89, IKQS15, IKS10]. Deterministic polynomial time algorithms were shown for this case in [IKQS15, IKS10]. The case when the matrices B_i are skew-symmetric of rank 2 is also of special interest as it was shown in [Lov79] that the linear matroid parity problem is a special case of computing the commutative rank when B_i are skew-symmetric of rank 2. Many deterministic polynomial time algorithms have been demonstrated for this case, see [Lov78, GS86, LP09].

Analogous to the notion of commutative rank of a matrix space, there is also a notion of non-commutative rank (see the next section for a precise definition). The matrix spaces for which commutative rank and non-commutative rank are equal are called compression spaces [EH88]. A deterministic polynomial time algorithm for checking if a compression space is of full rank (over the field \mathbb{Q}) was discovered by Gurvits in [Gur04]. The algorithm of [Gur04] was analysed more carefully in [GGOW15] to demonstrate that the algorithm described in [Gur04] actually is a deterministic polynomial time algorithm to check if a given matrix space has full non-commutative rank. This algorithm works over \mathbb{Q} only. Ivanyos et al. [IQS15] extended this results to arbitrary fields, using a totally different algorithm. It was shown in [FR04] that non-commutative of any matrix space is at most twice the commutative rank. So the algorithms in [GGOW15, IQS15] are deterministic polynomial time algorithms which compute a $\frac{1}{2}$-approximation to the commutative rank. Approximating the commutative rank of a matrix space can be seen as a relaxation of the polynomial identity testing problem. Improving on the $\frac{1}{2}$-approximation was formulated as an open problem in [GGOW15].

1.2 Our results

We here improve on this approximation performance. We give a deterministic polynomial time approximation scheme (PTAS) for approximating the commutative rank. That is, given a basis B_1, \ldots, B_m of our matrix space B of $n \times n$-matrices and some rational number $\epsilon > 0$, our algorithm outputs a matrix $A \in B$ whose rank is at least $(1 - \epsilon) \cdot r$, where $r = \max \{\text{rank}(B) \mid B \in B\}$ provided that the size of the underlying field is larger than n. Our algorithm performs $O(n^{k+\frac{3}{2}})$ many arithmetic operations, the size of each operand is linear in the sizes of the entries of the matrices B_1, \ldots, B_m. So for fixed ϵ, the running time is polynomial in the input size.

Our algorithm is the natural greedy algorithm: Assume we have constructed a matrix A so far. Then the algorithm tries all subsets of B_1, \ldots, B_m of size k, where k depends on ϵ, and tests whether we can increase the rank of A by adding an appropriate linear combination of B_{i_1}, \ldots, B_{i_k}. The main difficulty is to prove that when this algorithm stops, A is an $(1 - \epsilon)$-approximation. The analysis uses so-called Wong sequences.

For polynomial identity testing, one has to test whether a matrix has full rank or rank $\leq n - 1$. Therefore, our PTAS does not seem to help getting a polynomial time algorithm for polynomial identity testing.

1.3 Organization of the paper

Section 2 describes the basic setup of the problem and relevant definitions and techniques. It describes the basic notations, definitions and related lemmas and theorems known. In Section 3, we first present a greedy algorithm which computes a $\frac{1}{2}$-approximation of the commutative rank in deterministic polynomial time. It describes the basic ideas of our algorithm but is much easier to analyse. This motivates our final algorithm which can compute arbitrary approximations to the commutative rank in deterministic polynomial time. To extend this $\frac{1}{2}$-approximation to arbitrary approximation, we introduce the notion of Wong sequences and Wong index in Section 4. Section 5 studies the relation between commutative rank and Wong index. In this section, we prove that the higher the Wong index is of a given matrix, the closer its rank is to the commutative rank of the given matrix space. This allows us to extend Algorithm 1 to arbitrary approximation by considering larger subsets. The algorithm for arbitrary approximation of the commutative rank and its proof of correctness and desired running time are given in Section 6. We conclude by giving some tight examples in Section 7.
2 Preliminaries

Here, we introduce the basic definitions and notations which are needed to fully describe our algorithm.

1. If V and W are vector spaces, then we use notation $V \leq W$ to denote that V is a subspace of W.
2. We use $\mathbb{F}^{n \times n}$ to denote the set of all $n \times n$ matrices over a field \mathbb{F}.
3. $\text{Im}(A)$ is used to denote the image of a matrix $A \in \mathbb{F}^{n \times n}$.
4. $\text{Ker}(A)$ is used to denote the kernel of a linear map $A \in \mathbb{F}^{n \times n}$.
5. $\dim(V)$ is used to denote the dimension of a vector space V.
6. For any subset S of a vector space U, $\langle S \rangle$ denotes the linear span of S.
7. For $A \in \mathbb{F}^{n \times n}$ and a vector space $U \leq \mathbb{F}^n$, the image of U under A is $A(U) = AU = \{ A(u) \mid u \in U \}$.
8. The preimage of $W \leq \mathbb{F}^n$ under A is defined as $A^{-1}(W) = \{ v \in V \mid A(v) \in W \}$.
9. The set $\{0, 1, 2, \ldots, n\}$ of non-negative integers between 0 and n is denoted by $[n]$.
10. We use the notation I_r to denote the $r \times r$ identity matrix.

Below are some of the basic definitions which we shall need.

Definition 1 (Matrix space). A vector space $B \leq \mathbb{F}^{n \times n}$ is called a matrix space.

We would usually deal with matrix spaces whose generating set is given as the input. More precisely, we would be given a matrix space $B = \langle B_1, B_2, \ldots, B_m \rangle \leq \mathbb{F}^{n \times n}$, where we get the matrices B_1, B_2, \ldots, B_m as the input. Note that without loss of generality, one can assume that $m \leq n^2$.

Definition 2 (Commutative rank). The maximum rank of any matrix in a matrix space B is called the commutative rank of B. We use notation $\text{rank}(B)$ to denote this quantity.

We shall use the same notation $\text{rank}(A)$ for denoting the usual rank of any matrix. Note that the rank of a matrix A is same as the commutative rank of the matrix space generated by A, that is, $\text{rank}(A) = \text{rank}(\langle A \rangle)$.

Definition 3 (Product of a matrix space and a vector space). The image of a vector space U under a matrix space A is the span of the images of U under every $A \in A$, that is, $A(U) = AU = \{ \cup_{A \in A} A(U) \}$. We also call this image AU to be the product of the matrix space A and the vector space U.

Definition 4 (c-shrunk subspace). A vector space $V \leq \mathbb{F}^n$ is a c-shrunk subspace of a matrix space B, if $\text{rank}(BV) \leq \dim(V) - c$.

Definition 5 (Non-commutative rank). Given a matrix space $B \leq \mathbb{F}^{n \times n}$, let r be the maximum non-negative integer such that there exists a r-shrunk subspace of the matrix space B. Then $n-r$ is called the non-commutative rank of B. We use the notation $\text{nc-rank}(B)$ to denote this quantity.

From the definition above, it is not clear why we call this quantity non-commutative rank. It can be shown that the quantity above equals the rank of the corresponding symbolic matrix when the variables x_1, \ldots, x_m do not commute. For more natural and equivalent definitions as well as more background on non-commutative rank, we refer the reader to [GGOW15, FR04].

Lemma 6. For all matrix spaces $B \leq \mathbb{F}^{n \times n}$, $\text{rank}(B) \leq \text{nc-rank}(B)$.

Proof. Let $r = \text{nc-rank}(B)$. This means that there exists $V \leq \mathbb{F}^n$ such that $\text{rank}(BV) = \dim(V) - (n-r)$. Therefore, for all $B \in B$, $\text{rank}(BV) \leq \dim(V) - (n-r)$. Thus $\text{rank}(B) \leq n - (n-r) = r = \text{nc-rank}(B)$.

Theorem 7 ([FR04]). For all matrix spaces $B \leq \mathbb{F}^{n \times n}$, we have $\text{nc-rank}(B) \leq 2 \cdot \text{rank}(B)$.

Lemma 8 ([FR04]). There exists a matrix space $B \leq \mathbb{F}^{n \times n}$ such that $\text{nc-rank}(B) \geq \frac{3}{2} \cdot \text{rank}(B)$.

3 \(\frac{1}{2} \)-approximation algorithm for the commutative rank

Here we present a simple greedy algorithm which also achieves an \(\frac{1}{2} \)-approximation for the commutative rank. This algorithm looks for the first matrix that increases the rank of the current matrix and stops if it does not find such a matrix.

Algorithm 1 Greedy algorithm for \(\frac{1}{2} \)-approximating commutative rank

Input: A matrix space \(B = \langle B_1, B_2, \ldots, B_m \rangle \leq \mathbb{F}^{n \times n} \), input is a list of matrices \(B_1, B_2, \ldots, B_m \).

Output: A matrix \(A \in B \) such that \(\text{rank}(A) \geq \frac{1}{2} \cdot \text{rank}(B) \)

Initialize \(A = 0 \in \mathbb{F}^{n \times n} \) to the zero matrix.

while Rank is increasing do

for each \(1 \leq i \leq m \) do

Check if there exists a \(\lambda \in \mathbb{F} \) such that \(\text{rank}(A + \lambda B_i) > \text{rank}(A) \).

if \(\text{rank}(A + \lambda B_i) > \text{rank}(A) \) then

Update \(A = A + \lambda B_i \).

return \(A \).

Lemma 9. Algorithm 1 runs in polynomial time and returns a matrix \(A \in B \) such that \(\text{rank}(A) \geq \frac{1}{2} \cdot \text{rank}(B) \).

Proof. Let \(A \) be the matrix returned by Algorithm 1. Assume that \(A \) has rank \(r \). We know that there exist non-singular matrices \(P \) and \(Q \) such that

\[
P A Q = \begin{pmatrix}
I_r & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{pmatrix},
\]

where \(I_r \) is the \(r \times r \) identity matrix. Now consider the matrix space \(P B Q \overset{\text{def}}{=} \langle P B_1 Q, P B_2 Q, \ldots, P B_m Q \rangle \).

This does not change anything with respect to the rank. So for the analysis, we can replace \(B \) by \(P B Q \). Consider any general matrix \(A + x_1 B_1 + x_2 B_2 + \ldots + x_m B_m \) in \(B \). We decompose it as

\[
A + x_1 B_1 + x_2 B_2 + \ldots + x_m B_m = \begin{pmatrix}
M_1 \\
M_2 \\
M_3 \\
M_4
\end{pmatrix}.
\]

Here \(M_1 \) is an \(r \times r \) matrix, \(M_2 \) is an \(r \times (n - r) \) matrix, \(M_3 \) is a \((n - r) \times r \) matrix and \(M_4 \) is a \((n - r) \times (n - r) \) matrix. \(M_1, M_2, M_3, \) and \(M_4 \) have (affine) linear forms in variables \(x = (x_1, x_2, \ldots, x_m) \) as their entries.

Now we claim that the bottom right part \(M_4 \) is the zero matrix. Assume otherwise. Assume that the \((s,t)\)-entry of the above matrix is nonzero with \(s, t > r \). Consider the \((r+1) \times (r+1)\) minor of \(A + x_1 B_1 + x_2 B_2 + \ldots + x_m B_m \), obtained by adding the \(s \)th row (from \(M_3 \)) and the \(t \)th column (from \(M_2 \)) to \(M_1 \). We shall denote this minor by \(C \). The minor \(C \) looks like

\[
C = \begin{pmatrix}
1 + \ell_{11}(x) & \ell_{12}(x) & \ldots & \ell_{1r}(x) & a_1(x) \\
\ell_{21}(x) & 1 + \ell_{22}(x) & \ldots & \ell_{2r}(x) & a_2(x) \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\ell_{r1}(x) & \ell_{r2}(x) & \ldots & 1 + \ell_{rr}(x) & a_r(x) \\
b_1(x) & b_2(x) & \ldots & b_r(x) & c(x)
\end{pmatrix}.
\]

The \(\ell_{i,j}, a_i, b_j, \) and \(c \) are homogeneous linear forms in \(x \). By our choice, \(c(x) \neq 0 \). It is not hard to see that \(\text{det}(C) = c(x) + \text{terms of degree at least 2} \).

Thus there are \(\lambda \in \mathbb{F} \) and \(i \in [m] \) such that \(\text{det}(C(a)) \neq 0 \), where \(a \) is the assignment to the variables \(x = (x_1, x_2, \ldots, x_m) \) obtained by setting \(x_k = 0 \) when \(k \neq i \) and \(x_i = \lambda \). These choices of \(i \in [m] \) and \(\lambda \in \mathbb{F} \) would allow Algorithm 1 to find a matrix \(A \) of larger rank. Thus Algorithm 1 would keep finding a matrix \(A \) of larger rank when the matrix \(M_4 \) is non-zero. Hence it can only stop when \(M_4 \) is the zero matrix. If \(M_4 \) is the zero matrix then \(\text{rank}(B) \leq 2r \). Thus when Algorithm 1 stops, it outputs a matrix \(A \) such that \(\text{rank}(A) \geq \frac{1}{2} \cdot \text{rank}(B) \).

The running time is obviously polynomial since the while loop is executed at most \(n \) times and we have to check at most \(n + 1 \) values for \(\lambda \). The size of the numbers that occur in the rank check is polynomial in the size of the entries of \(B_1, \ldots, B_m \). \(\square \)
4 Wong sequences and Wong index

In this section, we introduce the notion of Wong sequences which is crucially used in our proofs. For a more comprehensive exposition, we refer reader to [IKQS15].

Definition 10 (Second Wong Sequence). Let $B \leq \mathbb{F}^{n \times n}$ be a matrix space and $A \in B$. The sequence of sub-spaces $(W_i)_{i \in [n]}$ of W is called the second Wong sequence of (A, B), where $W_0 = \{0\}$, and $W_{i+1} = BA^{-1}(W_i)$.

In [IKQS15], first Wong sequences are also introduced. But for our purpose, just the notion of second Wong sequence is enough. It is easy to see that $W_0 \leq W_1 \leq W_2 \leq \ldots \leq W_n$, see [IKQS15].

Next, we introduce the notion of pseudo-inverses. They are helpful in computing the Wong sequences. We remark that we would need the notion of Wong sequence only for the analysis, our algorithm is completely oblivious to Wong sequences.

Definition 11 (Pseudo-Inverse). A non-singular matrix $A' \in \mathbb{F}^{n \times n}$ is called a pseudo-inverse of a linear map $A \in \mathbb{F}^{n \times n}$ if the restriction of A' to $\text{Im}(A)$ is the inverse of the restriction of A to a direct complement of $\text{Ker}(A)$.

Unlike the usual inverse of a non-singular matrix, a pseudo-inverse of a matrix is not necessarily unique. But it always exists and if A is non-singular, then it is unique and coincides with the usual inverse.

The following lemma demonstrates the role of pseudo-inverses in computing Wong sequences. This lemma and its proof are implicit in the proof of Lemma 10 in [IKQS15]. We prove it here for completeness. The lemma essentially states that we can replace the preimage computation in the Wong sequence by multiplication with a pseudo-inverse.

Lemma 12. Let $B \leq \mathbb{F}^{n \times n}$ be a matrix space, $A \in B$, A' be a pseudo-inverse of A and $(W_i)_{i \in [n]}$ be the second Wong sequence of (A, B). Then for all $1 \leq i \leq n$, we have $W_i = (BA')^i(\text{Ker}(AA'))$ as long as $W_{i-1} \subseteq \text{Im}(A)$.

Proof. We prove the statement by induction on i. Since $\text{Ker}(AA') = A'^{-1}(\text{Ker}(A))$, we get that $(BA')(\text{Ker}(AA')) = BA'A'^{-1}(\text{Ker}(A)) = B\text{Ker}(A) = W_1$. This proves the base case of $i = 1$. To prove that $W_i = (BA')^i(\text{Ker}(AA'))$, we shall prove that $(BA')^i(\text{Ker}(AA')) \subseteq W_i$ and $W_i \subseteq (BA')^i(\text{Ker}(AA'))$. By the induction hypothesis, we just need to prove that $(BA')(W_{i-1}) \subseteq W_i$ and $W_i \subseteq (BA')(W_{i-1})$.

First we prove the easy direction, that is $(BA')(W_{i-1}) \subseteq W_i$. Since $W_{i-1} \subseteq \text{Im}(A)$, we have that $A'(W_{i-1}) \subseteq A^{-1}(W_{i-1})$. Thus $(BA')(W_{i-1}) \subseteq (BA'^{-1})(W_{i-1}) = W_i$.

Now we prove that $W_i \subseteq (BA')(W_{i-1})$. Since $W_{i-1} \subseteq \text{Im}(A)$, we get that $A^{-1}(W_{i-1}) = A'W_{i-1} + \text{Ker}(A)$. Thus $W_i = BA^{-1}(W_{i-1}) \subseteq BA'W_{i-1} + B\text{Ker}(A)$. We have $B\text{Ker}(A) = W_1 \subseteq W_{i-1}$, this implies that $W_i \subseteq BA'W_{i-1} + W_{i-1}$. Since $A \in B$ and $W_{i-1} = AA'W_{i-1}$, we get that $W_{i-1} \subseteq BA'W_{i-1}$. This in turn implies that $W_i \subseteq BA'W_{i-1} + BA'W_{i-1} = (BA')(W_{i-1})$.

Given a matrix space B and a matrix $A \in B$, how can one check that A is of maximum rank in B, i.e. $\text{rank}(A) = \text{rank}(B)$? The following lemma in [IKQS15] gives a sufficient condition for A to be of maximum rank in B.

Lemma 13 (Lemma 10 in [IKQS15]). Assume that $|F| > n$. Let $A \in B \leq \mathbb{F}^{n \times n}$, and let A' be a pseudo-inverse of A. If we have that for all $i \in [n]$, $W_i = (BA')^i(\text{Ker}(AA')) \subseteq \text{Im}(A)$, then A is of maximum rank in B.

Thus, the above lemma shows that if A is not of maximum rank in B, then we have $W_i \nsubseteq \text{Im}(A)$ for some $i \in [n]$. For our purposes, we need to quantify when exactly this happens. Therefore we define:

Definition 14 (Wong Index). Let $B \leq \mathbb{F}^{n \times n}$ be a matrix space, $A \in B$ and $(W_i)_{i \in [n]}$ be the second Wong sequence of (A, B). Let $k \in [n]$ be the maximum integer such that $W_k \subseteq \text{Im}(A)$. Then k is called the Wong index of (A, B). We shall denote it by $w(A, B)$.

Using the above definition, another way to state Lemma 13 is that if the Wong index $w(A, B)$ of (A, B) is n, then A is of maximum rank in B. But can one say more in this case? In next section, we explore this connection. We shall prove that the closer $w(A, (A, B))$ is to n, the closer the rank of A is to the commutative rank of (A, B).

The converse of Lemma 13 is not true in general. But the converse is true in the special case when B is spanned by just two matrices. Fortunately, for our algorithm we only require the converse to be true in this special case. The following fact from [IKQS15] formally states this idea.
Fact 15 (Restatement of Fact 11 in [IKQS15]). Assume that $|\mathbb{F}| > n$ and let $A, B \in \mathbb{F}^{n \times n}$. If A is of maximum rank in $\langle A, B \rangle$ then the Wong index $w(A, \langle A, B \rangle)$ of $(A, \langle A, B \rangle)$ is n.

We shall also need the following easy fact from linear algebra.

Fact 16. Let M be a matrix of the following form.

$$M = \begin{pmatrix} r \text{ columns} \\ n - r \text{ rows} \end{pmatrix} \begin{pmatrix} L & B \\ A & 0 \end{pmatrix} \begin{pmatrix} n - r \text{ columns} \\ \text{r rows} \end{pmatrix}$$

(4.1)

Also, let rank$(A) = a$ and rank$(B) = b$. Then rank$(M) \leq r + \min\{a, b\}$.

To extend that the simple greedy algorithm for rank increment described in Section 3 for arbitrary approximation of the commutative rank, we use the Wong index defined above. We essentially show that either of the following happens:

1. The Wong index of the matrix obtained by the greedy algorithm at a given step is high enough, in which case, we show that the matrix already has the desired rank. Lemma 20 formalizes this.

2. We can increase the rank by a greedy step. Lemma 21 formalizes this.

5 Relation between rank and Wong index

Now we quantify the connection between commutative rank and Wong index. First we need a lemma which demonstrates that the second Wong sequence remains “almost” the same under invertible linear maps.

Lemma 17. Let $A \in \mathcal{B} \leq \mathbb{F}^{n \times n}$ and $(W_i)_{i \in [n]}$ be the second Wong sequence of (A, B). If $P \in \mathbb{F}^{n \times n}$ and $Q \in \mathbb{F}^{n \times n}$ are invertible matrices, then the second Wong sequence of (PAQ, PBQ) is $(PW_i)_{i \in [n]}$. In particular, $w(A, B) = w(PAQ, PBQ)$.

Proof. Consider the ith entry W_i' in the second Wong sequence of (PAQ, PBQ). We prove that $W_i' = PW_i$ for all $i \in [n]$. We use induction on i. The statement is trivially true for $i = 0$. By the induction hypothesis, we have, $W_i' = PBQ^{-1}PW_{i-1} = PBQ^{-1}A^{-1}P^{-1}PW_{i-1} = PBA^{-1}(W_{i-1}) = PW_i$. \qed

Lemma 18. Let $A, B \in \mathbb{F}^{n \times n}$. Assume $A = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$ and express the matrix B as

$$B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

(5.1)

Let $\ell \leq n$ be the maximum integer such that first ℓ elements of the sequence of matrices

$$B_{22}, B_{21}B_{12}, B_{21}B_{11}B_{12}, \ldots, B_{21}B_{11}B_{12} \ldots$$

are equal to the zero matrix. Then $\ell = w(A, \langle A, B \rangle)$.

Proof. Notice that I_n is a pseudo-inverse of A. Consider the second Wong sequence of $\langle A, \langle A, B \rangle \rangle$. By Lemma 12, it equals $((A, B), A')'$($\ker(A A')$). Since $A' = I_n$, this sequence is $((A, B), A')'$($\ker(A)$). $\ker(A) \leq \mathbb{F}^n$ contains exactly the vectors which have first r entries to be zero and $\text{im}(A)$ contains exactly the vectors which have last $n - r$ entries to be zero. Let $k = w(A, \langle A, B \rangle)$, we want to show that $k = \ell$.

First we show that $\ell \geq k$. For this, we need to show that $B_{22} = B_{21}B_{12} = B_{21}B_{11}B_{12} = \ldots = B_{21}B_{11}B_{12} = 0$. If $k = 0$ then we do not need to show anything. Otherwise $k > 0$. Consider the first entry W_1 of second Wong sequence of $\langle A, \langle A, B \rangle \rangle$. By Lemma 12, we know that $W_1 = \langle A, B \rangle \ker(A)$. As $\ker(A) \leq \mathbb{F}^n$ contains exactly the vectors which have first r entries to be zero, if B_{22} was not zero then $B \ker(A)$ would contain a vector with a non-zero entry in last $n - r$ coordinates. This would violate the assumption $W_1 \subseteq \text{im}(A)$. Thus $B_{22} = 0$. Now we
use induction on length of the sequence $B_{22}, B_{21}B_{12}, B_{21}B_{11}B_{12}, \ldots, B_{21}B_{11}^iB_{12}$. Our induction hypothesis assumes that for $i \geq 1$

$$B^i = \begin{pmatrix}
 r \text{ columns} \\
 r \text{ rows} \left(\begin{array}{ccc}
 B_{11}^{i+1} + \sum_{j=0}^{i-2} B_{11}^j B_{12} B_{21} B_{11}^{i-2-j} & B_{11}^i B_{12} \\
 B_{21} B_{11}^{i-1} & 0
 \end{array} \right)
\end{pmatrix}
\begin{pmatrix}
 n-r \text{ rows} \\
 n-r \text{ columns}
\end{pmatrix}$$

and $B_{22} = B_{21}B_{12} = B_{21}B_{11}B_{12} = \ldots = B_{21}B_{11}^iB_{12} = 0$. We just proved the base case of $i = 1$. Consider

$$B^{i+1} = B \cdot B^i = \begin{pmatrix}
 r \text{ columns} \\
 r \text{ rows} \left(\begin{array}{ccc}
 B_{11}^{i+1} + \sum_{j=0}^{i-2} B_{11}^j B_{12} B_{21} B_{11}^{i-2-j} + B_{12} B_{21} B_{11}^{i-1} & B_{11}^i B_{12} \\
 B_{21} B_{11}^i + \sum_{j=0}^{i-2} B_{21} B_{11}^j B_{12} B_{21} B_{11}^{i-2-j} & 0
 \end{array} \right)
\end{pmatrix}
\begin{pmatrix}
 n-r \text{ rows} \\
 n-r \text{ columns}
\end{pmatrix}$$

Since $i + 1 \leq k$, we must have $B_{21}B_{11}^{i-1}B_{12} = 0$, otherwise we would have $W_{i+1} \not\subseteq \text{Im}(A)$. Also we know by the induction hypothesis that $B_{22} = B_{21}B_{12} = B_{21}B_{11}B_{12} = \ldots = B_{21}B_{11}^iB_{12} = 0$, this implies that

$$B^{i+1} = B \cdot B^i = \begin{pmatrix}
 r \text{ columns} \\
 r \text{ rows} \left(\begin{array}{ccc}
 B_{11}^{i+1} + \sum_{j=0}^{i-1} B_{11}^j B_{12} B_{21} B_{11}^{i-1-j} & B_{11}^i B_{12} \\
 B_{21} B_{11}^i & 0
 \end{array} \right)
\end{pmatrix}
\begin{pmatrix}
 n-r \text{ rows} \\
 n-r \text{ columns}
\end{pmatrix}$$

Now we show that $k \geq \ell$. Since $k = w(A, (A, B))$, for all $1 \leq i \leq k$, B^i can be written as

$$B^i = \begin{pmatrix}
 r \text{ columns} \\
 r \text{ rows} \left(\begin{array}{ccc}
 B_{11}^i + \sum_{j=0}^{i-2} B_{11}^j B_{12} B_{21} B_{11}^{i-2-j} & B_{11}^i B_{12} \\
 B_{21} B_{11}^{i-1} & 0
 \end{array} \right)
\end{pmatrix}
\begin{pmatrix}
 n-r \text{ rows} \\
 n-r \text{ columns}
\end{pmatrix}$$

Consider the sequence of matrices $B_{22}, B_{21}B_{12}, B_{21}B_{11}B_{12}, \ldots, B_{21}B_{11}^iB_{12}, \ldots$. If the first $k \geq 1$ elements in this sequence are equal to the zero matrix and B_{11} is non-singular, then $\text{rank}(B) \leq r (1 + \frac{1}{k})$.

Proof. We note that $B_{21}B_{11}^jB_{12} = 0$ for $j = 0, \ldots, k - 2$ means that $\text{Im}(B_{12}), \text{Im}(B_{11}B_{12}), \ldots, \text{Im}(B_{11}^{k-2}B_{12})$, are subspaces of $\text{Ker}(B_{21})$. Also, the dimension of all these subspaces is the same as the rank of B_{12}, because we assumed B_{11} to be non-singular.

If $\text{rank}(B_{12}) \leq \frac{k}{2}$, then we are done by using the Fact 16. So we can assume without loss of generality that $\text{rank}(B_{12}) > \frac{k}{2}$. Now suppose for the moment that the subspaces $\text{Im}(B_{12}), \text{Im}(B_{11}B_{12}), \ldots, \text{Im}(B_{11}^{k-2}B_{12})$ are
pairwise disjoint (meaning that all pairwise intersections contain only the zero vector). This implies that the dimension of \(\ker(B_{21}) \) is at least \((k - 1) \cdot \text{rank}(B_{12}) > \frac{r(k - 1)}{k} \). Further using the rank nullity theorem, we get \(\text{rank}(B_{21}) < r - \frac{r(k - 1)}{k} = \xi \). By using the Fact 16, we again obtain that \(\text{rank}(B) \leq r + \frac{1}{k} \).

In the above discussion, we assumed that the subspaces \(\text{Im}(B_{12}), \text{Im}(B_{11}B_{12}), \ldots, \text{Im}(B_{11}^{-2}B_{12}) \) are pairwise disjoint. What if this is not the case? We still want to use the same idea as above but we want to ensure the assumption of these spaces being disjoint. For this purpose, we use a series of elementary column operations on \(B \) to transform it to a new matrix \(B^{(k-2)} \), which would satisfy the above assumption. Since the rank of a matrix is invariant under elementary column operations, we would obtain the desired bound on \(\text{rank}(B) \). Now we show how to obtain this matrix \(B^{(k-2)} \) using a series of elementary column operations on \(B \).

We construct a sequence of new matrices \(B_{12} := B_{12}^{(0)}, B_{12}^{(1)}, \ldots, B_{12}^{(k-2)} \) such that \(\forall i \in [k - 2] \), we have \(\text{rank}(B^{(i)}) = \text{rank}(B) \), where

\[
B^{(i)} = \begin{cases}
& r \text{ rows} \left(\begin{array}{cc}
B_{11} & B_{12}^{(i)} \\
B_{21} & 0 \\
\end{array} \right) \\
& n - r \text{ columns}
\end{cases}
\]

We construct the sequence \(B_{12}^{(0)}, B_{12}^{(1)}, \ldots, B_{12}^{(k-2)} \) inductively. We shall maintain the invariance that the elements of the sequence \(B_{22}, B_{21}B_{12}^{(i)}, B_{21}B_{11}B_{12}^{(i)}, \ldots, B_{21}B_{11}^{-2}B_{12}^{(i)} \) are all zero. Furthermore, we want to achieve that for the \(i \)th matrix \(B_{12}^{(i)} \), the first \(i + 1 \) images are pairwise disjoint, that is, \(\text{Im}(B_{12}^{(i)}), \text{Im}(B_{11}B_{12}^{(i)}), \ldots, \text{Im}(B_{11}^{-1}B_{12}^{(i)}) \) are pairwise disjoint. These two statements are trivially true for \(i = 0 \).

Suppose we have already constructed \(B_{12}^{(0)}, B_{12}^{(1)}, \ldots, B_{12}^{(i)} \). When constructing \(B_{12}^{(i+1)} \), we want to make sure that

\[
\text{Im}(B_{12}^{(i+1)}) \cap \text{Im}(B_{11}^{-1}B_{12}^{(i)}) = \{0\}.
\]

Note that the image of a matrix is simply its column span. If there is some nonzero vector \(x \in \text{Im}(B_{12}^{(i)}) \cap \text{Im}(B_{11}^{-1}B_{12}^{(i)}) \), then this means that a linear combination of the columns of \(B_{12}^{(i)} \) can be written as a linear combination of the columns of \(B_{12} \). (Note that the columns of \(B_{11}^{-1}B_{12} = B_{11}B_{11}^{-1}B_{12} \) are linear combinations of the columns of \(B_{11} \).) So by adding the first \(r \) columns appropriately to the columns \(r + 1, \ldots, n \), we can decrease the dimension of \(\text{Im}(B_{12}^{(i)}) \). We repeat this step until the intersection above is empty. Call the resulting matrix \(B_{12}^{(i+1)} \).

Since \(\text{Im}(B_{12}^{(i+1)}) \subseteq \text{Im}(B_{12}^{(i)}) \) by construction, we get that \(\text{Im}(B_{12}^{(i+1)}) \cap \text{Im}(B_{11}B_{12}^{(i)}) = \{0\} \) for all \(0 \leq j \leq i + 1 \) by the induction hypothesis. Since \(B_{11} \) is invertible, this implies that \(\text{Im}(B_{11}^{-1}B_{12}^{(i+1)}) \cap \text{Im}(B_{11}^{-1}B_{12}^{(i)}) = \{0\} \) for all \(0 \leq s < j \leq i + 1 \). So we achieved the disjointness property.

Furthermore, we maintain \(B_{21}B_{12}^{(i+1)} = 0 \) for all \(0 \leq j \leq k - 2 \), again by \(\text{Im}(B_{12}^{(i+1)}) \subseteq \text{Im}(B_{12}^{(i)}) \). Finally, also the submatrix in the lower right corner stays zero, because columns added there are columns from \(B_{21}B_{11}^{-1}B_{12}^{(i)} \), which is the zero matrix by assumption.

We end up with a matrix \(B^{(k-2)} \) which satisfies the disjointedness assumption described in the above discussion. This implies the right rank bound on \(B^{(k-2)} \) and thus also on \(B \).

The following lemma is the key to the analysis of our algorithm.

Lemma 20. If \(A \in \mathbb{B} = \langle B_1, B_2, \ldots, B_m \rangle \leq \mathbb{F}^{n \times n} \) and \(B = \sum_{i=1}^{m} x_i B_i \), then

\[
\text{rank}(B) = \text{rank}(\langle A, B \rangle) \leq \text{rank}(A) \left(1 + \frac{1}{w(A, \langle A, B \rangle)} \right).
\]

Proof. Let \(\text{rank}(A) = r \). We use \(\mathbb{C} \) to denote the matrix space \(\langle A, B \rangle \), note that this space is being considered over the rational function field \(\mathbb{F}(x_1, x_2, \ldots, x_m) \).

We know that there exist matrices \(P, Q \in \mathbb{F}^{n \times n} \) such that

\[
PAQ = \begin{bmatrix}
I_r & 0 \\
0 & 0
\end{bmatrix}.
\]

Notice that \(\text{Im}(PAQ) = P \text{Im}(A) \). Thus by Lemma 17, \(w(A, \mathbb{C}) = w(PAQ, PCQ) \). Also, it is easy to see that \(\text{rank}(A) = \text{rank}(PAQ) \) and \(\text{rank}(\mathbb{C}) = \text{rank}(PCQ) \). Hence it is enough to show that
rank(PCQ) \leq rank(PAQ) \left(1 + \frac{1}{w(PAQ, PCQ)}\right).

For sake of simplicity, we just write PCQ as C and PAQ as A. Thus we have

\[
A = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}.
\]

We write B as

\[
B = \begin{array}{c}
\text{r columns} \\
\text{r rows} \langle B_{11} \quad B_{12} \rangle \\
n - r \text{ rows} \langle B_{21} \quad B_{22} \rangle \\
n - r \text{ columns}
\end{array}
\]

We get that \(B_{11}\) is non-singular over the field \(\mathbb{F}(x_1, x_2, \ldots, x_m)\) since \(A \in B\). Also, we get by Lemma 18 that first \(w(A, C)\) entries of the sequence of matrices \(B_{22}, B_{21}B_{12}, B_{21}B_{11}B_{12}, \ldots, B_{21}B_{11}^2B_{12} \ldots\) are zero matrices. Now we apply lemma 19 to obtain that

\[
\text{rank}(B) = \text{rank}(B) = \text{rank}(C) \leq \text{rank}(A) \left(1 + \frac{1}{w(A, C)}\right).
\]

\[
\square
\]

Lemma 21. If \(A \in B = \langle B_1, B_2, \ldots, B_m \rangle \leq \mathbb{F}^{n \times n}, B = \sum_{i=1}^m x_i B_i\) and \(w(A, \langle A, B \rangle) < k\) for some \(k \in [n]\), then there exist \(1 \leq i_1, i_2, \ldots, i_k \leq m\) and \(\lambda_1, \lambda_2, \ldots, \lambda_k \in \mathbb{F}\) such that \(w(A, \langle A, C \rangle) < k\), where \(C = \lambda_1 B_{i_1} + \lambda_2 B_{i_2} + \ldots + \lambda_k B_{i_k}\).

Proof. Let \(\text{rank}(A) = r\). We know that there exist matrices \(P, Q \in \mathbb{F}^{n \times n}\) such that

\[
PAQ = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}.
\]

Let \(A' = PAQ\), \(B' = PBQ\) and \(B' = \sum_{i=1}^m x_i PB_iQ\). We write \(B'\) as

\[
B' = \begin{array}{c}
\text{r columns} \\
\text{r rows} \langle B'_{11} \quad B'_{12} \rangle \\
n - r \text{ rows} \langle B'_{21} \quad B'_{22} \rangle \\
n - r \text{ columns}
\end{array}
\]

By using Lemma 17, we know that \(w(A, \langle A, B \rangle) = w(A', \langle A', B' \rangle) < k\). By using Lemma 18, we get that there exists \(t \leq k\) such that \(B'_{21}(B'_{11})^{t-2}B'_{12} \neq 0\) and

\[
(B')^t = \begin{array}{c}
\text{r columns} \\
\text{r rows} \langle B''_{11} \quad B''_{12} \rangle \\
n - r \text{ rows} \langle B''_{21} \quad (B''_{11})^{t-2}B''_{12} \rangle \\
n - r \text{ columns}
\end{array}
\]

for some matrices \(B''_{11}, B''_{12}, B''_{21}\). Since the entries of the matrix \(B'_{21}(B'_{11})^{t-2}B'_{12}\) are polynomials in the variables \(x_1, x_2, \ldots, x_m\) of degree at most \(k\), there exists an assignment to these variables by field constants, assigning at most \(k\) variables non-zero values such that \(B'_{21}(B'_{11})^{t-2}B'_{12}\) evaluates to a non-zero matrix. By using Lemma 18 again, this assignment gives us a matrix \(C' \in B'\) such that \(w(A', \langle A', C' \rangle) < k\). By using Lemma 17, same assignment of the variables gives us a matrix \(C \in B\) such that \(w(A, \langle A, C \rangle) < k\).
6 Final Algorithm

Suppose we have a matrix space $\mathcal{B} = \langle B_1, B_2, \ldots, B_m \rangle \leq \mathbb{F}^{n \times n}$, $B = \sum_{i=1}^{m} x_i B_i$ and a matrix $A \in \mathcal{B}$. Our goal is to find a matrix B in \mathcal{B} such that its rank is “close” to the commutative rank of \mathcal{B}. If the Wong index $w(A, \langle A, B \rangle)$ of A in $\langle A, B \rangle$ is “large”, then we know by Lemma 20 that rank of of A is “close” to the commutative rank of \mathcal{B}, which is equal to the commutative rank of $\langle A, B \rangle$. What if this Wong index $w(A, \langle A, B \rangle)$ is “small”? Then we know that by Lemma 21 that by trying out small number (that means, $m^{w(A, \langle A, B \rangle)+1}$) of possibilities of combinations of B_i, we can find a matrix $C \in \mathcal{B}$ such that Wong index $w(A, \langle A, B \rangle)$ of A in $\langle A, C \rangle$ is also “small”. Using Fact 15, we obtain that rank of A is not maximum in $\langle A, C \rangle$. Thus there exists $\lambda \in \mathbb{F}$ such that rank($A + \lambda C$) > rank(A). And we can find this λ quite efficiently. Also, $A + \lambda C \in \mathcal{B}$. Thus we can efficiently find a matrix of bigger rank if we are given a matrix of “small” Wong index. This idea is formalized in the following Algorithm.

Algorithm 2 Greedy algorithm for $(1-\epsilon)$-approximating commutative rank

Input: A matrix space $\mathcal{B} = \langle B_1, B_2, \ldots, B_m \rangle \leq \mathbb{F}^{n \times n}$, given as a list of basis matrices B_1, B_2, \ldots, B_m. An approximation parameter $0 < \epsilon < 1$.

Output: A matrix $A \in \mathcal{B}$ such that rank(A) $\geq (1-\epsilon) \cdot$ rank(\mathcal{B})

Initialize $A = 0 \in \mathbb{F}^{n \times n}$ to the zero matrix.

Assign $\ell = \lceil \frac{1}{\epsilon} - 1 \rceil$.

while Rank is increasing do

for each $\{i_1, i_2, \ldots, i_\ell\} \in \binom{[m]}{\ell \setminus \{0\}}$ do

/* This means we try all combinations of matrices $B_{i_1}, B_{i_2}, \ldots, B_{i_\ell}$ */

Check if there exist $\lambda_1, \lambda_2, \ldots, \lambda_\ell \in \mathbb{F}$ such that rank($A + \lambda_1 B_{i_1} + \lambda_2 B_{i_2} + \ldots + \lambda_\ell B_{i_\ell}$) > rank($A$).

if rank($A + \lambda_1 B_{i_1} + \lambda_2 B_{i_2} + \ldots + \lambda_\ell B_{i_\ell}$) > rank($A$) then

Update $A = A + \lambda_1 B_{i_1} + \lambda_2 B_{i_2} + \ldots + \lambda_\ell B_{i_\ell}$.

return A.

The following theorem proves the correctness of Algorithm 2. Let s be an upper bound on the bit size of the entries of B_1, \ldots, B_m.

Theorem 22. Assume that $|\mathbb{F}| > n$. Algorithm 2 runs in time $O((mn)^{\frac{1}{\ell}} \cdot M(n, s + \log n) \cdot n)$ and returns a matrix $A \in \mathcal{B}$ such that rank(A) $\geq (1-\epsilon) \cdot$ rank(\mathcal{B}), where $M(n, t)$ is the time required to compute the rank of an $n \times n$ matrix with entries of bit size at most t.

Proof. Suppose $B = \sum_{i=1}^{m} x_i B_i$ and A be the rank r matrix returned by Algorithm 2. Let k be the Wong index $w(A, \langle A, B \rangle)$ of $\langle A, B \rangle$. By Lemma 20, we know that rank(\mathcal{B}) $\leq r(1 + \frac{1}{\ell})$. Thus $r \geq (1 - \frac{1}{\ell + \epsilon})$ rank(\mathcal{B}). If $\epsilon \geq \frac{1}{\ell + \epsilon}$, then we are done. Otherwise we have that $\epsilon < \frac{1}{\ell + \epsilon}$, i.e., $k < \frac{1}{\ell} - 1$. Since $\ell = \lceil \frac{1}{\epsilon} - 1 \rceil$, we also have $w(A, \langle A, B \rangle) < \ell$. By using Lemma 21, we get that there exist 1 $\leq i_1, i_2, \ldots, i_\ell \leq m$ and $\lambda_1, \lambda_2, \ldots, \lambda_\ell \in \mathbb{F}$ such that that $w(A, \langle A, C \rangle) < \ell$, where $C = \lambda_1 B_{i_1} + \lambda_2 B_{i_2} + \ldots + \lambda_\ell B_{i_\ell}$. By using Fact 15, we get that A is not of maximum rank in $\langle A, C \rangle$. Thus there exists $\lambda \in \mathbb{F}$ such that rank($A + \lambda C$) > rank(A), and we shall detect this in Algorithm 2 since we try all possible choices of i_1, i_2, \ldots, i_ℓ.

The desired running time can be proved easily. The outer while loop runs at most n times, thus the total running time is at most n times the running time of one iteration. One iteration of the outer loop has $\binom{[m]}{\ell \setminus \{0\}} = O(m^2)$ iterations of the inner loop. By using the Schwartz–Zippel Lemma [Zip79, Sch80], one iteration of inner for loop needs to try at most $(n + 1)^{\ell} = O(n^2)$ possible values of $\lambda_1, \lambda_2, \ldots, \lambda_\ell \in \mathbb{F}$. And then we perform two instances of rank computation. The stated running time follows.

Remark 23. Algorithm 2 runs in time $O((mn)^{\frac{1}{\ell}} \cdot n \cdot M(n))$ in the algebraic RAM model. Here $M(n)$ is the time required to compute the rank of an $n \times n$ matrix in the algebraic RAM model. It is known that $M(n) = O(n^\omega)$ with ω being the exponent of matrix multiplication. Since one can assume that $m \leq n^2$, Algorithm 2 runs in time $O(n^{2 + \omega + 1})$ in algebraic ram model.

The statement of the above remark and the trivial fact that $\omega \leq 3$, gives us the running time stated in the abstract.
Remark 24. With a more refined analysis, it can be seen that Algorithm 2 uses \(O((mn)^\frac{1}{2} \cdot n \cdot M(n, s + \log n))\) bit operations if the entries of the input matrices \(B_1, B_2, \ldots, B_m\) have bit size at most \(s\). Here \(M(n, t)\) is the bit complexity of computing the rank of a matrix whose entries have bit size at most \(t\). The additional \(\log n\) in the bit size comes from the fact that the entries of the final matrix \(A\) are by a polynomial factor (in \(n\)) larger than the entries of the \(B_i\) due to the update steps.

7 Tight examples

We conclude by giving some tight examples, which show that the analysis of the approximation performance of the greedy approximation scheme cannot be improved. Consider the following matrix space of \(n \times n\)-matrices:

\[
\begin{pmatrix}
* & 0 & \ldots & 0 & * & 0 & \ldots & 0 \\
0 & * & \ldots & 0 & 0 & * & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & * & 0 & 0 & \ldots & * \\
0 & 0 & \ldots & 0 & * & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & 0 & * & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 0 & 0 & \ldots & * \\
\end{pmatrix}
\]

Each block has size \(\frac{n^2}{2} \times \frac{n^2}{2}\). This space consists of all matrices where we can substitute arbitrary values for the * and the basis consists of all matrices where exactly one * is replaced by 1 and all others are set to 0. Assume that \(\epsilon = \frac{1}{2}\), that means, that the greedy algorithm only looks at sets of size \(\ell = 1\). Furthermore, assume that the matrix \(A\) constructed so far is

\[A = \begin{pmatrix} 0 & I_{\frac{n}{2}} \\ 0 & 0 \end{pmatrix}\].

Any single basis matrix cannot improve the rank of \(A\), since either its nonzero column is contained in the column span of \(A\) or its nonzero row is contained in the row span of \(A\). On the other hand, the matrix space contains a matrix of full rank \(n\), namely, the identity matrix.

The next space for the case \(\ell = 2\) looks like this:

\[
\begin{pmatrix}
* & 0 & \ldots & 0 & * & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 \\
0 & * & \ldots & 0 & 0 & * & \ldots & 0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & * & 0 & 0 & \ldots & * & 0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & * & 0 & \ldots & 0 & * & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & 0 & * & \ldots & 0 & 0 & * & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 0 & 0 & \ldots & * & 0 & 0 & \ldots & * \\
0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & * & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 & * & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & * \\
\end{pmatrix}
\]

and the corresponding matrix \(A\) is

\[A = \begin{pmatrix} 0 & I_{\frac{n^2}{4}} \\ 0 & 0 \end{pmatrix}\].

By an argument similar to above, it is easy to see that we need at least three matrices to improve the rank of \(A\), so the algorithm gets stuck with a \(\frac{2}{3}\)-approximation.

The above scheme generalizes to arbitrary values of \(\ell\) in the obvious way.

Acknowledgements. We would like to thank Ankit Garg and Rafael Oliveira for pointing out some inaccuracies in an earlier version of the paper.
References

